
Managing a math exercise database with LATEX

PÉTER SZABÓ ANDRÁS HRASKÓ
Budapest University of Technology and Economics Fazekas Mihály Fővárosi Gyakorló Ált. Isk. és Gimnázium
Dept. of Computer Science and Information Theory Horváth Mihály tér 8.
H-1117 Hungary, Budapest, Magyar tudósok körútja 2. H-1082 Budapest, Hungary
pts (at) fazekas dot hu hraskoa (at) fazekas dot hu

Abstract
TEX is a good tool for creating beautiful books, especially when the book contains a lot of math formulas. It is not
rare that TEX is used to typeset a view of a database, by generating TEX source from the database text, possibly using
XML as an intermediate format. Some TEX packages and formats support reading XML data directly.

In the matbook project we have created a database of math exercises for special class secondary school students, as
well as solutions and instructions for teachers. The data is organized in a tree structure of custom LATEX environments
in .tex source files. LATEX reads these data files several times for generating the books. CVS is used for data replication
and concurrent co-authoring. We are planning to switch to using a LATEX-to-HTML translator to publish the database
on the web.

This paper presents the simple software architecture of the matbook project and the design decisions we made con-
cerning software and workflow, and it also compares matbook with other approaches such as big content management
systems and TEX-enabled wikis.

Non-standard use of TEX
The original purpose of TEX (and LATEX) was typeset-
ting beautiful books, journals and other printed ma-
terial.

Novel uses include preparing slides for talks, de-
veloping software and its documentation together (e.g.
web and ltxdoc), typesetting math formulas (e.g. Texvc
[11]), typesetting printed and on-line HTML docu-
mentation together, rearranging PDF pages (pdfTEX
with pdfpages.sty) and typesetting text generated from
databases or other markup formats.

In the matbook project we use LATEX to read a
database of math exercises (in several passes), and type-
set the material to books for students and teachers.
This paper presents the software architecture and some
implementation details of the matbook project, and it
is also a case study of integrating excellent free soft-
ware tools for low-budget publishing.

Project goals and products
The Fazekas Mihály Secondary Grammar School of Bu-
dapest [1] has been launching special mathematics clas-
ses for several decades, and is proud of its students win-
ning national and international student competitions,
and later becoming appreciated mathematicians. E.g.

László Lovász, the well-known Hungarian mathemati-
cian, graduated from Fazekas in 1966.

Good mathematicians have good problem solving
skills, and this skill can be best developed by solving
problems and exercises. It is the responsibility of the
teacher to choose the exercises for the students which
best fit their learning curve. Talented students in a
special math class need special attention. A lot of
exercises and didactic experience have accumulated in
Fazekas over the last few decades, and we have decided
to publish this in printed form in Hungary; we are also
planning to provide a web interface where all material
is available. Thus matbook was born.

We are compiling a comprehensive exercise data-
base (which also includes solutions, didactic advice,
exercise lists for lessons and metadata for more accu-
rate searching). Students and teachers in Fazekas are
both working on extending this database, and we are
developing software that would present this database
to its audience. We are planning to publish exercise
books (for students) and teachers’ guides. If students
buy the exercise books, teachers can give homework
assignments from those books. (Of course, teachers
will assign exercises whose solutions cannot be found
in the exercise book.)

TUGboat, Volume 27 (2006), No. 1 — Proceedings of EuroTEX 2006 57

Péter Szabó and András Hraskó

We are also planning to provide a web interface
on which visitors can browse and view exercises, so-
lutions etc., they can do a full text search, and they
can also search for exercises in a given topic (speci-
fied using a set of predefined keywords). We already
have a web interface for a comprehensive database of
Hungarian secondary school math contest problems
(which stores text in LATEX format, and converts it to
HTML using TTH [2]), and we’d like unify this with
the matbook database.

Database structure
The database consists of

• exercises for the students;
• hints and solutions corresponding to the exercises,

for the students;
• solutions for the teachers only;
• remarks and didactic advice corresponding to the

exercises, for the teachers;
• a hierarchic taxonomy of keywords covering the

fields of mathematics (e.g. prime numbers, trigo-
nometry);
• association between exercises and keywords;
• organization of exercises into chapters and volumes;
• chapter and volume introduction text;
• ordered exercise lists prepared for obligatory and

facultative lessons;
• figures referred to in the text, in EPS format.

Software components
• volume typesetter: a set of LATEX macros to read

the database in multiple passes, and typeset the
book volumes;
• indexer: generates the keyword index at the end

of the volumes (similar to makeindex);
• web user interface: with browse, view and search

functionality;
• consistence validator: checks whether database files

conform to the specifications.

Existing free software used: standard tools in a
TEX distribution, the lmodern font family [3], GNU
Ghostscript, sam2p [4], ImageMagick, CVS, Perl, the
new magyar.ldf (part of [5]), husort.pl (Hungarian in-
dex processor, part of [5]), stuki.sty (structogram fig-
ure generator [6]).

We work in a Linux–Windows mixed environ-
ment, so it was our aim that all components except

for the server part of the web user interface should
run on both Unix and Win32. TEX tools we need are
available on both systems. We decided to implement
the indexer and the consistence validator as command-
line Perl applications so it would be easy to port them
across systems.

Database layout
We chose to store our data in structured text files
rather than using a relational database, because it is
easier to change the schema later, and we don’t have
to develop a custom user interface for data editing.
XML is a good and widely supported structured text
data model and syntax, but we prefer a format which
is quick to type and easy to review for humans. YAML
[7] is such a format. We finally chose the XML data
model (for interoperability with other software), but a
LATEX-compatible syntax (for easy typing), which can
be converted to XML without loss when needed.

As a master text markup format, we quickly re-
jected XHTML+CSS+MathML, mostly because it is
tiresome to type a document in this format. Also,
it is not possible to archive a rendered version of
an XHTML text in a scalable way; it is not possible
to specify typesetting hints (such as penalties); and
MathML is not powerful enough: it is not possible
to type the right, textual side of \cases in MathML;
MathML still lacks some symbols. Moreover, with
current browsers it is not possible to ensure acceptable
visual quality: browsers render the same document dif-
ferently, MathML support usually doesn’t come out of
the box, browser MathML fonts lack important sym-
bols, browsers cannot hyphenate long words automat-
ically, the visual output depends on the installed fonts
and the browser window size (which the author of the
text cannot control), browsers cannot break the line
in the middle of a MathML formula etc.

We could have adopted a safe and easy to type
markup format, similar to MediaWiki’s WikiText for-
mat [8] or ŞäferTEX [9]. The MediaWiki software
implements the text rendering engine of Wikipedia
[10], and it lets authors insert math formulas in a
subset of (AMS)LATEX syntax. When the page is ren-
dered, these formulas are interpreted and converted
to images or MathML formulas by Texvc [11]. We
have rejected MediaWiki because — as with XHTML —
it doesn’t give the author enough power to ensure per-
fect visual output quality. We did not use ŞäferTEX

58 TUGboat, Volume 27 (2006), No. 1 — Proceedings of EuroTEX 2006

Managing a math exercise database with LATEX

because its source code was not available, and it was
not mature enough.

We could have invented our own markup format.
Doing this would have required us not only to in-
vent an excellent format, but to write a renderer (to
both PDF and HTML), and document the format thor-
oughly, including tutorials and examples. This option
was not feasible in our project.

Thus we have chosen a restricted subset of LATEX
as a markup format. Its advantages are: it has been
available for a long time, the basic commmand set
is well-documented, it gives the text author sufficient
control over the visual quality of the output, and there
are lot of fonts and packages we can use. We had to
impose restrictions in order to keep our format con-
vertible (primarily to XHTML+CSS+MathML). The
most important restrictions on the document text are:
it is forbidden to load packages or other files, define
or change macros, use conditionals or other program-
ming features, change catcodes, use the character " in
the input (the “proper quotes” must be used), use con-
ditionals, or insert figures with \includegraphics
(we provide a more restricted command instead).

Once we settled on LATEX as a text markup for-
mat, it was straightforward to use the same syntax
for structuring the data, so that our database text files
won’t contain two alternative formats, and they can be
syntax-highlighted or otherwise processed in text ed-
itors easily. However, plain LATEX is not suitable for
structuring. For example, it is not obvious to deduce
where chapter “First” ends in this LATEX source, with-
out knowing the meaning and depth of \section:
\chapter{First} \emph{First} content.
\section{Inside} \emph{Inside} content.
\chapter{Second}\label{2nd} % dummy

\emph{Second} content.

The XHTML representation (using <H1> for chap-
ter titles and <H2> for section titles) suffers from the
same limitation.

Our data format solves the problem by specify-
ing structure using custom LATEX environments. The
example above looks like this:
\begin{mchapter}{title={First}}

\emph{First} content.
\begin{msection}{title={Inside}}

\emph{Inside} content.
\end{msection}

\end{mchapter}
\begin{mchapter}{title={Second},id={2nd}}

% dummy
\emph{Second} content.

\end{mchapter}

When converted to XML, it becomes:
<mchapter title="First">

\emph{First} content.
<msection title="Inside">

\emph{Inside} content.
</msection>

</mchapter>
<mchapter title="Second" id="2nd">

<!-- dummy -->
\emph{Second} content.

</mchapter>

Please note that \emph is not converted, because it is
part of the text markup, and not part of the structure.

Thus there is a simple mapping between XML and
our data format:

• LATEX environment with attributes (i.e. “key =
value” pairs) ↔ XML tag with attributes, prop-
erly escaped
• TEX comment↔ XML comment
• other LATEX text↔ XML text (PCDATA)

This direct mapping makes it possible to use XML
tools on our database. For example, we can use XSLT
to do structural transformations on the XML, and we
can use DTD or XML Schema validators to validate
our database.

Database folders and files
The database is spread into several small text files
in several folders. The files read each other (using
\input). The points where the data must be split and
the naming conventions for the files and folders are
strictly regulated.

The database is replicated on each co-worker’s ma-
chine, using the CVS [12] revision control system.
People can work offline, and commit their changes
back to the repository on the server a few times a day.
Server failures and network connection slowdowns
don’t affect working hours seriously. CVS is smart
enough to merge concurrent but independent changes
of text files, and it enforces human interaction when
a conflict occurs, so there is no danger of accidentally
overwriting somebody else’s changes. CVS also keeps
old versions, so accidentally deleted text can be re-
covered any time later. (CVS merges files line-by-line,
which complicates concurrent editing of binary files —
but this limitation doesn’t affect our project since we

TUGboat, Volume 27 (2006), No. 1 — Proceedings of EuroTEX 2006 59

Péter Szabó and András Hraskó

mostly use text files.) Subversion (= SVN [13]) is a
newer and more advanced revision control system, and
it won’t be hard to migrate from CVS when those ad-
vanced features are needed. Both CVS and Subversion
have clients on multiple platforms, including Unix and
Win32. We use the standard cvs client on Linux, and
TortoiseCVS on Windows.

The reason why the database is split into multiple
files is that it is easier to transfer changes of smaller
files in CVS, and it is also easier for humans to edit a
few small files concurrently than to edit one large file.
Usually multiple people are modifying the database at
the same time, but most of the time they work in their
own files, so no conflict occurs. Using multiple folders
makes it easier to select the correct file for opening.

The file and folder layout also follows the LATEX
compilation process. Compilation always starts in the
root folder (of the CVS tree). For example, to com-
pile the first volume of Algebra, one runs “latex
volume_a_i”, which starts processing the file volume
_a_i.tex. All other files belonging to this volume
reside in the folder chs_a_i and its subfolders. Files
\input are thus specified relative to the root folder,
thus adding ../ is not necessary when referring to lo-
cal .sty files. It is also convenient that all temporary
and output files go to the root folder, thus subfolders
are not changed during the compilation process.

LATEX tricks
In this section we present some problems we faced
when typesetting with LATEX; solutions included.

Unified labels
This is a feature that makes it possible to refer to
a \label defined in another volume. It is accom-
plished by reading \newlabel commands from the
other .aux files, and adding them with both the label
text and page numbers prefixed with the other volume
name.

Volume split
Since teachers’ guides can be several hundred pages
long, it might be necessary to split them into multiple
volumes. If this is so, the editor promotes some chap-
ter boundaries to volume boundaries by adding the
appropriate command to the source of the main .tex
file. We chose the most portable ways to typeset these
subvolumes: all subvolumes are separate LATEX docu-

ments, which \input the main .tex file in a mode
in which the \shipout of the unnecessary pages is
cancelled.

The advantage of this method is that it doesn’t
require external tools (such as psselect), it works for
both PostScript and PDF, and it can be run from a
regular LATEX IDE. Its disadvantage is its slowness.
An alternative approach for PostScript would be gen-
erating and running a psselect command line for each
volume. And for PDF, an alternative approach is se-
lecting the appropriate pages from the main volume
using pdfpages.sty.

Splitting the volume into real subvolumes (so that
compiling a subvolume doesn’t read the other subvol-
umes’ LATEX source) would not work, because it would
render page numbers, the bibliography and inter-sub-
volume references incorrectly, or need additional pro-
gramming.

Fuzzy keyword names
When specifying the list of keywords associated with
an exercise, it is a big burden to specify a long keyword
precisely (with spaces, punctuation etc.). In order to
solve this, a Perl script generates keyword aliases, e.g.
the first word of a keyword will become an alias for
the keyword if this is not ambiguous.

String processing
Another idea in fuzzy keyword name matching is to
match keywords after stripping spaces, punctuation,
upper case and accents. This stripping had to be imple-
mented in LATEX, too. Since TEX doesn’t have string
processing primitives, we have to implement them us-
ing macros. Here is a mix of a macro definitions that
shows the most important string processing tricks:
\def\stripit#1>{}\def\empty{}\def\space{ }
\def\rmonestar#1{\ifx#1\hfuzz\empty\else

\if*\string#1\else#1\fi
\expandafter\rmonestar\fi}

\begingroup\lccode‘!‘ \lowercase{\endgroup
\def\oonespace#1 {\ifx\hfuzz#1\empty\else

#1!\expandafter\oonespace\fi}}
\def\rmstars{%

\afterassignment\rmstarsb\def\M}
\def\rmstarsb{%

\edef\M{\expandafter\stripit\meaning\M
\space\hfuzz\space}

\edef\M{\expandafter\oonespace\M}
\edef\M{\expandafter\rmonestar\M\hfuzz}}

60 TUGboat, Volume 27 (2006), No. 1 — Proceedings of EuroTEX 2006

Managing a math exercise database with LATEX

The macro \rmstars above removes all stars (*)
from a string. The string is given as an argument in
braces, and the result — without the stars and all to-
kens having catcode 12 — is put into the macro \M. Ex-
ample invocation: \rmstars{a * B**cd} \show\M

A rough outline of its operation: \meaning con-
verts tokens to catcode 12, except for spaces, which
are converted to catcode 10. Then \oonespace iter-
ates over all spaces and converts them to catcode 12,
too. Finally \rmonestar iterates over the tokens and
removes all stars. Almost beautiful.

Read more about the primitives involved here in
The TEXbook [14].

One or more solutions?
If there is one solution for an exercise, it should be
prefixed with “Solution” (and not “Solution 1”). If
there are more solutions, each of them should have a
number, “Solution 1”, “Solution 2” etc. By the time
of emitting the 1st solution, we don’t have the infor-
mation whether there are more. How do we typeset
it properly?

To solve problems like that, it is a common trick
to use the \label–\ref mechanism. We emit \label
{exercise42-sol2} at “Solution 2”, and the next
time the document is recompiled, at “Solution 1” we
check for the presence of this label, e.g. with
\@ifundefined{r@exercise42-sol2}{...}{...}

Bibliography three times
When a \cite command with a new target is added
to the document, it is necessary to run LATEX three
times: latex doc; bibtex doc; latex doc; latex
doc. The 1st run of LATEX records the \citation
command to the .aux file. The BibTEX run generates
the .bbl file. The 2nd run of LATEX inserts the new
.bbl file to the document, and it also records the
\bibcite command to the .aux file indicating the
new number to be displayed by the \cite command.
The last, 3rd run of LATEX makes \cite emit that
number.

We speed this up by parsing the .bbl file at the
beginning (before the first \cite), so the 3rd run of
LATEX is not necessary.

Conclusion and future work
The matbook project demonstrates not only the
power, openness and flexibility of LATEX, but is also an

example of low-budget publishing using free software
and a little scripting. matbook is also free software.

Our most important future goals are completing
the exercise database and implementing the missing
software components: a thorough consistence genera-
tor and the web user interface.

References
[1] Fazekas Mihály Secondary Grammar School of

Budapest. http://www.fazekas.hu/

[2] TTH: the TEX to HTML translator.
http://hutchinson.belmont.ma.us/tth/

[3] Bogusław Jackowski and Janusz M. Nowacki.
Latin Modern fonts: how less means more. In
proc. of EuroTEX 2005, pp. 172–178.
http://www.dante.de/dante/events/
eurotex/papers/TUT09.pdf, 2005.

[4] Péter Szabó. Inserting figures into TEX
documents. In proceedings of EuroBachoTEX
2003.

[5] Péter Szabó. Implementation tricks in the
Hungarian Babel module. In proc. of TUG
2004.

[6] Károly Lőrentey. stuki.sty: Structograms in
LATEX.
http://lorentey.hu/project/stuki.html.en

[7] YAML: machine parsable data serialization
format. http://www.yaml.net/

[8] WikiText: wiki markup language.
http://en.wikipedia.org/wiki/Wikitext

[9] Frank Schäfer. ŞäferTEX: Source Code Esthetics
for Automated Typesetting. In proc. of TUG
2004.

[10] Wikipedia: the free encyclopedia that anyone
can edit. http://en.wikipedia.org/

[11] Texvc: TEX validator and converter.
http://en.wikipedia.org/wiki/Texvc

[12] Karl Fogel and Moshe Bar. Open Source
Development with CVS. 3rd Edition. O’Reilly,
2003.

[13] Ben Collins-Sussman et al. Version Control
with Subversion. O’Reilly, 2004.

[14] Donald E. Knuth. The TEXbook.
Addison-Wesley, 1984.

TUGboat, Volume 27 (2006), No. 1 — Proceedings of EuroTEX 2006 61

