
TUGboat, Volume 26 (2005), No. 3 215

Fonts

Advanced font features with X ETEX
— the fontspec package∗

Will Robertson

Abstract

This paper describes the fontspec package for the
X ETEX–LATEX format. This package provides a high
level interface for font selection and configuration of
OpenType and other fonts.

1 Introduction

X ETEX is an extended TEX program written by Jon-
athan Kew, and has been introduced recently in this
journal [4]. It is currently available only on Apple’s
Mac OSX, but there is considerable interest (and
much work to be done!) in making it a cross-platform
application. The main advantages it holds over its
contemporaries are support for Unicode input and di-
rect access to fonts installed in the operating system.
No additional support files are necessary in order to
install such fonts, which are accessed via an extended
\font primitive. This primitive also provides access
to rich font features available in either the Open-
Type format, or the ‘Apple Advanced Typography’
(AAT) format.1 A typical example, in plain X ETEX,
of choosing a font with old-style figures in these two
formats is shown in example 1.

The fontspec package is an implementation of
a high level interface for LATEX users of X ETEX to
access feature-rich fonts in the framework of the
familiar NFSS. Furthermore, it obviates the need for
custom-written font definition files required for font
installation.

This paper will introduce the fontspec package
with some side commentary on the advanced font for-
mats it supports. The first half of the paper will cover
the user interface, covering font installation, font se-
lection, and font feature selection. The second half
discusses the implementation details, shortcomings,
and future of the package.

∗ Version 1.9 of the package was under construction while
this paper was finalised; some additions may yet make it into
the final version, in which case I apologise in advance for the
incomplete information here. The package documentation will
always be up to date, of course.

1 The AAT format may be considered to be approximately
equivalent to a combination of the Multiple Master and Open-
Type formats.

Example 1: Plain X ETEX OpenType and AAT font
selection with old-style figures.

\font\fonta="Adobe Garamond Pro:+onum" at 12pt

\fonta OpenType old-style figures: 0123456789

\font\fontb="Apple Chancery:

Number Style=Old Styles" at 12pt

\fontb AAT old-style figures: 0123456789

OpenType old-style figures:
AAT old-style figures: 0123456789

2 Motivation

With X ETEX, users have easy access to a multitude
of typefaces in Plain TEX. But writing the font def-
inition files for LATEX was cumbersome and proved
a fair obstacle for day-to-day use. I started working
on a solution, which was originally simply to cre-
ate the .fd files necessary to access every Mac OS X

font in LATEX, but I quickly tired of the tedium,
disenchanted with this non-general solution to the
problem. Furthermore, the scope of font features pro-
vided by feature-rich fonts quickly demonstrated the
NFSS2 insufficient for the task of incorporating every
permutation of font features a user might desire.

Secondly, AAT font features are accessed by
referring to a specific string defined on a per-font
basis, with consistency between fonts kept between
‘feature codes’ rather than the value of the string.
For example, example 1 uses the strings ‘Number
Style’ and ‘Old Styles’ to select lowercase numbers in
Apple Chancery, but for Hoefler Text one would write
‘Number Case=Lowercase numbers’. Note that such
a system works well in a graphical program in which
font features are selected interactively from a list;
each feature may be described exactly as the font
designer would wish (and this is indeed an advantage
for more esoteric features). Unfortunately, for a batch
program like X ETEX, this flexibility is a burden.

Finally, after version 0.8, X ETEX began using the
ICU renderer3 to support OpenType font features in
addition to the Mac OS X-native features it supported
from the beginning. Now the poor users had to cope
with not only a different system for applying font
features, but also OpenType’s cryptic abbreviations
for them. At this time, fontspec was able to provide

2 NFSS, the ‘new font selection scheme’ for LATEX, isn’t
actually that new. For readers unfamiliar with its concepts,
the documentation file fntguide reveals all [12].

3 International Components for Unicode, http://icu.

sourceforge.net

http://icu.sourceforge.net
http://icu.sourceforge.net

216 TUGboat, Volume 26 (2005), No. 3

a unified and consistent interface to fonts and their
features in both formats, and offer a few other niceties
along the way.

3 Font installation

To install a font in Mac OSX, the font file must
be placed in one of the computer’s Fonts folders
(user, system, or network). Once a font is installed in
Mac OSX it is immediately available to X ETEX. No
additional font support files of any kind are required
for it to be loaded by a \font command. (A LATEX
user would still need .fd files for loading it with
classical NFSS techniques.) Ease of font access is
one of X ETEX’s attractions, but no manipulation of
the font properties can occur between the stages of
obtaining the font and actually using it.

Compare this to the method TEX and its siblings
uses, in which sub-optimal glyphs or kerning in the
font may be rectified with customised font metrics
and virtual fonts. In X ETEX, it is much simpler for
a user to install a new font, but it is less flexible if
greater output quality is desired than the font alone
gives and the user cannot, or may not (due to license
restrictions), edit the font file itself.

It has always been a good idea, however, to use
a suitably high-quality font from the beginning in
order to avoid such hassles.

4 Font selection

One of the trickier topics a new user to LATEX faces
is font selection, although progress has been made
with the PostScript NFSS bundle [11], and other
freely available fonts, that provide simple4 packages
to select them. X ETEX and the fontspec package make
things similarly easy by referring to a font with its
display name, rather than the cryptic ‘Karl Berry’
abbreviation, unnecessary in many cases these days.

On an individual basis, \fontspec selects font
families:

\fontspec[font features]{font name}

This command loads the specified typeface and de-
fines an NFSS family as appropriate with bold, italic,
and small caps shapes (if available) for access with
the familiar font-shape changing commands such as
\itshape, \textsc, etc.5 An example of selecting the
‘Hoefler Text’ family with these methods is shown in
example 2.

4 Indeed, too simple in some cases. The helvet package
allows a scaling factor to load the font at any relative size,
but almost all other font packages skip this sometimes-vital
ingredient.

5 Code inspired by Philipp Lehman’s The Font Installation
Guide [6] allows the combination of both italic and small caps
shapes.

Example 2: NFSS family selection

\fontspec{Hoefler Text}

This is an example typeset in Hoefler Text.

\textit{Here is italic.} \textbf{And now bold.}

{\bfseries\itshape Bold italic, of course.}

\scshape Small caps, if available.

\itshape And italic small caps.

\bfseries Even bold italic small caps!

This is an example typeset in Hoefler Text. Here is
italic. And now bold. Bold italic, of course.

S!"## $"%&, '(")"'#"*#+. A!" #$%&#' ()%&& '%*(.
E!"# $%&' ()*&(+ ,-*&& +*.,!

Example 3: Choosing the default font families.

\setromanfont{Baskerville}

\setsansfont[Scale=MatchLowercase]{Skia}

\setmonofont[Scale=MatchLowercase]{Monaco}

The \textsf{fontspec} package defines

the \verb|\fontspec| command.

The fontspec package defines the \fontspec command.

More usefully, the default document fonts (ro-
man, sans serif, and typewriter), are chosen with
the following commands, which have the same inter-
face as \fontspec itself. They are \setromanfont,
\setsansfont, and \setmonofont, and provide a
more intuitive interface than such methods as

\renewcommand\rmdefault{family} .
Related commands are also available for specifying
the text fonts for use in maths environments (i.e.,
\mathrm and others).

The use of the default-font commands in exam-
ple 3 also demonstrates the feature for automatic
font scaling, which in this case keeps the lowercase
letter heights consistent. Further explanation of the
Scale feature occurs in section 5.1.

The fontspec package attempts to identify the
accompanying small caps, bold, and italic faces for a
selected font, but in the case that it fails or that more
than one is available for use, they may be selected
explicitly, with individual font features if desired.
‘Old-fashioned’ 8-bit fonts with separate small caps
may be defined as a complete family in this way, as
shown in example 4, which also demonstrates how
a Multiple Master font instance can be conveniently
defined for the bold series.

Finally, commands may be defined for efficiently
switching between fonts:

TUGboat, Volume 26 (2005), No. 3 217

Example 4: Choosing accompanying fonts.

\fontspec[SmallCapsFont = {Minion MM Small Caps

& Oldstyle Figures},

BoldFont = {Minion MM Roman},

BoldFeatures = {Weight = 1.4},

]{Minion MM Roman}

Minion Roman 123 \\ \textsc{Minion SC 456} \\

\bfseries

Minion Bold 123 \\ \textsc{Minion Bold SC 456}

Minion Roman 123
Minion SC 456

Minion Bold 123
Minion Bold SC 456

\newfontinstance\fontcs[features]{font name}
This defines the \fontcs control sequence (say) for
selecting the particular font instance defined. It is
more efficient than writing
\def\fontcs{\fontspec[features]{font name}}

because the feature processing only needs to be per-
formed in the original definition, as opposed to every
time the macro is expanded in the latter case.

5 Font feature selection

The package documentation covers all of the built-in
features fontspec supports, with many examples; an
interesting subset of these is presented here.

As previously mentioned, font features are de-
fined in the optional argument to the various font
commands. Inspired by the organisation of the AAT

font features, these are separated into groups and
use keyval comma-separated values to impose some
sort of structure onto the large number of possible
feature choices.

Two very important commands are associated
with choosing font features:

\defaultfontfeatures{font features}
\addfontfeatures{font features}

The first, \defaultfontfeatures, is used to define
features that will be applied implicitly to all subse-
quent font choices; for example, to request that all
fonts use lowercase numbers.

Secondly, the command \addfontfeatures (the
s is optional) selects features to use in addition to
those already specified for the current font. The scope
of this command is local to the current group; the
default fonts are not redefined. This could be used,
e.g., in a hook to all tabular material that selects
uppercase and fixed-width numbers regardless of the
font in use; refer to example 5 for a proof-of-concept

Example 5: Selecting number styles by context.

\fontspec[Numbers={Proportional,OldStyle}]

{Skia}

In 1842, 999 people sailed 97 miles

in 13 boats. \par In 1923, 111 people

sailed 54 miles in 56 boats. \vspace{10pt}

{\addfontfeatures{Numbers={Monospaced,Lining}}

\begin{tabular}{@{} cccc @{}}

Year & People & Miles & Boats \\

\hline

1842 & 999 & 75 & 13 \\

1923 & 111 & 54 & 56 \\

\end{tabular}}

In 1842, 999 people sailed 97 miles in 13 boats.
In 1923, 111 people sailed 54 miles in 56 boats.

Year People Miles Boats
1842 999 75 13
1923 111 54 56

implementation of this idea, which was requested by
Toledo in his paper on feature-rich fonts [13].

The important point is that the tabular material
requires no a priori knowledge of the font in use to
format the numbers appropriately. The implementa-
tion of a class that takes advantage of such features
is left as an exercise to the reader.

Another example of the \addfontfeature com-
mand is shown in example 6, in which vulgar frac-
tions may be easily created on the fly.6 This exam-
ple also uses a macro from the xunicode package,
by Ross Moore, which provides macros (backwards
compatible with existing LATEX conventions) for a
large number of Unicode character slots; in this case,
\textfractionsolidus refers to U+2044 fraction
slash.

5.1 Features for all fonts

The first class of features is independent of the choice
of font; that is, there are no restrictions on their use
and they do not require specific font support.

The first is the most interesting, and deals with
a specific feature of X ETEX. The Mapping feature
allows a last minute Unicode remapping of the in-
put stream, providing such features as non-standard

6 In practise, as always, things are a bit more complex;
the \vfrac macro shown is actually AAT-font specific due to
differences with how such things are handled in OpenType. A
more complex macro could be written to handle both cases
transparently, however.

218 TUGboat, Volume 26 (2005), No. 3

Example 6: On-the-fly vulgar fractions.

\newcommand\vfrac[2]{%

{\addfontfeature{%

VerticalPosition = Superior}#1}%

\textfractionsolidus

{\addfontfeature{%

VerticalPosition = Inferior}#2}}

\fontspec{Hoefler Text}

\vfrac{147}{2356} \qquad

\fontspec{Apple Chancery}

\vfrac{963}{8754}

¹⁴⁷⁄₂₃₅₆ ⁹⁶³⁄₈₇₅₄

Example 7: X ETEX’s character mapping capabilities.

\def\text{!‘‘‘Standard’’ \TeX\ ligatures

--- for convenience!}

\fontspec{Didot} \text \\

\fontspec[Mapping=tex-text]{Didot} \text

!```Standard'' TEX ligatures --- for convenience!
¡“Standard” TEX ligatures — for convenience!

TEX ligatures such as ‘‘, ---, and ’’ for fonts with-
out them (see example 7), and also transliteration
schemes. It holds many similarities with Ω’s trans-
lation processes, although a detailed comparison be-
tween the two has not yet been made.

The Scale feature is useful for matching the
sizes of fonts with incompatible ‘x’-heights (to the
extent that such a thing is possible), as shown pre-
viously in example 3. In contrast to the option seen
there, MatchUppercase matches the heights of the
uppercase letters, instead.7 Both of these scaling fea-
tures use the current default roman font for reference.
Explicit scaling values can be used for fine-tuning
the results (e.g., [Scale=0.84]). More scaling op-
tions may be introduced in the future; for example,
MatchAlphabetLength might be useful. . . .

The Colour feature (also called Color, for the
Americans) is defined as a triplet of two hex numbers
in RGB space, with optional transparency as another
two, as shown in example 8.

X ETEX has more advanced colour management
abilities that are manipulated with \specials, but
they are not provided for within fontspec. An inter-

7 In X ETEX, incidentally, the cap height of a font is stored
in \fontdimen8.

Example 8: fontspec’s Color feature, with transparency.
Looks much nicer in colour.

\fontspec{Hoefler Text Black}

{\addfontfeature{Color=FF000099}W}\kern-1ex

{\addfontfeature{Color=0000FF99}S}\kern-0.8ex

{\addfontfeature{Color=DDBB2299}P}\kern-0.8ex

{\addfontfeature{Color=00BB3399}R}

WSPR
Example 9: Too much interword-space is the devil.

\fontspec{Cochin}\text\par

\fontspec[WordSpace={0.7,0.8,0.9}]{Cochin}\text

It is well known that the space between words in a para-
graph should be small to lead the eye along the line,
preventing distractions from nearby text above and be-
low.

It is well known that the space between words in a para-
graph should be small to lead the eye along the line, pre-
venting distractions from nearby text above and below.

esting property of the colour options shown above is
that the colour itself is a property of the glyph, so no
complexity arises trying to manage a colour stack [9],
or dealing with potential formatting side-effects of
the \special commands themselves.

The remaining font-independent features relate
to the low level TEX commands for specifying the
space between words and choosing the hyphenation
character. WordSpace takes either a single scaling
factor or a triplet of three to change the nominal
values for the respective interword space, stretch, and
shrink, for the case that a suitable value isn’t chosen
by default. This feature is shown in example 9.

The PunctuationSpace feature takes a scaling
factor to adjust the amount of space added after
punctuation if \frenchspacing is not being used.
This feature and the previous provide a high-level
interface to the primitive \fontdimens 2, 3, 4, and 7.

HyphenChar selects the hyphenation character
to be used, of more interest when using Unicode fonts
with the possibility of stylistic variations in this area.
Rather than demonstrating this feature, however,
in example 10 the Uppercase feature is shown that
both adjusts the punctuation to its uppercase form
and increases the tracking between letters slightly.

TUGboat, Volume 26 (2005), No. 3 219

Example 10: Selecting an uppercase hyphenchar. Rather
than doing it manually, an OpenType font
feature performs this automatically.

\fontspec{Adobe Garamond Pro} \TEXT

\addfontfeature{Letters=Uppercase} \TEXT

UPPERCASE TRACKING AND HYPHEN-CHAR
UPPERCASE TRACKING AND HYPHENCHAR

Example 11: Ligature examples

\fontspec[Ligatures=NoCommon]{Hoefler Text}

strict firefly \quad

\fontspec[Ligatures=Rare]{Hoefler Text}

strict firefly

\fontspec{Palatino}

Apple \quad

\fontspec[Ligatures=Logos]{Palatino}

Apple

strict firefly stri" firefly
Apple

5.2 Features for fonts that support them

Ligatures are single glyphs that are used to represent
many characters for reasons of elegance, decoration,
or tradition. They are essential for typesetting many
non-Western languages correctly. Some of the liga-
ture features are shown in example 11.

Another example of shape-specific feature se-
lection is shown in example 12, for the case of a
stylistic variant in the roman form, and contextual
swashes in the italic (a decidedly dubious combi-
nation). In this example, the Contextuals feature
controls the contextual swashes on the lowercase let-
ters, and Alternate=1 activates swash caps for the
uppercase.

Glyph variations can go on almost indefinitely
for decorative typefaces; they are enumerated within
the Variant feature. Apple Chancery is a font dis-
tributed with Mac OSX, a very small selection of
whose variant glyphs are shown in example 13. For
a more extreme example, see ‘Zapfino’, example 15.

Features for which I haven’t shown examples
include: optical font sizes, fractions, various ideo-
graphic and alphabetic CJK features, including sup-
port for vertical typesetting, and OpenType script
and language selection.

Example 12: Different forms for different shapes.

\fontspec[

UprightFeatures = {Style = Engraved} ,

ItalicFeatures = {

Contextuals = {WordInitial, WordFinal} ,

Alternate = 1 }

]{Hoefler Text}

[ABCD\dots WXYZ] \\

\textit{Australian vegemite}

!"#$%&'()*+
!ustralian "egemit#

Example 13: Apple Chancery’s design complexities.

\fontspec[Variant=1]{Apple Chancery}

ventriloquizes \\

\fontspec[Variant=2]{Apple Chancery}

ventriloquizes \\

\fontspec[Variant=3]{Apple Chancery}

ventriloquizes

ventriloquizes
ventrıloQuizes
ventriloquizes

5.3 Font feature meta-details

User commands are available to specify font fea-
tures that fontspec doesn’t cater for. These use the
plain TEX syntax to define new keys for \fontspec.
Coincidentally, more than one feature may be acti-
vated by a single feature key in this way.

More interestingly, font features and their op-
tions may be aliased to alternate name for abbrevi-
ation or translation purposes. For example, typing
[VerticalPosition=ScientificInferior] would
be tiresome more than once or twice a document.8

(Of course, multiple uses of a font instance should
be effected with a \newfontinstance as previously
discussed. . .). In any case, it may be desirable for
whichever reason to rename some features and their
options, as shown in example 14.

I haven’t seen this key-aliasing feature offered by
other packages9 although it is simple to implement.

8 fontspec always takes the verbose option for default op-
tion names, in the interest in self-documentation.

9 To be honest, I haven’t really looked.

220 TUGboat, Volume 26 (2005), No. 3

Example 14: An example of font feature/option name
abbreviation.

\aliasfontfeature{VerticalPosition}{VertPos}

\aliasfontfeatureoption{VerticalPosition}

{ScientificInferior}{SciInf}

\fontspec[VertPos=SciInf]{Warnock Pro}

a1 b2 c3 d4 e5 f6 g7 h8 i9 j0

a₁ b₂ c₃ d₄ e₅ f₆ g₇ h₈ i₉ j₀

Perhaps other package authors have more confidence
in their ability to assign their keys good names.

5.4 Format incompatibilities

Features for AAT fonts and OpenType unfortunately
do not overlap completely. This makes the documen-
tation more convoluted than necessary; e.g., there
are nine AAT ligature options and five OpenType
ones, and only the first three of each are equivalent.
Nonetheless, when applying the package for a spe-
cific font, the features the font contains are generally
known by the user and the situation isn’t so bad.10

I expect the AAT format to slowly fade away in the
face of the industry standard OpenType, so hopefully
this problem will resolve itself in time.

5.5 Problems with rich fonts in a text-only
environment

A flaw with OpenType, although it’s not so much
of a problem in practise, is the anæmic organisation
of its features. There is just a single flat list of four
letter codes, and a more structured approach like
that seen in the AAT format would be easier to
comprehend. AAT allows both exclusive and non-
exclusive selectors: take the example of ligatures and
letter shapes. More than one set of ligatures can
be enabled (e.g., common and rare), whereas letter
shape can be only one of, say, normal or small caps or
swash caps. By contrast, OpenType’s features aren’t
partitioned into groups, and whether clig and dlig
override each other or not is not obvious without
trying it out or looking at the specification.

While at this stage fontspec behaves more like
the OpenType model in that it is not always clear
when one feature will override another, there are
plans in the future to create a more robust interface
that will warn or inform of such conflicts.

10 Among the X ETEX samples that form part of its docu-
mentation are the Plain TEX documents AAT-info.tex and
OpenType-info.tex, which may be used to determine which
features are supported by an arbitrary font.

Example 15: The nine variant forms of the Zapfino ‘d’.
How to choose between them in plain text?

\newcounter{var}

\whiledo{\value{var}<9}{%

\fontspec[Variant=\thevar,

Colour=00000088]{Zapfino}%

d\stepcounter{var}}

ddddddddd
A side-effect of having to deal with both feature

formats has been to try and fit OpenType’s features
into the logical structure that AAT provides. Close
followers of the package over time will hopefully have
been not too upset when I slightly re-arranged and
renamed features and options to produce a more
elegant (I hope!) organisation.

For an example of the issues faced here, does
a user care what the differences between ‘Swashes’
(OpenType feature swsh) and ‘Contextual Swashes’
(OpenType feature cswh) are? Is a font likely to
have both of these features? In a program with a
graphical user interface, a list can be presented con-
sisting of only the features available in the current
font. In a generic text editor, this is nigh on impossi-
ble. Overcoming challenges such as this could pose a
significant, or at least interesting, problem.

5.6 Shorthand font feature markup

William Adams discusses the problems of markup for
alternate characters in his article on using Zapfino
within Ω [1]. (See example 15 for an idea of the capa-
bilities of the same typeface in fontspec.) His proposal
relies on Ω translation processes, and his scheme can
be emulated with X ETEX’s font mappings.

Alan Hoenig uses more NFSS-bound techniques
in his implementation of a system to use the Poetica
fonts in LATEX [3]. (The fact that he was able to do
this in 1995 is a testament to the underlying power
of TEX.) It wouldn’t be unreasonable or difficult to
define commands in the spirit of Hoenig’s into font-
spec, such as \+ to increment the Variant number
of the currently selected font, but his more fanciful
ideas rely on the clever structure he built into his
virtual fonts.

TUGboat, Volume 26 (2005), No. 3 221

Indeed, until now all support for feature-rich
fonts have required significantly font-specific imple-
mentations, which has allowed clever shortcuts like
ligatures with ^ to access alternate glyph forms (also
see Toledo [13]). But since the features that fonts
offer (especially ‘fancy’ fonts such as Apple Chancery,
Poetica and Zapfino) are so varied, it is unrealistic
to expect a macro package to be able to fully deal
with arbitrarily complex font features in such an
abbreviated manner. Provided that the font offers
the support, fontspec can access any feature the de-
signer wishes to offer without having to mess around
with virtual fonts, customised ligatures, and font-
specific input-to-glyph mappings, at the expense of
the brevity that these schemes allow.

A solution is offered by Toledo: “A better way
would be for LATEX editors. . . to allow the user to
select glyphs visually and to automatically produce
the plain-text markup in the LATEX input file.” [13]

6 The future of fontspec

LATEX’s future involves a revamp of the font interface,
in order to accommodate access to feature rich fonts
through more advanced TEX-variants such as X ETEX.
This package simply adds another layer on top of the
NFSS, but frankly, I am not well-equipped enough
(yet. . .) to implement an NFSS-replacement, either
in experience or time. Hopefully, however, fontspec
grows into something more suitable, or plants the
seeds to get there via a different route.

On an internal level, moving the feature pro-
cessing code from keyval to xkeyval is planned for
the current and next release; this latter package con-
tains many conveniences that will simplify fontspec’s
feature processing considerably, as well as provide
some functionality that would be too convoluted to
perform (for me) without it.

6.1 Moving away from the NFSS

The NFSS has served the LATEX community extraordi-
narily well, especially when the fact that it is over ten
years old is considered. What have been its greatest
successes? The first and most obvious is its context-
independent commands for shape selection. \emph
is its crowning achievement in this area. Although
many users remain blissfully unaware of this fact,
writing logical markup really is next to Godliness.

A greater technical achievement (in my eyes) is
the entirely transparent selection of optically-sized
fonts. Granted, there haven’t been that many of them.
But the fact that \fontsize{9}{11} and \fontsize
{12}{14} selects different shapes of Computer Mod-
ern is a testament to the cleverness of the original
writers.

Example 16: Only some of the weights of Helvetica Neue;
the only way to access them in the NFSS is
with fixed weight codes.

\newcommand\showfont[1]{\fontspec{#1}#1\par}

\showfont{Helvetica Neue UltraLight}

\showfont{Helvetica Neue Light}

\showfont{Helvetica Neue}

\showfont{Helvetica Neue Condensed Bold}

\showfont{Helvetica Neue Condensed Black}

Helvetica Neue UltraLight
Helvetica Neue Light

Helvetica Neue
Helvetica Neue Condensed Bold

Helvetica Neue Condensed Black

Where has the NFSS fallen down? While un-
derstandable from technical aspects in the day, the
small number of font axes makes it quite difficult,
or even impossible, to squash every font in some of
the larger font families (Lucida specifically comes to
mind) into its framework. Something like the slantsc
packages’s support for italic small caps can only go
so far (in fact, it hardly goes far enough).

Secondly, the weight/width series of the NFSS

cannot be traversed in an easy manner. If a font
with book, medium, and bold weights is installed,
there is no convenient way to move between them,
let alone condensed or expanded versions. In the
same way, it is difficult for fontspec to provide access
to more than the canonical bold/italic/small caps
shapes defined by the \text.. commands. Expect
an improvement on this front in a future version of
fontspec that uses parameterised series identifiers to
deal with fonts with many weights, such as Helvetica
Neue, which is shown in example 16. In the NFSS,
two letter series codes would be required to move
between these shapes. A relative boldness command
(cf. the relsize package) would perform the job much
more conveniently.

Finally, any further promulgation of font com-
mands that look like \textZZ, in which ZZ can be
any cryptic combination of letters that only made
sense when it was conceived, has got to stop. There
is only so much meaning that can be obtained from
two-letter abbreviations, and trying to get lightface,
lining figure, oldstyle figures, superior numbers, and
so on into that system implies incomprehensible com-
mand names.

222 TUGboat, Volume 26 (2005), No. 3

6.2 Limitations of fontspec

The fontspec package started out before I even knew
how to program in LATEX, but on the whole I feel
that it has been quite successful. The user interface
is still being refined, but it is becoming more stable.
Anecdotally, people seem to have found it useful to
write (often multilingual) documents in LATEX with
it. However, it is only the first step along the way to
a ‘future font selection scheme’, and there are many
improvements that could be made.

The OpenType specifications [2] define not only
the corpus of standardised features, but also how
interacting font features should behave. At present,
features are processed by X ETEX in the order that the
user specifies, but \addfontfeatures might override
one feature with another— fontspec should be able
to inform the user what is going on in this case (i.e.,
which features are being overridden and why).

The second, larger problem is that fontspec is
X ETEX-specific. A worthy and involved goal would be
to unify font access based on OpenType support be-
tween the three main TEX variants: pdfTEX via the
LCDF Typetools [5], which ‘only’ provide the means
to generate readable fonts based on OpenType font
features, not a higher-level interface or consistent
framework for doing so; Ω and its future descendants
when they emerge [7, 10]; and X ETEX as discussed
herein. εXTEX is another TEX-like program that I
haven’t even considered yet, but whose organisation
and development seems very promising [8]. For now,
fontspec’s implementation is closely tied to the syn-
tax shown in example 1; abstracting the \fontspec
command away from X ETEX is not planned for the
short term, however.

The most applicable work in this direction would
be for the pdfTEX–LATEX format. It is a great ad-
vantage to be able to refer to fonts by name, and
an extra file in the TDS that contains a mapping
between logical font names and ‘Karl Berry’–like
font filenames could be used to achieve this. Hypo-
thetically, fonts would keep their current obscure
abbreviated names for selection in plain pdfTEX;
for a fontspec-like higher-level implementation, this
new file (or collection of files) could be \input and
processed during the TEX run to get from, e.g.,
[Numbers=Lowercase]{Aldus} to pasj.

7 Implementation notes

LATEX’s NFSS defines font families with variations in
series and shape only. With some extra code, it can
be extended to handle small caps independently of
italics. Further distinctions in more advanced fonts,
such as lining and old-style figures, swash charac-

ters and inferior/superior numbers, can be organised
with new sub-families by appending various charac-
ters to the original family name. These ideas have
already been instantiated by Philipp Lehman, in an
experimental package he calls nfssext [6].

As an example, the Aldus typeface is given the
NFSS family name pas in its basic form, and pasj is
Aldus with lowercase numbers. The nfssext package
contains macros that switch from pas to pasj, and
other forms such as pas1 for superior numbers, that
work for any collection of font families that adhere
to these principles.

The fontspec package uses this idea of varying
font features based on varying NFSS family names.
However, it does not use the idea of manipulating
the font family name directly, since combinations
of variations end up creating an explosion of family
names.

Rather than creating, before-the-fact, a slew of
.fd files for each desired permutation of font features,
then carefully selecting between them when it comes
time to actually choose the font, fontspec instead
defines new families as it goes, based on the features
that are actually requested at the time.

When a font is selected, the feature list is pro-
cessed to create a unique identifier for this particular
font instance. This identifier is used to determine if
a font has been loaded previously; at the same time,
the NFSS family name is created by incrementing a
counter appended to the name of the plain font.

For example, the unique identifier created when
requesting ‘Hoefler Text’ with lining figures and
coloured red could be:

Hoefler Text+col:CC0000+21,1
where (21, 1) is the AAT feature code for accessing lin-
ing figures. This is used in a \csname...\endcsname
construct to refer to the font family name; e.g.,
Hoefler Text (0), if this is the first time that Hoe-
fler Text has been selected in any form.

Once the NFSS family name is created, it is
used in another \csname...\endcsname construct
to save the information used to create it; i.e., the
features requested and the font name, such that
they can be retrieved for subsequent use with the
\addfontfeatures command.

These steps for font selection, and later feature
addition, are summarised as follows.

1. The commands
\defaultfontfeatures{Numbers=OldStyle}
\fontspec[Ligatures=Rare]{Warnock Pro}

2. are equivalent to
\fontspec[Numbers=OldStyle,

Ligatures=Rare]{Warnock Pro}

TUGboat, Volume 26 (2005), No. 3 223

3. which produces the font instance identifier
Warnock Pro+onum+dlig

4. which, in \csname...\endcsname, gives
Warnock Pro (0)

(the NFSS family name)
5. which, in another \csname... construct, gives

{Numbers=OldStyle,Ligatures=Rare}
{Warnock Pro}

6. This is used by
\addfontfeature{Color=CC0000}

7. which is in this case equivalent to
\fontspec[Numbers=OldStyle,

Ligatures=Rare,
Color=CC0000]{Warnock Pro}

8. and the process starts again. So that’s how fonts
are selected in fontspec!
At present, the same features loaded in a differ-

ent order constitutes the creation of a separate font
family. Overcoming this flaw simply involves sorting
the features as they are added to the font instance
identifier, which shouldn’t be too hard to organise,
in theory.

A trickier problem is informing the user which
features are available for a newly-selected font. To
accomplish this, when a new font is selected, a loop
would be used to build up a list of the features and
options within the font. This list of (low-level) fea-
ture strings must then be converted to fontspec-level
commands for display in the transcript file on re-
quest, which would mean that font feature definition
in the source would have to be a two-way mapping
from both AAT and OpenType features to fontspec
features.

8 Conclusion

Well, I hope you’ve enjoyed this brief look into this
X ETEX–LATEX package. I’ve learned an incredible
amount since I started, I’ve got a lot more to learn,
and I’m looking forward to improving the package
in the future. . . but not too soon. Comments, sugges-
tions, and criticisms are all especially welcomed.

9 Acknowledgements

The fontspec package could not have been possible
without the efforts of Jonathan Kew, who is de-
veloping X ETEX at SIL and whom I thank greatly
for his hard work and good advice. My gratitude
goes also to those who have kindly answered my
(often trivial) questions on various mailing lists and
comp.text.tex.

References

[1] William F. Adams. There is no end: Omega
and Zapfino. TUGboat, 24(2):183–199,
November 2003.

[2] Microsoft Corporation. OpenType Layout
tag registry. http://www.microsoft.com/
typography/otspec/featuretags.htm.

[3] Alan Hoenig. The Poetica family: fancy fonts
with TEX and LATEX. TUGboat, 16(3):244–252,
September 1995.

[4] Jonathan Kew. X ETEX, the Multilingual
Lion: TEX meets Unicode and smart font
technologies. TUGboat, 26(2):115–124, 2005.

[5] Eddie Kohler. LCDF Typetools. http://www.
lcdf.org/type/index.html#typetools.

[6] Philipp Lehman. The Font Installation Guide,
2.0 edition, April 2004. (Documentation file
fontinstallationguide.pdf.).

[7] Anish Mehta, Gábor Bella, and Yannis
Haralambous. Adapting Ω to OpenType fonts.
TUGboat, 24(3):550–556, 2003.

[8] Gerd Neugebauer et al. The εXTEX project.
http://www.extex.org/.

[9] Heiko Oberdiek. The pdfcolmk package.
http://www.ctan.org/tex-archive/macros/
latex/contrib/oberdiek/pdfcolmk.sty
(Documentation within .sty file.).

[10] John Plaice, Yannis Haralambous, Paul
Swoboda, and Gábor Bella. Moving Ω to an
object-oriented platform. In Lecture Notes in
Computer Science, volume 3130, pages 17–26,
2004.

[11] Walter Schmidt. Using common PostScript
fonts with LATEX. http://www.ctan.org/
tex-archive/macros/latex/required/
psnfss/psnfss2e.pdf.

[12] LATEX3 Project Team. LATEX2ε font selection.
http://www.latex-project.org/guides/
fntguide.pdf.

[13] Sivan Toledo. Exploiting rich fonts. TUGboat,
21(2):121–129, June 2000.

� Will Robertson
School of Mechanical Engineering
University of Adelaide, SA
Australia 5005
wspr81 (at) gmail.com

http://groups.google.com/group/comp.text.tex
http://www.microsoft.com/typography/otspec/featuretags.htm
http://www.microsoft.com/typography/otspec/featuretags.htm
http://www.lcdf.org/type/index.html#typetools
http://www.lcdf.org/type/index.html#typetools
http://www.extex.org/
http://www.ctan.org/tex-archive/macros/latex/contrib/oberdiek/pdfcolmk.sty
http://www.ctan.org/tex-archive/macros/latex/contrib/oberdiek/pdfcolmk.sty
http://www.ctan.org/tex-archive/macros/latex/required/psnfss/psnfss2e.pdf
http://www.ctan.org/tex-archive/macros/latex/required/psnfss/psnfss2e.pdf
http://www.ctan.org/tex-archive/macros/latex/required/psnfss/psnfss2e.pdf
http://www.latex-project.org/guides/fntguide.pdf
http://www.latex-project.org/guides/fntguide.pdf

	Introduction
	Motivation
	Font installation
	Font selection
	Font feature selection
	Features for all fonts
	Features for fonts that support them
	Font feature meta-details
	Format incompatibilities
	Problems with rich fonts in a text-only environment
	Shorthand font feature markup

	The future of fontspec
	Moving away from the NFSS
	Limitations of fontspec

	Implementation notes
	Conclusion
	Acknowledgements

