
Font installation the shallow way∗

SIEP KROONENBERG
Rijksuniversiteit Groningen
Department of Economics
P.O. Box 800
9700 AV Groningen, The Netherlands
siepo (at) cybercomm dot nl

Abstract
For one-off projects, you can cut corners with font installation and end up with a more manageable set of files and a
cleaner TEX installation. This article shows how and why.

Keywords
Font installation, afm2pl, afm2tfm, TrueType, pdftex, mapfiles

If you are putting together a flyer or invitation or
book cover, then it would be nice if you could test
a batch of fonts from your CorelDRAW or Illustra-
tor CD, or your Windows font directory, without too
much trouble and without polluting your TEX instal-
lation with a lot of stuff you are never going to use
again.

This article takes you through the steps needed
to use one or more fonts in one particular document.
We won’t really install the fonts; we just generate the
files that TEX needs and leave them where TEX will
find them, i.e. in the working directory. This makes
it easy to take the project to another system, and easy
to clean things up.

We will primarily use afm2pl to generate .tfm
(TEX Font Metric) files. Later on, we show the steps
required for afm2tfm. Both programs are simpler and
much faster to use than the usual choice, fontinst.
They create few intermediate or unnecessary files and
do their job without virtual fonts. Virtual fonts and
fontinst have their place, but sometimes there is no
good reason to put up with the inevitable mess.

afm2tfm is available on all major free TEX imple-
mentations. afm2pl is part of current TEX Live distri-
butions. Note that these programs are needed only to
create the necessary font support files for TEX; once
these files have been created, they can be used on any

∗This article appeared originally in slightly different form in
MAPS 33, fall 2005.

other system, whether or not it contains afm2pl or
afm2tfm.

An example
We use a decorative script font Pepita that Adobe bun-
dles (or used to bundle) with some of its software.

pdftex needs the actual font file epscr___.pfb, its
TEX font metrics file epscr7t.tfm and a mapfile con-
taining an entry relating the two. First, we copy not
only epsrc___.pfb but also epsrc___.afm to the
working directory. We need the latter file to generate
the .tfm file. Next, we enter the following commands
on a command line:
afm2pl -p ot1 epscr___.afm epscr7t.pl
pltotf epscr7t

The extensions .afm and .pl are optional. The
first command converts the .afm file to an (almost)
human-readable text version of the desired .tfm file.
The second command creates the more compact bi-
nary version.

Before we can use this font, we must tell LATEX
about it. We do this with a font family definition file
ot1myfontfam.fd:
\ProvidesFile{ot1myfontfam.fd}
\DeclareFontFamily{OT1}{myfontfam}{}
\DeclareFontShape{OT1}{myfontfam}{m}{n}{

<-> epscr7t }{}

The prefix ot1 indicates the encoding, which tells
which characters occur at what positions. The next
section will say more about encodings. The param-
eters to \DeclareFontShape are successively encod-

66 TUGboat, Volume 27 (2006), No. 1 — Proceedings of EuroTEX 2006

Font installation the shallow way

ing, family name, weight (e.g. bold), shape, font file
(without extension) and special options. You can nor-
mally leave this last parameter empty. With just one
family member, we are not fussy about font charac-
teristics and just pick defaults. We also leave this file
in the working directory.

This is the code of our first testfile exabasic.tex,
which uses this font:
\documentclass{article}
\pagestyle{empty}
\pdfmapfile{=epscr7t.map}

\newcommand{\fancyfont}%
{\fontfamily{myfontfam}\selectfont}

\begin{document}
\fancyfont
Hello, world!

Accents: \’el\‘eve bl\"of \"i;
Kerning: WAV, LTa
\end{document}

The \pdfmapfile command causes pdflatex to
read the file epscr7t.map, which tells pdftex how
to get the font into the output file. The prepended ‘=’
tells pdftex that it should read epscr7t.map in addi-
tion to, not instead of, the default mapfile, and that in
case of a conflict epscr7t.map wins.

Now we are ready to compile exabasic.tex:
pdflatex exabasic

This is the result:

Hello, world!
Accents: élève blöf ı̈; Kerning: WAV, LTa

Encodings
We already mentioned encodings briefly. Now it is
time to dig a little deeper, because it is a topic that
can easily trip you up.

An encoding defines what character corresponds
to which number. Only numbers between 0 and 255
are allowed. A .tfm file associates character metrics di-
rectly with character positions and doesn’t know what
position represents what character. TEX simply makes
assumptions about this correspondence or encoding,
and if you disagree with those assumptions then you
need to load some macro package or other to tell TEX
otherwise.

We hope that mainstream TEX will eventually
move to Unicode, which is a comprehensive encod-
ing of all conceivable characters, including far-eastern
alphabets and mathematical symbols. When that hap-
pens, we can forget about encodings and also do away
with many applications of virtual fonts. There are
already some Unicode-based variants of TEX.2

For a PostScript .pfb or .pfa font, character met-
rics are stored in a separate .afm file. These metrics
are associated with characters, not with character po-
sitions. Therefore you should specify an encoding to
afm2pl or afm2tfm.3 The same encoding must also
be specified in the mapfile entry. A PostScript font
usually has more characters than fit into a single TEX
encoding.

A command-line option such as ‘-p texnansi’ or
‘-p texnansi.enc’ means that the encoding should
be read from a file texnansi.enc. This encoding
probably has a different internal name.

OT1 encoding
If you don’t tell TEX otherwise, it assumes that you
are using the OT1 encoding. This encoding uses only
128 of the 256 available slots. TEX creates missing
accented characters from an unaccented base charac-
ter and a separate accent character. Unfortunately,
this interferes with hyphenation. Apart from this, the
OT1 encoding has various other oddities, and is best
avoided. OT1-encoded fonts often have a TEX name
ending in 7t.4 Note that ot1.enc comes with afm2pl
and is probably not available if you don’t have afm2pl
on your system.

T1 encoding
T1 is the successor to OT1. It uses all available slots,
and has lots of accented characters, including those for
Eastern European languages. Because the T1 encoding
left no room for symbols such as ‘‰’ or ‘©’ or ‘‡’ you
will need to get those from a second encoding of the
same font. This second encoding is called TS1 or ‘text
companion’.

2Omega and its offshoot Aleph are Unicode-based. Users may
also be interested in X ETEX (http://scripts.sil.org/xetex),
which is built on top of a regular TEX implementation and lets you
use Unicode fonts installed on the system directly with TEX.
3If you don’t specify an encoding, then you get the encoding from
the .afm file, which is almost certainly not what you want.
4For afm2pl and afm2tfm, font names have no particular meaning.
This is one more difference with fontinst. I add encoding suffixes
such as 7t and 8y to font names just as reminders to myself.

TUGboat, Volume 27 (2006), No. 1 — Proceedings of EuroTEX 2006 67

Siep Kroonenberg

For most traditional PostScript fonts, some of the
accented characters in the T1 encoding aren’t actually
present and must be created with virtual font tech-
nology from a base character and an accent. Since
it doesn’t have to be done by TEX itself, this is no
obstacle to hyphenation.

Although you can tell afm2pl to use T1 encoding,
it can’t create composite characters, and such compos-
ite characters will be missing unless they are already
present in the original font.

T1-encoded fonts often have a TEX name ending
in 8t.

Texnansi encoding
The texnansi encoding, known as LY1 to LATEX, was
introduced by Y&Y, the now-defunct company be-
hind Y&YTEX, dviwindo and dvipsone. It combines
a good selection of both accented letters and typo-
graphic symbols, and normally contains everything
you need in a single encoding, at least for Western Eu-
ropean languages. Texnansi-encoded fonts often have
a name ending in 8y.

The package texnansi selects the texnansi encod-
ing and contains some additional code to smooth out
incompatibilities with T1 and OT1.

A texnansi example
For this example, we choose Augie, a handwriting font
from TEX Live. These are the commands for generat-
ing the .tfm and .map files:
afm2pl -p texnansi augie___.afm augie8y.pl
pltotf augie8y

This is ly1augie.fd (notice the ly1 prefix):
\ProvidesFile{ly1augie.fd}
\DeclareFontFamily{LY1}{augie}{}
\DeclareFontShape{LY1}{augie}{m}{n}{

<-> augie8y }{}

This is the LATEX code:
\documentclass{article}
\usepackage{texnansi}
\pagestyle{empty}
\pdfmapfile{=augie8y.map}

\newcommand{\fancyfont}%
{\fontfamily{augie}\selectfont}

\begin{document}
\fancyfont
Hello, world!

Accents: \’el\‘eve bl\"of \"i;
Symbols:
\textparagraph{} \textdaggerdbl{}
\texttrademark{} \textcopyright
\end{document}

And this is the result. Notice the extra symbols.
These are absent from the T1 encoding and would
have required a text companion font.

Hello, world!

Accents: élève blöf ï; Symbols: ¶ ‡ ™ ©

TrueType
Another scalable font format is TrueType, which is
supported by pdftex but currently not by dvips. Font
metrics are stored in the font file itself. Using True-
Type is somewhat more work; the following com-
mands are required to import a TrueType font such
as Trebuchet:
ttf2afm trebuc.ttf >trebuc.afm
afm2pl -p texnansi trebuc trebuc8y
pltotf trebuc8y
<edit mapfile to replace .pfb with .ttf>

ttf2afm extracts the metric information from the
.ttf file.5

afm2pl has no way of knowing that the .afm de-
scribes a TrueType font, and guesses that the actual
fontfile is trebuc.pfb. Therefore you have to fix the
mapfile afterwards.

We leave it as an exercise for the reader to write the
.fd file and LATEX source for the following example:

Hello, world!
Accents: élève blöf ï; Kerning: WAV, LTa, WAV, LTa.
Symbols: ¶ ‡ ™ ©

Font-based uppercasing and letterspacing
afm2pl comes with an uppercased version texnanuc of
texnansi. Uppercasing, e.g. in headings, works best in
combination with letterspacing. For this, afm2pl has
a parameter ‘-m’.

Warning: afm2pl implements letterspacing with
kerns. Unfortunately, the .tfm format can contain
only a limited number of kerns. If there are too many
in the .pl file then all kerns and ligatures will be
dropped from the generated .tfm file! So use this
feature with care. fontinst implements letterspacing

5This will result in an empty encoding, unless you specify an en-
coding parameter. But we are going to ignore the encoding in the
.afm anyhow.

68 TUGboat, Volume 27 (2006), No. 1 — Proceedings of EuroTEX 2006

Font installation the shallow way

by adding sidebearings via virtual fonts, and doesn’t
suffer from this limitation.

We can create a letterspaced, uppercased version
of Trebuchet with the following commands:
ttf2afm trebuc.ttf >trebuc.afm
afm2pl -p texnanuc -m 100 trebuc trebucupp8y
pltotf trebucupp8y
<edit mapfile to replace .pfb with .ttf>

A corresponding fontfamily and fontshape decla-
ration might look as follows:
\ProvidesFile{ly1trebuc.fd}
\DeclareFontFamily{LY1}{trebuc}{}
\DeclareFontShape{LY1}{trebuc}{m}{upp}{

<-> trebucupp8y }{}

The fontshape upp for uppercasing is not an offi-
cial LATEX shape but that doesn’t seem to matter. You
can use the font as follows:
\documentclass{article}
\usepackage{texnansi}
\pagestyle{empty}
\pdfmapfile{=trebucupp8y.map}

\begin{document}
\fontfamily{trebuc}\fontshape{upp}
\selectfont
Letterspaced uppercasing
\end{document}

And this is the result:

LETTERSPACED UPPERCASING

A font family
The next example uses a real font family, consisting of
the usual four family members plus our letterspaced
font. So we will need not only trebuc.ttf, as in the
previous example, but also trebucbd.ttf, trebucit.ttf,
and trebucbi.ttf. For each of these we’ll have to run
the ttf2afm — afm2pl — pltotf sequence, and we’ll have
to edit each of the generated map files, or create a
combined mapfile.

Here is the .fd file:
\ProvidesFile{ly1trebuc.fd}
\DeclareFontFamily{LY1}{trebuc}{}
\DeclareFontShape{LY1}{trebuc}{bx}{n}{

<-> trebucbd8y }{}
\DeclareFontShape{LY1}{trebuc}{m}{n}{

<-> trebuc8y }{}
\DeclareFontShape{LY1}{trebuc}{bx}{it}{

<-> trebucbi8y }{}
\DeclareFontShape{LY1}{trebuc}{m}{it}{

<-> trebucit8y }{}

\DeclareFontShape{LY1}{trebuc}{m}{upp}{
<-> trebucupp8y }{}

And this is the LATEX code using it:
\documentclass{article}
\usepackage{texnansi}
\pagestyle{empty}
% better combine these mapfiles!
\pdfmapfile{=trebuc8y.map}
\pdfmapfile{=trebucbd8y.map}
\pdfmapfile{=trebucit8y.map}
\pdfmapfile{=trebucbi8y.map}
\pdfmapfile{=trebucupp8y.map}

\begin{document}
\fontfamily{trebuc}\selectfont
Hello, \textbf{world!}

Accents: \’el\‘eve bl\"of \"i;
Kerning: WAV, LTa, \textit{WAV,

\textbf{LTa.}}

Symbols:
\textparagraph{} \textdaggerdbl{}
\texttrademark{} \textcopyright

\fontshape{upp}\selectfont
Letterspaced uppercasing
\end{document}

And this is the result:

Hello, world!
Accents: élève blöf ï; Kerning: WAV, LTa, WAV, LTa.
Symbols: ¶ ‡ ™ ©
LETTERSPACED UPPERCASING

Using dvips
If you go the dvips route, then you cannot use the
\pdfmapfile macro. Instead, you have to enter addi-
tional mapfiles on the command line:
dvips -u +mapfile dvifile

The prefix + to the mapfile parameter is analo-
gous to the = prefix for the \pdfmapfile macro: it
tells dvips to use the named mapfile in addition to the
default one.

Using afm2tfm
The original intention of afm2tfm was not to create
fonts which are used directly by TEX. Instead, they
were to serve as a basis for virtual fonts, i.e. recipes
to compose fonts from other fonts. But it is not too
difficult to subvert this intention. The less optimal
way is to use the output of afm2tfm directly:

TUGboat, Volume 27 (2006), No. 1 — Proceedings of EuroTEX 2006 69

Siep Kroonenberg

afm2tfm kuen408i -p texnansi.enc \
quick.tfm >a2t.map

<edit a2t.map; see below>

Note that the .afm filename comes before the op-
tions. The .enc extension must be included.

The better way is to pretend to create a virtual
font:
afm2tfm kuen408i -T texnansi.enc \

-v slow.vpl null.tfm >a2t.map
vptovf slow.vpl
rm slow.vf
<edit a2t.map>

vptovf generates two files from slow.vpl, named
slow.vf and slow.tfm. You should remove slow.vf,
otherwise the dvi driver or pdftex would think that
slow is a virtual font.

Mapfile information is written to standard output,
which therefore has to be redirected, as shown above.
It contains the following string:
quick Kuenstler480BT-Italic

" TeXnANSIEncoding ReEncodeFont "
<texnansi

(everything on one line). This has to be changed into:
slow Kuenstler480BT-Italic

" TeXnANSIEncoding ReEncodeFont "
<texnansi.enc <kuen408i.pfb

(also on one line).
The example below displays differences in spac-

ing between the two: kerns and ligatures were only
written to the .vpl file, not to quick.tfm.

Note. This is not an example for copying.

Hello, world!
Accents: élève blöf ï; Symbols: ¶ ‡ ™ ©;
Kerning: WAV, LTa
Kerning: WAV, LTa

Other options of afm2pl and afm2tfm
With both programs you can artificially slant, narrow
and widen a font. afm2tfm can also generate artificial
smallcaps. Such manipulated fonts rarely look good,
though.

afm2pl also has some options for manipulating the
ligkern table and for setting spacing parameters. For
casual use, you don’t need to bother with these.

OpenType
We are seeing more and more OpenType fonts, which
are Unicode-based. These consist of either PostScript/
Type 1 or TrueType outlines inside a TrueType wrap-
per. OpenType fonts may contain huge character sets,
sometimes including smallcaps and oldstyle figures.

OpenType fonts with TrueType outlines have an
extension .ttf and can be treated just like TrueType
fonts.

OpenType fonts with Type 1 outlines have an
.otf extension. You can get an .afm for an OpenType
file by first converting it with FontForge to TrueType
(tip from Taco Hoekwater):
fontforge -c ’Open($1); Generate($2);’ \

ofont.otf ofont.ttf
ttf2afm ofont.ttf >ofont.afm
afm2pl -p texnansi ofont ofont8y
pltotf ofont8y
<edit mapfile to replace ‘<ofont.pfb’
with ‘<<ofont.otf’>

Note the <<, which means that the font is to be in-
cluded in full. For commercial fonts, this is usually
not allowed.

Or have a look at otftotfm, part of Eddie Kohler’s
LCDF Typetools and included in TEX Live.

Scripting
Various people have written scripts to automate font
installation. ConTEXt users will be familiar with tex-
font, which, by the way, has an option to use afm2pl
instead of afm2tfm.

Each example took several commands on a com-
mand line. So why not a script?

Actually, I did use scripts. But my scripts tend to
be highly specific to the job at hand, and I keep them
with those jobs. So it made more sense to me just to
give the necessary commands, and let readers script
their own solutions.

70 TUGboat, Volume 27 (2006), No. 1 — Proceedings of EuroTEX 2006

