
 TUGboat, Volume  (), No. 

Fonts

�e installation and use of OpenType fonts in LATEX

John D. Owens

Abstract

�e emerging file standard in digital typography is the
OpenType font standard, jointly developed by Microso

and Adobe. OpenType fonts are natively supported by
several popular operating systems and have many fea-
tures and advantages that make them desirable for high-
quality typography. However, OpenType fonts are not
natively supported by the standard TEX engine. �is ar-
ticle is a practical guide to installing OpenType fonts for
use as text fonts in LATEX.

�e steps to install anOpenType font for use in LATEX
are:
. For each OpenType font file, and for each combina-

tion of attributes for that font file, generate and in-
stall font metric and encoding files.

. Next, for each font family, generate and install a font
description (.fd) file that maps LATEX font selection
commands to the installed font files.

. Finally, write and install a style (.sty) file that allows
the user to select the font and its options for use
within TEX.

We begin by discussing font background, the TEX font
handling scheme, and existing font tools, then describe
each of the three steps above in detail.

 Font basics and font families

�e advanced typographic features of the OpenType font
format have motivated its widespread use in a variety of
demanding applications. Before we dive into supporting
OpenType in TEX, however, let’s take a step back and look
at our eventual goal. As a TEX user, we are less inter-
ested in using just a single font with a single set of options
and more interested in using a font family: a collection of
compatible font variants, usually from the same typeface,
that can be used together. For instance, we might want to
group together a plain and an italic form of a particular
typeface into a family. Wemight want to make small caps
available in our family as well, or perhaps incorporate
several different weights or optical sizes. Once we have
defined our font family, we would then like to ask TEX to
enable the entire family with a single command. As an ex-
ample, this document is typeset in an Adobe OpenType
Minion Pro font family with old-style figures, with code

Editor’s note: Due to the nature of this article, it is typeset in
the Adobe Minion and Adobe Myriad typefaces. We thank Adobe for
permission to use these fonts in both the print and web publications.

In different files Within one OpenType file
weight (light, black) kerning (VAVAV vs. VAVAV)
width (abc vs. abc) ligatures (fi vs. fi)
optical size figure style ( vs. 1234)
variant (e.g. italics) S C

Table : Font features provided by differentOpenType files (le
)
and within a single OpenType file (right).

segments typeset in Adobe’s OpenTypeMyriad Pro, using
the following LATEX commands:
\usepackage{minion}
\usepackage[tt,sf,lining,scale=0.92]{myriad}

What are the different typeface alternatives that can be
part of our font family? (Gelderman provides an intro-
duction to typeface characteristics [].) We can group
possible alternatives into several broad categories, and
then indicate how OpenType handles each category.

Our first four categories are weight, width, optical
size, and variant. �e weight of a typeface refers to the
thickness of the strokes that constitute its glyphs. A font
designer may also vary a typeface’s width relative to its
height. �e major advantage of vector font formats (such
as OpenType, PostScript Type , and TrueType) is their
ability to be scaled to any size. However, type designers
have found that themost visually appealing fonts are ones
that are designed for a particular size range, called an op-
tical size. Finally, the standard upright “roman” style for
fonts is not the only possible style. Font users may also
desire italic or oblique or outline forms of a particular
typeface, which together are termed variants. In LATEX’s
New Font Selection Scheme (NFSS), the combination of
weight and width is called series and the variant is called
shape; we use this terminology in Section ..

In OpenType, each unique combination of weight,
width, optical size, and variant is associated with a sep-
arate font file. As an example, the Adobe Kepler type-
face has several alternatives in each of these categories.
Kepler features six weights (light, regular, medium, semi-
bold, bold, and black), each with four widths (condensed,
semicondensed, regular, and extended). Most of Kepler’s
combinations of weight and width feature four optical
sizes (from smallest to largest, caption, regular, subhead,
and display), and each weight-width-optical-size combi-
nation has both an upright and italic variant. �us it is lit-
tle wonder that Kepler’s many combinations require 
different OpenType files. And a
er we catch our breath to
consider all the typographical options already available to
us, we dive into a single OpenType file to find still more
options.

In addition to the categories that require different
files, the OpenType font format also allows a single font

TUGboat, Volume  (), No.  

file to specify a variety of other features. Not all of these
features are currently supported inTEX, butmany of them
are. For instance, the kerning feature adjusts the spaces
between pairs of glyphs. Enabling ligatures replaces pairs
of glyphs like ‘f ’ and ‘i’ with a single ‘fi’ glyph. Besides
kerning and ligatures, the two classes of OpenType fea-
tures that we cover in this article are the choice of figure
styles (for example, old-style [] vs. lining [01234])
and S C.

Table  summarizes the features provided by differ-
ent OpenType files and within an OpenType file. With
this overview of the many typeface alternatives that we
would like to assemble into families, we can turn to how
TEX interacts with fonts.

 TEX font handling

In modern operating systems such as Microso
 Win-
dows and Apple MacOSX, applications that use Open-
Type fonts can read font information directly from the
OpenType file. TEX, on the other hand, stores font infor-
mation in a variety of files, and the complexity of creating
and installing these files is themajor reason that font han-
dling has traditionally been a tricky task in TEX.

�e OpenType font format can contain font data in
either of two formats, Adobe PostScript Type  or True-
Type. In this section we describe the font files that are
associated with Type  and Type--flavored OpenType
fonts. To support a Type  font, TEX requires the fol-
lowing files, each with its own function, with file loca-
tions specified by the TEX Directory Structure standard.
More detailed descriptions of these formats can be found
in Alan Hoenig’s TEX Unbound [] and Chapter  of the
second edition of�e LATEX Companion [].
TFM “TEX Font Metrics” (tfm) files describe the dimen-

sions of each character (glyph), along with a few
font-wide parameter, which together are used by
TEX to perform layout.

PFB For Type  fonts, “Printer Font Binary” (pfb) files
contain Adobe PostScript Type  procedures that
describe the shape of each glyph. �ese procedures
are included by the output driver (for example, the
dvips or pdftex program) in the output file (for ex-
ample, PostScript or PDF).

VF “Virtual Font” files provide a mapping between the
glyphs in the tfm files and the glyph order used by
TEX (which is, in turn, specified with the encoding
file, below). �ey are not needed for all fonts.

ENC Encoding files specify an ordering of glyphs called
the “font-encoding vector”. While typeset docu-
ments in English might require only the glyphs
in TEX’s default “” font-encoding vector (used
by Computer Modern Roman, for example), other
languages or scripts need more or different glyphs.

In this article, we use the “” encoding, an alter-
native to  developed by  that is well-suited
for Type--flavored fonts. (Among other advan-
tages, the  encoding maps directly to Adobe’s
font encoding and thus requires no virtual fonts.)

MAP Finally, the map files tie the above files together.
map files (and map file formats) are specific to
output drivers and associate tfm and Type  font
names with pfb files, which contain the shapes of
glyphs in those fonts.

Only when these files have been properly installed for a
particular font, and system databases updated, can TEX
then typeset glyphs from that font in a document.

Writing all these files by handwould be both tedious
and error-prone, so two excellent pieces of so
ware have
automated the font installation process.

• fontinst [], by Alan Jeffrey, Rowland McDonnell,
and Lars Hellström, automates the installation of
PostScript Type  fonts into TEX. Philipp Lehman’s
font installation guide [] is an outstanding tutorial
for fontinst.

However, fontinst does not offer access to Open-
Type features. Also, fontinst scripts are written in
TEX, and are challenging for non-experts to write
and use.

• Eddie Kohler’s otftotfm [], part of his LCDF Type-
tools suite, creates and installs the required TEX files
(tfm, pfb, vf, enc, and map) from OpenType font
files. Note that otftotfm generates PostScript Type
 fonts from OpenType; please ensure that the legal
license for your fonts allows such a format conver-
sion. otftotfm is a command-line tool that accepts a
set of options and applies them to a single OpenType
font file.

Section  describes two tools built around otfto-
tfm that both automate calls to otftotfm across mul-
tiple font options and also create the necessary TEX
fd and sty support files.
In this article, we focus on otftotfm as the underlying

tool that translates OpenType fonts into a TEX-readable
form. We also focus on the procedure for setting up text
fonts. �e setup for math fonts requires additional com-
mands described in Chapter .. of �e LATEX Com-
panion []. �e next section outlines how otftotfm in-
stalls OpenType fonts, and the remainder of the article
describes how to extend otftotfm to handle multiple font
files and font families and how tomake the installed fonts
available to TEX users.

 OpenType to TEX

�e first step in making OpenType fonts available to TEX
users is to deposit the various font files into the TEX in-
stallation for each variant in the font family. We begin by

 TUGboat, Volume  (), No. 

showing how otftotfm installs a single font, using Adobe
Minion Pro’s Semibold Italic font as an example.

otftotfm -a -e texnansx -fonum -fkern -fliga \
MinionPro-SemiboldIt.otf \
LY1-MinionPro-SemiboldIt-onum

Let’s analyze this example. -a is the magic “auto-
matic” flag, automatically installing the relevant TEX font
files from Section  (tfm, pfb, vf, enc, andmap) into their
proper locations within the TEX directories. -e texnansx
specifies the encoding file for the  encoding. �ree
OpenType features (old-style numerals, kerning, and lig-
atures) are requested with the -f flags, and the final two
arguments are the names of the OpenType input font file
and the output font name. �e otftotfm manual explains
these options in detail, and also enumerates available
OpenType features [].

Extending otftotfm to more input fonts and more
variants is straightforward: simply call otftotfm for each
and every combination of desired features. For complex
variant combinations and fully featured font families, the
number of calls to otftotfm can exceed many hundreds.
�e tools described in Section  automate this process.

LCDF’s otfinfo tool [] can identify the supported
OpenType features for any OpenType font file, but which
features are interesting for TEX users?

• �ekerning (kern) and ligature (liga) features should
always be turned on if available.

• OpenType fonts may support several kinds of nu-
merals; onum (old-style numerals) and lnum (lin-
ing numerals) can both be supported in TEX and are
commonly requested typographic features.

• S C are enabled by the smcp feature.

• Superior (sups) and inferior (sinf) figures are useful
for footnotes, inline fractions, and scientific typeset-
ting; swashes (swsh) are more DECORATIVE alter-
natives to standard characters.

�e otftotfm web page [], in “otftotfm examples”,
contains examples of more advanced OpenType features,
but as we note in Section , more advanced features rarely
have high-level support in TEX or LATEX. In this article
we concentrate on the overall installation procedure for
OpenType fonts and support ofmore basic features; read-
ers in need of more advanced features may consider the
ConTEXt environment [] or X ETEX [].

A
er otftotfm finishes installing all font files into
TEX, texhash and updmap must be called to make TEX
aware of the new installation. Now, the new fonts are
available for typesetting in TEX—but how? �e next sec-
tion describes how to instruct TEX to use the correct font.
TEX uses the “font description” file for this purpose.

 Font description (fd) files

A font description file is a TEX source file that maps in-
stalled font file names to font attributes as used in (LA)TEX.
Typically, each font family is described by a single fd file.
As we previously mentioned, these techniques are appli-
cable to text fonts; math fonts require additional com-
mands [].

Only two TEX commands are necessary in an fd file.
�e first declares a font family, and the second declares
a specific font within that font family. We’ll look at them
one at a time.

. \DeclareFontFamily

�e \DeclareFontFamily command indicates that a certain
font family is available in a certain encoding scheme. �e
names of encoding schemes are fixed (as mentioned be-
fore, we use  in this paper), but the name of the font
family is arbitrary. �emost well-known naming scheme
is Karl Berry’s fontname scheme [], which concatenates
a unique three-letter code for each typeface with a one-
letter suffix that indicates the font family (Section .).
(�is naming scheme is required when using nfssext.sty,
described in the next section.)

Let us continuewith theMinion-Pro-with-old-style-
numerals example; Minion is abbreviated pmn, and font
families associated with old-style numerals are desig-
nated by j (more details about what constitutes a font
family are in Section .). �e resulting command is:

\DeclareFontFamily{LY1}{pmnj}{}

�e third argument to \DeclareFontFamily is less o
en
used; it can contain special options for font loading and
is explained in�e LATEX Companion [].

. \DeclareFontShape

�e \DeclareFontShape command associates a particular
font with a particular combination of encoding, font fam-
ily, series, and shape, a classification which we previously
discussed in Section . To classify the particular Adobe
Minion font we installed in Section , we invoke the fol-
lowing -argument command:

\DeclareFontShape{LY1}{pmnj}{sb}{it}{
<-> LY1-MinionPro-SemiboldIt-onum}{}

�e first four arguments are the classification; the fi
h
argument is the font file(s) associated with that classifi-
cation; and the last argument is used in a similar way to
the third argument of \DeclareFontFamily. �is particu-
lar command associates the combination of  encod-
ing, Minion-with-old-style-numerals font family, semi-
bold series (sb), and italic shape (it) with the installed
font named LY1-MinionPro-SemiboldIt-onum. Note this
font name is (necessarily) identical to the output name in
the command we invoked in Section .

TUGboat, Volume  (), No.  

With only these two commands, you can specify a
completely functional fd file. �ree additional commands
are useful, however, for a more fully featured family.

Optical size variants Now, what’s the <-> symbol be-
fore the font name (in the above \DeclareFontShape ex-
ample)? It’s the size range and indicates the font sizes as-
sociated with that font name. <-> is actually a special case
of the more general notation <n-m>, meaning “use this
font only for point sizes greater than or equal to n and up
to m”. Removal of n or m removes the bound, so <-> in-
dicates a match for all font sizes. With this notation, the
extension to multiple font files for a particular combina-
tion at different sizes (necessary for optical size variants)
is straightforward:
\DeclareFontShape{LY1}{pmnj}{sb}{it}{
<6-8.4> LY1-MinionPro-SemiboldItCapt-onum
<8.4-13> LY1-MinionPro-SemiboldIt-onum
<13-19.9> LY1-MinionPro-SemiboldItSubh-onum
<19.9-72> LY1-MinionPro-SemiboldItDisp-onum}{}

Font substitution What happens if you’re missing a
particular variant for a font family? �e sub command
allows the substitution of one variant for another. For in-
stance, few font families feature a slanted (oblique) vari-
ant, so fd files o
en substitute italic for slanted if slanted
is requested. �e following command asks for any refer-
ence, at any size, to semibold-slanted in our font family
to be satisfied instead by semibold-italic.
\DeclareFontShape{LY1}{pmnj}{sb}{sl}{
<-> sub * pmnj/sb/it}{}

Besides substituting italic for slanted, substituting
bold for bold-extended is also common, as in the exam-
ple below for the normal (n) shape.
\DeclareFontShape{LY1}{pmnj}{bx}{n}{
<-> sub * pmnj/b/n}{}

Scaling Finally, \DeclareFontShape permits a font to be
automatically scaled through the size command,¹ which
is invoked by placing the scaling factor in brackets be-
tween the size range and the filename. �e example below
instructs TEX to typeset Minion’s semibold italic variant
at  of its natural size.
\DeclareFontShape{LY1}{pmnj}{sb}{it}{
<-> [0.95] LY1-MinionPro-SemiboldIt-onum}{}

. Naming shape and series

�e de facto standard for the abbreviation strings associ-
atedwith shape and series in fd files is described by LATEX’s
“New Font Selection Scheme” (NFSS) []. Any choice

¹ �is is most common when two different typefaces that do not
match in size are used together in a document; in the next section we
expose this capability to the document author.

W NFSS 
light l
book m
regular m
medium mb
demibold db
semibold sb
bold b
black eb

W NFSS 
condensed c
narrow n
semicondensed sc
regular —
semiextended sx
extended x

V NFSS 
normal (upright) n
italic it
slanted sl
oblique sl
outline ol
small caps sc
small caps + italic si

Table : A selection ofNFSS codes for font weights, widths, and
variants. From Lehman [].

for shape and series abbreviation strings, includingNFSS,
must work together with the font selection commands
in Section . Philipp Lehman’s tutorial contains a fairly
complete mapping between weight, width, and variant
names and NFSS encodings []; we reproduce common
encodings in Table .

Lehman presents the following algorithms for gen-
erating the series and shape abbreviations used in \De-
clareFontShape. First, the weight andwidth are combined
to create “series”. If both weight and width are “regular”,
the series is set tom; otherwise the series is set to the con-
catenation of the weight andwidth codes, ignoring “regu-
lar” if present. Creating the shape is also straightforward:
if the variant is “regular”, the shape is n, otherwise the
shape is the concatenation of all variant codes, with the
exception of small-caps and italics. �is shape is instead
designated si, and font selection using si is described in
Section ...

. Font families

Some font features do not fit into the series-shape scheme.
�e most common of these features is numerical figure
types, which may vary as lining (1234), old-style (),
superior (¹²³⁴), inferior (₁₂₃₄), and so on. To handle font
selection with different styles of figures in TEX, typically,

 TUGboat, Volume  (), No. 

each type of figures generates its own font family. To gen-
erate the name of the font family, the three-letter font des-
ignation has a one-letter suffix appended to its -letter
font name. Lining figures are associated with no suffix
or with x, the “expert” suffix; old-style figures are j; supe-
riors receive 1 and inferiors 0; and so on. �us the Min-
ion (pmn) font family with lining figures is pmnx; Minion
with old-style figures is pmnj; and so on. Section ..
shows how to perform font selection with different font
families.

 Style files

At this point we have installed our fonts into TEX (Sec-
tion ) and categorized them by family, shape, and series
(Section ). �e final step is to make those fonts available
to the TEX document author as text fonts. �e tools de-
scribed in Section  automate the creation of the sty files
that contain the commands in this section.

. Selecting a font family

�e default “roman” (text) font family is defined by the
TEX variable \rmdefault. Redefining \rmdefault to another
font family (as named by \DeclareFontFamily) resets the
roman font family. For instance, the command below sets
the current font family to our example font family, Adobe
Minion with old-style figures.
\renewcommand*{\rmdefault}{pmnj}

In fact this is all we need to do to use our new font
family. (Similarly, we set the default sans serif font fam-
ily by setting the variable \sfdefault, and the typewriter
family with \ttdefault.) However, rather than using one
of these commands directly in TEX files, it’s typical to in-
stead wrap it in a style file and invoke \usepackage on
that style file to perform this declaration. Aminimal (but
complete) style file calledminion.sty for LATEXε that uses
the  encoding follows.
\NeedsTeXFormat{LaTeX2e}
\ProvidesPackage{minion}[Minion Pro OSF v0.99a 9/06]
\RequirePackage[LY1]{fontenc} % uses LY1 encoding
\renewcommand*{\rmdefault}{pmnj}
\endinput

. Selecting between multiple font families

What if we’d like to use the same style file to supportMin-
ion font families with both old-style (pmnj) and lining
(pmnx) figures? We use a package option to choose be-
tween the two font families:
\usepackage[oldstyle]{minion}

or
\usepackage[lining]{minion}

�eextended style file that supports these options is:
\NeedsTeXFormat{LaTeX2e}

\ProvidesPackage{minion}[Minion Pro OSF v0.99b 9/06]
\RequirePackage[LY1]{fontenc} % uses LY1 encoding
\DeclareOption{lining}{\renewcommand*{%
\rmdefault}{pmnx}}
\DeclareOption{oldstyle}{\renewcommand*{%
\rmdefault}{pmnj}}
\ExecuteOptions{oldstyle}
\ProcessOptions*
\endinput

. Selecting font variants

Now we know how to select a given font family, which
may feature a large number of font weights, widths, and
variants within it. Once we have selected a font family,
how can we direct TEX to select from our many alter-
natives within that font family, such as boldface, italic,
small-caps, and so on? �e answer is to change the cur-
rent series and shape.

While the low-level TEX commands (\fontseries and
\fontshape) directly change the current series and shape,
LATEX’s higher-level commands aremore commonly used.
Most LATEX users know that \textbf selects boldface; LATEX
implements this internally by setting the font series to
\bfdefault, which is in turn defined as bx. Similarly, \textit
(italics) utilizes italics by setting the font shape to \itde-
fault, defined as it. And \textsc (small caps) sets the shape
to \scdefault, defined as sc.

We can use similar techniques to add more selec-
tion commands for more features that are not part of the
LATEX core set of commands. Philipp Lehman’s font in-
stallation guide is an excellent tutorial for this task []; it
carefully constructs and explains a style file of NFSS ex-
tensions, nfssext.sty. We now take a closer look at how
to support alternate weights and how nfssext.sty supports
small caps with italics and switching between old-style
and lining figures.

.. Supporting alternate weights

By default, LATEX supports a bold (\textbf) weight com-
mand. Let’s say we feel the default bold is a little too dark,
and we’d like to use semibold-condensed instead. We can
accomplish this with a single line in our sty file:
\renewcommand*{\bfdefault}{sbc}

And now we like semibold-condensed so much, we’d like
to add it as a new command, \textsb.
\newcommand\sbdefault{sbc}
\DeclareRobustCommand\sbseries

{\not@math@alphabet\sbseries\mathsb
\fontseries\sbdefault\selectfont}

\DeclareTextFontCommand{\textsb}{\sbseries}

For simple features, declaring a default value, a Robust-
Command, and a TextFontCommand suffice to make the
feature available within TEX.

TUGboat, Volume  (), No.  

.. Supporting small caps with italics

Lehman points out that italics and small caps are both
in the same “variant” category, so the built-in \textit and
\textsc commands do not work harmoniously together.
Barring changes to the core LATEX font selection prim-
itives, text set to both italic and small-caps would only
preserve the innermost setting.

nfssext.sty remedies this problem by declaring an si
shape, analogous to it and sc, and its associated selection
commands:
\newcommand*{\sidefault}{si}
\DeclareRobustCommand{\sishape}{%
\not@math@alphabet\sishape\relax
\fontshape\sidefault\selectfont}

It then changes the italic and small-caps commands to
check the current shape before setting the new shape.
Only if the current shape is italic and the new shape is
small-caps, or vice versa, does it set the new shape to si.
(Recall that we assigned the si code to small-caps + italic
variants in Section ..)
T  is properly  small-cap, italic text.
{\textsc{The \textit{result}} is \textit{properly
\textsc{nested}} small-cap, italic text.

.. Supporting old-style and lining figures

Section . showed how to choose old-style or lining fig-
ures by default. However, it may be useful to have one
as the default and use the other via an explicit command.
In nfssext.sty, the new commands \textos selects old-style
figures and \textln lining figures. In this article, for in-
stance, old-style is the default, so 1234\textln{1234} results
in 1234.

Because each style of figures is associated with a dif-
ferent font family, using an alternate figure style requires
changing the family. nfssext.sty accomplishes this task as
follows. Switching to lining figures for the font named
abc first tries font family abcx then font family abc, using
the TEX primitive \selectfont; switching to old-style fig-
ures switches to font family abcj. Fortunately this com-
plexity is all hidden inside nfssext.sty.

 Tools

For anyOpenType font installation into TEX, the vital tool
is otftotfm []. However, otftotfm only installs from a sin-
gle OpenType font file with a single set of options, while
users typically would like to install an entire family of
OpenType font files with all available options. In addi-
tion, otftotfm does not address the problem of creating fd
or sty files.

To address these issues, Marc Penninga wrote au-
toinst [] and John Owens wrote otfinst [], both of
which wrap around otftotfm to install entire TEX font
families. �e two tools have far more similarities than

differences and should suffice for most users; the au-
thors’ use of Perl (autoinst) or Python (otfinst) may make
the difference for programmers familiar with one or the
other.

Among the features supported by both tools are:
• A command-line interface that takes one or more
OpenType font files as arguments;

• Installation of font families with the following fea-
tures if present: roman and italic text; small-caps;
lining, old-style, superior, and inferior figures; and
swashes;

• nfssext.sty font selection commands;
• Support of optical sizes; and
• Auto-generation and installation of sty and fd files.
Some of the differences are that autoinst also sup-

ports numerators, denominators, upright swash, and ti-
tling text, and generates ornaments, while otfinst sup-
ports a scaling option at runtime. otfinst uses fontname
naming, while autoinst is more verbose in its naming
scheme. Finally, otfinst uses the metadata associated with
each OpenType font to determine the font’s characteris-
tics, while autoinst extracts the characteristics from the
font’s filename.

. Other tools

Geoffrey Washburn’s otftofd [] automates the process
of creating fd files fromOpenType fonts. Washburn indi-
cates that it, like autoinst, is designed primarily for Adobe
font conventions. otftofd is a shell script written in the
Caml Shell and uses otftotfm.

�e MinionPro TEX package [] provides extensive
TEX support files for Adobe Minion, including compre-
hensive options for figure types, encodings, ornaments,
letterspaced small caps, and calligraphic, math, black-
board, and Greek fonts. �e MinionPro distribution was
built using otftotfm and thus contains all TEX support
files without the need for the steps described in this ar-
ticle. MinionPro includes a package called fontaxes that
extends (and partially replaces)NFSS’s rigid classification
of font attributes.

 Conclusions

�is article has described the steps necessary to useOpen-
Type fonts in TEX: use otftotfm to install TEX font metric
and encoding files; build a font description file for each
font family; and build a style file for convenient font se-
lection in a document.

OpenType handling in TEX is still far from ideal,
however. Systems like X ETEX [] use OpenType fonts na-
tively with truly impressive results, and native OpenType
support is slated for future versions of pd
ex []. How-
ever, equally important are the other components of TEX
that relate to font selection and invocation.

 TUGboat, Volume  (), No. 

• NFSS is insufficient to elegantly describe the wide
variety of available font attributes. �e combination
of weight and width into series is awkward, multi-
ple variants may combine into a single shape, and
features such as figure styles are not covered at all.
�e ideal font selection scheme not only includes
all variants of a typeface but also allows simple, or-
thogonal selection of any set of typeface features,
and transparent substitution when features are not
present. New, flexible approaches such as fontspec
in X ETEX [] and MinionPro’s fontaxes are encour-
aging steps toward such a scheme.

• Even within NFSS the codes are not standardized.
Lehman’s scheme appears to be widely used, how-
ever, which is encouraging.

• Even for simple features, font selection is wholly
nonstandardized and non-orthogonal. Selection of
alternate widths is not possible without low-level
commands, the default italic and small caps com-
mands do not work together because LATEX’s default
handling of the “variant” category does not address
multiple variants, and using non-standard but de-
sirable selection commands such as \textln in shared
files is discouraged because a default TEX installation
does not support them.

• Finally, while many advanced OpenType features
can be supported in TEX’s font files, invoking those
features with high-level commands is a much more
troublesome task. For most features beyond the ba-
sic ones, TEX and LATEX have no standardized sup-
port at the author level (or, in many cases, no sup-
port at all). Features like ornaments, contextual al-
ternates, and discretionary ligatures would benefit
from a discussion about how they can be invoked by
the programmer in a standard way.

Acknowledgements Many thanks to Karl Berry for en-
couraging me to write this article and for his helpful
suggestions along the way. Eddie Kohler’s tools greatly
ease the task of OpenType support in TEX, and I also
thank Eddie for his prompt and thorough answers to my
many questions about his tools. Karl Berry and Philipp
Lehman were both quite helpful in understanding font-
name and how it’s used within the TEX world. �e use
of Philipp’s nfssext.sty was vital in the development of
otfinst. �omas Phinney, Geraldine Wade, and Michael
Duggan provided fonts for testing, and �omas secured
permission to use Adobe fonts for the article itself. Fi-
nally, thanks also to Nelson Beebe, Stephen Hartke, Oleg
Katsitadze, Eddie Kohler, Marc Penninga, Will Robert-
son, and Michael Zedler for their thoughtful comments
on the article during the review process.

References

[] Karl Berry. Filenames for fonts. TUGboat,
():–, November .
http://www.tug.org/fontname.

[] Achim Blumensath, Andreas Bühmann, and
Michael Zedler. MinionPro, September .
http://www.ctan.org/tex-archive/fonts/minionpro/.

[] Maarten Gelderman. A short introduction to
font characteristics. TUGboat, ():–, June
.

[] Taco Hoekwater. Opening up the type. TUGboat,
():–, .

[] Alan Hoenig. TEX Unbound. Oxford University
Press, New York, NY, .

[] Alan Jeffrey, Rowland McDonnell, and Lars
Hellström. fontinst: Font installation so
ware for
TEX, December .
http://www.tug.org/applications/fontinst/.

[] Jonathan Kew. �e X ETEX typesetting system,
. http://scripts.sil.org/xetex.

[] Eddie Kohler. LCDF type so
ware, .
http://www.lcdf.org/type/.

[] Philipp Lehman. �e font installation guide,
December . http://www.ctan.org/tex-archive/
info/Type1fonts/fontinstallationguide/.

[] Adam T. Lindsay. OpenType installation basics
for ConTEXt. �e PracTEX Journal, (), April
.

[] Frank Mittelbach and Michel Goossens. �e
LATEX Companion. Addison-Wesley, Boston, MA,
second edition, .

[] John Owens. otfinst, . http://www.ctan.org/
tex-archive/fonts/utilities/otfinst/.

[] Marc Penninga. fontools, . http:
//www.ctan.org/tex-archive/fonts/utilities/fontools/.

[] Will Robertson. Advanced font features with
X ETEX—the fontspec package. TUGboat,
():–, .

[] LATEX Project Team. LATEXε font selection, June
. http://www.ctan.org/tex-archive/macros/
latex/doc/fntguide.pdf.

[] Geoffrey Washburn. ot
ofd, . http:
//www.ctan.org/tex-archive/fonts/utilities/otftofd/.

� John D. Owens
Department of Electrical and

Computer Engineering
University of California
One Shields Avenue
Davis, CA  USA
jowens (at) ece dot ucdavis dot edu
http://www.ece.ucdavis.edu/˜jowens/

http://www.tug.org/fontname
http://www.ctan.org/tex-archive/fonts/minionpro/
http://www.tug.org/applications/fontinst/
http://scripts.sil.org/xetex
http://www.lcdf.org/type/
http://www.ctan.org/tex-archive/info/Type1fonts/fontinstallationguide/
http://www.ctan.org/tex-archive/info/Type1fonts/fontinstallationguide/
http://www.ctan.org/tex-archive/fonts/utilities/otfinst/
http://www.ctan.org/tex-archive/fonts/utilities/otfinst/
http://www.ctan.org/tex-archive/fonts/utilities/fontools/
http://www.ctan.org/tex-archive/fonts/utilities/fontools/
http://www.ctan.org/tex-archive/macros/latex/doc/fntguide.pdf
http://www.ctan.org/tex-archive/macros/latex/doc/fntguide.pdf
http://www.ctan.org/tex-archive/fonts/utilities/otftofd/
http://www.ctan.org/tex-archive/fonts/utilities/otftofd/

	Font basics and font families
	TeX font handling
	OpenType to TeX
	Font description (fd) files
	DeclareFontFamily
	DeclareFontShape
	Naming shape and series
	Font families

	Style files
	Selecting a font family
	Selecting between multiple font families
	Selecting font variants
	Supporting alternate weights
	Supporting small caps with italics
	Supporting old-style and lining figures

	Tools
	Other tools

	Conclusions

