
TUGBOAT

Volume 28, Number 1 / 2007
Practical TEX 2006 Conference Proceedings

General Delivery 3 Karl Berry / From the president

4 Barbara Beeton / Editorial comments
Erratum: TUGboat 27:1 (EuroTEX proceedings);
A new Korean TEX Society; LATEX goes to the movies;
Some TUGboat staff changes

Warnings 4 Donald E. Knuth / TEX’s infinite glue is projective

Software & Tools 5 Oleg Parashchenko / TEXML: Resurrecting TEX in the XML world

11 Barbara Beeton and Idris Hamid / Oriental TEX: A new direction in scholarly
complex-script typesetting

Hints & Tricks 12 Peter Wilson / Glisterings: stringing along; loops

15 Mark LaPlante / The treasure chest

LATEX 20 Ignacio Llopis Tortosa and Maŕıa José Castro Bleda / paperTEX: Creating
newspapers using LATEX2ε

24 LATEX Project Team / LATEX news, issue 17

Practical TEX 2006 26 Conference program, delegates, and sponsors

Keynote 29 Barbara Beeton / How to create a TEX journal: A personal journey

Publishing 49 David Walden / A lifetime as an amateur compositor

61 Elizabeth Dearborn / TEX and medicine

Teaching & Training 65 Jon Breitenbucher / LATEX at a liberal arts college

70 Boris Veytsman / Design of presentations: Notes on principles and
LATEX implementation

Software & Tools 77 Boris Veytsman and Maria Shmilevich / Automatic report generation
with Web, TEX and SQL

80 Bob Neveln and Bob Alps / Writing and checking complete proofs in TEX

Graphics 84 Troy Henderson / A beginner’s guide to MetaPost for creating high-quality graphics

91 Andrew Mertz and William Slough / Graphics with PGF and TikZ

100 Boris Veytsman and Leila Akhmadeeva / Drawing medical pedigree trees
with TEX and PSTricks

Tutorials 110 Peter Flynn / Rolling your own Document Class: Using LATEX to keep away
from the Dark Side

LATEX 124 Jim Hefferon / LATEX resources

126 Peter Flom / LATEX for academics and researchers who (think they) don’t need it

129 Federico Garcia / Hypertext capabilities with pdf LATEX

133 Kaveh Bazargan and CV Radhakrishnan / Removing vertical stretch— mimicking
traditional typesetting with TEX

Abstracts 137 Abstracts (Adams, Garcia, Höppner, Hummel, Moye, Peter, Wetmore)

News 138 Calendar

139 TUG 2007 announcement

140 EuroBachoTEX 2007 announcement

TUG Business 141 Steve Peter / TUG 2007 election report

145 David Walden / Financial statements for 2006

146 Institutional members

147 TUG membership form

Advertisements 148 TEX consulting and production services

TEX Users Group

TUGboat (ISSN 0896-3207) is published by the
TEX Users Group.

Memberships and Subscriptions

2007 dues for individual members are as follows:
Ordinary members: $85.
Students/Seniors: $45.

The discounted rate of $45 is also available to
citizens of countries with modest economies, as
detailed on our web site.

Membership in the TEX Users Group is for the
calendar year, and includes all issues of TUGboat

for the year in which membership begins or is
renewed, as well as software distributions and other
benefits. Individual membership is open only to
named individuals, and carries with it such rights
and responsibilities as voting in TUG elections. For
membership information, visit the TUG web site.

Also, (non-voting) TUGboat subscriptions are
available to organizations and others wishing to
receive TUGboat in a name other than that of an
individual. The subscription rate is $95 per year,
including air mail delivery.

Institutional Membership

Institutional membership is a means of showing
continuing interest in and support for both TEX
and the TEX Users Group, as well as providing
a discounted group rate and other benefits. For
further information, contact the TUG office or see
our web site.

TEX is a trademark of the American Mathematical
Society.

Copyright c© 2007 TEX Users Group.

Copyright to individual articles within this publication

remains with their authors, so the articles may not be

reproduced, distributed or translated without the authors’

permission.

For the editorial and other material not ascribed to

a particular author, permission is granted to make and

distribute verbatim copies without royalty, in any medium,

provided the copyright notice and this permission notice are

preserved.

Permission is also granted to make, copy and distribute

translations of such editorial material into another language,

except that the TEX Users Group must approve translations

of this permission notice itself. Lacking such approval, the

original English permission notice must be included.

Printed in U.S.A.

Board of Directors

Donald Knuth, Grand Wizard of TEX-arcana†

Karl Berry, President∗

Kaja Christiansen∗, Vice President

David Walden∗, Treasurer

Susan DeMeritt∗, Secretary

Barbara Beeton
Jon Breitenbucher
Steve Grathwohl
Jim Hefferon
Klaus Höppner
Ross Moore
Arthur Ogawa
Steve Peter
Cheryl Ponchin
Samuel Rhoads
Philip Taylor
Raymond Goucher, Founding Executive Director †

Hermann Zapf, Wizard of Fonts†

∗member of executive committee
†honorary

See http://tug.org/board.html for past board
members.

Addresses

General correspondence,
payments, etc.

TEX Users Group
P.O. Box 2311
Portland, OR 97208-2311
U.S.A.

Delivery services,
parcels, visitors

TEX Users Group
1466 NW Naito Parkway
Suite 3141
Portland, OR 97209-2820
U.S.A.

Telephone

+1 503 223-9994

Fax

+1 206 203-3960

Electronic Mail

(Internet)

General correspondence,
membership, subscriptions:
office@tug.org

Submissions to TUGboat,
letters to the Editor:
TUGboat@tug.org

Technical support for
TEX users:
support@tug.org

Contact the Board
of Directors:
board@tug.org

World Wide Web

http://www.tug.org/

http://www.tug.org/TUGboat/

Have a suggestion? Problems not resolved?

The TUG Board wants to hear from you:
Please email board@tug.org.

[printing date: March 2007]

The Communications of the TEX Users Group

Volume 28, Number 1, 2007
Practical TEX 2006 Conference Proceedings

TEX Users Group

TUGboat (ISSN 0896-3207) is published by the
TEX Users Group.

Memberships and Subscriptions
2007 dues for individual members are as follows:

Ordinary members: $85.
Students/Seniors: $45.

The discounted rate of $45 is also available to
citizens of countries with modest economies, as
detailed on our web site.

Membership in the TEX Users Group is for the
calendar year, and includes all issues of TUGboat

for the year in which membership begins or is
renewed, as well as software distributions and other
benefits. Individual membership is open only to
named individuals, and carries with it such rights
and responsibilities as voting in TUG elections. For
membership information, visit the TUG web site.

Also, (non-voting) TUGboat subscriptions are
available to organizations and others wishing to
receive TUGboat in a name other than that of an
individual. The subscription rate is $95 per year,
including air mail delivery.

Institutional Membership
Institutional membership is a means of showing
continuing interest in and support for both TEX
and the TEX Users Group, as well as providing
a discounted group rate and other benefits. For
further information, contact the TUG office or see
our web site.

TEX is a trademark of the American Mathematical
Society.

Copyright c© 2007 TEX Users Group.
Copyright to individual articles within this publication

remains with their authors, so the articles may not be
reproduced, distributed or translated without the authors’
permission.

For the editorial and other material not ascribed to
a particular author, permission is granted to make and
distribute verbatim copies without royalty, in any medium,
provided the copyright notice and this permission notice are

preserved.
Permission is also granted to make, copy and distribute

translations of such editorial material into another language,

except that the TEX Users Group must approve translations
of this permission notice itself. Lacking such approval, the
original English permission notice must be included.

Printed in U.S.A.

Board of Directors

Donald Knuth, Grand Wizard of TEX-arcana†

Karl Berry, President∗

Kaja Christiansen∗, Vice President
David Walden∗, Treasurer
Susan DeMeritt∗, Secretary
Barbara Beeton
Jon Breitenbucher
Steve Grathwohl
Jim Hefferon
Klaus Höppner
Ross Moore
Arthur Ogawa
Steve Peter
Cheryl Ponchin
Samuel Rhoads
Philip Taylor
Raymond Goucher, Founding Executive Director †

Hermann Zapf, Wizard of Fonts†

∗member of executive committee
†honorary

See http://tug.org/board.html for past board
members.

Addresses
General correspondence,

payments, etc.
TEX Users Group
P.O. Box 2311
Portland, OR 97208-2311
U.S.A.

Delivery services,
parcels, visitors

TEX Users Group
1466 NW Naito Parkway
Suite 3141
Portland, OR 97209-2820
U.S.A.

Telephone
+1 503 223-9994

Fax
+1 206 203-3960

Electronic Mail
(Internet)

General correspondence,
membership, subscriptions:
office@tug.org

Submissions to TUGboat,
letters to the Editor:
TUGboat@tug.org

Technical support for
TEX users:
support@tug.org

Contact the Board
of Directors:
board@tug.org

World Wide Web
http://www.tug.org/

http://www.tug.org/TUGboat/

Have a suggestion? Problems not resolved?
The TUG Board wants to hear from you:
Please email board@tug.org.

[printing date: March 2007]

Practical TEX 2006 Proceedings

Rutgers, the State University of New Jersey

Piscataway, NJ, USA

July 30–August 1, 2006

COMMUNICATIONS OF THE TEX USERS GROUP

TUGBOAT EDITOR BARBARA BEETON

PROCEEDINGS EDITOR KARL BERRY

VOLUME 28, NUMBER 1 • 2007
PORTLAND • OREGON • U.S.A.

TUGboat

This issue (Vol. 28, No. 1) is the first issue of the
2007 volume year. It combines the Practical TEX
2006 conference proceedings with regular material.
Vol. 28, No. 2 is expected to be a regular issue,
and No. 3 will contain the TUG 2007 (San Diego)
proceedings.

TUGboat is distributed as a benefit of member-
ship to all current TUG members. It is also available
to non-members in printed form through the TUG

store (http://tug.org/store), and online at the
TUGboat web site, http://tug.org/TUGboat. On-
line publication to non-members is delayed up to
one year after an issue’s print publication, to give
members the benefit of early access.

Submissions to TUGboat are reviewed by vol-
unteers and checked by the Editor before publica-
tion. However, the authors are still assumed to be
the experts. Questions regarding content or accu-
racy should therefore be directed to the authors,
with an information copy to the Editor.

Submitting Items for Publication

TUGboat will be publishing one issue of conference
proceedings in 2007. Deadlines for presentation
proposals (send to the conference committee) and
the final papers:

TUG 2007: abstracts April 23, 2007;
preprints June 22, 2007;
papers August 17, 2007.

Links, locations, and more information about all
conferences are available at
http://tug.org/meetings.html.

As always, suggestions and proposals for TUG-

boat articles are gratefully accepted and processed
as received. We encourage submitting contributions
by electronic mail to TUGboat@tug.org.

The TUGboat “style files”, for use with either
plain TEX or LATEX, are available from CTAN and
the TUGboat web site. We also accept submissions
using ConTEXt.

Effective with the 2005 volume year, submission
of a new manuscript implies permission to publish
the article, if accepted, on the TUGboat web site,
as well as in print. If you have any reservations
about posting online, please notify the editors at
the time of submission.

TUGboat Editorial Board

Barbara Beeton, Editor-in-Chief
Robin Laakso, Managing Editor
Karl Berry, Production Manager
Christina Thiele, Associate Editor,

Topics in the Humanities

Production Team
Barbara Beeton, Karl Berry (Manager),
Kaja Christiansen, Robin Fairbairns, Steve Peter,
Michael Sofka, Christina Thiele

Other TUG Publications

TUG is interested in considering additional man-
uscripts for publication. These might include
manuals, instructional materials, documentation, or
works on any other topic that might be useful to
the TEX community in general. Provision can be
made for including macro packages or software in
computer-readable form.

If you have any such items or know of any
that you would like considered for publication, send
the information to the attention of the Publications
Committee at tug-pub@tug.org.

TUGboat Advertising

For information about advertising rates and options,
including consultant listings, write or call the TUG

office, or see our web page:
http://tug.org/TUGboat/advertising.html

Trademarks

Many trademarked names appear in the pages of
TUGboat. If there is any question about whether
a name is or is not a trademark, prudence dictates
that it should be treated as if it is. The following
list of trademarks which appear in this issue should
not be considered complete.

METAFONT is a trademark of Addison-Wesley Inc.
PostScript is a trademark of Adobe Systems, Inc.
TEX and AMS-TEX are trademarks of the American

Mathematical Society.

TUGboat, Volume 28 (2007), No. 1 3

General Delivery

From the President

Karl Berry

TEX Collection 2007

This issue of TUGboat should reach members’ mail-
boxes at about the same time as the TEX Collection
2007 software on DVD and CD. The 2007 software
consists of the same major components as the last
release. For those who may not be familiar with it,
here is a rundown of what’s on the DVD:

• TEX Live, a cross-platform distribution includ-
ing precompiled binaries for many systems;

• MacTEX, which adds a native Mac OS X in-
staller, the TeXShop front end, and other fea-
tures to the base TEX Live;

• proTEXt, based on the MiKTEX Windows dis-
tribution with a guided installation;

• a snapshot of the CTAN archive.

A compressed variant of TEX Live, named inst,
will be shipped on CD. This reduced version in-
cludes the same set of packages, but has precom-
piled binaries for only three systems: i386-linux,
powerpc-darwin, and win32. It is provided for
those who cannot read a DVD.

Since the software is being released in early 2007
rather than 2006, we will be sending it to both 2006
and 2007 members of TUG (except for those who
explicitly opted not to receive it).

For more information and project web pages,
please see http://tug.org/texcollection.

As we reach the end of another release cycle, I’d
like to reiterate that the TEX Collection is a massive
effort, done entirely by volunteers. We are grateful
to the hundreds of people involved, from all parts
of the TEX world: the contributors uploading new
packages to CTAN, the CTAN maintainers for pro-
viding a central repository to draw from, the people
building the binaries on a wide variety of platforms,
those helping test the results, the developers main-
taining and enhancing the software upon which it all
rests, and the user group members keeping the in-
frastructure provided by TUG and all the TEX user
groups viable through their support. Thanks to all.

2007 TEX conferences

2007 will see two major TEX conferences. First,
a combined EuroTEX and BachoTEX in Bachotek,
Poland, from April 28 to May 2. The call for pa-
pers deadline will have passed by the time this is

published, but please see the web site for registra-
tion and information: http://www.gust.org.pl/

conferences/EuroBachoTeX2007.
Second, TUG 2007 in San Diego, California,

from July 17–20. The deadline for presentation pro-
posals is April 23. The conference theme is Practic-

ing TEX, and I’d like to especially invite “ordinary”
users and authors to attend and/or speak. The mix
of attendees and presentations at the Practical TEX
conferences in recent years has been gratifying and,
I believe, fruitful for all, and I hope that that will
continue at this annual TUG meeting.

I am very happy that Peter Wilson of his own
Herries Press has accepted our invitation to be the
keynote speaker at TUG 2007. Over the many years
of his involvement with TEX, Peter has created the
major memoir package, the archaic and bookhands

font collections, the Glisterings column for TUG-

boat, and much more. He talks about his back-
ground and interests in his interview at http://

tug.org/interviews.
For registration and accommodation informa-

tion (inexpensive on-campus housing is available),
the call for papers, and more, please visit the confer-
ence web site at http://tug.org/tug2007. I hope
to see you in sunny San Diego.

Editorial comments

Barbara Beeton

Here we are in a new year, with a lot to catch
up. Almost all material published last year was
from conferences: EuroTEX 2005 (compiled jointly
by DANTE and GUTenberg, both of whom were cel-
ebrating their 16th year, and sent to TUG members
in lieu of one issue of TUGboat), EuroTEX 2006 (an
issue that did contain some “regular” material), and
TUG 2006. That didn’t leave room for the proceed-
ings of Practical TEX 2006, so we have included them
in the present issue. Once again, we have an issue
that combines papers presented at a meeting and
ordinary articles.

As Karl has said, there won’t be a separate
Practical TEX meeting this year, so we expect that
there will be one regular issue this year.

Erratum: TUGboat 27:1 (EuroTEX
proceedings)

An old version of an article by Siep Kroonenberg
(“Managing a network TEX installation under Win-
dows”) was printed inadvertently in issue 27:1 (pp.
22–27) last year. The correct version is on line at
http://tug.org/tugboat.

4 TUGboat, Volume 28 (2007), No. 1

The more significant changes are:

• Credits: the paper originally appeared in slightly
different form in NTG MAPS no. 33 (2005).

• Converters: the to-be-written GUI converter is
now available and can be downloaded at http:

//tex.aanhet.net/epspdf/

• Disappearing filetypes: for this problem, a good
workaround has been found.

We regret the error.

A new Korean TEX Society

In January of this year, the on-line Korean TEX
community (the Korean TEX Users Group) founded
a new “off-line” community called the Korean TEX
Society (KTS). KTS has members and will hold an
annual meeting and conference.

The Society will also publish a new journal, The

Asian Journal of TEX ; the first issue is expected to
appear around the end of April 2007. The edito-
rial board consists of several well-known TEXnicians,
Prof. Haruhiko Okumura (Japan), Hàn Thé̂ Thành
(Vietnam), CV Radhakrishnan (India), Werner Lem-
berg, and Jin-Hwan Cho (Korea).

LATEX goes to the movies

In the 2005 movie Stealth, an artificial intelligence
system goes awry. The trivia listing for the film
includes this tidbit:

When Keith Orbit is looking at the code for
the AI, we can see that the code is written in
LaTeX, which is a language for typesetting
mathematics much as HTML is used on the
Internet for typesetting web pages.

www.imdb.com/title/tt0382992/trivia

Incidentally, the movie was one of the biggest fail-
ures ever at the box office. Seems about par with
their understanding that LATEX, while the code may
be pleasing to look at, is totally unsuitable for the
basis of an AI system. Yes, we’re aware that at least
one interpreter (for Basic1) has been written in TEX,
but really!

(Thanks to Elizabeth Dearborn for unearthing
this trivium and sending it to texhax.)

Some TUGboat staff changes

If you pay attention to the TUGboat masthead, you
will notice some changes. The most significant has
been noted previously: Mimi Burbank, our Produc-
tion Editor until November 2005, retired from her
position at Florida State, and from the TUGboat

1 Andrew Marc Greene, “BASIX: An interpreter written

in TEX”, TUGboat 11:3, pp. 381-392

Board. She is missed, and we wish her well in her
new life in Uganda. Karl Berry, in addition to all his
other efforts as TUG President and chief cook and
bottle washer for the TEX Live effort, has taken over
as Production Editor. Thanks, Karl.

Two long-time Associate Editors have also gone
on to other pursuits: Victor Eijkhout (Macros) and
Alan Hoenig (Fonts). During their tenure, their
knowledge and expertise were responsible for main-
taining the high standards of their respective col-
umns, and we are grateful for their contributions.

⋄ Barbara Beeton

American Mathematical Society

201 Charles Street

Providence, RI 02904 USA

bnb (at) ams dot org

Warnings

TEX’s infinite glue is projective

Donald Knuth

TEX wizards might be interested in a phenomenon
that could be considered an anomaly, but I choose
to declare it a “feature.” Consider the two boxes

\hbox to 100pt{\hskip 0pt plus -100pt}

\hbox to 100pt{\hskip 0pt plus -1fil}

The first box is considered underfull, with a badness
of 10000, because the total stretchability is negative.
But the second box is perfectly fine, with a badness
of 0, because the total stretchability is infinite. If
you are tracing, the boxes are

\hbox(0.0+0.0)x100.0, glue set -1.0

.\glue 0.0 plus -100.0

\hbox(0.0+0.0)x100.0, glue set -100.0fil

.\glue 0.0 plus -1.0fil

within TEX’s gullet.

References

[1] The TEXbook, page 97, although the case
r < 0 isn’t explicitly mentioned there.

[2] TEX: The Program, sections 186, 646, 658,
659, 664, 665, 673, 676, 796, 852, 1007.

⋄ Donald Knuth

Stanford University

TUGboat, Volume 28 (2007), No. 1 5

Software & Tools

TEXML: Resurrecting TEX in the XML world

Oleg Parashchenko

1 Foreword

TEXML is an XML syntax for TEX, LATEX and Con-
TEXt. This definition is extremely correct, but I
dislike its formality. Instead, I prefer the following.

Thanks to TEXML, you can reuse your TEX
skills in the XML world. With TEXML, XML pub-
lishing becomes a case of TEX publishing.

TEXML is a very simple thing. You can learn
it in a minute by looking at the examples in the
section ‘TEXML tour’. But knowing the syntax isn’t
enough.

To feel TEXML, you need to know its past and
future, the ideas behind it, and understand the au-
thor’s intentions. That’s why the technical stuff is
wrapped by the sections with my very subjective
view on the topic of XML publishing.

In the most cases, the words ‘TEX’ and ‘LATEX’
are interchangeable, and they mean also any other
TEX format.

The author is from the XML world. The TEXML

home page is http://getfo.org/texml/.

2 Why XML, not TEX, why TEX, not XML

The best thing about XML is that everyone knows
what it is. XML is ubiquitious now, and especially
in the area of technical documentation. Indeed, its
parent, SGML, was created to support authoring of
technical manuals.

TEX users have different opinions on XML. But
nobody rejects the idea of logical markup is very
obvious and essential. From the high level point of
view, all the markup methods are the same.

What in XML looks like

<environment> ...text... </environment>

in LATEX looks like this:

\begin{environment} ...text... \end{environment}

The only difference is notation. But it’s a very
important difference. Computers prefer XML, hu-
mans prefer LATEX.

Among benefits of logical markup is the pos-
sibility of single source publishing, when the same
source document can be converted to different out-
put formats. XML is the best choice because XML li-
braries exist in any practical programming language.
On the other hand, the only correct TEX parser is
TEX itself, and TEX is locked in its sandbox.

On the other side, the ideal XML world isn’t
ideal. How to get PDF from XML? Theory says
that you would write an XSLT (W3C, 1999) program
which converts XML to XSL-FO (W3C, 2001), and
use an XSL-FO formatter which generates PDF from
XSL-FO.

XML+XSLT → XSL-FO → PDF. There are two
issues: first, tools, which is hopefully temporary;
and second, too much automation, which is fatal.

Only a few tools implement XSL-FO in full, and
all these tools are commercial, without open source
alternatives (the best one is FOP, which is under
development), and the W3 Consortium has started
work on XSL-FO 2.0.

But the worst is that the joke ‘automatically’

means you can’t fix it if something goes wrong ap-
plies perfectly to the XSL-FO way. When you need
to tune a generated layout, you’ll find that XSL-FO

level is too low, and editing XSL-FO isn’t much bet-
ter than editing PDF. Also you’ll find that XML and
XSLT levels are too high and editing here smells bad.

The broken layout isn’t a showstopper in LATEX.
Your writings are marked up logically, and when you
need typographical tunings, you just use low-level
primitives.

Time for a short summary:
• XML is good as a markup language,
• TEX is good for publishing documents.

Why not take the best from both worlds? That
is, have sources in XML and publish the documents
through TEX. But how?

3 XML to TEX —how

When converting XML, there is no better alternative
than XSLT. This language is specially designed to
convert XML, is based on experiences with the Lisp-
like DSSSL language, has a large user and expert
base, and has decent support by many tools on many
platforms.

Why not Java, or Perl, or Python, or something
else? Because XML is alien to them. It’s inconve-
nient to use the traditional languages for processing
XML, for either parsing or converting.

For example, in one project the author worked
on a Java application. One procedure was more
than 20 lines in size, debugged and enhanced several
times, and still couldn’t be compared in functional-
ity with a small XPath (a part of XSLT) expression
of several characters.

Worse, the whole library was a partial, poorly
documented, limited re-invention of XSLT. I think
it’s the doom of any program which converts XML.
Instead of using a poor imitation, it’s better to use
XSLT itself.

6 TUGboat, Volume 28 (2007), No. 1

The knowledgeable reader can say that XSLT is
a language to convert from XML to XML, not from
XML to TEX, and ask if XSLT is still so great to
generate TEX.

No, I have to answer, converting XML directly
to TEX is nightmare. XSLT is very weak and unbe-
lievably verbose in working with strings, but that’s
what is required when generating TEX code.

What is expected from a TEX code generator:

• escaping special TEX characters (for example ‘<’
to ‘\<’ or, better, to ‘\textless{}’);

• disjoining ligatures (‘---’ isn’t the long dash in
XML, the long dash is the symbol ‘—’);

• mapping from Unicode characters to LATEX se-
quences;

• avoiding empty lines, which start a new para-
graph in TEX.

And there are common errors when generat-
ing TEX code. (See bug databases for such projects
as db2latex (Casellas and Devenish, 2004), dblatex
(Guillon, 2006) and others.)

• Opening or closing brace is forgotten.
<i>some</i> text

→ {\it some text

instead of {\it some} text.1

• No space after the command name.
{\itsome} text

• Space instead of braces.
here is<i> some</i> text

→ here is{\it some} text

instead of here is{\it{} some} text

If you write a TEX code generator, you should
pay attention to everything. You need accuracy and
patience, and the work isn’t trivial. Therefore you’d
prefer to delegate TEXification from your program to
something else.

TEXML is the best and probably the only can-
didate. You create XML, which is much easier, and
then a TEXML processor converts TEXML to TEX.

Short summary:

• XSLT is the best tool for converting XML to
XML,

• it’s better to delegate TEX code generation.

That’s why we have TEXML, an XML syntax
for TEX/LATEX/ConTEXt. Conversion from XML to
TEX consists of two steps:

• an XSLT program converts XML to TEXML, and

• a TEXML processor converts TEXML to TEX.

TEXML is an XML language with just a few tags,
and converting XML to XML is the specialization of

1 In production we might use \textit{...}, but for illus-
trative purposes here I use {\it ...}.

XSLT; therefore you need only basic knowledge of
XSLT to convert XML to TEX.

4 TEXML tour

The TEXML markup language is minimalistic. Most
of the time, you use only three elements: cmd, env
and group (the other elements are pdf, math, dmath,
ctrl, spec and TeXML).

To get accustomed to TEXML, it’s enough to
learn the examples presented in this section. The
original paper by Douglas Lovell (Lovell, 1999) is
also a good introduction, but it’s out of date. For
a detailed description of contemporary TEXML, con-
sult the TEXML specification (Parashchenko, 2006b).

Installation and usage instructions are on the
TEXML home page: http://getfo.org/texml/. A
pleasant feature is that it’s enough to unpack the
distribution package to use TEXML. The installation
procedure isn’t required, it’s for convenience only.

4.1 Simple TEXML file

An example of a simple TEXML document:

<TeXML>

<TeXML escape="0">

\documentclass[a4paper]{article}

\usepackage[latin1]{inputenc}

\usepackage[T1]{fontenc}

</TeXML>

<env name="document">

I’m not afraid of the symbols ^,

$, > and others.

</env>

</TeXML>

The result of conversion to TEX is the LATEX
document:

\documentclass[a4paper]{article}

\usepackage[latin1]{inputenc}

\usepackage[T1]{fontenc}

\begin{document}

I’m not afraid of the symbols \^{},

\textdollar{}, \textgreater{} and others.

\end{document}

This example demonstrates:

• the root element is TeXML,

• TEX special symbols are escaped automatically,

• it’s possible to disable escaping.

By the way, while preparing the original LATEX
example, I made two errors:

• ‘\textgreater’ instead of ‘\textgreater{}’
(result —no space after the symbol ‘>’),

• ‘\^’ instead of ‘\^{}’ (result— the circumflex
over the comma instead of the symbol ‘^’).

TEXML saves me from such basic errors.

TUGboat, Volume 28 (2007), No. 1 7

Disabling escaping is not recommended. Usu-
ally it’s a misuse of TEXML. But to keep examples
simple, I do use it for creating the LATEX header.

4.2 More TEXML

This document uses more TEXML elements:

<TeXML>

<cmd name="documentclass">

<opt>a4paper</opt>

<parm>article</parm>

</cmd>

....

<env name="document">

Hello, <group><cmd name="it"/>World</group>!

</env>

</TeXML>

After converting to TEX, the result is:

\documentclass[a4paper]{article}

\begin{document}

Hello, {\it{}World}!

\end{document}

This example demonstrates the three most of-
ten used TEXML elements:

• cmd creates a LATEX command,

• env creates a LATEX environment,

• group creates a LATEX group.

The example also demonstrates how to create
the LATEX header using regular TEXML instead of
disabling escaping.

4.3 Better layout

This example demonstrates how to tune the layout
of a generated LATEX code. The result can be made
indistinguishable from code written by a human.

In the last example, we got the following LATEX
document:

\documentclass[a4paper]{article}

\begin{document}

Hello, {\it{}World}!

\end{document}

A better code layout is:

\documentclass[a4paper]{article}

....

\begin{document}

Hello, {\it World}!

\end{document}

The source TEXML code uses the attributes nl2
and gr to tune the layout:

<TeXML>

<cmd name="documentclass" nl2="1">

<opt>a4paper</opt>

<parm>article</parm>

</cmd>

....

<env name="document">

Hello, <group>

<cmd name="it" gr="0"/>World</group>!

</env>

</TeXML>

4.4 PDF literal strings

Let’s start with the following LATEX code:

\documentclass{article}

\usepackage[T2A]{fontenc}

\usepackage[koi8-r]{inputenc}

\usepackage{hyperref}

\begin{document}

\section{Заголовок (Title)}

Текст (Text)

\end{document}

The code looks fine, but due to the Russian
letters, LATEX raises the errors:

Package hyperref Warning:

Glyph not defined in PD1 encoding,

(hyperref) removing ‘\CYRZ’ on input line 6.

For the document above, the solution is to use

\usepackagep[unicode]{hyperref}

But this solution is not generic. For example,
for CJK text, it fails with some obscure error like:

! Incomplete \ifx; all text was ignored ...

I prefer the universal solution that uses Unicode
strings for the PDF names:

\documentclass{article}

\usepackage[T2A]{fontenc}

\usepackage[koi8-r]{inputenc}

\usepackage[unicode]{hyperref}

\begin{document}

\section{\texorpdfstring{Заголовок (Title)

}{\004\027\004\060\004\063\004\076\004\073

\004\076\004\062\004\076\004\072\000\040\0

00\050\000\124\000\151\000\164\000\154}}

Текст (Text)

\end{document}

Comparing to the previous example, I use

• the option unicode for the package hyperref,

• the command texorpdfstring to assign the
name for the PDF bookmark entry.

The content of texorpdfstring is created by
the TEXML command pdf:

<cmd name="section">

<parm>

<cmd name="texorpdfstring">

<parm>Заголовок (Title)</parm>

<parm><pdf>Заголовок (Title)</pdf></parm>

</cmd>

</parm>

</cmd>

8 TUGboat, Volume 28 (2007), No. 1

4.5 Encodings

Consider TEXML with the Russian letters:

<TeXML>Текст</TeXML>

Default translation to LATEX produces:

\cyrchar\cyrT{}\cyrchar\cyre{}\cyrchar....

The result is correct, but those who speak Rus-
sian prefer to see the real Russian letters instead of
TEX commands.

To achieve this, specify the desired output en-
coding to the TEXML processor using the command
line option --encoding (or -e). When the output
encoding is, for example, koi8-r, the result is:

Текст

4.6 ASCII output

The following LATEX document contains the phrase
‘Hello, World!’ written in Chinese:

\documentclass{article}

\usepackage[encapsulated]{CJK}

\usepackage{ucs}

\usepackage[utf8x]{inputenc}

\begin{document}

\begin{CJK}{UTF8}{cyberbit}

�L�`}�

\end{CJK}

\end{document}

LATEX successfully compiles this document. But
imagine:

• you’ve got a problem with a CJK or other non-
latin document,

• latin documents don’t have this problem, so
• you want to ask for help.

To get help, you should provide a minimal ex-
ample to reproduce the problem. Unfortunately, in
many cases, your non-ASCII text will be corrupted.

Luckily, TEX provides ASCII sequences to en-
code non-ASCII bytes. With the command line flag
--ascii (or -a), the TEXML processor uses ASCII

sequences. For example, the above LATEX document
is written as follows:

\documentclass{article}

\usepackage[encapsulated]{CJK}

\usepackage{ucs}

\usepackage[utf8x]{inputenc}

\begin{document}

\begin{CJK}{UTF8}{cyberbit}

^^e4^^b8^^96^^e7^^95^^8c^^ef^^bc^^8c

^^e4^^bd^^a0^^e5^^a5^^bd^^ef^^bc^^81

\end{CJK}

\end{document}

5 History and other TEXMLs

A long long time ago a company for which I con-
sulted had to switch from XML publishing using

FrameMaker+SGML to a pure XML publishing us-
ing XSL-FO. At the same time, I joined a documen-
tation team for a large open source project. In both
cases, we needed an open source XSL-FO formatter,
and we didn’t find a viable tool.

I had the courage to write my own good open
source XSL-FO processor. The idea was that I could
build it on top of LATEX, and I thought I need only
a converter from XSL-FO to TEX.

The language to use for the converter was ob-
vious to me: XSLT. Quite soon, I found that writ-
ing valid TEX code is hard and unpleasant work.
Instead, I got the bright idea that it’s better to
use an intermediate XML language, and even half-
prototyped it.

At some moment I noticed that I had reinvented
the wheel. Much earlier, Douglas Lovell presented
(Lovell, 1999) his TEXML at the TUG99 conference.
Unfortunately, his TEXMLLatté, a Java implementa-
tion of TEXML, was ‘retired’ and not available for
download.

But the specification survived. I found that it
was very close to my ideas and decided to countinue
with the existing solution. As result, all the old
TEXML documents are still valid and can be pro-
cessed by my tool.

In addition to the original Java TEXML, I found
processors written in Ruby (isn’t available anymore)
and Perl (Houser, 2001). Unfortunately, their status
was ‘works for the author’, but I needed production
quality.

That’s why I started my own TEXML implemen-
tation. The choice of Python was quite arbitrary.
At that time I was learning this language, and I
prefer learning by doing. Now I think it was a for-
tunate choice, as Python is a very good compromise
between popularity and speed of development and
running.

The first version just worked and was without
any advanced features. However, it found its users,
for whom I’m very thankful. The feedback revealed
that the nice layout of the generated TEX code is of
much greater importance than I considered. I ac-
cepted the challenge, and since version 1.1, TEXML

writes human-friendly TEX code.
I presented version 1.1 at a Russian conference

(Parashchenko, 2004b), and I thought that TEXML

development was finished.
Working on a real publishing project, however,

I added more features to TEXML, mostly related to
internationalization support. Meanwhile, I also in-
vestigated how to deal with TEX and XSLT limita-
tions. This activity resulted in the projects sTEXme
(Parashchenko, 2004a) (TEX+Scheme) and XSieve

TUGboat, Volume 28 (2007), No. 1 9

(Parashchenko, 2006c) (XSLT+Scheme), one of the
Google Summer of Code 2005 projects, presented at
the XTech 2006 conference.

TEXML popularity grew, and I started to get
contributions. One of the TEXML users, Paul Trem-
blay, used ConTEXt for publishing. He added Con-
TEXt support to TEXML, reworked bits of TEXML

code and wrote extensive documentation (Tremblay,
2005) on how to imitate XSL-FO constructions in
ConTEXt. That’s a must-read for those who are in-
teresed in the topic.

In June 2006, I collected all the improvements,
rewrote documentation, packed the whole as a usual
Python package and released version 2.0. No bugs
reported till now (March 2007).

6 The TEXML processor: present

and future

At the moment, the only TEXML processor imple-
mentation is written by me in Python. It uses only
few standard modules and therefore is portable and
can be used anywhere if Python is installed.

The core of the TEXML processor is a stand-
alone Python library, therefore TEXML functional-
ity is available to any Python application. It might
be that TEXML is available to Java programs using
JPython and to .NET programs using IronPython,
but checking this has low priority on my long-term
TODO list.

TEXML follows the three-step approach to soft-
ware development: make it work, make it correct,
make it fast. TEXML is currently on the second level,
‘work correct’, so now it’s time to improve perfor-
mance. The processor works much faster than XSLT,
but it can be made an order of magnitude faster yet.

The approach is to use finite automata. The
current code escapes the output stream character
by character. The set of loops, flags and nested con-
ditions adds an overhead to the processing time. By
comparison, with automata the only flags are the
current state, the current character, and the table
of state changes. Overhead per character is mini-
mized.

The second main benefit of automata is that it
would make explicit all the rules how to generate
correct TEX code with nice layout. At the moment,
this knowledge is hidden inside the spaghetti code,
that is hard to maintain and modify.

And I’d like to improve some things. For exam-
ple, the TEXML

<cmd name="command"/><ctrl ch="\"/>

is translated to

\command{}\\

I’d prefer to automatically avoid dummy groups:

\command\\

Yet another benefit of using automata is that
TEXML could be ported to other languages. The
non-trivial TEXML logic, were it written as automata
in some well-known format, such as S-expressions or
XML, could be automatically translated to a code in
any language.

Unfortunately, all these wonderful perspectives
are for the far far future. I’m satisfied with the cur-
rent state of TEXML and prefer to concentrate on
other projects.

Creating automata for TEXML could be a good
master thesis or even a PhD work. If you know
someone who might be interested in this task, don’t
hesitate to mention TEXML.

7 Nice layouts, diff and patch

Probably you’ve noticed how much attention I de-
vote to the nice layout of the generated code. But
what’s the benefit except aesthetic?

Before answering, I’d like to note that aesthetic
appearance is indeed a benefit. You know the say-
ing, ugly things can’t fly. I believe in it. And defi-
nitely, nobody is interested in working with the in-
termediate ugly code which appears in many other
XML-to-PDF-through-LATEX projects.

Automatically generated PDFs can’t be ideal.
From time to time, there are layout faults that you’d
like to fix. To tune these places, you need to edit the
LATEX code. When this code is ugly and bad, you
might prefer to tolerate the faults instead of fixing
them. On the contrary, when the code is human-
friendly, you are likely to look into the code and fix
the problems.

But the main benefit of human-friendly code is
that such code is also diff- and patch-friendly.

Imagine that you’ve fixed all the layout faults
in the LATEX code. Unexpectedly, a proofreader has
updated the source XML. How to generate a new
PDF, both with your and the proofreader’s changes?
The naive user has two alternatives:

• detect what’s changed in XML and repeat the
changes in the LATEX code, or

• re-generate PDF and re-apply layout corrections
in the LATEX code.

Both options are miserable, boring and error-
prone. Open source software developers would pre-
fer a better way using diff and patch.

• Take the initial LATEX file, take the current ver-
sion with the layout fixes, and generate a patch-
file using diff.

• Generate a new PDF from the new XML.

10 TUGboat, Volume 28 (2007), No. 1

• Apply the patch-file to the new LATEX file and
re-generate the PDF.

In most cases, everything goes smoothly and all
the changes, from both you and the proofreader, are
applied.

Thanks to the good LATEX code formatting, as
produced by TEXML, this way is indeed possible.
Instead of saying ‘patch-file’, I prefer to say ‘beauty
memory’. It sounds more appealing and descriptive.

To automate this procedure, I developed Conso-
doc (Parashchenko, 2006a), an XML to PDF pub-
lishing tool on top of TEXML. The user’s guide for
Consodoc is generated by Consodoc itself. Here is
an example of the project file:

import Consodoc

env = Consodoc.default_process(

in_file = ’in/guide.xml’,

in_xslt = ’support/guide.xsl’

)

Depends(’tmp/guide.pdf’, ’support/guide.cls’)

The project file defines that the source XML file
is in/guide.xml, TEXML is generated by the XSLT

program support/guide.xsl, and implicitly defines
that the patch file is in/guide.patch. It also spec-
ifies, explicitly and implicitly, the dependencies of
the files: if a file is changed, than all the dependent
files should be re-generated. To build PDF, just say
on the command line: cdoc.

Consodoc is a very new product, but it is al-
ready usable and successfully passed unit and func-
tional testing. I recommend Consodoc for use in the
production environment by early adopters.

8 Final words

Publishing XML is still a practical problem, even
when the quality of the result isn’t very important.
Different approaches are suggested, from using the
XSL-FO standard to developing a custom solution,
but the Right Thing is still to appear.

The TEXML approach is one of the candidates.
Instead of inventing something new, it smoothly in-
tegrates existing successful technologies and experi-
ence. First, it uses TEX as the typesetting engine.
Second, it uses XSLT as the conversion language.

Third, with the help of the diff and patch

tools, the beauty memory maintains layout correc-
tions of the PDF documents. I’m not aware of any
other XML-to-PDF solution with this feature.

The only TEXML problem is the lack of sam-
ple conversion scripts. But I’ve started work on
the TEXML stylesheets for DocBook, a popular XML

standard for technical books, therefore this problem
will be fixed in the near future.

I expect this union— TEXML, beauty memory
and DocBook TEXML stylesheets — will have a big
impact on XML publishing, causing restoration of
the TEX technologies in the modern XML world.
Join the TEXML movement!

References

W3C. “XSL Transformations (XSLT). Version
1.0. W3C Recommendation 16 November
1999”. See http://www.w3.org/TR/1999/

REC-xslt-19991116, 1999.

W3C. “Extensible Stylesheet Language (XSL).
Version 1.0. W3C Recommendation 15 October
2001”. See http://www.w3.org/TR/2001/

REC-xsl-20011015/, 2001.

Casellas, Ramon, and J. Devenish. “Welcome
to the DB2LATEX XSL Stylesheets”. See
http://db2latex.sourceforge.net/, 2004.

Guillon, Benoît. “DocBook to LATEX/ConTEXt
Publishing”. See http://dblatex.

sourceforge.net/, 2006.

Houser, Chris. “TEXMLapis”. Available from http:

//bluweb.com/us/chouser/proj/texmlapis/,
2001.

Lovell, Douglas. “TEXML: Typesetting XML with
TEX”. TUGboat 20(3), 176–183, 1999.

Parashchenko, Oleg. “sTEXme”. See http:

//stexme.sourceforge.net/, 2004a.

Parashchenko, Oleg. “TEXML: an XML vocabulary
for TEX”. See http://getfo.org/texml/

thesis.html, 2004b. Thesis for the First
International Conference of Open-Source
Developers, Obninsk, Russia.

Parashchenko, Oleg. “Consodoc publishing
server: XML to beautiful documents”. See
http://consodoc.com/, 2006a.

Parashchenko, Oleg. “TEXML specification”. See
http://getfo.org/texml/spec.html, 2006b.

Parashchenko, Oleg. “XSieve: extending
XSLT with the roots of XSLT”. See http:

//xmlhack.ru/protva/xtech2006-paper.pdf,
2006c. XTech 2006: Building Web 2.0, 16-19
May 2006, Amsterdam, The Netherlands.

Tremblay, Paul. “Welcome to context-xml”. See
http://getfo.org/context_xml/, 2005.

⋄ Oleg Parashchenko

Saint-Petersburg State University,

7-9, Universitetskaya nab,

Saint-Petersburg, Russia

olpa (at) uucode dot com

http://uucode.com/

TUGboat, Volume 28 (2007), No. 1 11

Oriental TEX: A new direction in scholarly
complex-script typesetting

Project by Idris Samawi Hamid

Preservation of much ancient scholarship of non-
Western civilization exists only through unedited
manuscripts. The manuscripts themselves are often
not readily accessible, and the ability to make avail-
able accurate and culturally authentic typeset copies
is restricted. Particularly for documents in Arabic
script, typesetting is hampered by the lack of com-
plete sets of vowel markings and diacritics, crucial
for understanding the meaning of these texts.

For scholars working on critical editions of doc-
uments in Latin script, TEX is the tool of choice. Dr.
Idris Samawi Hamid of the Colorado State Univer-
sity Department of Philosophy has received a grant
to provide a comparable tool for Arabic scholars.

Dr. Hamid’s own fields of specialty include Is-
lamic philosophy, metaphysics, and cosmology. He
has prepared critical editions of two major works of
Arabic scholarship:

• Shaykh Ah.mad Ah. sā ֓̄ı’s Observations in
Wisdom: Critical Edition, Translation, Notes,
and Glossary

• The Mystical Theology of Muh. ammad A֒l̄ı
Shah. ֓̄abād̄ı: A Critical Edition of Rashah. atu
ãl-Bih. ar, with Notes and Glossary

Both works have been accepted for publication; what
remains is to prepare proper typeset copy ready for
printing. This is the impetus for the project and the
proposal.

In February 2006, Dr. Hamid submitted a pro-
posal to CSU’s Integrated Research Projects Pro-
gram, requesting a grant to develop and implement
extensions to TEX to provide such software. The re-
sult of this work will be called Oriental TEX. The
proposal was accepted by the program, and work be-
gan in May 2006. Taco Hoekwater is the principal
programmer for the project.

Development includes a number of components:

• Extending the data structures of LuaTEX and
Aleph to handle non-Latin languages and UTF-
8 input files;

• Implementing two levels of right-to-left machin-
ery: a global component for handling page el-
ements, and a local component for switching
direction in text without disrupting the type-
setting process;

• Implementing dynamic ligaturing to accom-
modate the multiple, contextually-dependent
shapes of Arabic letters, and the vertical shift-
ing characteristic of particular written Arabic

dialects; this will be based on concepts already
present in Aleph;

• Creating control languages to handle conversion
from the input stream to internal character rep-
resentation, and to manage the context-driven
glyph selection; again, many of the basic con-
cepts are present in Aleph, but require adapta-
tion to separate the two distinct processes;

• Developing OpenType font support, enabling
use of fonts larger than 256 characters, and pro-
viding the mechanism to use such fonts;

• Adding extensions for critical editions, includ-
ing a line-numbering engine and improved foot-
note handling;

• Quality control, involving extensive testing to
assure that the goals of the development have
been met;

• Documentation, a basic reference that is good
enough for a skilled macro package programmer
to learn how to take advantage of the special
features provided by Oriental TEX; the goal is
to provide user-interface macros that are easy
to use, and suitable for typesetting of critical
editions.

At TUG 2006, Taco presented a report on the
status of the project. (This was particularly ap-
propriate to the venue of the conference, in Mar-
rakesh, Morocco, where other scholars and students
reported on their own projects in Arabic typeset-
ting.) As of early November 2006, the first stage
was complete; this included support for full Unicode
input, and merging of Aleph and pdfTEX.

The second stage, comprising support of Open-
Type fonts and PDF output from Aleph, is essen-
tially complete as of this writing.

The third stage, expected by the time of Bacho-
TEX, includes completion of hypenation patterns,
character (case-mapping) tables, end-of-sentence dis-
covery, handling of minimal word size, line justifi-
cation, and the ligature table. Also in the third
phase are the decoupling of characters and glyphs,
with separate nodes for Unicode characters, fonts,
and glyphs in fonts, as well as revamped paragraph
breaking routines and a dynamic font interpolation
engine.

The fourth and final phase of the TEX exten-
sions, expected by the time of the TUG San Diego
meeting, will see two-dimensional line typesetting
of Arabic script and improved font handling, com-
pletion of the line-numbering engine, and improved
footnote handling.

The generous support of the CSU Integrated
Research Projects Program is gratefully acknowl-
edged.

⋄ Reported by Barbara Beeton

12 TUGboat, Volume 28 (2007), No. 1

Hints & Tricks

Glisterings

Peter Wilson

’Tis better to be lowly born
And range with humble livers in content
Than to be perked up in a glist’ring grief
And wear a golden sorrow.

Henry VIII, William Shakespeare

The aim of this column is to provide odd hints or
small pieces of code that might help in solving a
problem or two while hopefully not making things
worse through any errors of mine.

Corrections, suggestions, and contributions will
always be welcome.

To no one but the Son of Heaven does
it belong to order ceremonies, to fix the
measures, and to determine the written
characters.

The Analects, Confucius

1 Stringing along

In an earlier column [3] I mentioned that I might
continue looking at character strings. Here is some
basic code that can be used for examining each char-
acter in a simple string:

\catcode‘\^^G=12

\newcommand*{\allchars}[1]{%

\def\stuff{#1}\ifx\stuff\@empty\else

\@llchars#1^^G\fi}

\def\@llchars#1#2^^G{%

\def\letter{#1}\def\others{#2}%

\ifx\letter\@empty\let\next\@gobble

\else

\doachar{#1}%

\ifx\others\@empty \let\next\@gobble

\else \let\next\@llchars \fi

\fi

\next#2^^G}

\catcode‘\^^G=15

Here I have used the special character ^^G as a
marker for the end of the string. This is normally
an invalid character but I temporarily changed its
catcode to make it an ‘other’ character (like @ nor-
mally is). The \@gobble macro is part of the LATEX
kernel; it takes one argument and does nothing with
it. Buried inside the code \allchars calls a macro
\doachar{〈char〉} for each character in the string.
With this definition

\newcommand*{\doachar}[1]{\textit{#1}}

some examples of \allchars are:
\allchars{allchars} -> al lchars
\allchars{{\oe}rstead’s} -> œrstead’ s
\allchars{} ->

\allchars{with spaces} -> withspaces
The special case of an empty argument is handled
in the \allchars macro itself, while everything else
is dealt with by \@llchars. This keeps calling it-
self, grabbing one character from the initial string
each time until all are used up, via a process called
tail recursion, meaning that the last thing that it
does is call itself (or effectively do nothing if all the
characters have been processed).

Remember that with LATEX, if you put any code
that includes macros with @ in their names it either
has to go in a package file (a .sty file) or be sur-
rounded by the \makeatletter and \makeatother

pair of commands.
One unfortunate property of \allchars is that

it discards all spaces in the original string. Spaces
can be handled by a two-part process. The first
part goes through the string word by word, where a
word is a set of characters followed by a space. The
second part then goes through each word character
by character.

First some preliminaries and the main user com-
mand \Upeach.

\newif\if@newword

\def\checkrelax{\relax}

\catcode‘\^^G=12

\newcommand*{\Upeach}[1]{%

\@upeach#1^^G}

\def\@upeach#1^^G{%

\def\stuff{#1 }%

\expandafter\getaword\stuff ^^G}

The \getaword macro extracts the next word
from the string (note the argument delimited by a
space). It then calls \getachar with the word as its
argument.

\long\def\getaword#1 {%

\@newwordtrue

\expandafter\getachar#1\relax}

\getachar gets the next ‘letter’ in the word. If
it is ^^G then the string is finished. If the letter is
the same as \relax then it is a space and the macro
must call \getaword to repeat the cycle. Otherwise
it has a letter, calls \doUpeach to do something with
it, and calls itself again to get the following letter.

\def\getachar#1{%

\def\letter{#1}%

\if\letter^^G\let\next\relax

\else

\ifx\letter\checkrelax

\let\next\getaword

TUGboat, Volume 28 (2007), No. 1 13

\else

\doUpeach{#1}%

\let\next\getachar

\fi

\fi

\next}

\catcode‘\^^G=15

\getachar is another example of tail recursion.
The macro \doUpeach checks if a new word has

just started. If so, it converts its argument into italic
uppercase and sets \@newwordfalse. If its argu-
ment is not the first letter in a word it typesets it in
a bold font. Of course this is not a realistic thing to
do — it’s merely to demonstrate that all the charac-
ters in the string have been examined.

\newcommand*{\doUpeach}[1]{%

\if@newword

\space\textit{\MakeUppercase{#1}}%

\@newwordfalse

\else \textbf{#1}\fi}

Here are a couple of examples:
\Upeach{string with spaces} ->

String W ith Spaces
\Upeach{{\oe}rstead’s rule} ->

Œrstead’s Rule

These macros work for simple strings but are
likely to fail if there are accents or anything else to
disturb the even tenor of simple characters. The
earlier column [3] gave an indication of how such
problems might be resolved. On the other hand,
it could be a lot simpler and quicker to change the
strings by hand using your normal text editor.

Here we go loop de loop.
Here we go loop de li.
Here we go loop de loop
On a Saturday night.

Loop de loop, Johnny Thunder?

2 Loops

There are occasions when you need to perform a
repetitive action that does not involve string pro-
cessing. TEX provides a \loop ... \repeat which
can be useful in some circumstances. The general
scheme is like this:

\loop

<lots of useful commands>

\if<some condition>

<more code>

\repeat

TEX processes the commands following the \loop

and then performs the \if test (without any closing
\fi). If the test is true TEX will then process the

<more code> and start again with the first batch
of commands. If the condition is false it will do
whatever comes after the \repeat.

LATEX, among other internal facilities, provides
a mechanism for going through a list of things that
are separated by commas (like the option list for a
class or package). This scheme looks like:

\@for\scratch:=<list>\do{%

<something with \scratch>}

where \scratch is some command name and <list>

is a comma-separated list. It takes each element of
the list in turn, defines \scratch as that element
and then does whatever you tell it to do with it.
This continues until the list is exhausted.

It is easier to see how these work with a real ex-
ample. The following is a very stripped down version
of some code from the memoir class [2]. It provides a
means of putting a list of things into a tabular form
without having to worry about signifying the end of
each row. The command is:
\fillrows{〈width〉}{〈numcols〉}{〈comma separated
list〉}
which will create a centered tabular form of over-
all width 〈width〉 and 〈numcols〉 columns, with the
elements from 〈comma separated list〉 filling up the
tabular row by row (i.e., left to right, top to bottom).
I got the initial idea from TEX for the Impatient [1]
which gave a TEX version, filling top to bottom and
left to right.

First some counters and lengths, etc., that we
need. Be warned, much of the code below you won’t
want to know about and I’m not going to try and
explain it. In LATEX this is the kind of stuff that is
hidden within the tabular environment.

\newcount\CT@cols % number of cols

\newcount\@cellstogo % columns left

\newdimen\CT@col@width % column width

\newtoks\crtok

\crtok = {\cr}%

Now we can start on \fillrows itself, which
takes three arguments — the overall width, the num-
ber of columns, and the list of entries. The first part
sets up counters based on the number of columns.

\newcommand{\fillrows}[3]{\par\begingroup

\CT@cols=#2\relax

\@cellstogo=\CT@cols

The next bit defines code that will be called after
each entry is put into the tabular; it will insert either
a & or the internal form of \\.

\def\@endcolactions{%

\global\advance\@cellstogo\m@ne

\ifnum\@cellstogo<\@ne

\global\@cellstogo=\CT@cols

\the\crtok

14 TUGboat, Volume 28 (2007), No. 1

\else

&

\fi}%

Calculate the column widths and start off the tab-
ular by defining the preamble (the general layout of
the tabular).

\CT@col@width=#1

\divide\CT@col@width \CT@cols

\penalty 10000\relax

\noindent

\vskip -\z@

\def\@preamble{}%

\begingroup

\let\@sharp\relax

Now comes a \loop...\repeat going over all but
one of the columns, and for each column extending
the \@preamble by adding some spacing and a &.

\ifnum\CT@cols>\@ne

\loop

\g@addto@macro{\@preamble}{%

\hb@xt@ \CT@col@width

{\strut\relax\@sharp\hfil} &}%

\advance\CT@cols\m@ne

\ifnum\CT@cols>\@ne

\repeat

\fi

The & is not required for the last column.

\g@addto@macro{\@preamble}{%

\hb@xt@ \CT@col@width

{\strut\relax\@sharp\hfil}}%

\endgroup

(The above code sets each column to a fixed width
(\CT@col@width). Commenting out the two lines
that start with \hb@xt@ will result in each column
being set to its natural width, just wide enough for
the widest entry in the column.) Now finish up the
preliminaries.

\let\@sharp ##

\tabskip\fill

\halign to\hsize \bgroup

\tabskip\z@

\@preamble

\tabskip\fill\cr

The entries are added to the tabular, using a \@for

loop to extract each entry from the comma-sepa-
rated list.

\@for\@tempa:=#3\do{%

\@tempa\unskip\space\@endcolactions}%

All the entries have been dealt with, so wrap every-
thing up.

\the\crtok \egroup \endgroup \par}

As a simple example, the code below creates the
following tabular:
\fillrows{0.7\textwidth}{3}{ one, two,

three, four, five, six, seven}

one two three
four five six
seven

And here is the result of another \fillrows,
this time with five columns set to their natural width.

That’s all folks! Until we
meet again . . .

References

[1] Paul W. Abrahams, Karl Berry, and Kathryn A.
Hargreaves. TEX for the Impatient. Addison-
Wesley, 1990. (Available on CTAN in info/

impatient).

[2] Peter Wilson. The memoir class for config-
urable typesetting, 2004. (Available on CTAN

in latex/macros/contrib/memoir).

[3] Peter Wilson. Glisterings. TUGboat, 26(3):253–
255, 2005.

⋄ Peter Wilson
18912 8th Ave. SW
Normandy Park, WA 98166
USA
herries dot press (at)

earthlink dot net

TUGboat, Volume 28 (2007), No. 1 15

The Treasure Chest

Editor’s note: This is Mark’s final column. The
editorial board would like to thank Mark for moni-
toring the CTAN announcements and compiling this
collection since 2004.

This is a large but still incomplete list of the
new packages posted to CTAN (http://www.ctan.
org) in 2006, with descriptions either taken from the
announcement or researched, then edited for brevity.

Entries are listed alphabetically within CTAN

directories. A few entries which the editors subjec-
tively believed to be of especially wide interest or
otherwise notable are starred; of course, this is not
intended to slight the other contributions!

Hopefully this column and its companions will
help to make CTAN a more accessible resource to the
TEX community. Comments are welcome, as always.

⋄ Mark LaPlante
166 3rd Avenue West
Grant, AL 35747
laplante (at) mac dot com

biblio

alphabib in biblio/bibtex/utils

A Bash script allowing addition of alphabetical head-
ers into BibTEX bibliographies.

ijqc in biblio/bibtex/contrib

BibTEX style for the International Journal of Quan-

tum Chemistry.

jneurosci in biblio/bibtex/contrib

BibTEX style for the Journal of Neuroscience.

mad2bib in biblio/bibtex/utils

Scripts to convert MAD to BibTEX and UTF-8 to
LATEX ASCII.

mrcheckbib in biblio/bibtex/utils

BibTEX verification using the AMS MRef database.

munich in biblio/bibtex/contrib

The Munich ‘name (year)’ style.

rsc.bst in biblio/bibtex/contrib/misc

BibTEX styles for RSC journals.

sort-by-letters in biblio/bibtex/contrib

Some BibTEX styles for sorting by initial letters.

Synapsen in biblio/bibtex/utils

Java program for managing references.

fonts

arial in fonts/urw

An Arial clone in Type 1 format.

classico in fonts/urw

URW Classico, a clone of Hermann Zapf’s Optima.

cmll in fonts

Linear logic symbols for Computer Modern.

emerald in fonts

Support for Emerald City Fontwerks fonts.

enpassant in fonts/chess

Use free chess fonts from www.enpassant.dk.

foekfont in fonts

Fonts and LATEX macros to use the title font of the
Mads Foek magazine, http://madsfoek.dk.

fonetika in fonts

Fonts for the Danish phonetic system Dania, based
on URW Palladio and Iwona Condensed.

indic in fonts/ps-type1

Indic Type 1 fonts for TEX converted from public
METAFONT sources.

JustFontItTE in fonts/utilities

Windows program with the functionality of stan-
dard TEX utilities such as pltotf and vftovp. Can
create TFM files from PFB, TTF, OTF, and more.

linearA in fonts

LinearA script.

* otfinst in fonts/utilities

Installs OpenType fonts for use in (LA)TEX systems.

sarabian in fonts/archaic

Type 1 fonts for the South Arabian script in use
from roughly 1000 to 600 BC.

starfont in fonts/ps-type1

Support for the StarFont Sans astrological font.

* tex-gyre in fonts

Extensions of the well-known URW and other free
fonts, much as Latin Modern is an extension of
Computer Modern.

thaifonts-scalable in fonts/thai

A collection of Thai scalable fonts.

winfonts in fonts

Support for the Windows core fonts.

xq in fonts

Fonts and macros for xiangqi (Chinese chess).

graphics

AddTeX2Eps in graphics

Use LATEX syntax on EPS figures from Mathemat-
ica.

blockdraw mp in graphics/metapost/contrib/macros

Block diagrams and bond graphs.

cmarrows in graphics/metapost/contrib/macros

MetaPost arrows and braces in CM style.

gapfill in graphics

Generate LATEX picture environments by parsing
PostScript files.

gastex in graphics

LATEX macros to draw automata, networks, etc., in
the LATEX picture environment.

graphics/gastex

16 TUGboat, Volume 28 (2007), No. 1

m3D in graphics/metapost/contrib/macros

Three-dimensional drawing with METAPOST.

MPStoEPS in graphics/metapost/contrib/misc

METAPOST to EPS converter.

pedigree-perl in graphics/pstricks/contrib

Generate pedigrees in TEX from CSV files.

prerex in graphics

Produce charts of course nodes linked by arrows
representing pre- and co-requisites.

pst-asr in graphics/pstricks/contrib

Autosegmental representations, used by linguists.

pst-code in graphics/pstricks/doc/code

Original code documentation of PSTricks from Tim-
othy Van Zandt.

pst-coil in graphics/pstricks/contrib

Coils and zigzags as lines or node connections.

pst-dbicons in graphics/pstricks/contrib

Typesetting ER diagrams in declarative style, using
standard database terminology.

pst-eps in graphics/pstricks/contrib

Exporting pspicture environments.

pst-fill in graphics/pstricks/contrib

Filling and tiling of areas and characters.

pst-grad in graphics/pstricks/contrib

Colored gradients.

pst-ob3d in graphics/pstricks/contrib

Support for basic 3-dimensional objects.

pst-pdgr in graphics/pstricks/contrib/pedigree

Draw medical pedigrees with PSTricks and LATEX.

pst-spectra in graphics/pstricks/contrib

Draw continuum, emission and absorption spectra.

* pst-text in graphics/pstricks/contrib

Typeset text on a path.

splines in graphics/metapost/contrib/macros

MetaPost/METAFONT macros for drawing graphs
of cubic splines.

* textpath in graphics/metapost/contrib/macros

Typeset text along a path with the help of LATEX,
so kerns are preserved and 8-bit input is supported.

uml in graphics/pstricks/contrib

Writing UML diagrams in LATEX.

info

* Free Math Font Survey in info

A survey of the free math fonts available for use
with (LA)TEX. Vietnamese translation in the vn sub-
directory.

MemoirChapStyles in info

Memoir chapter style showcase.

MFwL in info

Making Friends with LATEX, a LATEX introduction.

l2picfaq in info/l2picfaq/german

Questions about LATEX and pictures, and answers
in the form of sample code.

* visualFAQ in info

A visual interface to the UK TEX FAQ.

language

* arabi in language/arabic

Arabic and Farsi support in standard LATEX via Ba-
bel, using several input encodings, including UTF-8.
Includes good-quality free fonts.

bghyph in language/hyphenation

Bulgarian hyphenation patterns.

glhyph in language/hyphenation

Galician hyphenation patterns.

hrlatex in language/croatian

Typical setup for Croatian users.

mkbangtex in language/bengali

Preprocessor for BangTEX.

magyar in language/hungarian/babel

Much improved Hungarian definitions for Babel.

mexican in language

Modifications to Spanish for Mexican typography.

mkpattern in language/hyphenation/utils

TEX program for generating hyphenation patterns.

staves in language

Fonts and macros for the “magical” Icelandic staves
as well as the runic letters used in Iceland.

thailatex in language/thai

Babel-based Thai support with fonts.

macros/generic

dirtree in macros/generic/

Display directory trees.

macros/latex/contrib

abc in macros/latex/contrib

Support ABC Plus (abcplus.sourceforge.net) mu-
sic notation in LATEX.

active-conf in macros/latex/contrib/conferences

Class for typesetting papers at the ACTIVE confer-
ence on noise and vibration control.

akktex in macros/latex/contrib

Collection of new document classes and packages,
easing creation of math documents in particular.

arabicfront in macros/latex/contrib/bezos

Number pages in Arabic numerals starting with the
front matter.

authoraftertitle in macros/latex/contrib

Make title, author and date available after \maketitle.

auto-pst-pdf in macros/latex/contrib

Wrapper for pst-pdf with some psfrag features.

boxhandler in macros/latex/contrib

Managing boxed objects such as tables and figures,
with caption customization.

bussproofs in macros/latex/contrib

Construction of proof trees in the style of the se-
quent calculus and other systems.

graphics/metapost/contrib/macros/m3D

TUGboat, Volume 28 (2007), No. 1 17

* cellspace in macros/latex/contrib

Minimal spacing of table cells to avoid touching
\hline s.

centernot in macros/latex/contrib/oberdiek

Horizontally center a \not symbol on its argument.

chessboard in macros/latex/contrib

Typeset chessboards.

classicthesis in macros/latex/contrib

Thesis style in homage to The Elements of Typo-

graphic Style.

cool in macros/latex/contrib

COntent Oriented LATEX, retaining mathematical
meaning in addition to the typesetting instructions.

coollist in macros/latex/contrib

Manipulation of lists.

coolstr in macros/latex/contrib

Manipulation of strings (sequences of characters,
not tokens).

cooltooltips in macros/latex/contrib

Associate a pop-up window and tooltip with a PDF

hyperlink.

coverpage in macros/latex/contrib

Supplement scientific papers with a cover page.

dateiliste in macros/latex/contrib

Typeset the file list (like \listfiles), and more.

digiconfigs in macros/latex/contrib

Small package for easily writing ‘configurations’,
i.e., special ◦ + • matrices.

disser in macros/latex/contrib

Document class and templates for dissertations in
Russian.

draftwatermark in macros/latex/contrib

Typeset a light gray watermark of user-defined text
on the first page or every page of a document.

duerer-latex in macros/latex/contrib

LATEX support for the duerer fonts.

dvdcoll in macros/latex/contrib

Typeset DVD (or similar) collection overviews.

dyntree in macros/latex/contrib

Typeset Dynkin Tree Diagrams from group theory.

eskdx in macros/latex/contrib

Implement Russian standards for designers.

everypage in macros/latex/contrib

Provides hooks to be run on each page of a docu-
ment.

exceltex in macros/latex/contrib

Access Excel files from LATEX.

extpfeil in macros/latex/contrib

Extensible arrows and commands to create new ones.

faktor in macros/latex/contrib

Typeset quotient structures.

flippdf in macros/latex/contrib

Produce a “mirrored” version of the document, for
typesetting on transparent film.

forloop in macros/latex/contrib

Provides the command \forloop.

gmdoc in macros/latex/contrib

Documenting packages with minimal markup and
hyperlinks. Needs the other new packages gmiflink,
gmverb, and gmutils from the same author.

gnuplottex in macros/latex/contrib

Generate and include Gnuplot (http://gnuplot.
info) graphs in LATEX.

gu in macros/latex/contrib

Typeset crystallographic group-subgroup-schemes in
Bärnighausen formalism.

hyperxmp in macros/latex/contrib

Embed XMP metadata within a LATEX document.

icsv in macros/latex/contrib/conferences

Class for typesetting papers at the ICSV conference.

isodoc in macros/latex/contrib

Producing customizable letters, invoices, etc.

labelcas in macros/latex/contrib

Tests and branches depending on label existence.

lewis in macros/latex/contrib

Rudimentary support for drawing Lewis Structures.

lingtrees in macros/latex/contrib

Linguistic tree macros and preprocessor.

lsc in macros/latex/contrib

Typesetting Live Sequence Charts, similar to msc.

marginnote in macros/latex/contrib

Marginal notes where \marginpar fails.

minipage-marginpar in macros/latex/contrib

Allow \marginpar commands outside minipages; an
alternative approach to marginnote.

moderncv in macros/latex/contrib

Typesetting modern curriculum vitae, in classic and
casual styles.

nih in macros/latex/contrib

Class for grant applications to the US government
National Institutes of Health.

noitcrul in macros/latex/contrib

Underlining with italic correction (in math).

opteng in macros/latex/contrib

Manuscript template for SPIE Optical Engineering

and OE Letters, including page length estimates.

pandora-latex in macros/latex/contrib

LATEX support for the pandora fonts.

papercdcase in macros/latex/contrib

Origami-style folding paper CD cases.

pauldoc in macros/latex/contrib

Helpers for German-language LATEX package docu-
mentation.

pax in macros/latex/contrib

Avoid pdfTEX’s stripping of PDF annotations in in-
cluded PDF files, via an external Java program.

pinlabel in macros/latex/contrib

Attach formatted TEX labels to new or existing fig-
ures and diagrams.

* pracjourn in macros/latex/contrib

Document class for The PracTEX Journal,
http://tug.org/pracjourn.

macros/latex/contrib/* pracjourn

18 TUGboat, Volume 28 (2007), No. 1

punk-latex in macros/latex/contrib

LATEX support for the punk fonts.

qtree in macros/latex/contrib

Typeset tree diagrams, especially for linguistics.

randbild in macros/latex/contrib

Put small plots of curves in the margin.

* randtext in macros/latex/contrib

Typeset obfuscated text to foil spam email address
harvesters. Supersedes switcheml.

ratex in macros/latex/contrib

Producing German legal documents, e.g., lawsuits.

recipecard in macros/latex/contrib

Typesets recipes into note card sized boxes.

robustcommand in macros/latex/contrib

Variant of \DeclareRobustCommand which checks if
the command has already been defined.

screenplay in macros/latex/contrib

Screenplay formatting as recommended by the Acad-
emy of Motion Picture Arts and Sciences.

seqsplit in macros/latex/contrib

Splitting long sequences of letters without spaces,
such as DNA, RNA, proteins, etc.

showexpl in macros/latex/contrib

Show LATEX code and typeset result from one source.

sikumna in macros/latex/contrib/lyx

Extended LyX layout style for use in Sikumna,
http://www.sikumuna.co.il.

simplewick in macros/latex/contrib

Drawing Wick contractions above and below ex-
pressions in math mode.

spotcolor in macros/latex/contrib

Include spot colors in pdfLATEX output.

stackel in macros/latex/contrib/oberdiek

Adds optional argument to \stackrel for including
something below the relation, and defines \stackbin
for binary symbols.

stellenbosch in macros/latex/contrib

Typesetting dissertations, theses and reports of the
University of Stellenbosch, South Africa.

* sudokubundle in macros/latex/contrib

Typesetting, solving, and creating Sudoku puzzles;
over 50 puzzles are included.

sugconf in macros/latex/contrib/conferences

Document class for SAS user group proceedings.

susy in macros/latex/contrib

Support for supersymmetry-related documents.

svn-multi in macros/latex/contrib

Typesetting Subversion keywords, including docu-
ments with multiple source files.

syntrace in macros/latex/contrib

Support for tracing trees created with the synttree
package.

tabto in macros/latex/contrib

Tabbing to fixed positions in a paragraph.

technica in macros/latex/contrib

A suite of packages for typesetting literary texts.

telprint in macros/latex/contrib/oberdiek

Formatting German telephone numbers.

tengwarscript in macros/latex/contrib

Mid-level access to the tengwar fonts with good
default output.

thesis-titlepage-fhAC in macros/latex/contrib

Title page for Fachschule Aachen theses.

thuthesis in macros/latex/contrib

Thesis template for Tsinghua University.

titlepage-uni-dortmund in macros/latex/contrib

Title page layout for the University of Dortmund.

toptesi in macros/latex/contrib

Bundle for thesis typesetting in Italy, supporting
any language.

wordlike in macros/latex/contrib

Simulates standard word processor layout and fonts.

xifthen in macros/latex/contrib

Extended if–then features.

xyling in macros/latex/contrib

Draw syntactic trees and other linguistic constructs,
based on XY-pic.

xytree in macros/latex/contrib

Tree drawing package using XY-pic.

macros/latex/exptl

* biblatex in macros/latex/exptl

Reimplementation of the bibliographic facilities pro-
vided by LATEX in conjunction with BibTEX: BibTEX
is used only for sorting and producing labels, and
bibliography formatting is controlled entirely by TEX
macros, not BibTEX style files. Still experimental.

xbase in macros/latex/exptl

Provides LATEX3 packages xparse and template.

macros/omega

fontch in macros/omega/latex/contrib

Typeset Malayalam using Omega.

macros/xetex

euenc in macros/xelatex/latex

Unicode font encoding definitions for X ETEX.

grchyph in macros/xetex/hyphenation

Unicode hyphenation patterns for ancient Greek.

ifxetex in macros/xetex/latex

Provides the \ifxetex conditional.

sanhyph in macros/xetex/hyphenation

Unicode hyphenation patterns for Prakrit and San-
skrit in Devanagari, Bengali, Kannada, Malayalam
and Telugu scripts.

xetex-greek in macros/xetex/hyphenation

Standard Greek hyphenation patterns adapted for
X ETEX.

* xlxtra in macros/xetex/latex

Additional LATEX features for X ETEX.

macros/latex/contrib/punk-latex

TUGboat, Volume 28 (2007), No. 1 19

support

cms4talks in support

A Java-based content management system for talks
written in LATEX.

dinbrief-gui in support

Graphical interface for the dinbrief TEX package.

* escapeTeXt in support

Modular Python program to massage plain text so
it can likely pass through LATEX.

gentabtex in support

Table rendering engine written in Python.

orderer in support

Reorder references in a LATEX document by order
of citation.

pkfix in support

Replaces resolution-dependent bitmapped fonts in
a dvips-produced PostScript file with the corre-
sponding resolution-independent vector fonts.

rfil in support

The Ruby font installer library (RFIL) attempts to
manage installation of TEX fonts.

word-to-latex in support

Windows program to convert Microsoft Word doc-
uments to LATEX or XML.

systems

visualtex in systems/win32

Visual TEX text editor.

We end this installment of Treasure Chest with the covers from the newly released TEX Collection 2007,
now being mailed to user group members. See http://tug.org/texcollection for more information.

TEX Collection
proTEXt

TEX for MS Windows
based on MiKTEX

MacTEX
TEX for Mac OS X
based on gwTEX

CTAN
Comprehensive TEX

Archive Network

TEX Live
TEX for GNU/Linux, Unix,

Mac OS X, and MS Windows

Editors: Thomas Feuerstack (proTEXt) • Herbert Schulz (MacTEX)
Manfred Lotz (CTAN) • Karl Berry (TEX Live)

DVD
February 2007

DANTE e.V.
Postfach 10 18 40
69008 Heidelberg
dante@dante.de
www.dante.de

www.tug.org

TEX Live 2007

TEX for GNU/Linux, Mac OS X, and MS Windows

Editor: Karl Berry • http://www.tug.org/texlive

CD
February 2007

DANTE e.V.
Postfach 10 18 40
69008 Heidelberg
dante@dante.de
www.dante.de

www.tug.org

proTEXt

TEX for MS Windows based on MiKTEX with
TEXnicCenter and Ghostscript/GSView

Editor: Thomas Feuerstack, FernUniversität in Hagen
http://www.tug.org/protext

CD
February 2007

DANTE e.V.
Postfach 10 18 40
69008 Heidelberg
dante@dante.de
www.dante.de

www.tug.org

20 TUGboat, Volume 28 (2007), No. 1

LATEX

paperTEX: Creating newspapers using
LATEX2ε

Ignacio Llopis Tortosa and
Maŕıa José Castro Bleda

Abstract

The first author has been working in an Internet
newspaper office for a year. He was asked to create
a special printable edition of an on-line newspaper.
The idea was to get an easy-to-print newspaper con-
taining the main daily news. The solution involved
two things: a new LATEX class, that we called paper-
TEX, and a Perl-based system that gets all the in-
formation from the database and composes a new
LATEX document.

1 Overall

The final system consists of a Perl script which con-
trols the entire process, from the data collection
through the document compilation using PDFLATEX.
There is also a web wizard that lets the user set up
the news and the information that he or she would
like to show at the newspaper. The configuration
file stores the SQL queries which take the informa-
tion from the database, thus it can be kept for a
long time.

Together with this Perl script, there is a new
LATEX2ε class called paperTEX,1 specially created
for this purpose. This class provides many macros
to create a document in a newspaper style. It has a
front page and the inside part that contains all the
news we would like to include. Every piece of news
appears just below the one before. Headings use
the entire page width and the text can be split into
several columns. paperTEX also provides commands
for adding outstanding titles, images, timestamps,
etc.

Our last page includes an automatically gener-
ated Sudoku, a cultural agenda and a humor draw-
ing. Finally, the system is scheduled to run several
times a day creating the PDF version of the news-
paper so that users can easily download it. Neither
manual design help nor computer programming help
are needed. The system determines where images
can be placed, if there is enough place for a new
piece of text and so on.

1 Freely available from CTAN in http://www.ctan.org/

tex-archive/macros/latex/contrib/papertex

You can see a comparison between the newspa-
per web site and the output generated automatically
by the Perl script in Figure 1. The main news items
are the same as the ones in the web site and their
contents appear in the inner pages of the PDF news-
paper.

2 Why LATEX?

When creating newspapers it is well known you have
many high specific applications which do the work.
Most of these applications let you create a news-
paper and publish it in several ways at the same
time: print version, HTML version, etc. Protec has
three different publishing systems called Millenium,
Edicomp and Arcano.2 Unisys has a system called
Hermes.3 Of course there is also Adobe InDesign
and Quark Express but this system does something
different than designing layouts.

Why use LATEX? First of all, as LATEX users, we
wanted to use it for handling this big project. Se-
condly, LATEX is a tag based language which lets you
create documents without taking care of design —
quite the opposite of Quark Express and InDesign.
The idea was for the system to take care of the de-
sign, from simple text input. Thirdly, LATEX is a free
and open source application and a huge number of
packages have been written for it.

Once the system was proposed, we had to prove
that it was a good option and it could be used
for creating newspapers. We created several doc-
uments using the multicol package, and we added
images and capital letters using the lettrine and
graphics packages. We also designed documents
using the textpos package, placing items in any de-
sired spot. By this time, it was clear that LATEX
could do the job.

3 paperTEX: A new class for
creating newspapers

The first idea was to look for something similar. Has
anyone tried this before? We posted the question in
some forums and mailing lists with disappointing re-
sults. But someone told us about the newsltr class
and the TEX capability to handle newsletters. This
class was a good starting point but we had some
problems. The class was created for plain TEX and
that was a problem for including LATEX packages,
and other matters such as embedding Spanish char-
acters directly or correct hyphenation.

So we decided to develop a new LATEX class for
creating newspapers. This class provides commands

2 http://www.protecmedia.com/
3 http://www.unisys.com/

TUGboat, Volume 28 (2007), No. 1 21

Figure 1: The newspaper web site and the self-generated PDF using paperTEX and Perl.

to create a new paperTEX journal: from the front
page until the last.

To set up a new document, you have to load the
class as usual and use its own commands to define
the contents. paperTEX also includes many style
macros which the user can customize as desired: font
sizes and styles, colors, headings, etc.

3.1 The front page

The front page is quite individualized since it was
designed using the textpos package that has the ca-
pability to place things at absolute positions on the
page. We did this because the front page needed to
have a different style from the rest of the newspaper,
being the first thing a reader sees. It includes a main
image or photo, three news blocks, an index which
links to the inner news, the weather forecast for a lo-
cality and some information about the editor. It has
also a banner heading like every newspaper does.

Just after the \begin{document}, you can start
filling the front page inside its own environment.
The main image and each of the main news items
have their own commands which get all the informa-
tion: image path and caption, heading, subheading,
opening paragraph, section and time stamp. The
table of contents has its own environment and the
only thing we have to do is to add entries using the
\indexitem macro. This command requires two pa-
rameters: a short text and a reference to a piece of

news inside the newspaper which allows paperTEX
to calculate the exact page.

The weather forecast block has three different
positions to specify three different weather condi-
tions. Each weather item has an image, maximum
and minimum temperatures and a short description.
Finally, the editor block includes the usual contact
names, email, logo, etc.

As mentioned above, paperTEX includes a set
of macros that you can redefine to change default
format and layout. For example, redefining the front
page logo is as simple as this:

\renewcommand{\logo}{

\mylogo{\includegraphics[width=\textwidth]{img}}

}

The \mylogo command removes the paperTEX
default logo and changes heading elements’ positions
to make your new logo fit well. Other style aspects
are even easier to redefine. You can find all of them
in the paperTEX manual [1].

3.2 The news pages

Once you have introduced all the front page infor-
mation, the next thing to do is to include all the
news in your new paperTEX. News items are easy
to include and they can have different shapes: news,
editorial and short news. Each one of these types
has its own environment definition.

To include a normal news item you use the news
environment, which needs five parameters: number

22 TUGboat, Volume 28 (2007), No. 1

\begin{news}{3}

{...NEWS HEADING...}

{...News subheading...}

{SPORTS}

{1}

\authorandplace{Name Surname}{Place}

\image{img}{Image caption}

\noindent\timestamp{08:25}

Lorem ipsum dolor sit amet, ...

... platea dictumst.

\end{news}

Figure 2: Example of a compilation of news items.

of columns, heading, subheading, section name and
reference id. The main news text must appear inside
the environment and we can also use the following
commands within the text in order to add other use-
ful information:

• \authorandplace: inserts the name of the ed-
itor and where the news happened. To be used
at the beginning of the text.

• \timestamp: inserts the time and a separator
just before the text. It should be used at the
beginning of the text.

• \image: inserts an image within the text. Since
the multicol package does not support floating
elements, this macro inserts the image only if
there is enough space, otherwise you can get
images outside the page boundaries.

• \columntitle: inserts a single column title or
heading, using one of five different shapes via
the fancybox4 package: shadowbox, doublebox,
ovalbox, Ovalbox and lines.

• \expandedtitle: similar to \columntitle ex-
cept the text extends across the entire page,
above all the news columns.

Using all these commands a news source code
and its respective result would look like the example
in Figure 2.

Editorial news and short news require fewer pa-
rameters but are generally similar to the news envi-
ronment. The paperTEX manual [1] has more infor-
mation.

Once the news items are included, when com-
piling paperTEX will create the corresponding PDF

4 You can find more information in the fancybox package
manual available on CTAN.

bookmarks inside each section. In order to generate
a new group of items we can use the \newsection

command which takes the section name as a param-
eter. From this point, all news PDF bookmarks will
be grouped under this section name. Another use-
ful and simple command is \newsep, which draws a
thin line between two items as a separator.

4 The core system

When the paperTEX class was finished, we imple-
mented a new system to carry out the entire news-
paper creation process. We decided to use Perl as
programming language because we are familiar with
it, and because Perl has a lot of modules freely avail-
able on CPAN.5

Before coding, it was very important to select
which news items have to be included each time that
paperTEX is run. The idea was to define these items
using the SQL queries which get all the information
from the database; thus, paperTEX would not need
to be configured each time. The only time when it
is necessary to modify something is if the editor of
the newspaper wants to change the source of a piece
of news or add or remove particular content.

First of all, a configuration file was created for
the Perl script to get all SQL queries, execute them,
and extract the useful information from all fields. It
worked well enough, but was not very user-friendly.
Therefore we decided to create a web wizard which
gets all the information from the user. This appli-
cation also lets the users change any parameter or
SQL instruction. After this, we asked the editor of
the newspaper to give us the list of news he wanted

5 The Comprehensive Perl Archive Network (http://www.
cpan.org/).

TUGboat, Volume 28 (2007), No. 1 23

to appear in the paperTEX newspaper; then we ran
the web wizard and filled in all SQL queries and
database information. This config file has not been
changed in more than six months and is working
well.

The news items are stored in HTML format,
so we created a script to get all the items included
in the config file, convert them to LATEX, create a
new paperTEX document and, in the end, compile
it using PDFLATEX. We also decided to add a fi-
nal page including an events list, an automatically
generated Sudoku and a humour drawing. To de-
velop this script some Perl modules were used. For
example:

• HTML::Latex by Peter Thatcher, which con-
verts any HTML text to LATEX in every way
you like. This module was very important for
us because all the news items were stored in
HTML format just as they were published on
the website.

• Weather::Com by Thomas Schnuecker, which
retrieves the weather forecast included on the
paperTEX front page.

• Games::Sudoku::Component by Kenichi Ishi-
gaki, which creates and solves a new Sudoku
each time paperTEX is created. This module
was very useful (after few modifications) with
the sudoku LATEX package by Paul Abraham.

When executing the final script, we had some
problems composing the newspaper front page, be-
cause the database contained texts that could be
longer than the space available. To prevent text
overflow, a function to trim texts at certain posi-
tion (always after a period) was implemented. Some
tests in order to get the right threshold were made.
Although the perfect solution would have been to
have short texts, the system is working quite well
as it stands. Another problem was that, at first,
the editor of the newspaper office did not want to
hyphenate headings in the front page. So we tried
to avoid hyphenation, but we got very bad results
when there were long words which ran off the page.

Finally, we installed LATEX and the script on the
company server and use a cron-based application to
schedule execution three times a day. We also linked
the PDF output in the newspaper web site.

5 Conclusions

The goal of this project was to create a special print-
able edition of an on-line Spanish newspaper. The
solution involved a new LATEX class, that we called
paperTEX, and a Perl-based system that automat-
ically extracts, composes and creates a final PDF

file. This system works off-line and does not need
any human assistance in order to generate the pub-
lication several times a day. It is also worth empha-
sizing that this system is working today with the
same configuration as in August 2006. The final ap-
plication is running for a Spanish on-line newspaper
called Panorama-Actual.es and it creates a publi-
cation which name is papelDigital. You can freely ac-
cess them through http://www.panorama-actual.

es/pdigital/.
Finally, there is another system in Spain which

does something similar to the application described
in this document. It appeared at the beginning of
this project but, as far as we know, it does not use
LATEX at all. The publication is called 24 Horas6

and it is used by EL PAIS, one of the most widely-
circulated newspapers in Spain.

Acknowledgments

We would like to gratefully acknowledge the support
of Robert Fuster, from the Polytechnic University
of Valencia (Spain). Thanks for reading the various
drafts and making useful suggestions.

We would also especially like to thank the mem-
bers and regular participants on the Spanish TEX
user list es-tex list. They have contributed with
comments during the whole development process.
Finally, the first author would like to thank Mar
for always being there.

References

[1] Ignacio Llopis Tortosa. paperTEX class: Crea-
ting newspapers using LATEX. Technical Re-
port DSIC-II/03/07, Department Sistemas In-
formáticos y Computación, Polytechnic Univer-
sity of Valencia, 2006.

⋄ Ignacio Llopis Tortosa
Department Sistemas Informáticos

y Computación
Univ. Politécnica de Valencia
Camino de Vera s/n
46071 Valencia, Spain
lloptor (at) gmail dot com

⋄ Maŕıa José Castro Bleda
Department Sistemas Informáticos

y Computación
Univ. Politécnica de Valencia
Camino de Vera s/n
46071 Valencia, Spain
mcastro (at) dsic dot upv dot es

6 24 Horas is free to download through
http://www.elpais.com/24horas/

LATEX News
Issue 17, December 2005

Project licence news

The LATEX Project Public License has been updated
slightly so that it is now version 1.3c. In the warranty
section the phrase “unless required by applicable law”
has been reinstated, having got lost at some point. Also,
it now contains three clarifications: of the difference
between “maintained” and “author-maintained”; of the
term “Base Interpreter”; and when clause 6b and 6d
shall not apply.

Following requests, we now also provide the text of
the licence as a LATEX document (in the file lppl.tex).
This file can be processed either as a stand-alone
document or it can be included (without any
modification) into another LATEX document, e.g., as an
appendix, using \input or \include.

New guide on font encodings

Way back in 1995 work was started on a guide to
document the officially allocated LATEX font encoding
names. However, for one reason or another this guide
(named LATEX font encodings) was, until now, not added
to the distribution. It describes the major 7-bit and 8-bit
font encodings used in the LATEX world and explains the
restrictions required of conforming text font encodings.
It also lists all the ‘encoding specific commands’ (the
LICR or LATEX Internal Character Representation) for
characters supported by the encodings OT1 and T1.

When the file encguide.tex is processed by LATEX, it
will attempt to typeset an encoding table for each
encoding it describes. For this to be possible, LATEX
must be able to find .tfm files for a representative
example font for each encoding. If LATEX cannot find
such a file then a warning is issued and the
corresponding table is omitted.

Robust commands in math

The font changing commands in text-mode have been
robust commands for years, but the same has not been
true for the math versions such as \mathbf. While the
math-mode commands worked correctly in section
heads, they could cause problems in other places such
as index entries. With this release, these math-mode
commands are now robust in the same way as their
text-mode counterparts.

Updates of required packages

Several of the packages in the tools bundle have been
updated for this release.

The xspace package has some new features. One is an
interface for adding and removing the exceptions it
knows about and another is that it works with active
characters. These remove problems of incompatibility
with the babel system.

In LATEX News 16 we announced that some packages
might begin to take advantage of ε-TEX extensions on
systems where these are available: and the latest
version of xspace does just that. Note also that fixltx2e

will make use of the facilities in ε-TEX whenever these
are present (see below).

The calc package has also been given an update with
a few extra commands. The commands \maxof and
\minof, each with two brace-delimited arguments,
provide the usual numeric max and min operations.
The commands \settototalheight and
\totalheightof work like \settoheight and
\heightof. There are also some internal improvements
to make calc work with some more primitive TEX
constructs, such as \ifcase.

The varioref package has acquired a few more default
strings but there are still a number of languages for
which good strings are still missing.

The showkeys package has also been updated slightly
to work with more recent developments in varioref.
Also, it now provides an easy way to define the look
of the printed labels with the command
\showkeyslabelformat.

Work on LATEX fixes

The package known as fixltx2e has three new additions.
A new command \textsubscript has been added as a
complement to the command \textsuperscript in the
kernel. Secondly, a new form of \DeclareMathSizes
that allows all of its arguments to have a dimension
suffix. This means you can now use expressions such as
\DeclareMathSizes{9.5dd}{9.5dd}{7.4dd}{6.6dd}.

The third new addition is the robust command
\TextOrMath which takes two arguments and executes
one of them when typesetting in text or math mode
respectively. This command also takes advantage of
ε-TEX extensions if available; more specifically, when
the ε-TEX extensions are available, it does not destroy
kerning between previous letters and the text to be

LATEX News, and the LATEX software, are brought to you by the LATEX3 Project Team; Copyright 2005, all rights reserved.

24 TUGboat, Volume 28 (2007), No. 1

typeset. The command is also used internally in fixltx2e

to resolve a problem with \fnsymbol.
Also, further work has been done on reimplementing

the command \addpenalty, which is used internally in
several places: we hope it is an improvement!

The graphics bundle

The graphics bundle now supports the dvipdfmx

post-processor and Jonathan Kew’s XETEX program. By
support we mean that the graphics packages recognize
the new options xetex and dvipdfmx but we do not
distribute the respective driver files.

This leads elegantly to a description of the new
policy concerning such driver files in the graphics

bundle. Most driver files for our graphics packages are
maintained by the developers of the associated
post-processor or TEX programs. The teams developing
these packages are working very hard: their rapid
development offers a stark contrast to the current
schedule of LATEX releases. It is therefore no longer
practical for the LATEX Team to be responsible for
distributing the latest versions of these driver files.

Therefore the installation files for graphics have been
split: there is now graphics.ins to install the package
files and graphics-drivers.ins for the driver files
(located in drivers.dtx). There is no need to install all
those provided in the file drivers.dtx.

Please also note that, as requested by the maintainers
of PStricks, we have removed the package pstcol as
current versions of PSTricks make it obsolete.

Future development

The title of this section is a little misleading as it
actually describes current development. In 1998 the
expl3 bundle of packages was put on CTAN to
demonstrate a possible LATEX3 programming
environment. These packages have been lying dormant
for some time while the LATEX Project Team were
preoccupied by other things such as developing the
experimental packages xor, template, etc., (and also
writing that indispensable and encyclopaedic volume,
The LATEX Companion – 2nd edition).

In October 2004 work on this code base was resumed
with the goal of some day turning it into a kernel for
LATEX3. This work can now also make full use of the
widely accepted ε-TEX extensions. Currently two areas
are central to this work.

• Extending the kernel code of LATEX3.

• Converting the experimental packages such as xor,
template to use the new syntax internally.

Beware! Development of expl3 is happening so fast
that the descriptions above might be out of date when
you read this! If you wish to see what’s going on then
go to http://www.latex-project.org/code.html

where you can download fully working code (we
hope!).

TUGboat, Volume 28 (2007), No. 1 25

Practical TEX 2006
LATEX workshop: July 25–28, 2006 Conference: July 30–August 1, 2006

Rutgers, the State University of New Jersey (Busch Campus)
Piscataway, New Jersey, USA

Sponsors

TEX Users Group Rutgers DANTE e.V.

Carleton Production Centre Design Science O’Reilly Media, Inc.
PCTEX, Inc. River Valley Technologies

Thanks also to all the speakers, teachers, and participants, without whom there would be
no conference. Special thanks to Barbara Mastrian and Steve Peter for all their help with
local coordination, and Gerree Pecht, for providing additional local information. Also
to Wendy McKay for organizing the Mac OSX gatherings and Duane Bibby for the (as
always) excellent drawing.

Conference committee

Barbara Mastrian Cheryl Ponchin Karl Berry Robin Laakso Steve Peter Sue DeMeritt

Workshop participants

Abbes Bahri, Rutgers
Yael Goldberg, Rutgers
Alice Leonhardt, Rutgers
Barbara Mastrian, Rutgers
Jaime Moore, Decision &Sensor Analytics
Gerree Pecht, Princeton University
Christina Polans, IEEE

Ira Polans, IEEE

Sam Roze, Princeton University
Chirag Shah, IEEE

Caroline Sheedy, Carnegie-Mellon University
David Starbuck, IEEE

Leszita Townsend, Rutgers
Michele Turansick, Institute of Advanced Study

Conference participants

William Adams, Mechanicsburg, PA

Leila Akhmadeeva, Bashkir Medical Univ., Russia
Bob Alps, Towers Perrin, Chicago, IL

Tim Arnold, SAS

Kaveh Bazargan, Focal Image Ltd
Barbara Beeton, American Mathematical Society
Karl Berry, TEX Users Group
Jon Breitenbucher, College of Wooster
Elizabeth Dearborn, Buffalo, NY

Sue DeMeritt, Center for Communications
Research, La Jolla, CA

Ron Fehd, Centers for Disease Control and
Prevention

Frances Felluca, INFORMS

Peter Flom, National Development and Research
Institutes

Peter Flynn, Silmaril Consultants
Federico Garcia, University of Pittsburgh
Steve Grathwohl, Duke University Press
Barbara Hamilton, Center for Communications

Research, Princeton, NJ

Jim Hefferon, St. Michael’s College
Troy Henderson, US Military Academy
Klaus Höppner, DANTE e.V.
Ned Hummel, University of Nebraska
Mirko Janc, INFORMS

Jonathan Kew, SIL International

Richard Koch, University of Oregon
Martha Kummerer, University of Notre Dame
Robin Laakso, TEX Users Group
Jenny Levine, Duke University Press
Wendy McKay, Caltech
Andrew Mertz, Eastern Illinois University
Stephen Moye, American Mathematical Society
Bob Neveln, Widener University
Don Pellegrino, DuPont
Steve Peter, Beech Stave Press
Christina Polans, IEEE

Ira Polans, IEEE

Cheryl Ponchin, Center for Communications
Research, Princeton, NJ

John Rorem, Duke University Press
Sam Roze, Princeton University
Herbert Schulz, Naperville, Illinois
Heidi Sestrich, Carnegie-Mellon University
Chirag Shah, IEEE

William Slough, Eastern Illinois University
David Starbuck, IEEE

David Tellet, Alexandria, VA

Larry Thomas, Saint Peter’s College
Boris Veytsman, George Mason University &

AES ITT Industries
David Walden, E. Sandwich, MA

Alan Wetmore, US Army

TUGboat, Volume 28 (2007), No. 1 27

A general report on Practical TEX 2006 appeared in The PracTEX Journal, issue 2006-3:
http://tug.org/pracjourn/2006-3/practex06/

Here we include a few photos from the conference. More photos appear in the report and at
http://tug.org/practicaltex2006/photos/

Seated: William Slough, Martha Kummerer, Barbara Hamilton, Cheryl Ponchin, Kaveh Bazargan (sprawled),
Wendy McKay, Frances Fellucca, John Rorem.

Middle row: Leila Akhmadeeva, Boris Veytsman, Jenny Levine, Heidi Sestrich, Alan Wetmore, Sue DeMeritt,
Steve Peter, Jonathan Kew, Peter Flom, Larry Thomas, David Walden, Jim Hefferon, Stephen Moye.

Back row: Bob Neveln, Elizabeth Dearborn, Barbara Beeton, Dick Koch, Andrew Mertz, Herb Schultz, Ron Fehd,
Ned Hummel, Jon Breitenbucher, Karl Berry, Klaus Höppner, Steve Grathwohl, Don Pellegrino, Peter Flynn,
Mirko Janc.

Barbara Mastrian, local coordinator
extraordinare.

Boris Veytsman, Kaveh Bazargan, Leila Akhmadeeva,
Robin Laakso, and Karl Berry.

Pigeons at the top of the Empire State Building.

Practical TEX 2006 —schedule

Tuesday
July 25–
Friday
July 28

9 am–5 pm LATEX workshop

led by Sue DeMeritt & Cheryl Ponchin

8–9 am registration (on Tuesday, at Rutgers)
10:15–10:30 am break

12–1 pm lunch

3–3:15 pm break

Saturday
July 29

5–7 pm registration& reception (at the Clarion hotel, Windsor Ballroom)

Sunday
July 30

8–9 am registration (at Rutgers)

9 am Karl Berry, TEX Users Group Welcome& introductions

9:20 am Barbara Beeton, AMS & TUG keynote address: How to create a TEX journal:

A personal journey
10:20 am break

10:30 am Peter Flom, NDRI LATEX for social scientists and other people who think

they don’t need it

11:10 am Jim Hefferon, St. Michael’s College LATEX resources

11:50 am Boris Veytsman, George Mason
Univ. & AES ITT Industries

Design of presentations: Notes on principles and TEX

implementation

12:30 pm lunch

1:40 pm Alan Wetmore, US Army TEX and after dinner speaking

2:20 pm Steve Peter, Beech Stave Press Fonts, typefaces, glyphs & sorts

3 pm break

3:10 pm Klaus Höppner, DANTE e.V. & TUG Creation of a PostScript Type 1 logo font with MetaType1

3:50 pm William Adams, Mechanicsburg, PA TypeSpec v2: Typesetting font specimens

4:30 pm q& a, Birds of a Feather

Monday
July 31

9 am Ned Hummel, University of Nebraska Common macro pitfalls and how to avoid them

9:40 am Jonathan Kew, SIL X
E

TEX font installation and usage

10:20 am break
10:30 am Federico Garcia, Univ. of Pittsburgh Capabilities of PDF interactivity

11:10 am Boris Veytsman, GMU & AES ITT Automatic report generation with Web, TEX and SQL

11:50 am Kaveh Bazargan, River Valley
Technologies

Removing vertical stretch: Mimicking traditional

typesetting with TEX

12:30 pm lunch

1:40 pm David Walden, E. Sandwich, MA A lifetime as an amateur compositor

2:20 pm Troy Henderson, US Military Academy Creating high-quality technical graphics with MetaPost

3 pm break

3:10 pm Andrew Mertz &William Slough,
Eastern Illinois University

Graphics with PGF and TikZ

3:50 pm Jon Breitenbucher, College of Wooster LATEX at a liberal arts college

4:30 pm q& a, TUG meeting

Tuesday
August 1

9 am Peter Flynn, Silmaril Consultants Rolling your own document class

9:40 am Federico Garcia, Univ. of Pittsburgh LATEX and the different bibliography styles

10:20 am break

10:30 am Boris Veytsman, GMU & AES ITT Drawing medical pedigree trees with TEX and PStricks

11:10 am Elizabeth Dearborn, Buffalo, NY TEX and medicine

11:50 am Bob Neveln & Bob Alps, Widener Univ. Writing and checking complete proofs in TEX

12:30 pm lunch

1:40 pm Stephen Moye, AMS A wayward wayfarer’s way to TEX

2:20 pm Steve Peter, Beech Stave Press Introduction to memoir

3 pm break
3:10 pm panel: Barbara Beeton, Peter Flynn,

Mirko Janc, Jonathan Kew
moderator: David Walden

≈ 4 pm end

7 pm banquet (at the Clarion hotel, Garden Room)

How to Create a TEX Journal: A Personal Journey

Barbara Beeton
American Mathematical Society
201 Charles Street
Providence, RI 02904 USA
bnb (at) ams dot org

Abstract

When TUG was first formed, the Internet wasn’t generally available; the logical
channel for communication with and among TUG’s members was on paper. So
TUGboat came into being.

As TEX has matured, the needs of the community have evolved, but paper
is still a logical medium for showcasing a typesetting tool.

This talk will introduce high- and low-lights in the history of TUGboat,
some reasons for choosing its particular format and mode of presentation, several
experiments, and lots of my personal experiences as editor.

Editor: A person employed on a newspaper
whose business it is to separate the wheat
from the chaff, and to see that the chaff is
printed.

Elbert Hubbard

Although this epithet was directed at newspaper edi-
tors, we’ve all read material in print that would have
been better off left unpublished. As long-time ed-
itor of TUGboat, I’m sure I’ve let some chaff slip
through, however much I’ve tried to keep the wheat
content high.

I’ve mostly enjoyed my tenure as editor. How-
ever, without the help of a lot of people along the
way, we never would have had such a long and in-
teresting voyage. I’ll try to give credit where credit
is due along the way.

Let’s start at the beginning, and proceed from
the outside in.

How I got involved in this madness

TUG came into existence in February 1980 at a meet-
ing held at Stanford University. About 50 people at-
tended. One of the decisions taken at that meeting
was to “organize a newsletter”. From the minutes
of the first steering committee meeting:1

Robert Welland agreed to edit the newsletter.
The first newsletter will have a report of the
meeting and will be distributed free by the
AMS upon inquiry about TEX. Subsequent
newsletters will be by subscription only.

Bob Welland, a math professor at Northeastern Uni-
versity, had no production facilities—but the AMS

1 TUGboat, 1:1 (1980), p. 15.

did, and the AMS had just undertaken projects to
use TEX to prepare its administrative publications
and to develop an input system (AMS-TEX) that
would allow mathematicians (or their secretaries) to
prepare manuscripts that could be used directly in
the composition of AMS journals. This meant that
someone was needed in-house at AMS to prepare files
and shepherd the production. I was volunteered.

Figure 1: The very first issue — the cover

TUGboat, Volume 28 (2007), No. 1 —Proceedings of the Practical TEX 2006 Conference 29

Barbara Beeton

Figure 2: The very first issue — the back cover

Figure 3: The very first issue — the title page

Figure 4: TUGboat 4:1 — the back cover

Figure 5: TUGboat 4:1 — the cover

30 TUGboat, Volume 28 (2007), No. 1 —Proceedings of the Practical TEX 2006 Conference

How to Create a TEX Journal: A Personal Journey

The perpetrator of this assignment was Sam
Whidden, head of the AMS Information Systems De-
velopment department, and the founding treasurer
of TEX Users Group. He was also my boss. I didn’t
have a chance.

Sam was also responsible for the name TUG-

boat — the vessel that would convey the organiza-
tion, TUG, through twisty little passages.

The covers and title page

The first issue of TUGboat appeared in October
1980. Bob Welland found an old press that was al-
legedly a reproduction of the one used by Gutenberg.
He made a pen-and-ink drawing that has graced the
cover ever since, going through various adaptations:

• For the first issue, a photograph was made of
the background, and an overlay was prepared
on clear film using rub-on type for the text
(Fig. 1). The contents list was placed on cover 4
(Fig. 2), a practice that has continued with only
one exception.

• The title page used the same pasted-up “TUG-

boat”, but everything else was set with TEX,
including an epigraph (Fig. 3), a practice mod-
eled on use of quotes in The TEXbook. Finding
suitable quotes has provided me considerable
amusement, as well as occasional panic attacks
when a deadline was approaching, and noth-
ing had turned up. (I cheerfully accept sugges-
tions for quotes, and must thank Don Knuth in
particular for his many contributions.) I be-
lieve I’ve received more comments about the
epigraphs than about almost anything else; I’m
not sure what this is supposed to imply, but it
does show that people at least open the cover
and look at the title page.

• In the summer of 1982, I attended a workshop
at RISD (the Rhode Island School of Design)
on the topic “Design with type”. For one of
my projects, I decided to redesign the table of
contents— I really don’t like the dotty effect.
I had two goals (in addition to improving the
appearance): to strengthen the association be-
tween page number and what appears on the
page, and to subdivide the contents into logical
subject areas. The new cover 4 design debuted
with the first issue of 1983 (Fig. 4). This issue
was also the first to have all the cover text (ex-
cept for the name TUGboat) prepared in TEX
(Fig. 5), with a “pseudo-spine” — rotated text
identifying the issue running from top to bot-
tom near the stapled edge. (Later, when issues
were large enough to have a real spine, this text
was moved there.)

• Bob Welland “retired” from the editor’s post as
of the end of the 1983 academic year, and, with
no obvious candidates clamoring to take over,
I became editor with issue 4:2. (I had been
doing most of the production work, after all.) I
celebrated this occasion by omitting the name
of the publication from the title page (Fig. 6).
Sigh.

Figure 6: TUGboat 4:2 — the title page

• By 1984, sentiment had been expressed that
TUGboat should be a representative example
of high quality TEX composition. Dave Keller-
man and Barry Smith volunteered to guest-edit
and produce an issue demonstrating this capa-
bility. They commissioned a designer and a
special cover drawing for this issue, which ap-
peared as the first issue of 1986 (Fig. 7). Along
with the change in format, the subtitle was up-
graded from “The TEX Users Group Newslet-
ter” to “The Communications of the TEX Users
Group”. The content of the issue was set to a
grid, which may be apparent in the layout of
the title page (Fig. 8). To avoid the appearance
of clutter, the contents list was omitted from
cover 4. (Although I understand and sympa-
thize with the goal, I’ve found the lack of a
T-of-C inconvenient, and have taped one to the

TUGboat, Volume 28 (2007), No. 1 —Proceedings of the Practical TEX 2006 Conference 31

Barbara Beeton

Figure 7: TUGboat 7:1 — the cover of the guest-edited
issue

Figure 8: TUGboat 7:1 — the title page

Figure 9: TUGboat 9:1 — a new look for the cover

Figure 10: TUGboat 15:3 — and a new look for pro-
ceedings issues

32 TUGboat, Volume 28 (2007), No. 1 —Proceedings of the Practical TEX 2006 Conference

How to Create a TEX Journal: A Personal Journey

Figure 11: TUGboat 15:3 — a proceedings issue title
page

issue for ease of reference.) More about the con-
tent of this issue later.

• The covers and contents reverted to the pre-
vious layout with the next issue, and nothing
much changed until the first issue of 1988, when
Alan Wittbecker, an employee at the newly-
relocated TUG office, hired to assist with TUG-

boat production (among other things), refor-
matted the front cover (Fig. 9), reducing the
size of the press drawing and boxing all the
other cover elements. Note, however, that the
cover drawing and the TUGboat name were still
pasted up manually for each issue.

• With the first issue of 1989, TUGboat perma-
nently got a real spine! No more guessing which
one to pull out from a growing run of anony-
mous grayish covers.

• It gradually became a tradition for annual meet-
ings to have a drawing representing the meet-
ing location. Beginning with the proceedings
of the 1994 meeting in Santa Barbara, Cali-
fornia, this drawing replaced the press on the
cover (Fig. 10). The title page of a proceedings
issue is also modified (Fig. 11), substituting the
location of the meeting for the epigraph, and

Figure 12: TUGboat 1:1, an item reproduced directly
from author copy

identifying the proceedings editors who are re-
sponsible for the production while I get to rest.
This practice continues to the present day.

General format and layout

TUGboat is formatted for US letter-size paper, 8.5×
11′′, although it is sometimes trimmed a bit smaller.
(The guest-edited issue and several that followed
were 8 × 10.5′′.) This was established at the first
issue.

There were several reasons for this decision.
First, in the US, authors are used to preparing man-
uscripts on the paper that is easiest to obtain, and
that’s letter size. We were hoping to encourage au-
thors to prepare submissions that would be ready
to use, and indeed, the first issue contains some
items reproduced directly from author-submitted
copy (Fig. 12).

The capacity of the press was also a consider-
ation, as was the size of shelves and files. A final
product formatted to letter size is readily accommo-
dated by the presses in the AMS print shop; printing
is actually done on larger sheets that are then folded
and gathered. Anything smaller must be trimmed,
which can result in considerable waste.

The material that we expected to publish ini-
tially included reports on TEX development, news

TUGboat, Volume 28 (2007), No. 1 —Proceedings of the Practical TEX 2006 Conference 33

Barbara Beeton

Figure 13: TUGboat 5:2, a single-column page

Figure 14: TUGboat 11:4, a doc style page

Figure 15: TUGboat 5:2, full-width code in the style
of The METAFONTbook

TUGboat, Volume 16 (1995), No. 2 134

E The ISO-Latin1 Entity Set

To have an idea of how character entity sets are defined in practice, below is shown the file corresponding
to Latin1 (standard ISO/IEC 8859-1), available as SGML public entity set ISOlat1 with ISO 8879.
1 <!-- (C) International Organization for Standardization 1986
2 Permission to copy in any form is granted for use with
3 conforming SGML systems and applications as defined in
4 ISO 8879, provided this notice is included in all copies.
5 -->
6 <!-- Character entity set. Typical invocation:
7 <!ENTITY % ISOlat1 PUBLIC
8 "ISO 8879-1986//ENTITIES Added Latin 1//EN">
9 %ISOlat1;
10 -->
11 <!ENTITY aacute SDATA "[aacute]"--=small a, acute accent-->
12 <!ENTITY Aacute SDATA "[Aacute]"--=capital A, acute accent-->
13 <!ENTITY acirc SDATA "[acirc]"--=small a, circumflex accent-->
14 <!ENTITY Acirc SDATA "[Acirc]"--=capital A, circumflex accent-->
15 <!ENTITY agrave SDATA "[agrave]"--=small a, grave accent-->
16 <!ENTITY Agrave SDATA "[Agrave]"--=capital A, grave accent-->
17 <!ENTITY aring SDATA "[aring]"--=small a, ring-->
18 <!ENTITY Aring SDATA "[Aring]"--=capital A, ring-->
19 <!ENTITY atilde SDATA "[atilde]"--=small a, tilde-->
20 <!ENTITY Atilde SDATA "[Atilde]"--=capital A, tilde-->
21 <!ENTITY auml SDATA "[auml]"--=small a, dieresis or umlaut mark-->
22 <!ENTITY Auml SDATA "[Auml]"--=capital A, dieresis or umlaut mark-->
23 <!ENTITY aelig SDATA "[aelig]"--=small ae diphthong (ligature)-->
24 <!ENTITY AElig SDATA "[AElig]"--=capital AE diphthong (ligature)-->
25 <!ENTITY ccedil SDATA "[ccedil]"--=small c, cedilla-->
26 <!ENTITY Ccedil SDATA "[Ccedil]"--=capital C, cedilla-->
27 <!ENTITY eth SDATA "[eth]"--=small eth, Icelandic-->
28 <!ENTITY ETH SDATA "[ETH]"--=capital Eth, Icelandic-->
29 <!ENTITY eacute SDATA "[eacute]"--=small e, acute accent-->
30 <!ENTITY Eacute SDATA "[Eacute]"--=capital E, acute accent-->
31 <!ENTITY ecirc SDATA "[ecirc]"--=small e, circumflex accent-->
32 <!ENTITY Ecirc SDATA "[Ecirc]"--=capital E, circumflex accent-->
33 <!ENTITY egrave SDATA "[egrave]"--=small e, grave accent-->
34 <!ENTITY Egrave SDATA "[Egrave]"--=capital E, grave accent-->
35 <!ENTITY euml SDATA "[euml]"--=small e, dieresis or umlaut mark-->
36 <!ENTITY Euml SDATA "[Euml]"--=capital E, dieresis or umlaut mark-->
37 <!ENTITY iacute SDATA "[iacute]"--=small i, acute accent-->
38 <!ENTITY Iacute SDATA "[Iacute]"--=capital I, acute accent-->
39 <!ENTITY icirc SDATA "[icirc]"--=small i, circumflex accent-->
40 <!ENTITY Icirc SDATA "[Icirc]"--=capital I, circumflex accent-->
41 <!ENTITY igrave SDATA "[igrave]"--=small i, grave accent-->
42 <!ENTITY Igrave SDATA "[Igrave]"--=capital I, grave accent-->
43 <!ENTITY iuml SDATA "[iuml]"--=small i, dieresis or umlaut mark-->
44 <!ENTITY Iuml SDATA "[Iuml]"--=capital I, dieresis or umlaut mark-->
45 <!ENTITY ntilde SDATA "[ntilde]"--=small n, tilde-->
46 <!ENTITY Ntilde SDATA "[Ntilde]"--=capital N, tilde-->
47 <!ENTITY oacute SDATA "[oacute]"--=small o, acute accent-->
48 <!ENTITY Oacute SDATA "[Oacute]"--=capital O, acute accent-->
49 <!ENTITY ocirc SDATA "[ocirc]"--=small o, circumflex accent-->
50 <!ENTITY Ocirc SDATA "[Ocirc]"--=capital O, circumflex accent-->
51 <!ENTITY ograve SDATA "[ograve]"--=small o, grave accent-->
52 <!ENTITY Ograve SDATA "[Ograve]"--=capital O, grave accent-->
53 <!ENTITY oslash SDATA "[oslash]"--=small o, slash-->
54 <!ENTITY Oslash SDATA "[Oslash]"--=capital O, slash-->
55 <!ENTITY otilde SDATA "[otilde]"--=small o, tilde-->
56 <!ENTITY Otilde SDATA "[Otilde]"--=capital O, tilde-->
57 <!ENTITY ouml SDATA "[ouml]"--=small o, dieresis or umlaut mark-->
58 <!ENTITY Ouml SDATA "[Ouml]"--=capital O, dieresis or umlaut mark-->
59 <!ENTITY szlig SDATA "[szlig]"--=small sharp s, German (sz ligature)-->
60 <!ENTITY thorn SDATA "[thorn]"--=small thorn, Icelandic-->
61 <!ENTITY THORN SDATA "[THORN]"--=capital THORN, Icelandic-->
62 <!ENTITY uacute SDATA "[uacute]"--=small u, acute accent-->
63 <!ENTITY Uacute SDATA "[Uacute]"--=capital U, acute accent-->
64 <!ENTITY ucirc SDATA "[ucirc]"--=small u, circumflex accent-->
65 <!ENTITY Ucirc SDATA "[Ucirc]"--=capital U, circumflex accent-->
66 <!ENTITY ugrave SDATA "[ugrave]"--=small u, grave accent-->
67 <!ENTITY Ugrave SDATA "[Ugrave]"--=capital U, grave accent-->
68 <!ENTITY uuml SDATA "[uuml]"--=small u, dieresis or umlaut mark-->
69 <!ENTITY Uuml SDATA "[Uuml]"--=capital U, dieresis or umlaut mark-->
70 <!ENTITY yacute SDATA "[yacute]"--=small y, acute accent-->
71 <!ENTITY Yacute SDATA "[Yacute]"--=capital Y, acute accent-->
72 <!ENTITY yuml SDATA "[yuml]"--=small y, dieresis or umlaut mark-->
73

Figure 16: TUGboat 16:2 — code takes up space

34 TUGboat, Volume 28 (2007), No. 1 —Proceedings of the Practical TEX 2006 Conference

How to Create a TEX Journal: A Personal Journey

Figure 17: TUGboat 19:1 — we tried to format the
TEX Live contents listing to be readable

TUGboat, Volume 21 (2000), No. 1 17

a0poster
latex3

Provides fonts in sizes of 12pt up to 107pt. Provides fonts in sizes of 12pt up to 107pt and also
makes sure that in math formulas the symbols appear in the right size. Can also create a PostScript
header file for dvips which ensures that the poster will be printed in the right size. Supported sizes are
DIN A0, DIN A1, DIN A2 and DIN A3.
Author: unknown; CTAN location: macros/latex/contrib/supported/a0poster

a2ac AFM to AFM plus Composites. Enables the use of PostScript fonts while typesetting texts in
languages where accented letters are used. The font doesn’t need to contain the complete alphabet of
a given language; the presence of mere accents themselves (no whole accented characters) is sufficient.
The configuration files of the a2ac program are independent of the PostScript font encoding and of the
typesetting system encoding. The program may be used to prepare a font for any typesetting system,
especially TEX.
Author: Petr Oľsák; CTAN location: fonts/utilities/a2ac

a4 Support for A4 paper sizes. Provides support for A4 paper sizes, however it is mostly superseded
by the a4paper option of LATEX and by the geometry package. It does, however also define the extra
option of widemargins.
Author: Nico Poppelier and Johannes Braams; CTAN location: macros/latex/contrib/supported/
ntgclass

a4wide Increases width of printed area of an a4 page. This package provides an option to increase the width
of the a4 page. Note however that it is superseded by geometry.
Author: unknown; CTAN location: macros/latex/contrib/other/misc

a5 Support for a5 paper size. This package provides support for a5 paper sizes. Note however that it
is superseded by geometry.
Author: Mario Wolczko; CTAN location: macros/latex/contrib/other/misc

a5comb Support for a5 paper sizes. Superseded by geometry.
Author: Mario Wolczko; CTAN location: macros/latex/contrib/other/misc

aaai
latex3

AAAI style.
Author: unknown; CTAN location: macros/latex209/contrib/aaai

aastex
latex3

American Astronomical Society format.
Author: American Astronomical Society; CTAN location: macros/latex/contrib/supported/aastex

abbrevs
latex3

Text abbreviations in LATEX. A LATEX package defining abbreviation macros, which expand to
defined text and insert following space intelligently, based on context. They can also expand to one
thing the first time they are used and another thing on subsequent invocations. Thus they can be
abbreviations in two senses, in the source and in the document. Also includes a facility for suffixes like
1900BC and 6:00PM which correctly handles following periods.
Author: Matt Swift; CTAN location: macros/latex/contrib/supported/frankenstein

abc2mtex Notate tunes stored in abc notation. A package to notate tunes stored in an ASCII format (abc
notation). One of the most important aims of abc notation, and perhaps one that distinguishes it from
most, if not all, computer-readable musical languages is that it can be easily read by humans. The
package produces files that can be processed with MusicTEX.
Author: Chris Walshaw; CTAN location: support/abc2mtex

abstbook Books of abstracts. A LATEX2ε class file for making “books of abstracts”, commonly used for
conferences. It is based on report class, however \chapter has been redefined and shouldn’t be used.
Author: Havlik Denis; CTAN location: macros/latex/contrib/other/misc

abstract
latex2

Control the typesetting of the abstract environment. The abstract package gives you control over
the typesetting of the abstract environment, and in particular provides for a one column abstract in a
two column paper.
Author: Peter R. Wilson; CTAN location: macros/latex/contrib/supported/abstract

abstyles
bibtex3

No description available.
Author: unknown

accents Multiple accents. A package for multiple accents with nice features concerning creation of accents
and placement of scripts.
Author: Javier Bezos; CTAN location: macros/latex/contrib/supported/bezos

accfonts
fonts3

Includes mkt1font, vpl2vpl, CSX.def, and Norman.def.
Author: John Smith; CTAN location: fonts/utilities/accfonts

achemso
latex3

LATEX and BibTEX style for American Chemical Society.
Author: Mats Dahlgren; CTAN location: macros/latex/contrib/supported/achemso

Figure 18: TUGboat 21:1, but finally just packed it in
as tightly as we could

about the Users Group and about what users were
doing, “sales pitches” (why TEX is a Good Thing),
examples of things that can be done with TEX, and
solutions to problems.

While blocks of small type on large pages is not
easy to read (most AMS books and journals have a
text width of 30pc, about 5in), the letter-size page
is wide enough to hold two columns of type that are
narrow enough to be read easily, but (almost) wide
enough to avoid most formatting problems. So a
two-column style was adopted as the basic layout.

Variations on the theme

But some material simply can’t be shoe-horned into
two columns. We’ve already seen one example
printed directly from an author submission (Fig. 12).

• Macros are often difficult to disassemble into
the narrow measure, so a “medium-width” for-
mat was defined, with a 30pc measure, cen-
tered horizontally on the page (Fig. 13). This
would be used only sparingly, when the density
of macro code makes it impossible to reformat
to the two-column style.

• Another single-column format, with text nar-
rower than full page width, that is used occa-
sionally is the LATEX doc format, where macro
code is interspersed with commentary, and a
wide left margin is used to place macro names
as labels (Fig. 14).

• Other material sometimes calls for use of the
full page width, as with the presentation of code
emulating, for example, The METAFONTbook

(Fig. 15).

• Extended code listings have been poured into
a full-width page container (Fig. 16) for lack of
any better ideas.

• And several iterations of all or part of the Cata-
logue accompanying a TEX Live disk have used
a specially formatted full-width presentation to
pack as much information as possible onto the
page with (Fig. 17) or without (Fig. 18) rules or
shading to help guide the eye.

The initial macros to implement these layouts
were based on a plain-TEX multi-column macro sys-
tem developed for in-house use at AMS. The original
requirements for this system included some interest-
ing features:

• the ability to have as many columns as the data
would allow (we’ve used up to 12);

• full-width “banners” can float across the page
at top or bottom or anywhere in between;

• partial width insertions can float across just
some columns;

TUGboat, Volume 28 (2007), No. 1 —Proceedings of the Practical TEX 2006 Conference 35

Barbara Beeton

Figure 19: TUGboat 26:2 — TUG’s institutional mem-
bers, in three columns

Addresses

TEX Users Group Office

Robin Laakso
1466 NW Naito Parkway, Suite 3141
Portland, OR 97209-2820, USA
phone: +1 503 223-9994
fax: +1 503 223-3960
office@tug.org

William Adams

75 Utley Drive, Ste. 110
Mechanicsburg, PA 17055, USA
willadams@aol.com

Thomas H. Barton

Emeritus Professor of Electrical
Engineering
University of Calgary, Canada
thbarton@shaw.ca

Claudio Beccari

Politecnico di Torino
Turin, Italy
beccari@polito.it

Barbara Beeton

American Mathematical Society
201 Charles Street
Providence, RI 02940 USA
+1 401 455-4014
bnb@ams.org, tugboat@tug.org

Karl Berry

685 Larry Ave. N
Keizer, OR 97303, USA
karl@tug.org

http://freefriends.org/~karl/

Mimi R. Burbank

CSIT, 408 Dirac Science Library
Florida State University
Tallahassee, FL 32306-4130, USA
+1 850 644-2440
mimi@csit.fsu.edu

Ramón Casares

Telefónica de España
r.casares@computer.org

Kaja Christiansen

Department of Computer Science

University of Aarhus
Aabogade 34
DK-8200 Aarhus N, Denmark
kaja@daimi.au.dk

Don DeLand

Integre Technical Publishing Co.
4015 Carlisle NE, Suite A
Albuquerque, NM 87107, USA
don.deland@tug.org

Susan DeMeritt

IDA/CCR La Jolla
4320 Westerra Court
San Diego, CA 92121, USA
+1 619 622-5455
sue@ccrwest.org

Robin Fairbairns

University of Cambridge Computer
Laboratory
William Gates Building
JJ Thomson Avenue
Cambridge CB3 0FD, UK
Robin.Fairbairns@cl.cam.ac.uk

Thomas Feuerstack

FernUniversität in Hagen
58084 Hagen, Germany
Thomas.Feuerstack@fernuni-hagen.de

Norman Gray

Dept. of Physics and Astronomy
University of Glasgow

Glasgow, UK
norman@astro.gla.ac.uk

http://www.astro.gla.ac.uk/

users/norman/

Harald Harders

Nußbergstraße 48
38102 Braunschweig, Germany
h.harders@tu-bs.de

Stephanie Hogue

AlphaSimplex Group
One Cambridge Center
9th Floor
Cambridge, MA 01242, USA
shogue@tug.org

Mimi Jett

(use TUG Office address)

Judy Johnson

jannejohnson@yahoo.com

Donald E. Knuth

Department of Computer Science
Stanford University

Stanford, CA 94305, USA

A. Kostin

MicroPress, Inc.
68-30 Harrow Street
Forest Hills, New York 11375, USA
support@micropress-inc.com

http://www.micropress-inc.com

Jonathan Kuhn

Purdue University North Central
Westville, Indiana 46391–4197, USA
jkuhn@pnc.edu

http://www.pnc.edu/faculty/jkuhn

Mark LaPlante

109 Turnbrook Drive
Huntsville, AL 35824, USA
laplante@mac.com

TUGboat, Volume 23 (2002), No. 3 243

D. Men’shikov

MicroPress, Inc.
68-30 Harrow Street
Forest Hills, New York 11375, USA
support@micropress-inc.com

http://www.micropress-inc.com

Ross Moore

Macquarie University
NSW 2109, Australia
ross@maths.mq.edu.au

Christian Obrecht

Le Monsard
71960 Bussieres, France
christian.obrecht@wanadoo.fr

http://perso.wanadoo.fr/obrecht/

Arthur Ogawa

40453 Cherokee Oaks Drive
Three Rivers, CA 93271, USA
phone: +1 209 561-4585
fax: +1 209 561-4584

ogawa@teleport.com

Palash B. Pal

Theory Group
Saha Institute of Nuclear Physics
1/AF Bidhan-Nagar
Calcutta 700064, India
pbpal@theory.saha.ernet.in

Steve Peter

310 Hana Rd.
Edison, NJ 08817, USA
speter@dandy.net

Cheryl Ponchin

Center for Communications Research
Institute for Defense Analyses
29 Thanet Road
Princeton NJ 08540-3699, USA
cheryl@ccr-p.ida.org

Stefan A. Revets

Thijssenlaan 22
B1780 Wemmel, Belgium
s.revets@tiscali.be

Kristoffer Høgsbro Rose

IBM
T. J. Watson Research Center
30 Saw Mill River Road
Hawthorne, NY 10532, USA
krisrose@us.ibm.com

Prasenjit Saha

Astronomy Unit
Queen Mary and Westfield College
University of London
London E1 4NS, UK
p.saha@qmul.ac.uk

Walter Schmidt

Nürnberger Straße 76
Erlangen, Germany
w.a.schmidt@gmx.net

http://home.vr-web.de/was

Figure 20: TUGboat 23:3 — author address list, also
three columns

2005

Apr 30 –
May 3

BachoTEX2005, 13th annual meeting of
the Polish TEX Users’ Group (GUST),
“The Art of TEX Programming”,
Bachotek, Brodnica Lake District,
Poland. For information, visit http://

www.gust.org.pl/BachoTeX/2005/.

May 10 –
Jul 17

In Flight: A traveling juried exhibition
of books by members of the Guild
of Book Workers. University
of Texas, Austin, Texas. Sites
and dates are listed at http://

palimpsest.stanford.edu/byorg/gbw.

May 11 –
Jun 16

From chisel to pen: inscriptional
letterforms from early Christian Wales.
An exhibition at the St. Bride
Printing Library, London, England.
For information, visit http://

www.stbride.org/events.html.

May 22 – 27 Book History at A&M: The Fourth
Annual Texas A&M Workshop on the
History of Books and Printing. Texas
A&M University, College Station,
Texas. For information, visit
http://lib-oldweb.tamu.edu/cushing/

bookhistory/2005.html.

May 24 – 27 XTech Conference, “XML, the Web and
Beyond”, Amsterdam RAI Centre,
Netherlands. For information, visit
http://www.xtech-conference.org/.

May 25 – 28 CIDE.8, Conférence Internationale
sur le Document Electronique,
“Multilingualism”, Beirut,
Lebanon. For information, visit
http://www.certic.unicaen.fr/cide8/.

Jun 1 – 3 Society for Scholarly Publishing,

27th annual meeting, “Expanding the
World of Scholarly Publishing”, Boston,
Massachusetts. For information, visit
http://www.sspnet.org.

TUGboat, Volume 25 (2004), No. 2 221

Calendar

Jun 6 – 9 Seybold Seminars, Amsterdam,
Netherlands. For information, visit
http://www.seybold365.com/2005/.

Jun 6 –
Jul 29

Rare Book School, University of
Virginia, Charlottesville, Virginia.
Many one-week courses on topics
concerning typography, bookbinding,
calligraphy, printing, electronic texts,
and more. For information, visit
http://www.virginia.edu/oldbooks.

Jun 8 –
Nov 13

70 Years of Penguin Design: Exhibition,
Room 74, Twentieth Century
Gallery, Victoria & Albert Museum,
London, England.

Practical TEX 2005

Friday Center for Continuing Education,

Chapel Hill, North Carolina.

Jun 14 – 17 Workshops and presentations
on LATEX, TEX, ConTEXt, and
more. For information, visit
http://www.tug.org/practicaltex2005/.

Jun 15 – 18 ALLC/ACH-2005, Joint International
Conference of the Association for
Computers and the Humanities, and
Association for Literary and Linguistic
Computing, “The International
Conference on Humanities Computing
and Digital Scholarship”, University
of Victoria, British Columbia.
For information, visit
http://web.uvic.ca/hrd/achallc2005/

or the organization web site at
http://www.ach.org.

Jun 24 – 26 NTG 35th meeting, Terschelling,
Netherlands. For information, visit
http://www.ntg.nl/bijeen/bijeen35.html.

Status as of 1 June 2005

For additional information on TUG-sponsored events listed here, contact the TUG office
(+1 503 223-9994, fax: +1 503 223-3960, e-mail: office@tug.org). For events sponsored
by other organizations, please use the contact address provided.

An updated version of this calendar is online at http://www.tug.org/calendar/.
Additional type-related events are listed in the Typophile calendar, at

http://www.icalx.com/html/typophile/month.php?cal=Typophile.

Figure 21: TUGboat 25:2 — the calendar heading
crosses the whole page; so does the footer

Figure 22: TUGboat 13:2 was accompanied by a mem-
bership list in alphabetical order

36 TUGboat, Volume 28 (2007), No. 1 —Proceedings of the Practical TEX 2006 Conference

How to Create a TEX Journal: A Personal Journey

Figure 23: TUGboat 13:2 — and also arranged geo-
graphically

• insertions can be delayed until a specified page;

• a message can be dropped into a footer at reg-
ular intervals;

• specified pages can be shortened or lengthened,
in particular to even off the multiple columns
of the final page of a document.

The very first implementation of this system was de-
veloped for TEX 78, but it was one of the first things
converted to TEX 82. Major credit to Ron Whit-
ney for implementing the delaying stack mechanism
and many other features of the system. (No. These
macros aren’t available for distribution. There are
some intractable bugs that we’ve learned to live with,
haven’t managed to fix, and don’t have the time or
staff to field questions from outside users who would
surely run into the same or new bugs. Sorry.)

Only some of these features made it into the
stripped-down document style for TUGboat. The
institutional members list (Fig. 19) and (until 2002)
the list of contributors’ addresses (Fig. 20) are for-
matted in three columns; the two-column calendar
(Fig. 21) also has a full-width bottom insertion. The
issue front matter and “boiler plate” are still— in
2006 —prepared with the plain TEX document style,

Figure 24: TUGboat 5:2 — a full-width illustration at
the bottom of the page

which has capabilities that aren’t easily available
(yet) with LATEX.

The full multi-column system was used for the
TUG membership list (Figs. 22 and 23) which was
published annually until 1993; however, no features
are used there that are not now available in the
LATEX multicols package.

Some pages in the main content have used the
“extended” plain features:

• Figures at the bottom of the page (Fig. 24);

• Don Knuth’s “Answers to Exercises for TEX:

The Program” (Fig. 25), where single- and two-
column material were intermixed to provide a
reasonably natural flow; this too was imple-
mented by Ron Whitney.

Ron’s contribution to TUG encompassed not only
major work on the plain TEX TUGboat document
style, but also hard work in the TUG office during
several turbulent years. Ron is no longer working
in the TEX world, but he still helps out by coordi-
nating the annual renewal of TUG’s Rhode Island
incorporation.

TUGboat, Volume 28 (2007), No. 1 —Proceedings of the Practical TEX 2006 Conference 37

Barbara Beeton

Figure 25: TUGboat 11:4 — the flow of this page
doesn’t follow the usual path

Figure 26: TUGboat 5:1 — starry section headings

Figure 27: TUGboat 5:2, with a new font for the sec-
tion headings

TUGboat, Volume 22 (2001), No. 1/2 93

LATEX

The trace package∗

Frank Mittelbach

Introduction

When writing new macros one often finds that they do not work as expected (at
least I do :-). If this happens and one can’t immediately figure out why there is a
problem one has to start doing some serious debugging. TEX offers a lot of bells
and whistles to control what is being traced but often enough I find myself applying
the crude command \tracingall which essentially means “give me whatever tracing
information is available”.

In fact I normally use ε-TEX in such a case, since that TEX extension offers me a
number of additional tracing possibilities which I find extremely helpful. The most
important ones are \tracingassigns, which will show you changes to register values
and changes to control sequences when they happen, and \tracinggroups, which will
tell you what groups are entered or left (very useful if your grouping got out of sync).

So what I really write is

\tracingassigns=1\tracinggroups=1\tracingall

That in itself is already a nuisance (since it is a mouthful) but there is a worse catch:
when using \tracingall you do get a awful lot of information and some of it is really
useless.

For example, if LATEX has to load a new font it enters some internal routines of
NFSS which scan font definition tables etc. And 99.9% of the time you are not at all
interested in that part of the processing but in the two lines before and the five lines
after. However, you have to scan through a few hundred lines of output to find the
lines you need.

Another example is the calc package. A simple statement like \setlength

\linewidth {1cm} inside your macro will result in

\setlength ->\protect \setlength

{\relax}

\setlength ->\calc@assign@skip

\calc@assign@skip ->\calc@assign@generic \calc@Askip \calc@Bskip

\calc@assign@generic #1#2#3#4->\let \calc@A #1\let \calc@B #2\expandafter \calc

@open \expandafter (#4!\global \calc@A \calc@B \endgroup #3\calc@B

#1<-\calc@Askip

#2<-\calc@Bskip

#3<-\linewidth

#4<-1cm

{\let}

{\let}

{\expandafter}

{\expandafter}

\calc@open (->\begingroup \aftergroup \calc@initB \begingroup \aftergroup \calc

@initB \calc@pre@scan

{\begingroup}

{\aftergroup}

{\begingroup}

{\aftergroup}

∗This file has version number 1.0a trace LaTeX code, last revised 2000/02/16.

Figure 28: TUGboat 22:1 — the subject heading covers
only the text of a doc-style article

38 TUGboat, Volume 28 (2007), No. 1 —Proceedings of the Practical TEX 2006 Conference

How to Create a TEX Journal: A Personal Journey

Figure 29: TUGboat 10:1 — now we make the top of
every article stand out

Figure 30: TUGboat 10:1 — some section heads are
more decorative than others

Subject arrangement

Within the basic format, the content was divided
into logical subject areas (General Delivery, etc.),
introduced by distinctive headings. I no longer re-
member whose ideas were used in creating the style
of these headings, but, like the covers, they have
undergone some major changes through the years.

• For the first few years, the subject heads were
set in a rather spindly sans-serif, centered, with
rows of asterisks strung out above and below
(Fig. 26). Similar rows of asterisks were used to
separate articles within subject areas.

• Beginning with issue 5:2, a much nicer demi-
bold sans was adopted, with the subject text
centered in a column-wide box (Fig. 27).

• For items like the calendar that fill a dedicated
page (Fig. 21), the subject head can span the
full page, and if an article using the LATEX doc

style starts a section, the box is set to the width
of the text (Fig. 28).

• With the change to boxed subject heads, arti-
cles in a subject area were separated only by
vertical space. Owing to confusion in identify-
ing the end of one article and the beginning of
another, in 1989 a rule was added above the
title of each succeeding article (Fig. 29).

• Subject areas managed by an associate editor
sometimes have a more distinctive subject head.
This has been particularly true for early install-
ments of the Font Forum (Fig. 30) and for the
Treasure Chest since 1998 (Fig. 31).

• For the guest-edited issue, the arrangement was
entirely different. Short items were run together
on pages of three columns, and articles of a page
or more each began on a new page. This is
best appreciated in context: Go to the TUG-

boat web site to examine this issue.

While we’re on the subject of subject headings,
we originally tried to follow the nautical theme im-
plied by the name TUGboat, hence “General Deliv-
ery” and “Dreamboat” (wishes for the future), but
we clearly ran out of inspiration. So the names of
most subjects are far more prosaic.

The transition from plain TEX to LATEX

The first issues of TUGboat — the parts that were
actually prepared using the TUGboat style— were
constructed in TEX 78. This language was rather
different from the TEX we know now: only 32 fonts
could be used at once, the syntax for boxes and
alignments was different, etc., etc. In other words,
a file created for TEX 78 probably won’t run under

TUGboat, Volume 28 (2007), No. 1 —Proceedings of the Practical TEX 2006 Conference 39

Barbara Beeton

428 TUGboat, Volume 19 (1998), No. 4

The Treasure Chest

A package tour from CTAN — soul.sty

When the Treasure Chest is CTAN, there’s so much
to choose from. But even worse . . . there are so
many packages that keep being added! And how to
even find out about them, if you don’t keep up with
notices posted to the newsgroups? This column is
one way to try to bring some of these treasures to
TUGboat readers, with a quick introduction to the
package and some examples of what it can do.

This is the first such column; let me know what
aspects are most useful and which ones less so, what
additional facets should be examined, what other
packages cover some of the same issues; which pack-
ages do you prefer.

1 Quick tour

Package: soul.sty

This is version 1.2, dated 11 Jan. 1999. Upon
processing, the file changes.tex is generated,
and describes the differences (the file is also in-
side the .dtx file1).

Explanation of the name: “[it] is only a combi-
nation of the two macro names \so (space out)
and \ul (underline) — nothing poetic at all. . . ”

Keywords: spacing out, letterspacing, underlining,
striking out

Purpose:

soul.sty provides hyphenate-able letterspac-
ing, underlining, and some variations on each.
All features are based upon a common mech-
anism for typesetting text syllable-by-syllable,
using TEX’s excellent hyphenation algorithm to
find the proper hyphenation points. As well,
two examples are presented to show how to use
the interface provided to address such issues as
‘an-a-lyz-ing syl-la-bles’. Although the package
is optimized for LATEX2ε, it works under plain
TEX and LATEX 2.09, and is compatible with
other packages, too.

Author: Melchior Franz
a8603365@unet.univie.ac.at

1 Documented source (.dtx) files are a combination of
macros and documentation, an evolution of Frank Mittel-
bach’s original DocStrip utility. There are usually two steps:
run LATEX over the .dtx file to get the documentation, and
run LATEX over its matching .ins file to generate the style
files, which are extracted from the .dtx file (sometimes the
.ins file is itself generated by the first step, which means you
only have to pick up the one .dtx file— even more compact
packaging).

Compatible with: plain, LATEX (old and new).

Note: the documentation describes some re-
strictions when the soul package is not used
with LATEX2ε.

Location on CTAN:

/macros/latex/contrib/supported/soul

Files to fetch: soul.dtx and example.cfg.2

How to install: Put files with your other class and
style files on your system. Read the top por-
tion of soul.dtx (or the file soul.txt) for in-
structions on processing the files (you will need
LATEX2ε). Notice that the soul.sty package is
not actually on CTAN; it uses the .dtx method
of documentation, a wonderful feature in
LATEX2ε. If you’re unfamiliar with how this
works, see footnote 1 for a general overview.

Files generated: soul.ins, soul.dvi (documen-
tation), soul.toc, soul.sty, changes.tex, (as
well as the usual soul.aux and .log files).

2 Documentation

The documentation is so extensive (26 pages long),
with explanations, examples of basic use and varia-
tions, that little needs to be said here!

The opening pages are a pleasant introduction
to the general notions of emphasis, however it is
achieved, and the various opinions which exist on the
suitability of their use. There is a pragmatism ex-
pressed here, offering the user the choice of options,
leaving the reasons for such choices to the user.

The user portion of the documentation provides
extensive examples and explanations for creating the
various effects (underlining, overstriking, letterspac-
ing).

Chapter 7 (pp. 14–25) provides a detailed ex-
planation of the macros themselves, along with some
additional points and tips, so do glance through it.

One nice addition from the author (in collabo-
ration with Stefan Ulrich) is a sample configuration
file, example.cfg, which shows how to select specific
spacing values for different fonts automatically, and
store them for local use. As well, the local file (call it
soul.cfg and hooks exist to read it in automatically
via soul.sty) can be used to store other changes to
the package default settings, thus avoiding making
changes in either the style file or inserting the cus-
tomizations into individual source files.

2.1 Table of Contents

1. Introduction

2 Note: CTAN also has the file soul.txt (description of
package + processing instructions), and soul.ins, which can
either be fetched, or generated by processing the .dtx file.

Figure 31: TUGboat 19:4 — and some try to be self-
explanatory

Figure 32: TUGboat 7:3, the first article produced
with LATEX (2.09)

Figure 33: TUGboat 7:1 — the coming of LATEX had
been foretold

Figure 34: TUGboat 15:3 — the 1994 Proceedings is-
sue was produced at CERN

40 TUGboat, Volume 28 (2007), No. 1 —Proceedings of the Practical TEX 2006 Conference

How to Create a TEX Journal: A Personal Journey

TEX 82 without a lot of work, regardless of how clev-
erly one recodes the underlying macros. Because au-
thors always want to do things their own way, and
TUGboat authors were trying to show what they
could do with this wonderful new tool.

In any event, by 1984, the TUGboat transi-
tion was made to TEX 82, new fonts, new every-
thing, with no more fuss than accompanied the si-
multaneous transition of AMS projects. (The one
often performed as a test bed for the other.) But
a growing number of authors wanted to use LATEX,
which is a very different beast. The first article writ-
ten with LATEX was published in 7:3 (Fig. 32), al-
though LATEX had certainly been mentioned earlier
(Fig. 33); note Leslie Lamport’s comment regarding
the Local Guide, an item always honored more in
theory than in practice.

By 1991, the volume of LATEX material had in-
creased to the point where the production notes for
12:2 reported a nearly 50/50 split between plain
TEX and LATEX. This made grouping of articles in
subject areas more difficult for a couple of reasons:

• “Plain” articles can usually be processed in a
single run, using a driver file, unless the com-
plement of articles contains a lot of mutually
incompatible author macros— a not infrequent
occurrence.

• LATEX requires that packages be loaded only in
the preamble; this is true for both 2.09 and
LATEX2ε; nearly any package use by an author
precludes combining files in a single run.

• In TUGboat, if an article ends with more than
a half-column empty, the next article may be
started on that page; other than using physi-
cal paste-up or post-processing, the only way
to achieve the desired continuity is to process
both articles in the same TEX run.

Needless to say, all known methods of “splicing”
disparate items have been used to get camera copy
ready for the printer.

The next big leap toward LATEX occurred with
the proceedings of the Santa Barbara meeting in
1994. Michel Goossens, then TUG’s vice president,
co-edited the proceedings with Sebastian Rahtz.
Both were ardent supporters of LATEX, and eager
to take advantage of the new features of LATEX2ε.
Together they created the first TUGboat document
class file, and handled all the production as well
as the editorial duties at CERN (Fig. 34). (Mainte-
nance of the TUGboat document class is now in the
care of Robin Fairbairns, to whom many thanks.)

At the same meeting, there was a report on
Ω, a new approach to the composition requirements

TUGboat, Volume 18 (1997), No. 1 17

Philology

The Traditional Arabic Typecase, Unicode,

TEX and
�✂✁☎✄✝✆✟✞✡✠☞☛✌✄

Yannis Haralambous∗

1 Introduction

The first Arabic book, a 5 × 11 cm volume titled✍ ✎✏✑✒✓✔✕✖✗✔✘✙ (Book of the prayer of hours),
was printed in 1514 by Grégoire de Grégoire in
Venice and Fano, under the protection of Pope Leo
the 10th [1, p. 18 – 19]. It took about two cen-
turies for Arabic book printing to move to the East:
in 1727 the Ottoman printing agency was founded
in Constantinople and started printing using Dutch
types and technology [8, p. 156]. A similar institu-
tion was founded in Cairo in 1821.
Undoubtedly a script like the Arabic one, hav-

ing deep roots in calligraphy, was rather difficult
to adapt to typography, a technique where strict
standardization and repetition of forms is neces-
sary. When Aldus Manutius created the first italic
font in 1501, out of manuscript calligraphic forms,
he made a certain number of choices—and these
choices became a standard for occidental typogra-
phy. Similar choices had to be made for Arabic:
calligraphy had to be “tamed”, so that the results
would be homogeneous, reproducible, and flexible
enough to be pleasant to the eye.
This standardization took place in 1906, in

Cairo, when the
✔✚✛✜✢✣✤✔✥

✚
✦✢✧★ (’Almaṫāb‘ al’amārya)

typecase is defined. This typecase (see fig. 1),
divided in four parts (as opposed to “upper” and
“lower” case of the Occident), uses a total of 470
characters. Astonishing as it may seem, this typeset-
ting system has been kept in use until today: books
typeset in a traditional way, all around the Arabic
world, are still using the same set of characters, and
the same conventions and rules.1 In fig. 1, the reader
can see the four parts of this typecase.
The reader knowing the technical limitations

of computerized typesetting can already imagine
the effect of computers on the Arabic script: not
being able to cope with the complexity of the Cairo
typecase, the computer industry has tried (and was

∗ The author would like to thank Michel Goossens, for—
among other things—having given him access to [11], an
extremely exciting book which has motivated this and forth-
coming developments.

1 In [4, p. 102 – 103], a book published in 1880 (!) the
reader can find 30 rules for typesetting Arabic, which are still
strictly applied today by traditional typographers.

finally able) to impose new standards of simplified
typesetting,2 most of the time covering only the fun-
damental properties of Arabic script, without any
typographical enhancement. Was it the computers,
which have simplified Arabic printed script, or was
it a deeper change in Arabic society and mental-
ity? This is hard to say; nevertheless, even today,
commercial computer typesetting systems are—a
few isolated exceptions apart—unable to reach the
typographic quality of ’Almaṫāb‘ al’amārya. In
fig. 2, one can see different samples of printed Arabic
material, showing the evolution and simplification
of Arabic script; these examples are extreme cases:
the first one is taken from a scholarly book printed
in Lebanon (it contains almost all ligatures of the
’Almaṫāb‘ al’amārya typecase), the second from a
technical book printed in East Germany (a fewer
number of ligatures), and the third from a daily
newspaper printed in the U.K. (almost no ligatures).
This paper describes the author’s solution to

this problem:
✔✥✦✩ (Al-Amal), a typesetting system

based on TEX (actually TEX--XET), emulating the
’Almaṫāb‘ al’amārya typecase. This system (already
presented in [6] and [7]), has been recently extended
to the complete set of Unicode Arabic alphabet
characters; problems and open questions arising
from this extension are discussed at the end of the
paper.

2 The Cairo typecase

Arabic letters have contextual forms, depending on
surrounding letters in the same word: a typical three
letter word will start with a letter in initial form,
followed by a letter in medial form and, finally, by a
letter in final form (the hypothetical word consisting
of three times the letter ‘gha’ is written ✪✫✬). A
fourth form is used for isolated letters (this is also
the form used in crosswords or Scrabble-like games,
where letters have to placed in boxes, indepedently
of their context). Some letters appear only in iso-
lated and final form (and sometimes even only in
isolated form), so that the letters immediately fol-
lowing them must be written in initial (or isolated)
form, although they are located inside the word.
These are the basic contextual rules of the

Arabic script: they are independent of style and
medium, and are applied in all cases, without ex-
ception; they are as basic as the dot on the Latin
lowercase ‘i’, or the horizontal bar of the ‘t’.
But besides these contextual forms, ’Almaṫāb‘

al’amārya also combines letters into ligatures, not

2 For more information on the Arabic script and the
computer see also [3] and [10].

Figure 35: TUGboat 18:1 — the first article produced
with Ω

of highly-accented material and non-Western scripts
(that is, scripts other than Latin, Greek and Cyril-
lic). The first article actually produced with Ω
(Fig. 35) was set by the author to specs provided by
the TUGboat production crew. Ω has unfortunately
not proved sufficiently stable to be included perma-
nently in the TUGboat toolbox, but work continues.

At the 1998 annual meeting, Hàn Thé̂ Thành
introduced pdfTEX (Fig. 36). This extension to TEX
permits the use of existing LATEX or plain TEX input,
along with direct output to PDF. Thành’s disser-
tation (Fig. 37) was published in TUGboat several
years later.

For a totally different approach to composi-
tion, ConTEXt is directed largely toward creating
attractive presentations on-line as well as in print,
and requires pdfTEX. ConTEXt made its appear-
ance in several talks by Hans Hagen at the 1998
annual meeting. One of the resulting articles in
the proceedings describes an interactive calculator
(Fig. 38); sadly, the on-line version of this article
is not interactive, but the figures are very color-
ful. Hans has created a ConTEXt style for TUGboat

which has been used for several other articles, but
so far always with his assistance.

TUGboat, Volume 28 (2007), No. 1 —Proceedings of the Practical TEX 2006 Conference 41

Barbara Beeton

Improving TEX’s Typeset Layout

Hàn Thé̂ Thành
Faculty of Informatics

Masaryk University

Brno, Czech Republic

Abstract

This paper describes an attempt to improve TEX’s typeset layout in PdfTEX, based
on the adjustment of interword spacing after the paragraphs have been broken
into lines. Instead of changing only the interword spacing in order to justify text
lines, we also slightly expand the fonts on the line as well in order to minimise
excessive stretching of the interword spaces. This font expansion is implemented
using horizontal scaling in PDF. When such expansion is used conservatively, and
by employing appropriate settings for TEX’s line-breaking and spacing parame-
ters, this method can improve the appearance of TEX’s typeset layout.

Motivation

There exist many techniques which can be used to
produce high quality typeset layout. Most of these
are already implemented in TEX, such as ligatures,
kerning, automatic hyphenation, and very impor-
tantly the algorithm for breaking paragraphs into
lines in an optimal way, generally known as “opti-
mum fit”.

However, it is still a very difficult task to ob-
tain a uniform level of grayness of the typeset lay-
out, even with the help of these techniques. The
primary reason is that it is not possible to ensure
that all the interword spaces in different lines are the
same. The “optimum fit” algorithm can break the
paragraph into lines in the best way, but the amount
of interword space depends strongly on many other
parameters, such as the paragraph width, the tol-
erance of glue stretching/shrinking, the amount of
interword glue, etc. Considerable effort is often re-
quired in order to adjust these parameters to achieve
the appropriate break points and to reduce the con-
trast between the interword spaces in lines. The
purpose of our experiment is an attempt to perform
this task better by stretching or shrinking the fonts
used in each line within reasonable limits. The idea
is not really new, as it represents a quite common
technique using electronic font scaling in order to ex-
pand text lines that do not fit the paragraph width.
However this technique is also often regarded as a
bad thing, since it is frequently (ab)used in order
to rescue “impossible” cases, which often leads to
overdoing the scaling and produces really ugly re-
sults. In our approach, we try to use this technique

in a rather different way: instead of using font scal-
ing to improve only some “really bad” lines, we try
instead to produce a “relatively good” paragraph,
which does not contain any lines where the inter-
word spacing is too bad. Then we apply font scaling
to each line to reduce the difference between the in-
terword spaces in lines. The limit of font scaling
must, of course, be strictly controlled: in fact, the
sum of the spaces between the words on a line is
often very small in comparison to the sum of the
character widths on the same line, so very slightly
expanding the fonts may help considerably in im-
proving the interword spacing.

This idea can easily be integrated with TEX be-
cause of the biggest strength of TEX – the “optimum
fit” algorithm which is implemented in a very flexi-
ble manner, in order to handle restrictions on many
various parameters in an optimal way. In particular,
we perform the implementation in PdfTEX, where the
font expansion is currently carried out by horizontal
scaling in PDF as a first attempt. Other approaches
may be attempted in the future as time allows.

Implementation

PdfTEX is based on the original source of TEX, and
employs the changefile mechanism which allows easy
access to TEX’s internal data structures and simple
modification of the relevant program code. Gen-
erating PDF output directly from TEX is also an
advantage for our task, as we can control the spac-
ing much better than would have been the case had
we attempted it via DVI. The process of adjusting
interword spacing is as follows:

284 TUGboat, Volume 19 (1998), No. 3— Proceedings of the 1998 Annual Meeting

Figure 36: TUGboat 19:3 — the first article with
pdfTEX

TUGBoat, Volume 21 (2000), No. 4 317

Micro-typographic extensions to the TEX typesetting system 1

Micro-typographic extensions

to the TEX typesetting system

Hàn Thế Thành

Dissertation

Masaryk University Brno

Faculty of Informatics

October 2000

Figure 37: TUGboat 21:4, Thành’s pdfTEX disserta-
tion

304 TUGboat, Volume 19 (1998), No. 3— Proceedings of the 1998 Annual Meeting

The Calculator Demo

Hans Hagen
pragma@pi.net

Abstract

Due to its open character, TEX can act as an authoring tool. This article demon-

strates that by integrating TEX, METAPOST, JavaScript and PDF, one can build pretty

advanced documents. More and more documents will get the characteristics of pro-

grams, and TEX will be our main tool for producing them. The example described here

can be produced with PDFTEX as well as traditional TEX.

Introduction

When Acrobat Forms were discussed at the PDFTEX

mailing list, Phillip Taylor confessed: “ . . . they’re
one of the nicest features of PDF”. Sebastian Ratz
told us that he was “. . . convinced that people are
waiting for forms.”. A few mails later he reported:
“I just found I can embed JavaScript in forms, I can
see the world is my oyster” after which in a personal
mail he challenged me to pick up the Acrobat Forms
plugin and wishing me “Happy JavaScripting”.

sin cos tan max exp ceil x2 x! xy rad

asin acos atan min ln floor sqrt round 1/x deg

7 8 9 / del

4 5 6 * E

1 2 3 – pop

0 . - + push

n

min

max

total

mean

sdev

new new +n –n

–x random pi e dup exit info

new +m –m mem grow

Figure 1 The calculator demo.

At the moment that these opinions were shared, I al-
ready had form support ready in CONTEXT, so pick-
ing up the challenge was a sort of natural behaviour.
In this article I’ll describe some of the experiences
I had when building a demo document that shows
how forms and JavaScript can be used from within
TEX. I also take the opportunity to introduce some
of the potentials of PDFTEX, so let’s start with in-
troducing this extension to TEX.

Where do we stand

While ε-TEX extends TEX’s programming and typo-
graphic capabilities, PDFTEX primarily acts at the
back end of the TEX processor. Traditionally, TEX

was (and is) used in the production chain:

ASCII→ TEX→ DVI→ whatever

The most versatile process probably is:

ASCII→ TEX→ DVI→ POSTSCRIPT

or even:

ASCII→ TEX→ DVI→ POSTSCRIPT→ PDF

All functionality that TEX lacks, is to be taken care
of by the DVI postprocessing program, and that’s
why TEX can do color and graphic inclusion. Espe-
cially when producing huge files or files with huge
graphics, the POSTSCRIPT→ PDF steps can become
a nuisance, if only in terms of time and disk space.

With PDF becoming more and more popular, it
will be no surprise that Han The Thanh’s PDFTEX

becomes more and more popular too among the TEX
users. With PDFTEX we can reduce the chain to:

ASCII→ TEX→ PDF

The lack of the postprocessing stage, forces PDFTEX

(i.e. TEX) to take care of font inclusion, graphic in-
serts, color and more. One can imagine that this
leads to lively discussions on the PDFTEX mailing
list and thereby puts an extra burden on the devel-
oper(s). Take only the fact that PDFTEX is already
used in real life situations while PDF is not stable
yet.

To those who know PDF, it will be no surprise
that PDFTEX also supports all kind of hyper refer-
encing. The version1 I used when writing this article
supports:

1. link annotations

1 Currently I’m using β--version 1.12g.

Figure 38: TUGboat 19:3 — the first article with Con-
TEXt

Figure 39: TUGboat 26:2 — X ETEX

42 TUGboat, Volume 28 (2007), No. 1 —Proceedings of the Practical TEX 2006 Conference

How to Create a TEX Journal: A Personal Journey

Figure 40: TUGboat 2:1 — 200 dpi output is pretty
grainy, even reduced from 130%

The most recent addition to the TEX zoo is
X ETEX, by Jonathan Kew (Fig. 39). This Unicode-
based extension of TEX can use system fonts directly.
Jonathan produced the camera copy for this article
on his Mac, but he is diligently working on imple-
mentations for Unix and Windows that can be in-
cluded on the next edition of TEX Live.

Production and distribution

Early issues of TUGboat were produced from a mis-
cellany of sources and output devices. Material pre-
pared “in-house” at AMS was processed using TEX
on a DECsystem-20. For the first two issues, this
output was magnified to 130% on a 200 dpi Benson-
Varian electrostatic printer, and photographically
reduced for the press (Fig. 40). Quite a bit of mate-
rial was submitted as camera-ready copy prepared
on a variety of other output devices, with running
heads and page numbers pasted on.

The quality of copy prepared “in-house” im-
proved radically with issue 2:2, when AMS installed
an Alphatype CRS. This machine had the astound-
ing resolution of 5333 dpi, with output on large
sheets of resin-coated photographic paper. A great
deal of material was still arriving as camera-ready
copy, however, and a statement of editorial policy
(Fig. 41) encouraged authors to pay attention to the

Figure 41: TUGboat 3:1 — our first statement of edi-
torial policy

guidelines. (Most authors did; some, I’ve learned,
never read instructions.)

I didn’t record when production of camera copy
was shifted from the Alphatype to an Autologic APS-
5, but 1984 sounds about right. That machine, with
a resolution of 1200 dpi, used photographic paper in
roll form, and was much less labor-intensive. Since
TUGboat is printed on non-glossy paper, the dif-
ference in quality was not really noticeable, except
perhaps for very tiny print.

In 1988, TUG applied for a second class postal
permit, in an attempt to control expenses. One of
the requirements for this permit is that at least four
issues of the periodical must be published annually.
Since the volume of material being submitted was
sufficient for about three issues, the board decided
that the proceedings of the annual meeting would
become the fourth issue. The proceedings of the
1987 and 1988 meetings had already been published
as issues of TEXniques, but this had only a limited
distibution; inclusion in TUGboat would make the
information available to all members. However, the
time commitment was greater than I could handle,
so the meeting program committee became respon-
sible not only for the acceptance of papers for the
meeting, but also for the editing of the proceedings.
A member of the committee was designated to be

TUGboat, Volume 28 (2007), No. 1 —Proceedings of the Practical TEX 2006 Conference 43

Barbara Beeton

Figure 42: TUGboat 10:4 — the first TUGboat pro-
ceedings issue

Figure 43: TUGboat 10:4, it hadn’t fully sunk in that
wide pages are hard to read

Figure 44: TUGboat 11:3, but we learned before the
next proceedings issue

Typesetting the Byzantine Cappelli

Philip Taylor

The Computer Centre, Royal Holloway,

University of London, TW20 0EX,

United Kingdom

mailto :P.Taylor@Rhul.Ac.Uk

Abstract

An overview of the author’s rôle in the preparation of the forthcoming Lexicon of
Abbreviations & Ligatures in Greek Minuscule Hands, with particular emphasis
on two challenges : sorting TEX markup for polytonic Greek using multiple con-
current keys, and deriving statistical data which could be used to provide input
to the book design.

Introduction

One of the greatest pleasures that I get from my po-
sition as Webmaster at Royal Holloway, University
of London, is the only-too-rare opportunity to work
with truly gifted and dedicated scholars. For the
last few years, I have been truly privileged to be able
to work with Miss Julian Chrysostomides, Director
of our Hellenic Institute, and with Dr Charalambos
Dendrinos, a Research Fellow within the same In-
stitute. These two extraordinary scholars have both
devoted a considerable portion of their lives to the
collection, collation and preparation of material for
a Lexicon of Abbreviations & Ligatures in Greek Mi-
nuscule Hands which is intended to do for Byzan-
tine scholarship what Adriano Cappelli’s Dizionario
di Abbreviature latine ed italiane has been doing for
Latin scholarship for the past 100 years.

Figure 1: A fragment from Cappelli’s Dizionario

For both Latin and Byzantine scholars, the task of
deciphering manuscripts which may be more than
a thousand years old is not simply one of reading
a long-dead scribe’s handwriting : far more difficult
is the task of identifying and correctly interpreting
the various abbreviations, ligatures and other scribal
shorthand notations that he or she may have used.
Even a skilled palæographer may have difficulty in

deciphering these, although for Latin scholars Cap-
pelli’s Dizionario provides an invaluable tool.

Only too aware of the difficulties that their stu-
dents were experiencing in attempting to decipher
Byzantine manuscripts, Julian & Charalambos de-
cided to compile a Byzantine dictionary that would
provide their students, and future scholars, with a
key to those scribal notations which were most likely
to cause problems in interpretation. For over five
years, these two scholars have been painstakingly re-
searching and deciphering hundreds if not thousands
of individual manuscripts and recording the results
of their work, initially using fairly primitive technol-
ogy such as Windows 3.1’s Cardfile and Eberhard
Mattes’ emTEX but more recently using spread-
sheet technology (Microsoft’s Excel) and the TEX
Live Windows implementation of Hàn Thế Thành’s
Pdf(LA)TEX by Fabrice Popineau.

The Work of the Scholars

Although locating and obtaining copies of the man-
uscripts requires a not-insignificant amount of time,
I will concentrate here on the tasks which the schol-
ars undertake once the copies have been received.
Each scribal notation that is potentially of inter-
est is identified and scanned, and any artifacts that
might serve to confuse are eliminated using a light
pen and suitable software (JASC’s Paintshop PRO).
The resulting “clean” image is then stored as a PDF

file using a fixed naming convention, and a corre-
sponding entry made in an Excel spreadsheet : this
entry contains the filename, the transcription, an
explanation (if the notation is an abbreviation or
similar) and the provenance (typically the date, but
occasionally a more detailed provenance where this
is felt to be important). Lest this create the impres-
sion that the rôle of the scholars is trivial, let me

142 TUGboat, Volume 26 (2005), No. 2 —Proceedings of the 2005 Annual Meeting

Figure 45: TUGboat 26:2, and we try to keep improv-
ing

44 TUGboat, Volume 28 (2007), No. 1 —Proceedings of the Practical TEX 2006 Conference

How to Create a TEX Journal: A Personal Journey

Figure 46: TUGboat 15:4 — the transition to produc-
tion at SCRI

the responsible Proceedings Editor. The first per-
son to take on this challenge was Christina Thiele
(Fig. 42). Many of the decisions on the style of the
proceedings issues grew out of Christina’s ideas and
opinions, and Christina remains to this day a valu-
able member of the TUGboat editorial team.

Articles in the first TUGboat proceedings issue
were presented as a single, wide column (Fig. 43).
This validated the original contention that text of
such great width was difficult to read, and a modi-
fied two-column format was introduced for the 1990
proceedings (Fig. 44). With minor modifications—
the abstract is now wider, though still less than
5 inches— this format is still in use today (Fig. 45).

Not only was the editorial job getting to be
more than I could handle and keep TUGboat on
schedule, but the workload at the AMS print shop
was growing, and it was necessary to look for an-
other printer. With the help and encouragement
of the group that had done such a fine job with
the 1994 proceedings, a production team was estab-
lished. Mimi Burbank, with the support of her em-
ployer, the Florida State University Supercomputer
Computations Research Institute (SCRI), provided
a new production home (Fig. 46). With remote log-
ins at SCRI, everyone involved in the production ef-

70 TUGboat, Volume 20 (1999), No. 1

Late-Breaking News

Production Notes

Mimi Burbank

It is April, and the trees and flowers are blooming,
and thoughts turn to new life —and the new TEX

Live CD, which is included in this issue. Many
thoughts fly through my feeble mind as I think
about production of this issue — the first being that
I am using the TEX Live 4 setup for production.
I wanted to use each set of binaries available on
the CD plus some extras, with the exception of the
win32. I even managed to build a set of binaries
on my own! The following binaries were used for
production of this issue:

alpha-osf3.2 mips-sgi-irix5.3

alphaev5-osf4.0d rs6000-aix4.1.4.0

hppa1.1-hpux10.10 rs6000-aix4.2.1.0

i686-linux-gnulibc1 sparc-solaris2.5.1

mips-irix6.2 sparc-solaris2.7

I tend to “play” (more proficient users would call
this “beta testing”) with the binaries until they are
complete. I like to think I represent the “novice”
when it comes to setting up a TEX system– and
always tell the TL4 team members that, “If I can
do it, anyone can!” I encourage all of you to read
the TEX Live documentation, and become familiar
with just what is on your system. There is a world
of documentation available with all of the packages
on the CD – all ready for your use and enjoyment.

Output. The final camera copy was prepared at
SCRI on multiple workstations, using the TEX Live 4
setup, which is based on the Web2c TEX imple-
mentation version 7.3 by Karl Berry and Olaf We-
ber. PostScript output, using outline fonts, was
produced using Radical Eye Software’s dvips(k) 5.85,
and printed on an HP LaserJet 4000 TN printer at
1200dpi.

This issue also marks a new trend in the pro-
duction of TUGboat —we will also be transferring
several PostScript files to the printer.

TUGboat Web Pages

I have been working to update and complete the
TUGboat web pages for inclusion in the TL4 CD.
During this process, I was overcome by guilt feel-
ings— because we promised to begin this process
some time in 1996— and somewhere toward the
end of March, I decided that we really needed
to put up all of the contents files for every sin-

gle issue of TUGboat! The contents are archived
in special files which may be run to produce the
Contents pages for each volume (or more infor-
mation see http://ctan.tug.org/tex-archive/

usergrps/tug/tugboat/t-of-c/). During the pro-
cess, several comments were made about attempt-
ing to standardise the “naming” of the TUGboat

directories on the TUG web server, so I also had
to go in and rename every directory, and then edit
each contents file, globally substituting one string
for another. This took approximately three full
days, and though the contents files are not as “nice”
for the older issues, they at least are present and
may be viewed at http://www.tug.org/TUGboat/

contents.html. Any errors are my own; please send
comments to webmaster@tug.org and I’ll make
changes as quickly as I have time to do so.

My primary reason for mentioning the above
is to encourage you to look at the early contents
files. I have been a member of TUG since 1986, and,
having attended nine annual meetings between 1986
and 1996, I must admit to taking a nostalgic trip
down “memory lane” as I opened and closed each of
the contents files. For those who are longstanding
members of TUG, there is quite a bit of history
simply in the contents pages, and I enjoyed meeting
“old friends” there. I only hope that we will not
have to wait too much longer to be able to actually
convert some of the earlier .tex files to a readable
format on the web. This of course will require more
volunteers who have time to convert some of the
older files into a format which can be processed
either using the original software or recoding files
to run with the current version of (LA)TEX!

This will also require permission of every author
who ever published in TUGboat! And not only for
the TUG web pages. Discussion has begun with
regard to making a CD of TUGboat articles. More
information on this will appear on the web pages
at http://www.tug.org/TUGboat, as well as future
issues of TUGboat.

Coming In Future Issues The next issue will
contain an article entitled “A short introduction to
font characteristics” by Maarten Gelderman (reprinted
with permission from the editors of the Dutch
MAPS). Also scheduled for publication in the next
issue is an article describing the latest Ω system.

⋄ Mimi Burbank

SCRI, Florida State University,

Tallahassee, FL 32306 – 4130

mimi@scri.fsu.edu

Figure 47: TUGboat 20:1 — TUGboat goes electronic,
both delivering copy to the printer, and posting on-line

fort could work as effectively across the Internet as
they could “at home”. Printing and distribution was
contracted to Cadmus, a long-established printer of
technical journals on the Eastern Shore of Maryland.

At first, physical camera copy was sent to Cad-
mus, but when they offered the capability of receiv-
ing copy in the form of PostScript files, we tried it
out, and found that it worked (Fig. 47). TUG had
a stable web site by this time, and TUGboat tables
of contents had been posted regularly upon publi-
cation of each issue. With the routine processing of
files to PostScript, and the ability to convert these
to a form readable with a browser, it was decided
to try to post the entire TUGboat archive on the
web site. Since some decisions regarding copyright
meant that TUG didn’t have clear title to the mate-
rial, this in turn meant that permission would have
to be obtained from every author who had ever pub-
lished in TUGboat.

Unfortunately, TUGboat suffered a drought of
submissions, and that, along with delays in receiv-
ing files from meeting presentations, snowballed into
a serious production delay. The mailing permit was
terminated after the 2002 volume, allowing a cut-
back to three issues per year.

By 2003, PostScript files sent to the printer had
been supplanted by PDF files; PDF files were already

TUGboat, Volume 28 (2007), No. 1 —Proceedings of the Practical TEX 2006 Conference 45

Barbara Beeton

Figure 48: TUGboat 3:2 — macros, macros, macros

being posted to the TUG web site. With Mimi’s im-
pending retirement (which occurred at the end of
the 2005 academic year), the files archived at FSU

were transferred to the TUG box hosted at Aarhus
University (thanks to Kaja Christiansen), and pro-
duction was transferred there. There were a few
glitches— the source files for one issue were lost ow-
ing to a tape backup failure— but in general, there
was very little disruption, since by then everyone
was used to working remotely. Karl Berry has taken
over as the contact with the printer. And with his
hard work, and the substitution of an issue of pro-
ceedings for EuroTEX (distributed to members of
most of the European groups as well as TUG), we
are back on schedule. Thanks, Karl.

Some random notes on content

The first few issues were devoted almost entirely
to reports on who was doing what, where. Macros
were still relatively rare, and the ones submitted for
publication were indexed for easy reference (Fig. 48).
This treatment has been superseded by articles on
packages, occasional analyses of interesting macro
code, and “The Treasure Chest”, a list of recent ad-
ditions to CTAN.

Errata listings for TEX and METAFONT were
provided regularly in supplements, a practice that

Figure 49: TUGboat 13:4 — DEK and a friendly spider

Figure 50: TUGboat 3:2 — just a few output devices
so far

46 TUGboat, Volume 28 (2007), No. 1 —Proceedings of the Practical TEX 2006 Conference

How to Create a TEX Journal: A Personal Journey

ceased when it became practicable to obtain the er-
rata files via a network connection. (Remember —
the Internet didn’t exist when TEX was launched.)
Of course, major upgrades to the software and CM

fonts have always been announced in TUGboat, and
Don Knuth has been a significant contributor of
other material as well, if only in the form of tran-
scribed question and answer sessions (Fig. 49).

The topic of output devices was very “hot” in
the early days of TEX, and a recurring section con-
tained reports on the devices that users had man-
aged to implement, and examples of output from
the devices. (One of my favorites was a Diablo
daisy-wheel printer, with a driver cobbled together
by Timothy Murphy, although no sample was pub-
lished.) Beginning with issue 3:2 (Fig. 50) a chart
appeared in most issues; the run ended in 11:4, when
device drivers and laser printers were no longer a
novelty.

A decision that didn’t have a visual effect on
TUGboat but did have an impact on the quality of
the content was the implementation of a peer review
process for all technical submissions. This practice
was initiated in 1990 with particularly strong en-
couragement from Nelson Beebe. The goal of this
review is not to reject material— there has never
been a real problem of over-supply —but to ensure
that what is published is complete, accurate, and
can be understood by a reader with the requisite
background. (We do not wish to be a closed society
of “great experts talking to other great experts”.)
Some really fine tutorials have emerged from this
practice. However, it has been a real disappointment
for me that many TEX practitioners who might be
best able to write cogently for novices have either
pled lack of time to do so, or have directed their ef-
forts solely to writing books, presumably yielding to
the profit motive.

Fonts and language support have figured promi-
nently in TUGboat’s pages. Although this may be
an area of specialized interest (at least one sugges-
tion was received that it should be less prominent),
TEX may provide scholars working with obscure lan-
guages their only practical means of producing doc-
uments with fonts of good quality. Just a few of the
language- and font-specific topics covered are Cop-
tic, Arabic math (Fig. 51), Byzantine music, classi-
cal Greek, Bengali, Thai (Fig. 52), Hebrew, Deseret,
the list goes on . . .

The future . . .

Maybe it’s time to think about handing this job off
to someone else. Karl has been especially support-
ive and helpful, nagging authors and doing yeoman

TUGboat, Volume 25 (2004), No. 2 145

The command \sb{expr} or _expr gives expr as an
index. The index expr should be given within braces
unless it consists of a single token. The command _

does not change the direction of expr. It can there-
fore be used only for a single token.

$b{{}\sb{{17}}}+5 ; b{{}\sb{2}}+5*s{{}_b}$

H� ∗ 5 + 2H ; 5 + 17H

The empty braces {} are necessary to get the
exponent or the index closer to the basic symbol.

4.10 Common functions

There are symbols for the usual abbreviations rep-
resenting elementary functions in use in mathemat-
ics. Table 3 shows the predefined names assigned
according to typographical conventions

Generally, the abbreviations representing ele-
mentary functions are used with dots. Sometimes,
they are noted without dots.

\funwithdots

$\sin c + \tan s$
� A 	£ + � Ag.

\funwithoutdots

$\sin c + \tan s$
� A£ + � Ag

4.11 New function

The command \newfunc{fname} defines a function
named fname.

${\newfunc{SGr}}(c) = \cos(c{{}\sp 2}) - 6$

6 − (2�) A�Jk. = (�) Q 	ª�

4.12 Function defined with cases

The command \cases{array} generates a function
defined with different cases presented in array.

$d(c) = {\cases{

{-4c} & {{\arhbox{ AYZa kan }} c<0} \cr

{ 4c} & {{\arhbox{ AYZa kan }} c>0} \cr

{-2} & {{\arhbox{ Gyr Zlk }} } \cr

}}$

0 > �
	àA¿ @ 	X @ �4−

0 < �
	àA¿ @ 	X @ �4

½Ë 	X Q�

	« 2−

= (�)X

Mathematical Arabic symbols that stretch or
shrink according to the context are provided by the
system as well.

4.13 Root

The command \sqrt{expr} gives the square root of
expr.

${\sqrt{{{ {b*9} \over {lc} }}}} -

{\sqrt{c{{}\sp 2}}} + {\sqrt{5a}}$

@5
�

+ 2�
�

− H∗9
È�

✁

Name Example Result

Sine $\sin c$ � Ag.
Cosine $\cos c$ � A�Jk.
Tangent $\tan c$ � A 	£
Cotangent $\cot c$ � A�J 	£
Secant $\sec s$ � A�̄

Cosecant $\csc c$ � A�J�̄

Arc cine $\arcsin c$ � Ag. 	P
Arc cosine $\arccos c$ � A�Jk. 	P
Arc tangent $\arctan c$ � A 	£ 	P
Arc cotangent $\arccot c$ � A�J 	£ 	P
Arc secant $\arcsec c$ � A�̄ 	P
Arc cosecant $\arccsc c$ � A�J�̄ 	P
Hyperbolic sine $\sinh c$ �

	PAg.
Hyperbolic cosine $\cosh c$ �

	PA�Jk.
Hyperbolic tangent $\tanh c$ �

	PA 	£
Hyperbolic cotangent $\coth c$ �

	PA�J 	£
Hyperbolic secant $\sech s$ �

	PA�̄

Hyperbolic cosecant $\csch c$ �
	PA�J�̄

Arc hyperbolic sine $\arcsinh s$ �
	PAg. 	P

Arc hyperbolic cosine $\arccosh c$ �
	PA�Jk. 	P

Arc hyperbolic tangent $\arctanh c$ �
	PA 	£ 	P

Arc hyperbolic cotangent $\arccoth c$ �
	PA�J 	£ 	P

Arc hyperbolic secant $\arcsech c$ �
	PA�̄ 	P

Arc hyperbolic cosecant $\arccsch c$ �
	PA�J�̄ 	P

Logarithm $\lg c$ � ñË
Exponent $\exp c$ � ê�̄

Table 3: Usual functions

The command \root{expr1} \of {expr2} gives the
expr1 root of expr2.

$ {\root{3b} \of

{2+{\frac{b*9}{c}}}}$
9∗H
�

+ 2
✁

H3

4.14 Integral

The command \lint_{expr1}^{expr2} gives the
integral from expr1 to expr2 using the reversed sym-
bol ✂ ✄ .

Figure 51: TUGboat 25:2 — Fonts: Arabic math

120 TUGboat, Volume 21 (2000), No. 2

"����" FAQ J�dS"+�>9XdJ#!���S"��;�H� $��H� ��JK���;"�d>^PW;�
G�K;�H� `J"��^KK$�SWF��. _;">S"+�>9�>"����" FAQ J�d#�P���Ja
� ��G�d>^G�"��J$��^P+�. ��������	
�����������������������������
“���������������
���	��� FAQ.”

"����" FAQ J�dS"+�>9XdJ#!���S"��;�H� $��H� ��JK���;"�d>^PW;�
G�K;�H� `J"��^KK$�SWF��. _;">S"+�>9�>"����" FAQ J�d#�P���Ja
� ��G�d>^G�"��J$��^P+�. ��������	
�����������������������������
“���������������
���	��� FAQ.”

Figure 1: The same text, with and without intercharacter glue. To suppress warnings and error messages
for the above variant, \tolerance had to be set to 8000 and \badness to 10000. \baselinestretch has
the value 1.2.

References

[1] The Adobe Glyph List. http:

//partners.adobe.com/asn/developer/

typeforum/unicodegn.html.

[2] Allan Jeffrey et al. The fontinst package.
Available from CTAN and its mirrors, e.g.
ftp://ftp.dante.de/pub/tex/fonts/

utilities/fontinst.

[3] Werner Lemberg. The CJK package.
http://cjk.ffii.org.

[4] Surapant Meknavin and Theppitak
Karoonboonyanan. The thailatex package. ftp:
//opensource.thai.net/pub/linux-tle/

updates/SOURCES/thailatex-0.2.%1.tar.gz.
The implementation for Thai in this package
is incompatible to the one described in this
article. For this reason, the Babel module of
the CJK package is called ‘thaicjk’ and not
‘thai’.

[5] John Plaice and Yannis Haralambous. The
Ω system. http://www.gutenberg.eu.org/
omega. Almost all modern TEX distributions
contain support for Ω.

[6] Tomas Rokicki. The afm2tfm program. Part
of the dvips package which is available from
virtually all TEX distributions.

[7] Han The Thanh. pdfTEX. ftp:

//ftp.cstug.cz/pub/tex/local/cstug/

thanh/pdftex/latest. pdfTEX is, similar
to Ω, already part of most modern TEX
distributions. The given URL specifies the
primary address of pdfTEX since it still in
development, sometimes with incompatible
changes.

[8] The Unicode Standard. http:

//www.unicode.org.

⋄ Werner Lemberg

Kl. Beurhausstr. 1

44137 Dortmund

wl@gnu.org

Figure 52: TUGboat 21:2 — Fonts: Bengali

TUGboat, Volume 28 (2007), No. 1 —Proceedings of the Practical TEX 2006 Conference 47

Barbara Beeton

1002 TUGboat, Volume 0 (2060), No. 0

TUGboat wish list

These are some of the topics on which the editor is looking for authors.
Add your own suggestions or volunteer!
Send e-mail to TUGboat@math.AMS.org with details.

• interviews with people who have influenced TEX and TUG

• real product reviews of both commercial and PD TEX implementa-
tions and other software, also macro packages like pstricks, etc.

• surveys of TEX implementations for particular hardware/operating
system combinations, with comparisons of features

• “road map” to the CTAN TEX areas

• more tutorials and expository material, particularly for new users
and users who aren’t intending to become TEX wizards; one possi-
bility— answers to the “top ten” questions sent to comp.text.tex

by people writing dissertations

• “how to” articles—how to build your own style based on, say,
article.sty, how to include an abstract and other stuff in the
full-width block at the top of a two-column article, etc.

• comparative analyses of style files that address the same problem,
e.g., crop marks

• crossword puzzles for the whole TEX community

columnists of the latter variety may be promoted to
associate editor (see the list on the reverse of the ti-
tle page of this issue). If you are interested in either
track, a message to TUGboat would be welcomed.

• Production assistance. This is a more prob-
lematic area, as the successful production of an
issue of TUGboat requires that every file and
every font be available to and compatible with
the equipment on which the camera copy is gen-
erated. However, sometimes it’s useful to have
someone to call on to generate fonts, vet macro
files (I always assume that if the author doesn’t
specify otherwise, the current version on CTAN

will work properly, an assumption that isn’t al-
ways warranted), and help fight other fires. If
you’re an experienced (LA)TEX user and are in-
terested in this sort of challenge, send a mes-
sage to the TUGboat address with the details of
the system you’re working on — computer, op-
erating system, implementation and version of
TEX and METAFONT, output device(s) avail-
able. Previous production experience is a big
plus, and a direct Internet connection a neces-
sity.

By now, you’ve seen Christina’s solicitations for a
new TEX and TUG News editor. The editor of
TUGboat has been having similar thoughts off and
on for several years, but hasn’t done anything se-

rious about it. After the nearly disastrous failures
to meet the publication schedule this past year, it’s
imperative that I do start looking toward the fu-
ture. I know that TUGboat edited by someone else
wouldn’t be quite the same, but there are many valid
conceptions of what such a journal should be. The
criteria that I’d value in a possible successor include,
in no particular order:

• broad and thorough knowledge of TEX and its
relations;

• fascination with the typographic art and a de-
sire always to learn more;

• literacy;
• a good (native) command of English and some

ability to understand other human languages;
• tact;
• a comfortable familiarity with the electronic

networks;
• the ability to bend a computer to one’s will;
• a well-developed sense of responsibility.

If you think you might be such a person, or know
of someone else who is, please contact me directly:
bnb@math.AMS.org.

⋄ Barbara Beeton

American Mathematical Society

P.O. Box 6248

Providence, RI 02940 USA

bnb@Math.AMS.org

Figure 53: TUGboat 14:4 — my wish list, and my list
of qualifications for a future TUGboat editor

work with editing and production, especially since
Mimi’s retirement. He’d make a fine editor, though
perhaps he’d rather “have a life” outside of TUG.
I’d like to see TUGboat continue as a publication
for all TEX users, and indeed for anyone interested
in high-quality typography and composition.

That brings up a matter that has bothered me
for a while. The bulk of TUGboat is still produced
with LATEX, and much of the content is also biased in
that direction. One effect is the downplaying of plain
TEX, which still has its devoted users; a sad conse-
quence is that at least one member of long standing
has resigned, citing the LATEX bias as the reason.
Remember — all TEX users. Let’s not neglect our
old friends, or take them entirely for granted.

A very long time ago, I published a “wish
list” (Fig. 53). Rereading it now, I wouldn’t change
much, nor would I change the list of qualifications I
thought would be good in my successor as editor.

What will I do when I retire? Well, I hope not

TUGboat Index preliminary draft, 13 Jun 1990 18:15 1001

Topics in a TUGboat Index

Barbara Beeton and Ron Whitney

Index-construction is a notoriously difficult task.
One can approach an index from within (looking at
the existing text and classifying what one sees) or
from without (imagining what words and concepts
users of the index will naturally want to use for
queries). Of course, the whole process will comprise
both these methods with additional cross-references
and consistency checks.

One of the authors (BB) has spent considerable
time examining TUGboat issues 7 – 10, marking
items for a cumulative TUGboat index. The

following list contains the headings generated from
these volumes for a subject index. Items listed
within square brackets (as Notes) are for production
purposes only and will not appear in the final copy.

We would value any help you care to give us!!
Please add to the list any subject areas you might
naturally query in a TUGboat Subject Index which
are not already present. Annotations and other
comments are also quite welcome. The whitespace
you see is there for your benefit. Please use it!

Accents, see Diacritics

AMS-TEX

Announcements, miscellaneous

Applications, see Back-end formatter; Book
production; Database applications; Electronic
publishing; General applications; Journal
production;

Archives of TEX material

ASCII output from TEX or LATEX

Back-end formatter

Beginner’s topics (see also Training; Tutorials)

Bibliographic tools

Book production

Books on TEX, see Publications on TEX

Bridge

Budgets, TUG, see Financial reports; Treasurer’s
reports

Calendar of events [Note: regular feature]

Chemical notation

Chess

Commercial use of TEX, see Production use of
TEX

preliminary draft, 13 Jun 1990 18:15 preliminary draft, 13 Jun 1990 18:15

Figure 54: The bare bones of a potential TUGboat

index

to lose touch with either TUG or TEX. If I just hang
around the house, it will simply drive my usually
patient husband to distraction. A project I started
long ago might be revived: a TUGboat index. I’ve
already accumulated the data for volumes 1–10. Or-
ganizing this needs a method of sorting (and print-
ing) locations that handles volume and issue as well
as page number. A basic outline for cross-references
already exists— a draft was circulated for comments
at the 1990 meeting at Texas A &M in College Sta-
tion (Fig. 54). No promises, but this seems a worthy
project, and at least it would keep me off the streets.

Thanks

And finally, I’d like to thank all TUG members and
TEX users, many of whom have become good friends
through the years, for their support and encourage-
ment. The Math Society has been a good place to
work and be involved in this TEX enterprise. And
most of all, Don Knuth, who started it all.

48 TUGboat, Volume 28 (2007), No. 1 —Proceedings of the Practical TEX 2006 Conference

A lifetime as an amateur compositor

David Walden

The first section of this paper briefly relates my expe-
rience writing and printing documents until I began
to use TEX. The second section summarizes why
I now use TEX and gives examples of its benefits,
particularly writing books. Section 3 touches on the
advantage of being able to use a separate powerful
text editor, since TEX does not require use of a built
in editor. Go straight to section 2 if you want skip
my reminiscences that are not directly related to TEX.

1 First fifty years

1.1 Pre-computers

For some reason, I have always been interested in
putting marks on paper — as with many people, my
first work was with crayons, finger paints, and 1 inch,
ruled “primary paper” and thick “primary pencils.”1

But it was not long before I moved on to more
publication-like processes. Our church had a mimeo-
graph machine and my parents were involved with
producing the Sunday programs, and my parents
both taught in the public schools2 where they pre-
pared handouts to students using ditto machines. I
was a little involved with reproducing such materials
at least throughout my teen years.

My father had an Underwood manual typewriter
upon which he typed and on which I banged with
a few fingers as a child. Later, he obtained a Royal
manual typewriter on which I typed with ten fingers
from the time I took a typing class two hours a
week for one term during my sophomore year of high
school. Ever since taking that typing class, I have
been typing, often for reproduction, more or less
constantly: so much so that when my son was a child
and people asked him what his father did, my son’s
answer was, “He is a typist.” After I went away to
college, I moved to a Smith Corona electric portable
typewriter; and when I entered the work world, we
used IBM Selectric typewriters with their changeable
type balls.

However, I wasn’t a mistake-free typist, and I
had much use for the tools of typewriter correction
using carbon paper and other typewriter-base media:

1 The oral presentation version of this paper given at the
PracTEX’06 conference included a number of photographs
that are not included here because I did not seek permission
to use them.

2 Supported by the town government.

erasers, stuff to patch a mimeograph stencil, a razor
blade to scrape the ink off of a ditto master, and
KO-REC-TYPE paper and Snopake correction fluid
to paint over typing so characters could be retyped
correctly on pages that would be reproduced on
Xerox copiers.

At http://www.tpub-products.com/, I found
a document for sale that describes the duties of
a military “religious program (RP) specialist” (an
assistant or secretary to a chaplain), and it includes
instructions for using Ditto masters; I quote it below.
This description represents about the mid-level of
complexity of pre-computer desktop “publishing” —
more complicated than carbon paper (but not much)
and slightly less complicated than a stencil machine.

Before proceeding to an explanation of stencil
preparation, the Ditto master will be discussed.
The white Ditto master (overlay) is attached to
a sheet of paper which is thickly coated with a
carbon substance. Typing and hand- stylus im-
pressions are made on the overlay and cause the
carbon substance to be imprinted on the reverse
side of the master. When the overlay is attached
to the Ditto machine, the carbon-coated sheet is
detached. The carbon impressions of the Ditto
master are moistened by the duplicating fluid as
the drum is rotated, which in turn transfers the
carbon dye to the paper being fed into the ma-
chine. This transfer yields an exact reproduction
of the master.

Preparing a neat and accurate Ditto master
stencil is one of the more important secretar-
ial tasks that the RP will perform. Command
Religious Program announcements are often dis-
tributed to command personnel through the use
of Ditto copies. Just as the appearance of the
office of the chaplain makes an instant and lasting
impression, an information “flyer” or announce-
ment will also leave lasting impressions. If the
announcement is neatly prepared with concise and
accurate information, it will probably give people
the impression that the office of the chaplain is
an efficient and caring organization. Therefore,
it is important that the RP prepare each Ditto
master with these thoughts in mind. The follow-
ing helpful hints should aid the RP in preparing
Ditto masters:

• The “flimsy” sheet of paper that is inserted
between the Ditto overlay and the carbon attach-
ment MUST be removed before it is possible to

TUGboat, Volume 28 (2007), No. 1 — Proceedings of the Practical TEX 2006 Conference 49

David Walden

have impressions transferred to the back of the
overlay. NOTE: If there is some art-work involved,
the “flimsy” may be left between the overlay and
carbon attachment while the art-work is penciled
lightly onto the overlay. The artwork can then
be retraced with a stylus when the “flimsy” is
removed. If an electric typewriter is being used,
a test line should be typed on a Ditto master at
each typing pressure setting. A copy should then
be run and the RP can select the pressure that
will provide the best copy. For manual typewrit-
ers, the typing pressure lever should be set to a
medium or light position for best results.

• A Ditto master should be left in the type-
writer when errors are corrected. The typewriter
platen should be turned until there is enough
room to separate the perforated overlay from the
carbon backing. A razor blade or other sharp-
edged instrument should then be used to lightly
scrape the carbon deposit of the incorrect charac-
ters from the back of the overlay. Next, a clean
piece of Ditto carbon should be placed between
the overlay and the original carbon. Then the
typewriter should be returned to its original po-
sition and the correct letters typed. After the
correction has been made, the temporary car-
bon that was used for this correction MUST be
removed before proceeding.

• Ditto masters may be reused at a later date
if they are properly stored after the initial use.
The masters should be placed in large envelopes
and separated by flimsy sheets. It is imperative
that they be stored in a flat position to keep them
from becoming wrinkled

The point I am trying to make with the above
discussion about the pre-computer era is that it took
many (fussy, touchy, tedious) steps of careful work
to produce good output, just as it does today in the
world of fancy computer-based systems. Added prob-
lems were that the “desktop” (versus professional
printing) approaches to reproducible typesetting in
the pre-computer era didn’t produce high quality
printing, and there were limits on the number of
copies you could make before the masters wore out.

1.2 Early computer use

I first came in contact with computers when I was
in my junior year in college. While I still contin-
ued to use a typewriter for the next decade or so,
I was also gradually changing over to using com-
puters for typing documents, especially those that
would be reproduced. I started with punch cards
and an IBM 025 key punch machine, moved to rolls
of punched paper tape with editing using Dan Mur-
phy’s TECO (tape editor and corrector), continued
using TECO (modified to work with computer files

rather than paper tape) via a Model 33 Teletype
and then a TI Silent 700 as I moved into the world
of computer time sharing (where the computer ter-
minal was in my own office for the first time), used
Jeremy Salter’s RUNOFF (the first word processing
program) on MIT’s CTSS system, MRUNOFF (a ver-
sion of RUNOFF for the TENEX operating system),
and briefly touched troff/nroff in the early years of
Unix. This computer-based world allow editing (e.g.,
with TECO) and reprinting of the actual raw text of
a document or, eventually, inclusion of typesetting
commands that would be interpreted by RUNOFF,
MRUNOFF, and troff/nroff to produce the final doc-
ument which could then be reproduced.

In the mid- to late-1970s, I first used a personal
computer — an Apple II — but only to run VisiCalc.
I was still doing word processing using MRUNOFF on
TENEX. In 1981, IBM announced its PC and I got one
for the following Christmas, I believe. My wife began
using WordStar, and I helped her because I was
familiar with command-based word processing from
MRUNOFF which my friend Rob Barnaby (developer
of WordStar) had also used.

1.3 Word and WYSIWYG

I don’t remember when, but before too long (perhaps
on the first PC AT) I began using the WYSIWYG

PC-Word for DOS (based on the ideas of Charles
Simonyi). Then I converted to using the Mac and
MacWord which seemed to be where the forefront of
Word development was taking place. MacWord was
somewhat incompatible with PC-Word, but my PC-
Word files converted over to the MacWord pretty well,
although my memory is that the very straightforward
style sheets of Word for DOS were no longer quite so
straightforward with MacWord and I couldn’t find
some other features I had been using with PC-Word.
I used MacWord for about eight years. In the early
1990s I decided to convert back to using an IBM PC

using a Windows-based DOS operating system and
then Win 3.1, but I discovered that my original Word
files for the early PC that had been converted to
MacWord did not convert back to the later versions
of PC-Word very well. This was quite distressing to
me. Moreover, after each of these changes I could not
find various capabilities I was used to using—they
were perhaps still there but apparently had moved
or how they were executed had changed.

As time went by and I continued to use Word as
part of Microsoft’s Office Suite, I became increasingly
annoyed at Word. Bigger, more complicated releases
kept coming out, and in time there was pressure from
people with whom I exchanged Word files to upgrade
to the latest version because earlier versions couldn’t

50 TUGboat, Volume 28 (2007), No. 1 — Proceedings of the Practical TEX 2006 Conference

A lifetime as an amateur compositor

easily handle files from later versions without the
person using the later version explicitly saving the
files in the format of the earlier version, something
many Word users didn’t even know how to do. Also,
each new release tended to again change how one
called for various capabilities to be executed, while in
time Microsoft stopped shipping hard copy manuals
with Word from which one could learn such things
(Microsoft increasingly forced users to depend on
on-line documentation which doesn’t work so well
when you don’t know how to ask for what you want
to know about). Also, each new release tended to try
to do more things automatically for me, and it took
more and more work to turn off all the “help” it was
trying to provide to me—help that in many cases
actually made things harder for me (while it didn’t
help me by providing powerful editing functions, e.g.,
using regular expressions).

1.4 Breaking with Word; choosing TEX

My level of annoyance and frustration grew and
grew, and eventually I made the decision to stop us-
ing Word for significant writing projects and to seek
an alternative. Before I go on about my alternate
approach, I must emphasize that I still use Word reg-
ularly for short, one-off projects (e.g., a short letter
that I will not need to access on-line at a significantly
later time) and when I work with someone who uses
Word for his or her document preparation.

I chose to use LATEX as my alternative to using
Word for document preparation for several reasons:

• It had a visible, non-proprietary, documented
markup with a simple, plain text syntax that I
was confident would allow me to reuse text in
different documents over the years.3

• I was already familiar with command-based
word processing and (as a computer program-
mer at heart) liked what I know about TEX’s
programmability. I also welcomed the prospect
of being able to use a powerful text editor again
as part of my document editing process (more
about this in section 3).

• I had been involved with religious arguments
about which of PageMaker, FrameMaker, or
Interleaf was the best tool in various situations;
and, from what I knew then, they also had
some of the same problems as Word in terms of

3 Word’s hidden markup and WYSIWYG editing means
that it is often hard to tell how something got to be the way
it is. Also, since many Word users don’t use style sheets,
formatting (for instance, of a subsection title) might be done
one way for one subsection and another way for another
subsection, increasing the probability of inconsistencies in the
output.

hidden markup and pressure on users to adopt
new releases that obsoleted prior releases. I also
was definitely looking for something that did
not involve a graphical user interface (GUI)—
something that required less mouse clicks. So, I
didn’t seriously investigate the just mentioned
systems.

• I am a great admirer of Donald Knuth and
thought it would be nice to try the system he
developed.

Part of my preference for LATEX over Word comes
from the fact that all of the markup is in a file where
I can see it and change it rather than it having to be
accessed by various menus and being largely unseen
(except in its effect) in the document. To take a
simple example, suppose I wanted to make the word
“brown” in the phrase “quick brown fox” be bold. In
Word I would select “brown” with the mouse, pull
down the Format menu, click the Font item on the
menu, click Bold in the Font Style column, click OK,
and then the text would appear in the document in
bold when displayed or printed (alternatively I could
type control-B after selecting the word “brown”).
To do the same thing in LATEX, I would change the
text “quick brown fox” to “quick \textbf{brown}
fox” with my text editor, and “brown” would display
in bold when my LATEX file was compiled.

No doubt there are ways in Word to do many if
not all of the things I now do with LATEX, but I find
them mostly easier to find and do in LATEX.

As an aside, another aspect of Word that annoys
me is that it is forever guessing what I want. For
instance, if I type an explicit new-line (Return key),
Word may decide to capitalize the first word of the
next line, which may or may not be right. When I
select some text with the mouse in Word, it often
chooses different text than I touch with the mouse,
for instance an extra space. Much or all of this can
probably be turned off and I turn off as much as I can,
but I never seem to be able to turn off everything;
and, while Word’s “help” sometimes does result in
what I want, it seems more often to choose what
I don’t want. LATEX never seems to cause me this
problem, which is not to say there are not other
problems with LATEX.

I don’t remember what TEX distribution—I
downloaded something from the Internet— I tried
first using NotePad on the PC for my editing. I do
remember buying The TEXbook, and then quickly dis-
covering LATEX which I experimented with a little bit.
Then, I bought a copy of PCTEX on the theory that
it would be nicely packaged, and I used it for a while
but grew dissatisfied with the power of its editor.
Then I found and downloaded WinEdt and MiKTEX.

TUGboat, Volume 28 (2007), No. 1 — Proceedings of the Practical TEX 2006 Conference 51

David Walden

Later I bought and tried the Y&Y distribution, but
I could never get it to work well; I did buy and make
good use of the VTEX distribution for one particular
project, but again I didn’t like its editor. I ended up
using WinEdt (and occasionally EMACS for things
that seemed harder to do in WinEdt than in EMACS)
and MiKTEX for a number of years, most recently
obtained as part of TUG’s ProTEXt distribution.

2 Why I use LATEX, particularly for
writing books

Two reasons typically given for using LATEX are for its
math support and for very nice looking typesetting.
Neither of these is particularly important to me: I
rarely have any math in my writing (but it is nice to
be able to handle it easily in those rare cases where
I do have it); I have a pretty undiscerning eye when
it comes to typesetting, and what LATEX produces is
more than good enough for me.

Here’s what matters most to me about LATEX:

1. its programmability and modularity;

2. that I get to use a powerful editor with it;

3. that the mark-up is clearly visible to me and
can be changed directly with a text editor;

4. its capabilities for explicitly specifying cross-
references, maintaining bibliographies, and auto-
matically numbering chapters, sections, figures,
tables, footnotes, etc., which permit easy reor-
ganization of text within documents and reuse
in other documents

5. its relatively slow pace of change and great con-
cern among the developers for backwards com-
patibility.

In other words, my use of LATEX is primarily about
productivity. (Of course, there are certain limitations
on this productivity such as when I finish writing
a book using LATEX and the publisher tells me I
must convert the text to Word and the figures to
PowerPoint slides for input into the compositor’s
typesetting system.)

Much of my work using LATEX is on book length
documents. For these I have compiled a more or
less standard set of techniques that I feel help me
be more efficient. I don’t claim that the techniques
I use are the techniques of a master; in fact, I view
myself as an intermediate user of LATEX—I know
enough to make LATEX jump through a few simple
hoops, but not enough to know if my approaches are
recommended or if they include some bad habits.

In my experience, publishers don’t think much
about the design of a book until they have the com-
pleted manuscript in hand. Since I use LATEX to
develop the original manuscript, I have to make lots

of temporary design decisions, and I want to be able
to change these decisions with a minimum of work
when the publisher does begin to deal with the de-
sign. Also, I am currently working on a book that I
will be self-publishing, and settling on the design for
this book is an iterative, experimental process where
it is even more important to be able to make changes
throughout the book (for instance, to the style of
figure captions) with minimal work. My experience,
however, should not prevent you from checking if the
publisher of your document already has a standard
style and perhaps even a LATEX class file that you can
use from the outset of your writing. In any case, my
emphasis here is not on the methods of representing
preferences for appearance; my emphasis is on meth-
ods for easily and repeatedly changing the overall
document appearance as well as on other methods
for working efficiently on large documents.

Some of what I am about to describe for working
efficiently on books or other long documents is prob-
ably already well known to many readers; perhaps
you can make suggestions for how I might do things
better.

(At several points in the following, I have in-
cluded in parentheses discussions of basic TEX and
LATEX issues that reviewers and others who have read
drafts of this paper have asked me about that are not
actually on the subject of book-writing productivity.
Perhaps these parenthetical notes should have been
footnotes, but I was too lazy to deal with the need
for alternatives to \verb in footnotes.)

2.1 Include files

Suppose I am working on a book entitled Break-
through Management, as I have been recently. I cre-
ated a top level file named bt.tex with the following
contents:

\documentclass{btbook}

\begin{document}

\include{titlepages}

\include{preface}

\include{surviving} % a chapter

\include{rapid} % another chapter

. . . % more chapters

\include{acknowledgements}

\include{bibliography}

\include{bio}

\include{index}

\end{document}

The text from included files appears to LATEX as
if it were in the file bt.tex in place of the \include

commands. In this way, I contain the text related to
each chapter and other parts of the book in its own
file. I let LATEX take care of numbering the chapters

52 TUGboat, Volume 28 (2007), No. 1 — Proceedings of the Practical TEX 2006 Conference

A lifetime as an amateur compositor

and figures (or whatever) within chapters. If I later
decided to change the order of chapters, I just change
the order of the \include commands in the bt.tex

files, and LATEX automatically renumbers everything.
To work on one chapter at a time, my file bt.tex

evolved to include many \includeonly commands,
e.g.,

\documentclass{btbook}

%\includeonly{preface}

%\includeonly{surviving}

\includeonly{rapid}

%includeonly{surviving,rapid}

. . .

\begin{document}

\include{titlepages}

\include{preface}

\include{surviving} % a chapter

\include{rapid} % another chapter

. . . % more chapters

\include{acknowledgements}

\include{bibliography}

\include{bio}

\include{index}

\end{document}

In the above example, only the file rapid.tex

gets compiled when I run LATEX on the file bt.tex.
In this 10-chapter book I had a couple of dozen
\includeonly commands in the bt.tex file that I
could comment in and out to work on each chapter
individually and with various combinations of related
chapters.

(Since the \include commands result in text be-
ing typeset, they must follow the \begin{document}
command. The \includeonly commands must go
in the preamble or else LATEX complains.)

2.2 Custom class file

I have created a file btbook.cls which is my own
personal class file for this particular book. This file
is processed when LATEX sees, at the beginning of the
file bt.tex, the command \documentclass{btbook}.
The first three lines of the file

\NeedsTeXFormat{LaTeX2e}[1994/12/01]

\ProvidesClass{btbook}[2006/01/21 BTbookclass]

\LoadClass{book}

define the class for this book to be named ‘btbook’
and to be an augmentation of the LATEX book class.

The rest of the lines of the file are read and
executed when LATEX is run as if they were lines
of text immediately following the \documentclass

command in the bt.tex file.
(If your publisher already provides a LATEX class

file, you can still collect all of the sorts of things I de-
scribe below in their own file and \input that file in
the preamble rather than just putting all these things

directly in your preamble. I prefer not to have much
in my preamble beyond the \includeonly{...}

commands that I am constantly commenting in and
out.)

2.3 Packages

Next in the class file comes the list of packages I use
for writing this book.

% Palatino is basic roman font

\RequirePackage{mathpazo}

% Helvetica is sans serif font

\RequirePackage[scaled=.95]{helvet}

% Courier is typewriter font

\RequirePackage{courier}

% for including images

\RequirePackage{graphicx}

% for formatting URLs

\RequirePackage{url}

%to be able to rotate figures

\RequirePackage[figuresright]{rotating}

% for dropped caps

\RequirePackage{lettrine}

% for tighter list spacing

\RequirePackage{paralist}

\setlength{\pltopsep}{.05in}

% for comment environment

\RequirePackage{comment}

% for endnotes with reformatted numbers

\RequirePackage{dw-endnotes}

\RequirePackage{setspace} %\doublespacing

When I find I need to use another package, I add
another \RequirePackage line to this list. (As I
understand it, RequirePackage does the same job
as \usepackage except it doesn’t allow the same
package to be loaded twice which apparently might
cause problems in some cases.)

Notice that the package name in one case in-
cludes the characters dw-. This is my convention
for noting a package that I have modified. In such
cases, the file of the modified package is in the same
directory with the rest of the files for this book or in
the local changes part of my texmf data structure.
I seldom understand a package I am modifying; I
typically use a hit and miss approach to change stuff
until I get the results I want.

Copy editors who edit on hard copy like double
spacing, and I can provide that with a one character
change—uncommenting the \doublespacing com-
mand on the last line above that loads the setspace
package.

2.4 Miscellaneous useful macros

The following macros provide a few capabilities I use
relatively frequently.

TUGboat, Volume 28 (2007), No. 1 — Proceedings of the Practical TEX 2006 Conference 53

David Walden

% space around em-dashes

\newcommand{\Dash}{\thinspace---\thinspace}

% mark text that needs checking

\newcommand{\CK}[1]{\textbf{CK #1}}

% marginal note to myself

\newcommand{\manote}[1]{%

\marginpar{\scriptsize To do:\\#1}}

% cut-in title

\newcommand{\partitle}[1]{%

\medskip\noindent\textbf{#1}}

%change function of \url command

\let\Originalurl=\url

\def\url#1{{\fontsize{10.7pt}{13.05pt}

\Originalurl{#1}}}

For some documents I have worked on, I have
had many more such miscellaneous useful macros.

Anyone trying to improve productivity using
LATEX who doesn’t already define his or her own
macros should learn to do so. User-defined macros
allow significant improvements in efficiency. For in-
stance, the first macro above defines the command
\Dash{} to be an abbreviation for the character
string \thinspace---\thinspace which results in
an em-dash being typeset with a little bit of space
on each side of it, as in aaa—bbb. It is less char-
acters and probably more reliable to type \Dash{}

many times in a book than it is to type the charac-
ters \thinspace---\thinspace{} many times. In
my view, however, the greater benefit of defining
the \Dash command comes when my publisher tells
me that its style is closed-form em-dashes (no space
on either side, i.e., aaa—bbb) or a more open form
(aaa — bbb). To implement either of these changes
throughout the book, I merely redefine \Dash, e.g.,

% no spaces around em-dashes

\newcommand{\Dash}{---}

or

% full spaces around em-dashes

\newcommand{\Dash}{ --- }

and recompile my document. Containing such style
conventions within a few lines of a large document
and being able to change the style throughout the
document with only a few key strokes is an enormous
advantage. (I’ll give a more complex example of such
containment when I discuss macros for figures and
tables below.)

To redefine a command that already exists in
LATEX or has been defined by a package that has
already been loaded, for instance to define a vari-
ation on \url as I do in the last two lines of my
group of miscellaneous useful macros, I have to use
the \renewcommand command. The \renewcommand

works just like \newcommand except that LATEX does
not complain with \renewcommand if I try to give

a definition to a command that already exists—
a good thing to be warned about when one uses
\newcommand. (In the next subsection I give another
redefinition example — redefining \footnote.)

2.5 Footnotes and endnotes

In the case of \RequirePackage{dw-endnotes}, I
am using the endnotes package, modified slightly to
change the format of the note numbers.

Typically, I put footnotes on the bottom of text
pages where they are referenced, at least while I am
drafting chapters and want to be able to see the
notes without having to turn a bunch of pages. How-
ever, publishers tend not to like having footnotes—
it makes a book look too academic to be popular, in
their view. Thus, before actual publication, I often
find myself converting all my footnotes to endnotes.
The next commands in my class file do this.

%comment out to not have end notes

\renewcommand{\footnote}{\endnote}

\newcommand{\dumpendnotes}{%

\medskip

\begingroup

\setlength{\parindent}{0pt}%

\setlength{\parskip}{1ex}%

\renewcommand{\enotesize}{\normalsize}%

\theendnotes

\endgroup

\setcounter{endnote}{0}}

First, the \footnote command is redefined to
be the \endnote command; this avoids my hav-
ing to replace every instance of \footnote with
\endnote. Then the class file defines a command
(\dumpendnotes) that can go at the end of each chap-
ter to dump the chapter’s endnotes, formatted as I
want them to be. If the command \dumpendnotes

was already defined in LATEX or some other pack-
age, LATEX would warn me because I didn’t do the
definition with \renewcommand.

2.6 Formatting figures and tables

The next set of commands in the class file have to do
with changing the format of figure and table captions
without actually modifying a LATEX or package file.
The LATEX default does not use bold face for captions
and uses a period rather than a hyphen between the
chapter number and figure number within a chapter.
The following changes patch LATEX to follow my
preference for bold face and hyphens.

\long\def\@makecaption#1#2{%

\vskip\abovecaptionskip

\sbox\@tempboxa{\textbf{#1}. \textbf{#2}}%

\ifdim \wd\@tempboxa >\hsize

{\textbf{#1}. \textbf{#2}\par}

54 TUGboat, Volume 28 (2007), No. 1 — Proceedings of the Practical TEX 2006 Conference

A lifetime as an amateur compositor

\else

\global \@minipagefalse

\hb@xt@\hsize{\hfil\box\@tempboxa\hfil}%

\fi

\vskip\belowcaptionskip}

\renewcommand \thefigure

{\ifnum \c@chapter>\z@ \mbox{\thechapter-}%

\fi\@arabic\c@figure}

\renewcommand \thetable

{\ifnum \c@chapter>\z@ \mbox{\thechapter-}%

\fi\@arabic\c@table}

(I do not have to bracket these lines, top and bottom,
with \makeatletter and makeatother commands
as I would have to if this patch was in the preamble
of my document; the at-sign is a letter by default
in class files and packages. Some readers may be
back a step, at the question of, “What is it about
at-signs anyway?”. The answer is that the files for
basic LATEX, for class files, and for other packages
are full of macros names that include an at-sign (@),
e.g., a macro named \@makecaption is defined at the
beginning of the above example. My understanding
is that an at-sign is used in low level programming
of LATEX, class files, and packages to create macro
names that can’t accidentally conflict with names
that may be defined by users not doing such LATEX
“systems programming.” An at-sign is normally not
a letter and thus cannot be part of a macro name.
However, in the above example I want to patch low
level LATEX code that includes at-signs in its macro
names; if I was trying to make this patch in my
preamble (as I used to do before I learned to make
some patches in a personal class file), I would have
to tell LATEX to temporarily turn at-signs into letters,
make the patch, and then turn them back into non
letters (other) so the rest of my program could use @
in the normal way where it is not a special character
of any kind.)

Perhaps there is a caption package that would
allow such changes without patching LATEX, but I
was shown how to make this patch a few years ago
and it works, so why bother trying to find and learn
a new package?

Next in my class file comes a set of defini-
tions for commands I use to include graphics. I
seldom insert \begin{figure} and \end{figure}

commands directly into my documents; I do, from
time to time, insert the commands \begin{table}
and \end{table}. It is inevitable that, before I am
done with a big document, I will want to change the
formatting relating all figure and tables—perhaps
several times. Thus, I use macros for inserting almost
all figures (or tables) such that I can make changes to

formatting relating to the figures by making changes
to only a few lines in the relevant macros.

%switch argument among pdf, eps, etc.

\newcommand{\figfiletype}{pdf}

%tell LaTeX directory path to figures

\graphicspath{{figures/}}

%commands to display file name, or not

\newcommand{\DFN}[2]{%

\texttt{\small[#1 #2]}}

%\newcommand{\DFN}[2]{}

\newcommand{\snfig}[3]{%scaled numbered figure

%drop htb and %s for single page figures

\begin{figure}[htbp]

%\vbox to \vsize{%

\hfil\scalebox{#3}{

\includegraphics{#2.\figfiletype}}\hfil

\caption{\label{fig:#2}#1 \DFN{#2}{#3}}

%\vfil

%}

\end{figure}

}

\newcommand{\sntab}[3]{%scaled numbered tables

\begin{table}[thbp]

%\vbox to \vsize{%

\centering

\caption{\label{tab:#2}#1 \DFN{#2}{#3}}

\smallskip

\scalebox{#3}{

\includegraphics{#2.\figfiletype}}

\label{tab:#2}

%\vfil

%

\end{table}

}

\newcommand{\unfig}[2]{%scaled unnumbered fig.

\begin{figure}[htbp]

\hfil\scalebox{#2}{

\includegraphics{#1.\figfiletype}}\hfil

\label{fig:#1}\centerline{

\DFN{#1}{#2}}

\end{figure}

}

%sideways scaled numbered figure

\newcommand{\swsnfig}[3]{

\begin{sidewaysfigure}

\centering

\scalebox{#3}{

\includegraphics{#2.\figfiletype}}

\caption{\label{fig:#2}#1 \DFN{#2}{#3}}

\end{sidewaysfigure}

}

For instance, the macro \snfig above takes
three arguments. The text for a figure caption, the

TUGboat, Volume 28 (2007), No. 1 — Proceedings of the Practical TEX 2006 Conference 55

David Walden

unique part of the file name for the graphic to be
included, and a scale factor for the graphic, e.g.,4

\snfig{This is the caption}{figure3-31}{.8}

The full name of the file to be included is the
concatenation of the part of the file name that came
from the second argument of the macro call, the di-
rectory that is specified by the \graphicspath com-
mand (an option of the graphicx package) as the place
LATEX searches for figures, and the \figfiletype

definition as the file name extension. The latter is
useful because sometimes all of my figures are .eps

files and sometimes they are .pdf files, and some-
times I switch between these two formats at different
times in the production of the book. (When using
.eps format, I compile using LATEX and a dvi-to-pdf
conversion; when using .pdf format, I use pdfTEX
to compile. If the graphic format was changing from
file to file within the document, I would instead spec-
ify the format as another argument to the \snfig

command. [However, Will Robertson and others
have recently pointed out to me that if I leave the
extension off, \includegraphics will pick the ap-
propriate extension: .eps for LATEX and .pdf for
pdfLATEX.])

While I am drafting and revising a book man-
uscript, I want to be able to look at a figure in the
printed output and know what file I need to modify
to change the figure. Thus, my macros for including
figures and tables causes the file name to be included
in the printed output in small letters enclosed in
small square brackets, using the macro \DFN. When
it comes time to create the final manuscript, I swap
to a definition of \DFN that produces nothing and
recompile the book’s LATEX files.

The definitions of \snfig and \sntab also in-
clude several lines that are commented out. Profes-
sional editors often like to see the manuscript with
figures or tables each on its own page rather than
in-line with the text. Commenting in these few lines
puts the figures and tables of the whole book on their
own pages.

The \snfig, \sntab, and \swsnfig macros also
define labels for cross-referencing the figures with
\ref or \pageref commands. A slight limitation of
my implementation is that I cannot reuse the same
figure or table file without confusing the labeling.

4 Barbara Beeton pointed out to me at the PracTEX’06
conference that \includegraphics can take a scale factor as an
optional argument, and thus I don’t need a separate \scalebox
in the above definitions. I believe the \scalebox commands
remain from before I switched from using the graphics package
to using the graphicx package.

Also, I began using the \hfil commands in the above
definitions before I understood I could use \centering as in
the last definition.

However, it is easy enough to create a duplicate
figure or table with a different file name.

I typically create all figures and most tables
outside of TEX itself and include them from separate
files. If I found myself inserting very many tables
directly into my .tex files rather than including
them from graphics files, I would define a mytable

environment so that I could still contain and simply
change the sort of formatting I have discussed.

2.7 Thought breaks

The next group of commands (mostly commented
out) are various options for indicating what I call
“thought breaks” — places where formatting indicates
a change of topic big enough to highlight but not big
enough to have its own section or subsection title.5

(These commands are defined with \def because I
know they will pick up the correct arguments this
way, and I am not sure enough of the details of how
\newcommand works. I understand the details of how
TEX defines a macro and then collects its arguments
when the macros are called because Knuth explains
it pretty completely in The TEXbook. In particu-
lar, TEX allows macro calls where the arguments of
the macro are not all embedded in pairs of braces.
However, I have never stumbled across a rigorous ex-
planation of how a macro defined with \newcommand

collects its arguments and thus in what situations
arguments not in braces will be recognized or to what
extent LATEX defined macros can have both of what
Knuth calls delimited and undelimited arguments —
and I have not bothered to study the LATEX code
to figure it out. Consequently, out of ignorance, I
use \def to define macros which don’t have their
arguments delimited by braces.)

\begin{comment}

\def\newthoughtgroup#1{\bgroup

\afterassignment\BigFirstLetter \let\next=}

\def\BigFirstLetter#1{

\bigskip\noindex{\Large#1}}

%adapted slightly from Victor Eijkhout on ctt

\def\newthoughtgroup#1{\BigFirstLetter#1$}

\def\BigFirstLetter#1#2${

\bigskip\noindent{\Large #1}#2}

\end{comment}

\def\newthoughtgroup#1{%

\bigskip\noindent {\large #1}}

\begin{comment}

\def\newthoughtgroup{%

5 See my PracTEX Journal 2005-4 “Travels in TEX Land”
column (http://www.tug.org/pracjourn/2005-4/walden/)
for examples of thought breaks.

56 TUGboat, Volume 28 (2007), No. 1 — Proceedings of the Practical TEX 2006 Conference

A lifetime as an amateur compositor

\bigskip\noindent }

%big bold dropped cap letter with rest

% of word small caps

\def\newthoughtgroup#1#2 {

\bigskip\noindent\lettrine{#1}{#2}\ }

\def\thoughtbreak{\vskip2pt

\centerline{$^{\vrule width2cm height 1pt}$}

\vskip2pt\noindent}

\end{comment}

The version of \mythoughtgroup currently not
commented out indicates the new thought by a ver-
tical space and a slightly bigger capital letter at the
beginning of a non-indented paragraph.

2.8 Chapter formatting

The final set of commands in my class file has to
do with the beginnings and ends of chapters. At
the beginning and ending of each chapter I insert
some commands that I can change either by changing
the commands themselves or changing macros in the
class file.6

\RequirePackage{fancyhdr}\pagestyle{fancyplain}

\newcommand{\mypartname}{}

\newcommand{\mychaptername}{}

\lhead[\fancyplain{}{

\thepage}]{\fancyplain{}{}}

\chead[\fancyplain{}{

\mypartname}]{\fancyplain{}{\mychaptername}}

\cfoot[\fancyplain{}{}]{

\fancyplain{\thepage}{}}

\rhead[\fancyplain{}{}]{

\fancyplain{}{\thepage}}

\newcommand{\EMPTYPAGE}{\clearpage

\thispagestyle{empty}\cleardoublepage}

\newcommand{\ENDCHAPTER}{\dumpendnotes}

\newcommand{\fENDCHAPTER}{\vfil\dumpendnotes}

In the class file for the book from which I drew
these illustrations, there are a couple of alternative
macros that I can include at the end of each chapter
to dump the endnotes, but the end-of-chapter macros
could be defined to cause other actions and outputs.
In this book (which has only 10 chapters) I do not
combine everything in a single beginning-of-chapter
macro (e.g., \BEGINCHAPTER), but I have done this
with some books (e.g., the 20-chapter book I am
also currently working on). The typical beginning-

6 When I first started customizing my page headings a few
years ago, I used the fancyheadings package; recently I learned
that the package fancyhdr has replaced fancyheadings, but I
have not yet bothered to rewrite all the heading commands to
use the new forms that come with the fancyhdr package and
don’t use the fancyplain device.

of-chapter commands for the chapter with the file
name rapid.tex (mentioned earlier) are

\EMPTYPAGE

\chapter{Rapid Change in a Global World}

\label{ch:rapid}

\renewcommand{\mychaptername}{Chapter %

\thechapter: Rapid Change in a Global World}

2.9 Using a fully developed class

For some books I have included different or additional
capabilities in my custom class file.

Obviously, I could also use a fully developed
class such as memoir rather than making lots of
modifications of my own to I would still use some
of the ideas I have described above. the LATEX’s
standard book class. However, I suspect

It is clear that TEX and its derivatives with their
explicit, visible markup provide a strong base for in-
crementally building a personal library of techniques
that are easy to apply from one project to the next.

3 Possible benefits of a separate editor

Using a word processor such as MS Word that has
invisible, undocumented, proprietary markup means
you have to use its built-in, WYSIWYG editor that
knows about that markup. This has two potential
disadvantages: (1) GUI-based editing often takes a
lot more key strokes to do simple things than an
editor like WinEdt or EMACS (I gave an example
of this in section 1 and provide additional examples
below); (2) an editor like MS Word’s does not seem
to have a lot of useful features that an editor like
WinEdt or EMACS has.

Many of the ideas in this section are probably
relevant to any typesetting system that has editing
capability (like those I describe below). For all I
know, MS Word can do many of these things; but,
as I said in the first section, a number of years ago I
lost interest in struggling to find stuff buried in all
Word’s menus, dealing with its ever changing user
interface, and its planned-obsolescence-and-forced-
upgrades business strategy.7

3.1 Two ways to make a change
throughout a document

In the last section I sketched the benefits of using
macros for some sequences of commands (for instance,
\Dash{} for ---) that enable the replacement se-
quence to be changed everywhere in a document by

7 The content of this section also appeared in a slightly
different version in issue 2006-4 of The PracTEX Journal

(http://www.tug.org/pracjourn/2006-4/walden/. That pa-
per had additional content by Yuri Robbers on a number of
the editors that work well with TEX.

TUGboat, Volume 28 (2007), No. 1 — Proceedings of the Practical TEX 2006 Conference 57

David Walden

just changing the definition of the macro in one place.
Another option for making a change to the same se-
quence of characters throughout a document is to use
a text editor’s Replace All command. For instance,
suppose I hadn’t used a macro for em-dashes and
instead had closed form instances of --- throughout
my document, e.g., “this is the end—the end of the
line.” And then suppose I decide to change the style
to uses semi-open form em-dashes, e.g., “this is the
end — the end of the line.” With my editor I can do a
Replace All of --- by \thinspace---\thinspace{}.
If the document is broken up into separate files for
each chapter, it will be good if the text editor has the
option for doing the Replace All over all documents
open in the editor instead of only in the document
where the cursor currently is.

Here is another example of a simple text replace-
ment of the entire document. Suppose I decide (for
some reason) to replace all en-dashes by hyphens.
Then I can do the following sequence of three steps
(the first and third steps are to avoid accidentally
changing instances of --- into --):

Replace All --- with #X#X#

Replace All -- with -

Replace All #X#X# with ---

Now suppose I want to add a fourth argument to
every instance of the macro call \snfig{ }{ }{ }

(see definition and discussion of this macro in sub-
section 2.6), that is, change the macro call formats
to \snfig{ }{ }{ }{ }. Of course, one approach
is to search for each instance of \snfig{, then move
the cursor to after the third pair of braces, and then
type the fourth pair of braces. However, if your text
editor has a capability for dealing with regular ex-
pressions, you can make this change more easily (the
last book I wrote had a couple of hundred instances
of \snfig).

While I won’t get into the specific format of any
particular editor’s representation of regular expres-
sions, they would do something like the following in
our example case.

Replace All \snfig{(.*)}{(.*)}{(.*)}
with \snfig{$1}{$2}{$3}{}

Everything in the Replace All command that is in a
typewriter format is literal characters to be replaced.
The characters in italics in the first part of the com-
mand are special characters that match any number
of characters between balanced braces. For instance,
in the command

\snfig{Caption title.}{file-name}{.5}

the first instance of (.*) would match the first ar-
gument Caption title. The second instance of

(.*) would match file-name, and the third instance
would match .5. Better than that, the editor stores
each matched set of characters in its own place for
later reuse, as in the second half of the above com-
mand. The part of the command after the word
“with” says to replace the \snfig command that was
matched with all the same literal characters for the
command names and braces, but to put the first
match text in place of $1, the second match text in
place of $2, and the third matched text in place of
$3, and to add an extra pair of literal braces at the
end of the replacement. Thus,

\snfig{Caption title.}{file-name}{.5}

is turned into
\snfig{Caption title.}{file-name}{.5}{}

and the same is done for every other instance of
\snfig, in each case properly maintaining the argu-
ment text through the replacement step.

The above example may need some tweaking if
the instances of the command being changed some-
times span line boundaries, but typically this also
can be handled, as can be much more complex in-
stances of detecting what should be replaced and
what should not be in various instances. In fact, de-
pending on the editor’s particular regular expression
capability, the earlier example of replacing en-dashes
by hyphens perhaps could have been done with one
Replace All using a regular expression to search of
-- not followed by a third -.

In section two I recommended that anyone not
already using LATEX macros should learn to use them.
I recommend the same thing about using regular
expressions if your editor supports them. They won’t
be needed as often as macros, but when they are
needed they are a major productivity increaser.

3.2 Other editor features

All of the serious text editors I have used allowed
me to mark the cursor position with a couple of key
strokes (e.g., Alt-F11 in WinEdt), move the cursor
somewhere else (for instance to select some distant
text and cut it, and then jump back to the first cursor
position (e.g., Cntl-F11), where I might paste the
text cut from elsewhere in the document.8

Text editors such as I have in mind also typically
have provision to have multiple text buffers rather

8 I don’t claim that none of these features are available in
various editors that are packaged with commercial versions
of TEX; I hope they are. I am only suggesting that you find
an editor that supports such capabilities. What I do know is
that with each new release of MS Word I find it harder and
harder to find such features, if they exist at all, while they are
easy to find in the two text editors I currently use regularly
(WinEdt and EMACS).

58 TUGboat, Volume 28 (2007), No. 1 — Proceedings of the Practical TEX 2006 Conference

A lifetime as an amateur compositor

than just one cut-and-paste clipboard.9 I gave an
example of this in the regular expression example in
subsection 3.1, where three bits of text were simulta-
neously saved from the replaced string of characters
for placement in the replacement string. With multi-
ple places to save text, it is also possible, for example,
to search-for-and-cut one bit of text, search-for-and-
cut another bit of text, search-for-and-cut a third bit
of text, and then paste together at some other point
in the file, saving (in this example) several moves of
the cursor in comparison with an editor with a single
clipboard.

To give another example of the usefulness of
multiple text buffers, I often find something on a web
page and want to copy something from the page as a
quote in a document I am writing and copy the URL

as the source of the quote. Without multiple text
buffers this requires the following sequence: (1) select
text to be copied, (2) copy to clipboard, (3) switch
window to other document, (4) position cursor, paste
contents of clipboard, (5) switch window for first
document, (6) select URL text, (7) copy to clipboard,
(8) switch window to other document, (9) position
cursor, (10) paste contents of clipboard.10 With
multiple text buffers it requires: (1) select text to
be copied, (2) copy to buffer A, (3) select URL text,
(4) copy to buffer B, (4) switch window to other
document, (5) position cursor, (6) paste contents of
buffer A, (7) reposition cursor, (8) paste contents of
buffer B. The latter method is not necessarily less
key strokes (the macros I have for WinEdt take 12
steps), but it is somehow easier for me not to switch
windows and have to refind my place as often.

The fact that LATEX is not locked to a particular
editor also means that each participant in a collabo-
rative project can use the editor with which he or she
is most familiar. (Collaboration is also made easier
because there is much more compatibility from re-
lease to release of TEX and LATEX, even with multiple
providers, than there is from release to release with
many non-TEX commercial products. For instance,
MS Word seems to go out of its way to enforce inter-
release incompatibility in a way apparently aimed at
forcing all collaborators to all upgrade to the same
release.)

Using a text editor in conjunction with LATEX
with its explicit markup also has advantages. For
instance, it is easy to search for an italicized ver-

9 Alex Simonic, the developer of WinEdt, the editor I
mostly use, showed me how to write macros to provide multiple
text buffers in WinEdt.

10 I know I could have two windows open at the same time,
but sizing the windows so both can be seen takes too many
steps unless I am going to do a lot of copying between two
documents.

sion of a word (i.e., search for \textit{word}) as
distinct from a non-italicized version of the same
word. Similarly, it is possible to search for all head-
ings of a certain level (for instance, all instances of
\subsection); with a system with implicit markup
(e.g., MS Word) one might have to search for the
words of each subsection title.

In subsection 2.1 I showed the use of \include
files. This works because LATEX has the provision
for specifying in one file a list of files to be included
as if they were text in that first file. The editor I
mostly use, WinEdt, also supports this; it knows
enough about LATEX to search the highest level file
for instances of \include and gives me a list of visual
tabs to the various files to be included; this makes it
very easy for me to move among the various files in
a longer document.

I could give an unlimited number of examples
of what powerful text editors can do once one breaks
free of the limitations of hidden, proprietary, undoc-
umented markup and those built-in editors whose
graphical user interfaces eliminate powerful editing
capabilities as part of providing a point-and-click
environment to the user. One of the best things is
that I can use the same editor with which I have
become facile from application to application. (Also,
if several authors are collaborating, they can all use
their own preferred editor, and—perhaps more im-
portantly—they don’t all have to have the same
version of Word installed.)

4 Conclusion

To conclude, I give some additional opinions on a
couple of thoughts I hinted at in the earlier sections
and one additional opinion.11

4.1 Conservation of hassle

In my observations covering many decades, it has
always taken many fussy steps to do anything involv-
ing typesetting for reproduction. The computer era
has eliminated many physical steps, each of which re-
quired its own sort of skill and complexity. However,
the computer era hasn’t done anything to decrease
the total number of steps — they are just done with a
keyboard and mouse now and the skill is in knowing
what commands can do what you need and where to
find them. What computer-based approach is best is
a matter of personal choice — they are all filled with
hassle. My own choice has evolved to be a powerful,
explicit typesetting language (LATEX) combined with

11 For a related point of view to some of what I say here, see
“LATEX for Windows — A User’s Perspective”, Proceedings of
the 2001 Annual Meeting, TUGboat, Volume 22(2001), No. 3,
pp. 140–145.

TUGboat, Volume 28 (2007), No. 1 — Proceedings of the Practical TEX 2006 Conference 59

David Walden

a powerful text editor. Some people argue that the
WYSIWYG approach is easier. On average, however,
I see the WYSIWYG approach as just as much work
for the same task: A simple task in Word also tends
to be simple in LATEX; a more advanced task (e.g.,
inserting a cross-reference) seems more straightfor-
ward to do in LATEX than in Word. As one uses more
and more of LATEX’s power, the same task typically
seems more and more difficult to do in Word as well,
and my frustration level seems to grow faster with
Word. Since most users use Word in only trivial
ways, Word is pretty trivial to use at that level, but
then so is LATEX at that level.

4.2 The assertion that LATEX is hard
to learn

I have no doubt that most people could learn to
use LATEX and a good text editor if they saw it as
beneficial; LATEX and a text editor at the intermedi-
ate level of sophistication at which I use them are
no more complex than trying to use Word for the
same task (and I mostly think they are less complex
than Word). Think about all the other, fairly com-
plex things people master in their lives—cooking,
knitting, growing flowers, fly tying, and the rules of
baseball. By comparison, there is nothing inherently
too difficult about using LATEX — it’s only a question
of learning enough to see its comparative benefits
(and cheaper price). And anyone who can learn to
use Word at a high level with all its particular weird-
nesses (and changes to the user interface with each
release) can surely also learn to use LATEX at the
same level.

4.3 Using what everyone else is using

I believe the main argument against LATEX and for
Word is ubiquity of use. People use Word because
everyone else does—their collaborators, their pub-
lishers, etc.—not because Word is better. If peo-
ple were interested in a better word processor, they
would use Word Perfect or perhaps one specialized
to their area of writing such as Note Bene.

If the world of TEX is to have the best chance
of snagging and keeping potential LATEX users and
users of other TEX-related system, we must continue
to offer them a great, if small, community of fellow
users. This is what volunteer-supported capabilities
such as the TEX FAQ, CTAN, discussion groups such
as comp.text.tex and texhax, TUG and the other
volunteer-based user groups, the volunteer-created
hardcopy and on-line journals, and meetings such
as this PracTEX conference are about. It is a great
pleasure for me to participate in this welcoming and
informative community. Thank you.

Acknowledgements

I owe thanks to many sources for what I have learned
about using LATEX — books, the comp.text.tex list,
the texhax list, and many individuals. Of course,
none of them are responsible for lessons I have mis-
learned.

I can’t remember and acknowledge everyone
who directed me to techniques illustrated in this
column; however, I can remember some of them.
Karl Berry reviewed an early version of this paper
and earlier told me about some of the methods I
have described here. I also remember Peter Flynn,
Steve Peter, and Steve Schwartz telling me about
particular techniques. Peter Flom, Will Robertson,
and anonymous reviewers provided many helpful
suggestions for sections 2 and which appeared in
earlier incarnations in issues 2006-2 and 2006-4 of
The PracTEX Journal. Will Robertson also carefully
reviewed the complete paper here and made many
substantive suggestions for improvement as well as
catching many minor errors.

Biographical note

David Walden is retired after a career as an en-
gineer, engineering manager, and general manager
involved with research and development of computer
and other high tech systems. More history is at
www.walden-family.com/dave.

60 TUGboat, Volume 28 (2007), No. 1 — Proceedings of the Practical TEX 2006 Conference

TEX and medicine

Elizabeth Dearborn
Buffalo, New York
elizabeth (at) medicalese dot org

http://www.MeDiCaLeSe.org

1 Introduction

Way back in 1985, when I worked at a struggling
graphic design shop, I learned to set type on a Mer-
genthaler phototypesetting machine which was old
even then. Remember width cards and photographic
chemicals? In 1987, I went into medical transcrip-
tion, which is an extremely knowledge-intensive line
of work with very tight deadlines. I wanted to be
good at what I did, so I maintained my own word
list, which grew exponentially with time.

I was interested in computer programming and
the Internet. I studied these things on my own,
and in 2001 I started my website at http://www.

MeDiCaLeSe.org. Using a JavaScript site search
program I found on the Internet, I put my word list
online in searchable form. Although the website and
the database were available to everyone, my main
objective at the time was to be able to search my
own word list quickly. Whenever a person searched
the database, my entire word list was loaded into
a temporary file on the client’s machine. This also
required JavaScript to be enabled on the client side.

After a couple of years, the word list had gotten
huge, the JavaScript search engine was taking a long
time to load, and I was beginning to feel that the
products of my research were worth money. I wanted
to find a way to serve only the requested results and
serve them up faster, and, if possible, I wanted to
accomplish this without making my code visible to
the end user.

2 The php programming language

I looked, but I could not find a free or inexpensive
package that would do what I wanted. Hiring a pro-
grammer was out of the question, as was going back
to school. I’m not the type who takes courses; every-
thing I’ve ever wanted to know about, I’ve learned
on my own, with some degree of success. I checked
out the various programming languages which are
used on the Internet, such as C++, Pascal, php, and
Perl. Of these, php seemed best for my purposes. It
is free, runs entirely on the server side, and virtually
every web host offers it to its customers.

My approach to learning enough php to get the

job done was very similar to the way I later went
about learning TEX. First, I defined exactly what I
wanted to do. Next, I searched the official php web-
site at http://www.php.net to see if a command
existed that would accomplish this. If not, I would
need to write my own. Sound familiar?

I used two books, both published by O’Reilly
Media: Programming PHP by Rasmus Lerdorf and
Kevin Tatroe, and PHP Cookbook by David Sklar
and Adam Trachtenberg. Between these two won-
derful books, the vast resources of the Internet, and
my own determination, the improved site search was
ready to go live in about two months’ time, in the
summer of 2003. The original version of my php site
search had the Google-style highlighting as it does
today, but did not then include the capability to
exclude one string from the search results. I invite
you to visit http://www.MeDiCaLeSe.org and try
it out.

3 A database in plain text files

If you type the word “ Jones ” into the search box
on he site, it will return 12 results, two of which are
shown below:

Matches: jones: 12

Orthopedics: Jones fracture - fractured proximal
fifth metatarsal.
Diagnostics: Jones silver stain.

If you view the page source, you won’t see a list-
ing of the php code that made the page, but you
will be able to see the HTML code for the results.
This is not very different from what the plain text
entries in the database actually look like, which is:
Orthopedics: Jones fracture -

fractured proximal fifth

metatarsal.|06/04/04

...

Diagnostics: Jones silver

stain.|06/02/04

Short and sweet, and in no particular order. Any-
thing following the vertical line does not show up on

TUGboat, Volume 28 (2007), No. 1 — Proceedings of the Practical TEX 2006 Conference 61

Elizabeth Dearborn

the results page.
I do extensive research on medical terminology

every single day, and I enter the new or changed data
into the two text files which make up the database
and upload them to the server every night. The
php search program calculates the number of words,
number of entries, and the last time the files were
updated.

MeDiCaLeSe, the book and the website, con-
centrates on words that are new, ambiguous, or dif-
ficult to find, and includes words that are not found
in the standard medical references, such as clinical
trial acronyms, homeopathic and herbal remedies,
products available only outside the U.S., discontin-
ued drugs, and unapproved cancer therapies.

4 Show me the money!

I worked hard for little compensation as a transcrip-
tionist, and in the case of the website for no compen-
sation at all. In 2004 someone suggested I turn my
word database into a book. At first I resisted, be-
cause the daily updates and corrections were a large
part of the value of the website, and I thought it
was impossible to publish even a reasonably current
book on such an enormous, constantly changing, and
complicated subject, if typographic quality were to
be a consideration.

I had seen a few quickly-printed books which
were published in a hurry to cash in on current
events, but their quality was atrocious — full of ty-
pographical errors and crookedly printed on brittle,
yellowing newsprint.

I had guest-edited several medical terminology
books for a large medical publisher in the mid-1990s.
These books were very nicely produced, but as a
transcriptionist I felt the information they offered
was not quite enough. And, by now, I enjoyed hav-
ing total control over my own website and was not
about to relinquish that just to get a book published.
If I went to the trouble to put a manuscript together,
I felt that the big medical publishers would turn it
away. I was good at Internet research, and I started
looking into print-on-demand publishing.

I would have to typeset my own manuscript,
but this didn’t intimidate me, since I had worked
in typesetting before. I had heard of TEX in the
context of mathematical typesetting, and I started
studying it on the Internet. I didn’t have much
money, and I appreciated the fact that TEX, besides
being free, requires fairly minimal computer hard-
ware. I continued to study TEX while organizing
my database in manuscript form. I downloaded and
experimented with TEX, joined TUG, and lurked on
comp.text.tex and the TEXhax list.

I write a little bit of short mystery fiction, and
I knew several mystery writers who had either pub-
lished with a subsidy house or gone out on a limb
and published their own work. Subsidy publishing
didn’t interest me, as I needed to have the books
available through the regular book-buying channels.
Finally, a friend who started her own publishing
company convinced me that I could do the same,
and that I could have the books printed on demand
by Lightning Source and distributed worldwide by
Ingram. This was all I needed to hear! In April 2005
I obtained a business license and business checking
account in the name of Blowtorch Press, and or-
dered a block of ISBN numbers. I named the book
MeDiCaLeSe 2005, so that identifying subsequent
revisions would be a no-brainer.

5 Why TEX for medicine?

The large medical book publishers, such as Else-
vier, usually have their own TEX style files available.
Information on manuscript preparation for medical
journals is available from the International Commit-
tee of Medical Journal Editors, http://www.icmje.
org. Over 400 journals use the Vancouver style files,
available at http://www.ctan.org/tex-archive/

biblio/bibtex/contrib/vancouver.
For those who need the old apothecary symbols

for minim, dram, scruple, etc., they are available in
the PIXymbols font for Windows and Mac, sold at
http://www.vershen.com/psg_txtc.html.

The Computer Modern font has almost all the
diacritical marks and special characters needed in
medicine. The textcomp package is needed only for
the � symbol. I wanted the µ symbol, the dot and
umlaut in Ȧström, and the beta symbol in Diaβeta
to be properly typeset, even though these charac-
ters are not used in medical transcription; in that
context, these words are written as micro, Astrom,
and DiaBeta respectively. Medical transcription is
usually done in a word processing program, and
turnaround time is crucial.

By mid-2004 I had found the TEX editor I like
best, which is LATEX Editor by Shu Shen, a graduate
student in Singapore. This software is free and very
lightweight, which was an advantage since I didn’t
know much about TEX beyond what was needed to
get the job done.

The php code does all the heavy lifting for the
website. For a book, I would need to organize the
data somehow. I put the entries into 39 chapters
called Drugs, Abbreviations, Vocabulary, Cardiol-
ogy, Neurology, and so on, alphabetizing the entries
within the chapters, and then duplicating the entries
into the different chapters as needed. I aimed for as

62 TUGboat, Volume 28 (2007), No. 1 — Proceedings of the Practical TEX 2006 Conference

TEX and medicine

much redundancy as possible, because my primary
intended audience of medical transcriptionists would
not be willing to purchase the book unless they knew
they could find what they were looking for quickly,
and with enough information to know whether the
word was the correct one for the situation.

Also because of the special requirements of the
book’s intended audience, I included this statement
in the preface:

NO ADDED HYPHENS: We did not introduce
new breaks into any of the words in this book.
If you see a hyphenated word at the end of a
line, it means the word should always be writ-
ten with the hyphen. For the medical tran-
scription community, we felt it was impor-
tant to be clear on this, even at the expense
of aesthetically undesirable line breaks. We
have tried to make the book attractive and
easily readable in spite of our self-imposed
constraints on hyphenation.

To the best of my knowledge, MeDiCaLeSe 2005 is
the only medical transcription reference book with
no added hyphenation.

I immediately saw that I would have no end
of trouble without a bulletproof method of produc-
ing dictionary-style pages in double columns. I also
needed the first and last words to appear at the top
of the page on which they were defined. I began
an intensive study of the fancyhdr, geometry, and
multicol packages, and I tweaked the code until I
was able to produce dictionary-style pages.

For double columns, all point size commands
active at the end of each line must be the same.
Otherwise, the lines of type do not match up from
one column to the next.

Some of the main LATEX file for the book ap-
pears below. I included my personal commands,
which all begin with “ en ” plus one letter.

% c:\m05\medicalese.tex

\documentclass{book}

\def\enl{\filbreak\small\textbf}

\def\ene{\filbreak\normalsize\textbf}

\def\enn{\normalsize}

\def\eno{\enspace\scriptsize}

\def\enc{\filbreak\small\texttt}

\def\enb{\protect\raisebox{-2pt}}

\def\enu{\protect\raisebox{2pt}}

\usepackage{fancyhdr}

\usepackage[papersize={6.14in,9.21in},

margin={0.5in},top={1in},bottom={0.75in},

headheight={34.545pt},centering,

verbose=true]{geometry}

\usepackage[none]{hyphenat}

\usepackage{textcomp}

\usepackage{multicol}

\newcommand{\enk}[1]{#1\markboth

{#1}{#1}}

\begin{document}

% \frontmatter

\mainmatter

% COPY THIS CODE WHEN CHANGING HEADERS

% \end{multicols}

% \eject

\input drugs

\input notes

...

\input discont

\input notes

% COPY THIS CODE WHEN CHANGING HEADERS

% \backmatter

\eject

\end{document}

\bye

Here is the beginning of one of the chapter files:

% c:\m05\labpath.tex

\pagestyle{fancy}\fancyhead{}

\fancyhead[LE,RO]{\textsf{\rightmark

\\\leftmark}}

\fancyhead[C]{\textbf{Diagnostics}}

\fancyhead[RE,LO]{\textsl{\small includes

laboratory,\\pathology, and radiology}}

\renewcommand{\headrulewidth}{0.2pt}

\fancyfoot[LE,RO]{\textit{MeDiCaLeSe~2005}}

\fancyfoot[RE,LO]{\textsf

{www.medicalese.org}}

\renewcommand{\footrulewidth}{0.2pt}

\raggedright

\begin{multicols}{2}\\

% END OF CODE TO COPY WHEN CHANGING

% HEADERS ... diagnostics

\textbf{\enk{3-androstenedione}}\enn:

endocrine test ...\ene

{\enk{3D color Doppler}}\enn: developed ...

be measured by standard 2D imaging.\ene

And the end of the same file:

{\enk{Xplorer}}\enn~filmless radiographic

imaging system.\ene

{\enk{ZstatFlu}}\enn~throat swab, a

quick test for influenza A and B.\ene

\\

% COPY THIS CODE WHEN CHANGING HEADERS

\end{multicols}

\eject

TUGboat, Volume 28 (2007), No. 1 — Proceedings of the Practical TEX 2006 Conference 63

Elizabeth Dearborn

which produces:

Xplorer filmless radiographic imaging system.
ZStatFlu throat swab, a quick test for
influenza A and B.

6 Ugliness and badness

Because of the rule about not adding hyphens, the
book contains some ugly paragraphs, like this:

Avalide: irbesartan/
hydrochlorothiazide, combination
angiotensin II receptor blocker/thiazide
diuretic.

Also, the warning

Underfull \vbox (badness 10000) has

occurred while \output is active

happened quite often. I learned to disregard these.
Here’s one that doesn’t look that bad, but TEX

complains that the line is just a tad too long (for
my actual page width), and suggests an incorrect
hyphenation:

Markham-Meyerding hemilaminectomy
retractor.

Overfull \hbox (4.52963pt too wide) in

paragraph at lines 689--689

\OT1/cmr/bx/n/10 Markham-Meyerding

\OT1/cmr/m/n/10 hemil-aminec-tomy

In a project such as this, the most insidious kind of
badness is not seen until the .pdf file has been made
and one is examining it page by page, since there is
no way to know in advance where the page breaks
will occur. I’m embarrassed to admit that I didn’t
catch this point size error in the guide words at the
top of page 592 in time.

SaphLITE

Songer

(Songer is incorrectly printed in \small, like
\LITE.) When something like this happens, I go back
to the input file and find the entry corresponding to
the first guide word on the offending page. Just
before the two closing brackets that define the first
guide word, add the command to revert to normal
size type.

7 Finished!

I spent a couple of hours a day for about six months
typesetting the book. I gave up my transcription
job in August to devote more time to the book,
and finished the typesetting on September 14, 2005.

The book contained essentially the same informa-
tion as the website of four days prior. Now I had
to tackle the cover! At this point I started studying
the pstricks package in earnest, and I purchased
The LATEX Companion, which is still the only TEX-
related book I’ve ever bought. Because of memory
limitations, I wasn’t able to use TEX to make the
front cover, but I did use it for the publishing com-
pany logo and for the text overlays on the spine and
the back cover.

Altogether, the cover took me three weeks to
make using Paint Shop Pro 7.04. This is not the
printer’s recommended software, but it was all I
had. I made the cover in three pieces— front, spine,
back — and pasted it together as a giant 300 dpi
.tif file. Lightning Source had provided the bar
code and I pasted this on the back cover. Then I
burned the cover .tif file and the .pdf files which
made up the interior to a CD and mailed it off to
Lightning. Eleven days later, I received my proof
copy by overnight delivery. I knew the .pdf files of
the text wouldn’t cause problems, but I wasn’t at all
sure how the cover would turn out. To my delight,
it was absolutely beautiful.

I signed off electronically on the proof copy, and
within days my book appeared for sale online at
Barnes & Noble, Powell’s, the university distributor
eFollett.com, and Amazon, as well as other book-
sellers all over the world. The book is selling within
its niche market.

As publisher, I decide on suggested retail price,
discount rate, and when/if a book goes out of print.
MeDiCaLeSe 2005 lists for $41. I have no control
over the actual selling price, and have seen the book
advertised for sale at prices ranging from $25 to $80.

8 MeDiCaLeSe 2006 and beyond

Today is October 22, 2006, and I’m in the final
stages of preparing MeDiCaLeSe 2006 for publica-
tion. The page count is 744 this time around. I dis-
covered along the way that the upper limit of what
one TEX file can process on my machine is about 713
pages of size 6.14′′ × 9.21′′. As soon as I finish proof-
reading the final printed .pdf output, I’ll make the
cover— this time with pstricks, specifying CMYK

colors for high quality color reproduction. I now
have 512mb of RAM, which I hope will be enough.

When the total number of pages exceeds 828, I
will either have to increase the page size or look for
an alternative to print-on-demand publishing. The
average age of the book’s target audience of medical
transcriptionists is late 50s or older, so it would not
be practical to decrease the point size.

64 TUGboat, Volume 28 (2007), No. 1 — Proceedings of the Practical TEX 2006 Conference

LATEX at a liberal arts college

Jon Breitenbucher
Department of Mathematics and Computer Science
308 E. University
The College of Wooster
Wooster, Ohio 44691 USA
jbreitenbuch (at) wooster dot edu

http://jbreitenbuch.wooster.edu/~jonb/

Abstract

Does LATEX have a place in a liberal arts education? Yes, and in this article I
present my reasons for introducing LATEX in an undergraduate liberal arts setting.
I also present how I introduced LATEX, issues that were encountered, and what
students and faculty think the impact has been.

1 Background

The College of Wooster is a small liberal arts col-
lege located in northeastern Ohio. Wooster’s annual
enrollment is around 1800 students and the Mathe-
matics and Computer Science Department typically
has 25–30 majors per year. One of the distinguishing
features about Wooster is its Independent Study (IS)
program founded by its seventh president Howard
Lowry. The independent study program requires ev-
ery senior to complete a year long independent re-
search project. A typical faculty member will advise
3–4 such projects. One of the challenges I encoun-
tered in my first advising experience was getting stu-
dents to write technical mathematics. This is what
lead me to introduce LATEX at Wooster.

The majority of seniors use Microsoft Word.
This probably comes as no surprise to most of the
readers. In fact, for the vast majority of seniors,
Word is the appropriate tool. However, Word is
not the best tool for everyone. Students writing in
foreign languages that requires special fonts and the
ability to have text go from right to left could benefit
from using LATEX in conjunction with X ETEX. Stu-
dents in music might find MusiXTEX to be a better
environment for preparing their theses. However, I
think the science majors have the most to be gained
from switching to LATEX. Science majors typically
have a large number of equations, figures, and ta-
bles. Having used LATEX for my dissertation, I knew
that it could do a much better job of formatting the
theses of the science majors. I decided to introduce
LATEX into my department first and then to expand
into other departments. In this article I would like
to outline my approach, some of the issues that I
encountered, and student reaction.

2 Why LATEX?

As a student at Wooster I had struggled with Word
version 5.5 on the Mac to produce a passable docu-
ment. Some of you may remember that the earlier
versions of Word were not too different from TEX.
One would type in a command sequence to get a
sum, product, or other symbols. It may even be the
case that some of these command sequences survived
into the present day, but people have long forgotten
their existence.

When I returned to teach at Wooster I was
shocked by the poor (typesetting) quality of the In-
dependent Study theses. Current students were not
able to produce a document that looked anywhere
near the quality of my thesis from nine years earlier,
and this was with more advanced versions of Word.
I found that the students spent weeks trying to for-
mat their theses to make sure that section number-
ing, equation numbering, and figure numbering were
correct (and most did not succeed). Almost none of
the students knew how to have an automatic Table
of Contents, Figures, etc. created by Word. It was at
this point that I asked myself whether LATEX could
make the process of writing a thesis more about the
writing and less about the formatting. Why LATEX?
Because I felt that it was strong in all of the ar-
eas with which students were having trouble. LATEX
would handle the numbering, formatting, front mat-
ter and back matter and the students could just
worry about the content.

However, there is a down side which Neuwirth
touches on in Neuwirth [1991]; none of the students
know LATEX. This means that someone has to be
willing to teach them and answer their questions.
However, this situation is different than that ad-
dressed by Neuwirth. Neuwirth was discussing the
place of TEX in what would be considered middle

TUGboat, Volume 28 (2007), No. 1 — Proceedings of the Practical TEX 2006 Conference 65

Jon Breitenbucher

school and high school in the United States. And I
agree that those students don’t need the full power
of TEX, but I’m not sure that they couldn’t benefit
from an introduction to LATEX. One of the ques-
tions that my experiences have raised is, “Where do
our students learn how to use Word or other doc-
ument preparation software?” I have been unable
to find anyone that knows the answer to this ques-
tion. Some of my colleagues assumed that our Writ-
ing Center was helping students learn how to write
technical documents, but in talking to the Writing
Center staff I found this was not the case. What
we have found is that most of our math and science
students begin college or university study with no
idea of how to use Word or other tools to write a
technical paper. However, they are expected to be
able to produce a technical paper when they get to
graduate school. This being the case, it is incum-
bent on us to teach them, so that is what I decided
to do with the students at Wooster. There is no
release time or other compensation for this; I do it
because I love doing it.

3 The process

So how did I go about getting LATEX into our pro-
gram? The first step was to identify exactly what I
wanted to accomplish. As mentioned above, I def-
initely wanted the students to let LATEX handle all
of the formatting. What does that mean? I de-
cided it means that I don’t want students to have to
load packages, learn the intricacies of incorporating
graphics, or have to try to force LATEX to do some-
thing that Word can do. In turn, what this means
is that I needed to construct a Wooster thesis class.
(I leave the explanation of the difference between a
class and package to a more knowledgeable TEXer.)

Before beginning to construct a thesis class for
Wooster, I examined a number of classes available at
other institutions. During this process I discovered
two things: none of the classes did exactly what I
wanted and almost all of them were modifications
of the standard book or article class. After realizing
this, I decided to try to modify the book class myself
using a couple of other thesis classes1 as models. To
meet the stated goal above, my class has to load all
of the packages I think students will need or provide
a class option which will load certain packages. At
first I was only loading a few packages, but as stu-
dents have used the class I have added more pack-
ages and options. I think the current mix2 serves
my students very well, and I don’t envision them

1 I used the kthesis and osuthesis classes as models.
2 My class loads ifpdf, amsthm, amssymb, amsmath,

setspace, graphicx, eso-pic, natbib, float, caption, subfig,

needing any more packages. This process was not
easy and I wish I knew and had known more about
writing a class file. I would recommend that a begin-
ner or intermediate user find an expert TEXnician to
help them write or modify a class file. Doing so will
save a lot of hair pulling and time spent in trial and
error.

At this point I sought input from my colleagues,
the Registrar, the Secretary of the College, and the
Vice President for College Relations and Market-
ing to make sure that the format and images used
were acceptable. Others might not need to include
so many people, but since IS is such a major com-
ponent of our curriculum, I needed to make sure
everyone liked the design. I was told to change a
few things and resubmit, at which point my design
was approved. Others will probably find that they
will have a similar experience. Now it was time to
involve the students.

3.1 Editors, platforms, and documentation,
oh my!

There are a few things that I had to do before I
could start showing students how to use LATEX and
my class file. The first is dealing with the platform
issue. I am very committed to allowing users to
choose the operating system they are comfortable
with using. I have almost 20 years of experience on
the Mac OS and as such I know almost all the TEX
editors available. On the other hand, I don’t know
much about Linux and have only seven or so years
of experience with Windows. So my first task was
to identify software packages for each of the three
major OS variants.

If you find that you need to do this keep in mind
that the school will probably not want to buy soft-
ware, so free or low-cost shareware solutions are de-
sirable. After some research I settled on the follow-
ing: TeXShop/gwTEX for Mac OS X, TEXnicCenter/
MiKTEX for Windows XP, and Kile/teTEX for GNU/
Linux. Why these packages? I chose these packages
because they all provide panels or menus for com-
mon LATEX tasks, are free, and are as close to the
point-and-click Word model as I could find. They
also do not require nearly as much technical ability
to install and use as something like Emacs. Remem-
ber a number of the students may not be technically
savvy, so the more like Word the better. Emacs is
great and would have made for a more uniform envi-
ronment, but I was afraid the level of technical abil-
ity required to install and use Emacs would scare

color, and hyperref and has options for pxfonts, floatflt, and
listings.

66 TUGboat, Volume 28 (2007), No. 1 — Proceedings of the Practical TEX 2006 Conference

LATEX at a liberal arts college

away the weaker students— the ones I most want to
use LATEX.

Once I settled on software packages I was com-
fortable supporting, it was time to document the
thesis class and introduce LATEX. I chose to docu-
ment LATEX and the thesis class by using the the-
sis class to write the documentation. In this way
I am able to give students a zip archive containing
all the files needed to produce the documentation.
In addition the students can use the archive as a
template for creating their theses; they just need to
make a copy of the folder they get when they unzip
the download and start putting their content into
the files. This has worked very well as they can see
the code that I used to achieve something and copy
and paste or alter it to their needs.

My documentation3 covers basic things such as
starting new chapters and sections, creating lists,
making things bold or italics, including graphics, in-
putting mathematics, and inputting computer code.
It does not cover installation of a TEX system or
the software (that is left to the authors of the soft-
ware). It is really a summary of things found in
Kopka and Daly [2003], Mittelbach et al. [2004] and
Flynn [2003], except for the Typesetting Mathemati-
cal Formulae chapter which comes from Oetiker et al.
[2003]. The intent is for students to teach themselves
how to use the few LATEX commands that they need
and to come to me if they have difficulty. Choosing
editors with panels or menus for LATEX input makes
this possible. This is a much different approach than
used by Gray and Costanza [2003] and Childs [1989]
where there is an actual course where students learn
TEX or LATEX. Students have done reasonably well
under my setup, but a course where some introduc-
tory LATEX could be covered would be desirable. My
department is considering trying to move technical
writing issues into the proofs/introduction to higher
level mathematics course, but it is hard to cut con-
tent in favor of this new material.

3.2 Involving others

In writing the class file I tried to make it as general
as possible to allow other departments to use it. Af-
ter a year of use in the Math and CS department,
I introduced the class file and LATEX to the physics
students. The students picked up LATEX very easily
and liked the results. They particularly liked the
fact that I had set everything up to use pdfTEX and
produce a “live” document. However, some of the
physics faculty did not like the design of the output
and so they have modified the class to produce a

3 http://jbreitenbuch.wooster.edu/pdf/latex/IS guide.pdf

different-looking document. Others trying to intro-
duce LATEX may find this as well. Make sure every-
one knows you are not responsible for modifying the
class file or troubleshooting others’ changes; other-
wise you will find yourself maintaining ten slightly
different versions of the same class.

After introducing LATEX to the physics students,
I approached Chemistry and Biology. My plan was
to move through the sciences and then approach
Music, Classical Studies, Chinese, and Arabic. I
discovered that neither the Chemistry nor the Biol-
ogy department were interested in introducing this
to their students, their main concern being that no
one in their departments was familiar with LATEX. I
met with the same response from Classical Studies,
but in this case no one had even heard of LATEX.
This is a real issue when trying to introduce LATEX.
In retrospect, I should have identified a few individ-
uals in each department to learn LATEX from me.
Those people would then act as point people for
their students and would use me as backup. A fac-
ulty workshop designed around the material of Gray
and Costanza [2003] might be a way to accomplish
this.

So, as it stands now, Math and CS and Physics
are the only departments using LATEX, which is not
surprising when one browses through the various
mailing lists and samples the common fields-of-study.
Involving people from other departments from the
start might have made a difference. I would sug-
gest that if others try this, they develop a clear plan
for implementation and have a timeline to measure
progress.

4 Assessment

So how did I do? That’s hard to say because I
didn’t have a formal assessment plan in place. My
assessment has been in the form of an informal Pizza
Party after all the seniors have completed their the-
ses, and two questions on the departmental IS eval-
uation form. This is not what I would recommend
for others. Unfortunately, I am beyond the stage for
assessing the success of the introduction, and have
lost that chance. What I am doing is developing
materials to assess the process of learning LATEX so
that I can improve that process and make it easier
for students.

There are a few things that I can communicate
in an anecdotal manner. In general the students
have felt that this model is working well. The first
group of students suggested introducing LATEX ear-
lier in the curriculum. I took that recommendation
and created a homework package and template file
and encourage sophomores to use it and require ju-

TUGboat, Volume 28 (2007), No. 1 — Proceedings of the Practical TEX 2006 Conference 67

Jon Breitenbucher

niors to do one assignment in LATEX. I have also
started requiring all homework submissions to be
typed in sophomore-level classes and above. Stu-
dents also suggested the need for various capabilities
for placing images and styling chapter headings. I
incorporated the packages necessary to accomplish
this in the class file. The result has been that no
one had any suggestions at this year’s pizza party.

The students also felt like they did focus more
on the writing, but there are some formatting is-
sues that really bother them. Image placement is a
big source of frustration. The students are used to
dragging an image into the document exactly where
they want it and having it stay. It takes them some
time to get used to letting the images float and to
use references to refer the their images. The other
frustration is learning commands. It takes them a
few weeks to really get the hang of things. However
all of them said these minor issues are more than
compensated for by the auto-generation features of
LATEX, and they are glad they took the time to learn
LATEX.

Has this process improved the writing? This is
difficult to answer. I used these questions to measure
this on the IS evaluation:

• Based on your discussions with this IS student,
the bibliography, and the final written document,
which statement best describes the student’s as-
similation of the material?

1. The student assimilated material from a wide
variety of sources.

2. The student used material from multiple sources
and did some assimilation of that material.

3. The student used material from multiple sources.

4. The student primarily used material from one
source, but did use some material from at least
one other source.

5. The student used one primary source from which
all material is taken.

• Based on the final written document, which state-
ment best describes this IS?

1. The IS is written in a clear and well-organized
manner, with excellent grammar, spelling, and
typesetting. Moreover, it is written in the stu-
dent’s unique style and directed toward an au-
dience of peers.

2. The IS is very readable, with very few errors in
spelling, grammar, or typesetting. The thesis
is well-organized.

3. The IS is readable, despite some errors in spell-
ing, grammar, or typesetting. The thesis is
well-organized.

4. A number of errors in spelling, grammar, or
typesetting make this IS somewhat difficult to
read. A better organization of ideas would
have made it more clear.

5. The IS lacks organization, the grammar is poor,
and it is difficult to read.

I chose these questions because my goal is to
make the IS experience more about the writing and
less about the formatting. If I am succeeding then
students using LATEX should assimilate more and
produce a better written document. Of course I
cannot set up a control group and conduct a true
study to control for all the confounding factors, but
anecdotally I can say that, in general, students us-
ing LATEX have scored better on these questions than
those who have not. My colleagues also agree that
in their judgement LATEX has increased the overall
quality of the IS produced by the students.

So I would say that my attempt has accom-
plished my goal. For anyone planning on doing some-
thing similar, an assessment plan for all phases is a
must. I say this because more and more accredita-
tion bodies want to see evidence showing the suc-
cess or failure to meet stated goals. Also, I do not
think that you have to have a senior thesis to try
this. Programs with writing across the curriculum
could also see an improvement in student perfor-
mance, and might have an easier time of assessing
LATEX’s impact.

5 The future

So now what do I do? There are a few things I
hope to do in the next few years. One is to expand
the use of LATEX into the foreign languages. The
introduction of X ETEX and Mac OS X makes it ex-
tremely easy to typeset in foreign languages. I think
that students studying Eastern languages would find
great benefits to using the X ETEX system, and I hope
to be able to talk to the faculty in those disciplines
in the near future. Another goal is to increase the
use of LATEX in lower level courses, which will require
training my colleagues in the use of LATEX and will
allow students to learn LATEX at a much slower pace.

6 Acknowledgments

I want to thank Karl Berry for encouraging me to
write about my experience and providing several ar-
ticles relating to the topic. I thank the reviewers for
their insightful comments. And most of all I thank
all of the Wooster students who have used LATEX
and my class file for their ISs and provided valuable
feedback; without them this project wouldn’t exist.

68 TUGboat, Volume 28 (2007), No. 1 —Proceedings of the Practical TEX 2006 Conference

LATEX at a liberal arts college

Bibliography

Bart Childs. Teaching TEX. TUGboat, 10(2):
156–163, 1989. URL http://tug.org/TUGboat/

Articles/tb10-2/tb24childs.pdf.

Peter Flynn. Formatting Information. TUGboat,
23(2):115–237, 2003. URL http://www.

ctan.org/tex-archive/info/beginlatex/

beginlatex.letter.pdf.

Gary Gray and Francesco Costanza. Experiences
and lessons learned teaching LATEX to university
students. TUGboat, 24(1):124–131, 2003. URL
http://tug.org/TUGboat/Articles/tb24-1/

gray-class.pdf.

Helmut Kopka and Patrick W. Daly. Guide to
LATEX. Pearson Education, New York, 4th
edition, 2003.

Frank Mittelbach, Michel Goossens, Johannes
Braams, David Carlisle, and Chris Rowley. The
LATEX Companion. Addison Wesley Professional,
New York, 2nd edition, 2004.

Konrad Neuwirth. TEX in Schools: Just Say
No. TUGboat, 12(1):171–173, 1991. URL
http://tug.org/TUGboat/Articles/tb12-1/

tb31kneuwirth.pdf.

Tobias Oetiker, Hurbert Partl, Irene Hyna,
and Elisabeth Schlegl. The Not So Short
Introduction to LATEX2ε. 2003. URL
http://www.ctan.org/tex-archive/info/

lshort/english/lshort.pdf.

TUGboat, Volume 28 (2007), No. 1 — Proceedings of the Practical TEX 2006 Conference 69

Design of presentations: Notes on principles and LATEX implementation

Boris Veytsman
Computational Materials Science Center, MS 5A2
George Mason University
Fairfax, VA 22030
borisv@lk.net

Abstract

There are many TEX packages available for creating presentations. Mostly they
imitate the ubiquitous style of a certain tool, striving to produce PowerPoint-like
slides, hopefully with better typographical execution.

In this talk the principles of good design for presentations are considered.
We discuss the problems with the common design of presentations as well as
the famous proposition by Tufte to avoid slides at all. We try to formulate the
principles of good presentation design and discuss TEX implementations from this
point of view.

The discussion is based on the author’s experience in making slides for talks,
lectures and training sessions.

1 Introduction

An often asked question in news groups like comp.

text.tex and other TEX forums is this: “I want
to create a nice presentation like my colleagues do,
but I want to have beautiful math. Is it possible
to make one using LATEX?”. The indispensable TEX
FAQ (UK TEX Users Group, 2006) has a number
of answers (see http://www.tex.ac.uk/cgi-bin/

texfaq2html?label=slidecls). However, this is
in my opinion the wrong question. It is akin to the
question, “How can I create texts like my colleagues
using word processors do?” Of course you can do
this (and CTAN has a package for such task!), but
why would you want to add an ugly text to so many
ugly texts already existing?

The right question, in my opinion, should be
structured differently. One should ask first, “What
kind of presentations should I make, if any?” Only
after this question is answered, one may think about
the tools to create the right kind of presentation.
Here, as in many other fields of Computer Science,
the approach should be goal-oriented rather than
tool-oriented.

This paper tries to answer the first question and
describe the “right kind of presentation”. Then we
outline the tools to create such presentations in the
LATEX document preparation paradigm.

It should be noted that this paper describes
the personal experience and opinions of the author.
They are necessarily subjective and reflect the au-
thor’s idiosyncrasies and tastes. Therefore I recom-
mend that the reader take my conclusions with the
usual grain of salt. This paper is intended to be

a starting point for the reader to think about pre-
sentations rather than an exhaustive and balanced
guide to presentation design and implementation.

2 The bane of slides

If we judge by the folklore of office dwellers, presen-
tation slides are an instrument of torture compara-
ble to the tools of the Inquisition. A Google search
for “Death by PowerPoint” gives about 5.6 million
links (Muir, 2006). The leading expert in graphi-
cal design, Edward Tufte, makes a convincing case
to banish slides altogether (Tufte, 2003). He shows
that the misuse of viewgraphs leads to information
obscuring and shows how this hiding is at least par-
tially to blame for the two tragic NASA catastro-
phes during Challenger and Columbia flights. The
author of this paper has had his share of listening
to presentations accompanied by slides, and can at-
test to the detrimental effect of the projector on the
audience’s attention and the level of discussion. Un-
fortunately the “culture of PowerPoint” exposed by
Tufte is spreading. One of my students, a federal
contractor, complained that after his company sub-
mitted the results of the engineering study ordered
by an esteemed US agency, the customer asked him
to supply “PowerPoint slides with the results of the
study”. “Our white papers had all the data and con-
clusions in a form suitable for engineers”, lamented
the student, “but they wanted a dumbed-down ver-
sion on a dozen slides”.

Tufte argues that the cognitive style of Power-
Point presentations has the following characteris-
tics: “foreshortening of evidence and thought, low

70 TUGboat, Volume 28 (2007), No. 1 — Proceedings of the Practical TEX 2006 Conference

Design of presentations: Notes on principles and LATEX implementation

spatial resolution, a deeply hierarchical single-path
structure as the model for organizing every type of
content, breaking up narrative and data into slides
and minimal fragments, rapid temporal sequencing
of thin information rather than focused spatial anal-
ysis, conspicuous decoration and Phluff, a preoccu-
pation with format not content, [and] an attitude
of commercialism that turns everything into a sales
pitch” (Tufte, 2003, p. 4). This leads to his advice to
abolish slides and use printed handouts instead. He
quotes a funny parody of the Gettysburg Address
where the moving speech was turned to a series of
boring items and meaningless charts (Norvig, 2000).

This is a drastic recommendation. It is tempt-
ing to declare slides completely broken and return
to the good old days of great speeches. However
we should remember that in those days Gettysburg
Addresses were not the sole oral genre. There were
university lectures, engineering reports, and other
oral presentations that required some visual materi-
als. We discuss this and the lessons learned in the
next section.

3 The lessons of the blackboard

Almost any lecture in mathematical or physical sci-
ences since ancient times was accompanied by chalk
and a blackboard. Equations were derived on the
blackboard. Important theorems were written down
and often a frame was drawn around the most im-
portant ones. The professors teaching humanities
used blackboards less often, but some of them wrote
important points and conclusions on the blackboard.
It was considered to be an important teacher’s skill
to have a clear and logical blackboard at any time
during the lecture. The author of this note, by the
way, had a chance to study the art of teaching in the
pre-slide days, and was often scolded by the profes-
sors because his own blackboard notes were not de-
signed well enough. Obviously the importance of the
visual accompaniment to a lecture was self-evident
to the professors.

What lessons can we learn from classical black-
boards?

First, the blackboard was always an auxiliary, a
tool, but never the centerpiece of the lecture. It was
unthinkable for a lecturer to start with the black-
board design, and then create a lecture around it.
Even stranger would be the idea of writing the lec-
ture on the blackboard, and then reading it from
there. A lecturer worked in a well-lit room, and the
attention of the audience was on him, not on his
board. This is well captured by the famous pho-
tograph by Tarasevich (Tarasevich, 1977). What a
contrast to a modern-day presenter, working in a

dark room, the screen with projected slides being
the only bright spot, and the silhouette of the pre-
senter himself almost lost in the shadows!

Second, the bane of many slides, the bulleted
list, did not work well on the blackboard, and was
used sparingly if ever. Actually, an itemized list is
not a good way to convey information in general,
not just in presentations. One of the unfortunate
decisions of Leslie Lamport in the early LATEX de-
sign was probably to provide an easy way to create
itemized lists (Lamport, 1994). Too many authors
overuse and misuse such lists.

Third, there is a very important issue of the
speed and rhythm of a presentation. The text writ-
ten on a blackboard appears slowly enough for the
audience to understand it. This is especially true for
equations: the process of derivation of formulas in
real time has an enormous education potential. In
contrast to this, the information on slides often ap-
pears too fast, and the audience often cannot grasp
it, especially complex equations.

These simple considerations lead to the follow-
ing principles of presentation design.

4 Principles of presentation design

The first principle of presentation design is: if you
can do without slides, do not use them. The black-
board provides a good rhythm and tempo to lec-
ture from. This rule is almost always applicable to
lectures or training sessions, where a deep under-
standing of material is required. The situation is
different for review presentations, where the aim is
to give the audience a general picture of the sub-
ject and to stimulate an interest in the subject. In
this case breadth trumps depth, and slides provide
a better vehicle than a blackboard.

Slides may serve another useful function: they
can be given to the audience to keep after the pre-
sentation. A better alternative would be to give the
audience preprints instead (Tufte, 2003), but this
is not always practical. This conference (Practi-
cal TEX 2006) provides an interesting case for com-
paring these two forms of materials. Authors were
urged to provide preprints to be included in the pro-
gram, which will eventually be published in TUG-

boat. These preprints take much more time and ef-
fort to prepare than slides with their “choppy” style.
One could argue that they serve the audience better.
Nevertheless, slides in some cases can be a cheap and
efficient substitute for printable papers and manu-
als, as long as they are used sparingly.

This leads to the second principle: good slides
must be designed for on-screen viewing by the audi-
ence after the presentation. This means that slides

TUGboat, Volume 28 (2007), No. 1 — Proceedings of the Practical TEX 2006 Conference 71

Boris Veytsman

may (and often should) have such typographic at-
tributes as epigraphs, footnotes and references; if
they are not necessary for the presentation itself,
they will be of use to the interested audience after
the lecture.

The third principle is that the slides, even if
used, are not the centerpiece of the presentation.
The most important part of the lecture is the body of
thoughts the lecturer is trying to convey; the struc-
ture of the slides is secondary to these thoughts.

While this principle seems to be self-evident or
even trivial, it is easy to point out many situations
where it is violated. One of the transgressions is to
divide the presentation into self-contained chunks
exactly one slide long. Some slide making software
even writes the name of slide on the top (or uses
the ugly “Continued. . . ”), thus urging authors to
think in terms of slides. Ideas are naturally mapped
into a traditional hierarchy of sections (and some-
times subsections, etc.), and the length of the sec-
tion should be determined by its content, not by the
length of the slide.

If we follow the lessons of the blackboard, we
should use step-by-step building of slides, compara-
ble to step-by-step writing on the blackboard. Un-
fortunately this is overused by many authors, who,
as noted by Tufte, reveal a line of their slide, read it
aloud, than reveal another line, etc., making a bad
design even worse. A more fortunate example is
shown in Figure 1. The last diagram there looks in-
timidating for a non-TEXnical audience, and might
shock it into inattention. A step-by-step revealing
of points with a discussion of each is a better way
to explain the usual TEX work flow, especially if ac-
companied by a judicious use of color.

Another transgression is the overuse of itemized
lists, which is already mentioned above, and which
is imposed on the authors by some slide making soft-
ware systems. The structure of an itemized list is
seldom good for a thought of any complexity. The
usual misuse of dingbats as bullets makes these lists
especially ugly.

A very rare example of a justified use of item-
ized lists and dingbats is shown on Figure 2. Note
that in this case the bullets actually convey some
information to the reader.1

5 TEXnical notes

This part of the paper is based mostly on the expe-
rience of the author, and even more than the other
parts reflects his own tastes and preferences. I try

1 The bullets are based on the images distributed with the
Debian package gnome-extra-icons under GPL.

.tex file

.tex file .dvi file
TEX

.tex file .dvi file
TEX

.ps file
dvips

Screen

xdvi

.tex file .dvi file
TEX

.ps file
dvips

.pdf file
ps2pdf

Screen

xdvi

Printer

gs

.tex file .dvi file
TEX

.ps file
dvips

.pdf file
ps2pdf

Screen

xdvi

Printer

gs

.tex file .dvi file
TEX

.ps file
dvips

.pdf file
ps2pdf

Screen

xdvi

Printer

gs

pdfTEX

Figure 1: Step-by-step building of a flowchart

to explain what turned out to work for me, and do
not claim to make a comprehensive list of tools and
methods available (see the TEX FAQ for examples
and comparisons) or state that my choices are nec-
essarily the best ones. This is why I illustrate these
ideas with examples of my own presentations. I do
not claim these presentations are especially good —
they just reflect my approach to the design.

The remainder of this section is organized in
chronological order: I describe the history of my
journey into TEX-based presentations and explain
how I chose my tools and which lessons I learned.

The traditional slides class of LATEX (Mittel-
bach, 1997) was never sufficient for me because it
has the slide environment, and I never liked to
think in terms of slides. For the same reason I
was not successful with the Beamer class (Tantau,
2005) either. While this class allows sectioning, the
frame environment and explicit overlays are a little
too low level for my taste. I wanted the separation

72 TUGboat, Volume 28 (2007), No. 1 — Proceedings of the Practical TEX 2006 Conference

Design of presentations: Notes on principles and LATEX implementation

There are several kinds of users in Unix:

“Normal users”. These are people. John Doe 7→ jdoe. The system knows a “real name” and login.

“System users”. They are owners of services: web service, time service, ftp service, etc.

Services are run by special processes, usually started up at boot up. These processes are called daemons.

Superuser or root. The classical system has exactly one superuser, who is allowed to do everything. It is
used for system maintenance only.

Figure 2: A rare example of acceptable itemization

Two Ways to Use Shell

There are two ways to write error-free

programs; only the third one works.

Interactive: you write something, and the system executes it immediately.
You need:

1. Good process control mechanism
2. Good history and command line editing facilities

Batch: you write a script, and the system executes it. You need:

1. Good programming facilities (language!)
2. Good redirection facilities

◭◭ ◭ ◮ ◮◮ 2

Figure 3: A PDF slide created with FoilTEX (Veyts-
man, 2001)

of the text into slides to be automatically gener-
ated by the sectioning commands, with some man-
ual adjustments using \clearpage. This require-
ment was motivated mainly by laziness, of the kind
described by Larry Wall (Wall, Christiansen, and
Schwartz, 1996): I wanted the transition from slides
to preprints and articles and back to be as smooth as
possible. FoilTEX (Hafner, 2002), while lacking the
sectioning, allowed the text to “overflow” slides, and
this system was my initial choice. The addition of
sectioning commands to this package was relatively
simple (Veytsman, 1998). I used this scheme for
half a decade. When I started (it was the previous
millennium!), PDF format was not as widespread as
now, so I used FoilTEX to format the transparencies
used in the classroom, and LATEX2HTML (Drakos
and Moore, 2005) to create the Web pages for the
students to use after class. This is how the course
notes (Kumar and Veytsman, 1996; Veytsman and
Kotelyanskii, 1997) were made.

HTML provides very limited facilities for typog-
raphy. PDF format is definitely better suited for
online presentations and slides. One of my first ex-

periments with slides in PDF format, suitable for
class and online viewing, is Veytsman (2001). It
was done in FoilTEX with pdfTEX. A slide from this
presentation is shown as Figure 3. The slides made
in this way are quite readable and easy to prepare.
However, there are several problems with FoilTEX.
First, it is not easy to prepare step-by-step slides.
Second, FoilTEX imposes too much white space on
slides, which is not well suitable for online viewing.
The density of the material is too low. Another
concern is navigation tools. They are present in the
slides (Veytsman, 2001), and FoilTEX allows them
to be placed easily on the bottom of the page, but
not to the left or to the right.

A good question to ask is whether we need navi-
gation tools as well as logos on the slides? They take
up space without adding much to the information
content. Tufte (2003) puts logos on slides into the
“chartjunk” category. Most viewing software has a
navigation menu, so a navigation panel seems to be
a useless duplicate. However, a case could be made
for navigation panels on slides. First, many people
prefer to view slides in full screen mode, and adding
a panel helps in this case. Second, the viewing soft-
ware provides a generic navigation bar; the presen-
tation author may want to use the customized one.
Third, the proportions of a usual slide are wrong:
they are wider than tall, and the text width is too
large by any measure. By the way, FoilTEX logos
make the situation even worse: by design they sub-
tract from the height of the page. The usual Web
pages have the same problem of too large text width.
Good Web designers create wide right or left mar-
gins on their web pages. A navigation panel with
the logos to the left or to the right of the slide would
serve the same function as wide margins in books,
journal papers or good Web pages.

Last but not least, it is good to give the viewer
a general idea where he or she is in the presentation
or lecture. Traditionally, lecturers wrote the current

TUGboat, Volume 28 (2007), No. 1 — Proceedings of the Practical TEX 2006 Conference 73

Boris Veytsman

School of
Computational

Sciences

Thermodynamics . . .

Closed Loop . . .

Computer . . .

Conclusions

Home Page

◭◭ ◮◮

◭ ◮

Page 6 of 19

Go Back

Find

Full Screen

Close

Quit

2. Closed Loop Phase Diagrams

Guiacol-glycerol; β-picoline-water, many polymers1:

0 1Composition c

T
e
m

p
e
ra

t
u
re

T

0 1Composition c

T
e
m

p
e
ra

t
u
re

T

Van der Waals forces cannot produce this—there must be some-
thing else

1T. Narayanan and A. Kumar, “Reentrant Phase Transition in Multicom-
ponent Liquid Mixtures,” Phys. Reports 249 (1994): 136–218.

Figure 4: A PDF slide created with pdfscreen (Veytsman, 2004)

topic (section or subsection) on the blackboard and
changed it when they moved from topic to topic.
Common presentation software tries to achieve the
same purpose by adding a title to each slide. This is
a bad idea because it imposes the rigid scheme “one
thought, one slide”. The ugly scheme, “Topic blah
on the first slide and Topic blah (cont.) on the sub-
sequent ones”, only stresses the inadequacy of this
design. Beamer (Tantau, 2005) provides another so-
lution: it allows adding copies of the table of con-
tents before each section with the current topic high-
lighted. While this is definitely better than titles on
slides, there are still disadvantages to this approach:
the flow of the lecture (or on-screen viewing) is inter-
rupted by basically the same page. Also, this table
of contents is visible only at the section breaks, not
in the middle of a section. A discreet reminder in the
form of short table of contents on the wide margins
of a slide seems to be the ideal solution.

An astute reader could note that the last para-
graph describes the approach of the pdfscreen pack-
age (Radhakrishnan, 2000). This package provides

powerful facilities for on-screen presentations. After
I discovered and tried this package, it was clear that
I had found what I was looking for. I have been
using it for the last several years. Some examples of
its use can be found in Veytsman (2004, 2006); see
also Figures 4 and 5.

It is worth noting that all lectures except the
first in the course (Veytsman, 2006) were taught us-
ing the blackboard only: the slides were made for the
students to view after the lectures (when working on
their homework and exams). The first introductory
lecture was the only exception: it was taught using
a projector. The aim of this lecture was to deliver a
“general picture” rather than teach detailed knowl-
edge.

There are several noteworthy details in the us-
age of pdfscreen. First, the default fonts for this
package are serifed ones. I think it is better to use
sans serif fonts for presentations, since they look
better at low resolutions. The package tpslifonts

74 TUGboat, Volume 28 (2007), No. 1 — Proceedings of the Practical TEX 2006 Conference

Design of presentations: Notes on principles and LATEX implementation

School of

Computational

Sciences

One Barrier

Complex Transport . . .

Two Barriers And . . .

Homework

NANO500

◭◭ ◮◮

◭ ◮

Page 2 of 16

Go Back

Find

Full Screen

Close

Quit

1. One Barrier

1.1. Transmission And Reflection

Classical mechanics: particles are reflected by a barrier or penetrate it. Quan-

tum mechanics: they do both.

Incident wave

eikx

Reflected wave

re−ikx

Transmitted wave

feikx

x

U

Incident current ∝ 1. Transmitted current ∝ |f |
2
. Reflected current ∝ |r|

2
.

Flux Transmission: Kf = |f |
2
. Reflection Coefficient: Kr = |r|

2
. Current

conservation:

Kf + Kr = |f |
2
+ |r|

2
= 1

Our goal is to calculate flux transmission and reflection coefficient.

Figure 5: A PDF slide created with pdfscreen (Veytsman, 2006)

(Lehmke, 2004) provides well designed and read-
able fonts, which are my personal favorites. An-
other package by Lehmke, TEXpower (Lehmke and
Nordhaug, 2005) is useful for providing step-by-step
slides and overlays (although its page transitions are
too glitzy for my taste).

Slides often require graphics. There are many
different programs to generate them. Again, my
personal favorite is PSTricks (Van Zandt, 1993). A
package like ps4pdf (Niepraschk, 2004) is useful for
adding PSTricks pictures in slides. A fragment of a
Makefile that automatically generates all the inter-
mediate steps is shown in Figure 6.

6 Conclusions

My experience of teaching and making presentations
shows that slides are usually a bad idea both for in-
class use and online viewing after class. In the first
case slides cannot compete with the blackboard, and
in the second case a good writeup is better than
slides. Still, in some situations slides still can be
used: for example, a need to show breadth rather

%.pdf: %.tex %-pics.pdf

$(RM) $*.toc

pdflatex $*

- bibtex $*

pdflatex $*

while (grep -q \

’Label(s) may have changed’\

$*.log) do pdflatex $*; done

%-pics.pdf: %-pics.ps

ps2pdf $<

%-pics.ps: %.dvi

dvips -Ppdf -o $@ $<

%.dvi: %.tex

latex $<

Figure 6: A fragment of a Makefile for use in PSTricks
and PDF slides

TUGboat, Volume 28 (2007), No. 1 — Proceedings of the Practical TEX 2006 Conference 75

Boris Veytsman

than depth, a subject requiring many pictures, etc.
It is important to remember in this case that slides
must be adapted to both in-class and after-class use,
and that slides are a tool, not the centerpiece of the
lecture.

LATEX tools provide ample opportunity to pro-
duce beautiful and instructive slides. My attempts
to do this, documented above, show the power of
these tools.

Acknowledgements

The author is grateful to Lance Carnes for the care-
ful reading of the manuscript and many suggestions.

References

Drakos, Nikos, and R. Moore. The LATEX2HTML
Translator, 2005. http://www.ctan.org/
tex-archive/support/latex2html.

Hafner, Jim. The FoilTEX Class Package, 2002.
http://ctan.tug.org/tex-archive/

nonfree/macros/latex/contrib/foiltex.

Kumar, Sanat, and B. Veytsman. “Mathematical
Methods in Materials Science (MatSc597B)”.
http://www.plmsc.psu.edu/~www/matsc597,
1996.

Lamport, Leslie. LATEX: A Document Preparation
System. Addison-Wesley Publishing Company,
Reading, MA, 2 edition, 1994. Illustrations by
Duane Bibby.

Lehmke, Stephan. Package Tpslifonts: Configure
Presentation Fonts, 2004. http://ctan.tug.
org/tex-archive/macros/latex/contrib/

texpower/tpslifonts.

Lehmke, Stephan, and H. F. Nordhaug. The
TEXPower Bundle, 2005. http://ctan.tug.
org/tex-archive/macros/latex/contrib/

texpower.

Mittelbach, Frank. Producing Slides with LATEX2ε.
August, 1997. http://ctan.tug.org/
tex-archive/macros/latex/base.

Muir, Star. “PowerPoint Use and Misuse:
Strategies for Effective Teaching”. Lecture at
George Mason University, 2006.

Niepraschk, Rolf. Ps4pdf Package, 2004.
http://ctan.tug.org/tex-archive/

macros/latex/contrib/ps4pdf.

Norvig, Peter. “The Gettysburg Powerpoint
Presentation”. http://www.norvig.com/
Gettysburg, 2000.

Radhakrishnan, C. V. Pdfscreen Manual, 2000.
http://ctan.tug.org/tex-archive/macros/

latex/contrib/pdfscreen.

Tantau, Till. User’s Guide to the Beamer Class,
Version 3.06, 2005. http://ctan.tug.org/
tex-archive/macros/latex/contrib/beamer.

Tarasevich, Vsevolod. “Duel”. Sovetskoe Foto
(Soviet Photography) (11), 1977. Available at
http://sov-photo.livejournal.com/35278.

html.

Tufte, Edward R. The Cognitive Style of Power
Point. Graphics Press LLC, Cheshire, CT,
2003.

UK TEX Users Group. “UK List of TEX
Frequently Asked Questions”. http://www.
tex.ac.uk/cgi-bin/texfaq2html, 2006.

Van Zandt, Timothy. PSTricks: PostScript
Macros for Generic TEX, 1993. http:
//ctan.tug.org/tex-archive/graphics/

pstricks/obsolete/doc.

Veytsman, Boris. Sectioning Commands in
FoilTEX and Conversion to HTML Format:
Foilhtml Package, 1998. http://ctan.tug.
org/tex-archive/macros/latex/contrib/

foilhtml.

Veytsman, Boris. “Introduction to Unix”.
http://users.lk.net/~borisv/unix, 2001.

Veytsman, Boris. “Closed Loop Phase Diagrams
in Liquid Mixtures: From Theory to
Simulations”. http://users.lk.net/

~borisv/20040902lecture.pdf, 2004.

Veytsman, Boris. “NANO 500: Introduction
to Nanomaterials and Interactions”. http:
//mason.gmu.edu/~bveytsma/nano500, 2006.

Veytsman, Boris, and M. Kotelyanskii.
“Statistical Thermodynamics of Materials
(MatSc597C)”. http://www.plmsc.psu.edu/

~www/matsc597c-1997, 1997.

Wall, Larry, T. Christiansen, and R. L. Schwartz.
Programming Perl. O’Reilly & Associates, Inc.,
Bonn; Cambridge; Paris; Sebastopol; Tokyo,
second edition, 1996.

76 TUGboat, Volume 28 (2007), No. 1 — Proceedings of the Practical TEX 2006 Conference

Automatic report generation with Web, TEX and SQL

Boris Veytsman
ITT, Advanced Engineering & Sciences
12975 Worldgate Dr, Herndon, VA 20170
boris dot veytsman (at) itt dot com

Maria Shmilevich
ITT, Advanced Engineering & Sciences
12975 Worldgate Dr, Herndon, VA 20170, USA
maria dot shmilevich (at) itt dot com

Abstract

One of the most time-consuming tasks of a manager for a federal contractor is
the creation of reports: weekly, monthly, quarterly and yearly as well as special
reports at the end of a project or on any given date. Such reports are usually
made by copying and pasting the daily reports of subordinates.

The system described here makes these reports automatically. The members
of project team file their daily work results using a Web interface. These entries
are kept in a SQL database. The report generation utility is launched through
a Web interface. It creates a LATEX file by selecting the data relevant to the
given set of contracts and tasks, employees, time periods, etc., and collating the
individual reports. The result is then run through pdftex or latex2html or latex2rtf
to create either a PDF report or an editable (e.g., in Microsoft Word) file.

1 Introduction

In the last several decades applied science and tech-
nology in the US have seen unprecedented break-
throughs. Internet, GPS, space missions, a complete
change in the civil aviation field and many advances
in the military area are just a few examples of rapid
technological progress. Of course there are many
reasons for this, but it seems that one reason is the
unique and fortunate method of technological co-
operation between the government, universities and
private contractors. In this scheme, the government
agencies set the technological goals and solicit bids
to achieve them. The winners of the bids get con-
tracts for development of high-end technology with
important military and civil uses.

Government agencies in this scheme are gate
keepers of the people’s money. They are obligated to
control spending and check that the contracted re-
search and development work is proceeding properly
and the milestones are to be met on time. There-
fore most agencies request detailed reports of the
contractor’s activity at regular intervals. These re-
ports, however, pose the following problem. Obvi-
ously the taxpayer is interested only in the results of
the contracted research and development. The time
and money spent on the intermediate reports does

not contribute to the value and should be minimized.
This is true both for the agency, which spends effort
on the analysis of the reports, and the contractor,
which spends effort on their preparation, and even-
tually passes the costs to the customer, thus increas-
ing the total cost of the bid.

A report of high quality (including typographic
quality!) is easier to analyze, so the report must be
good. On the other hand, a good report might take
a considerable effort to prepare. The goal is to make
good reports with minimal effort and costs.

The traditional way of making intermediate re-
ports is the following. The contractor’s employees
send e-mails to their managers describing their ac-
complishments. A manager copies and pastes these
data into a Microsoft Word file and sends the file to
the next level manager, who collates the received re-
ports together. The task is repeated regularly, and
each piece of information is copied and pasted sev-
eral times: in weekly, monthly, quarterly and yearly
reports. If the contract involves many tasks and
subtasks, the work is overwhelming. This is unpro-
ductive work, since the real task of managers is man-
agement, not copying and pasting repetitive chunks
of text.

Since most of this work is purely routine, it is

TUGboat, Volume 28 (2007), No. 1 — Proceedings of the Practical TEX 2006 Conference 77

Boris Veytsman and Maria Shmilevich

possible to teach a computer to do it, thus freeing en-
gineers and managers for more creative tasks. This
is the main idea of the system which was created at
ITT in 2000–2001 and successfully used ever since.

2 Analysis

The first thing in the creation of a system for auto-
matic report generation is to understand the struc-
ture of reports. A report is separated into contracts.
The contracts are separated into subcontracts, and
these are in turn separated in tasks and subtasks.
Each individual report covers a subset of a hier-
archy: it can include several contracts or just one
contract, or several tasks from a subcontract, etc.
It also covers a certain time period: week, month,
quarter, year, etc.

The actual contents of the report are collated
from the individual work by the engineers. Each of
the engineers describes her or his work made during
a particular week under each subtask, task, subcon-
tract and contract. Sometimes a report includes the
names of the engineers, and sometimes not, depend-
ing on the style chosen.

This structure is well suited for a SQL database.
Each individual entry can be a record in the data-
base, indexed by the subtask or task it belongs to,
the engineer who made the entry, the time covered
and the time it was made. The hierarchy “Contract-
Subcontract-Task-Subtask” can easily fit into a SQL

table with the usual parent-child relations. SQL op-
erators can be used to extract from the tables the
information that relates to the given task and time
period.

We wanted the report to be available in several
forms: a high quality PDF file as well as editable
RTF and HTML formats. We chose LATEX as the
base format for the report because it can be used
to produce beautiful PDF output, and the tools to
transform it into HTML and RTF are widely avail-
able.

The interface to the software should be avail-
able from different computers: engineers’ and man-
agers’ workstations. This makes an internal Web
server a natural choice.

3 User interface

3.1 Authentication

A user (engineer or manager) logs in to the web
server with her or his own user name and password.
The database of logins and passwords is integrated
with the system, so immediately after the user is
authenticated, she or he is assigned a role (access
level) in the system. There is a hierarchy of roles:

1. A normal user can input the information about
his or her work into the database or correct it.

2. A manager can view the information and create
reports, add or delete contracts and tasks.

3. An administrator can add or delete users, reset
passwords and change access levels of the users.

Below we discuss these functions in more detail.

3.2 User access

A user should log in at least once a week and choose
from the menu tasks and subtasks for which some
work was performed by him or her. Then she or he
inputs the work done under each category. There
is an important option of choosing a special entry
“Same as last week”; this will expand the time pe-
riod of the entry of the previous week in the given
category. The user can also set the priority of the
tasks completed. The tasks with high priority are
highlighted in the report.

3.3 Manager access

A manager can perform the functions of the user
plus additional functions related to report creation
and contracts and tasks changing.

A manager chooses from the menu the con-
tracts, subcontracts, tasks and subtasks to cover,
performance time, and report options: whether it
should be in PDF, RTF or HTML format, whether it
should include engineers’ names, etc. The report is
created and a link for download is presented to the
manager.

A manager can add or delete contracts, change
subcontracts, tasks and subtasks. This will update
the menus presented to all users.

3.4 Administrator access

An administrator can change the information about
users. She or he is presented with a menu, which in-
cludes changing of user personal information (name,
e-mail), resetting passwords, changing access levels,
etc.

3.5 Additional bells and whistles

The system generates reminders for the users to log
in and enter their information, and sends lists of the
procrastinators to the managers. It also generates
periodic backup dumps of its databases.

4 Implementation notes

The system is implemented on a Linux computer us-
ing the Apache Web server, MySQL database, send-
mail, teTEX suite and latex2html and latex2rtf pro-
grams. It is essentially a zero administration server:
since it was set up, only security patches have been

78 TUGboat, Volume 28 (2007), No. 1 — Proceedings of the Practical TEX 2006 Conference

Automatic report generation with Web, TEX and SQL

Report Criteria (from Web) Perl processor MySQL Database

LATEX file

PDF output HTML output RTF output

pdftex

latex2html
latex2rtf

Figure 1: Report creation

applied to the machine, and everything else “just
works”.

The flowchart for the report creation is shown
in Figure 1. The Perl program extracts from the
database the entries satisfying the selected criteria.
They are collated into a LATEX file. The hierarchy
“Contract-Subcontract-Task-Subtask” is mapped to
the hierarchy “Chapter-Section-Subsection-Subsub-
section” of the report document class. The entries
themselves are organized into itemized lists.

An example of the result is shown on Figure 2.
In this example the engineer (Archimedes) started
the work of moving Earth using a lever. His com-
pleted tasks include a high-priority development of
the background and low-priority work on geometry.

5 Conclusions

We developed a system to perform an important and
time-consuming task of generating periodic reports
by a federal contractor. The system is based on open
and free software. It provides a very efficient and
cost-effective solution, which has been successfully
working for half a decade.

Contract 1

Moving Earth With Lever

(ERTHMV)

1.1 Finding a place to stand

1.2 Mathematical Background

1.2.1 Development of series summation

• 12/23/0282: Developed background Archimedes

• 12/30/0282: Worked on geometry Archimedes

1.3 Create a lever

2

Figure 2: Example of a page from a report

TUGboat, Volume 28 (2007), No. 1 — Proceedings of the Practical TEX 2006 Conference 79

Writing and checking complete proofs in TEX

Bob Neveln
Widener University

Bob Alps
Towers Perrin
Chicago, Illinois

Abstract

TEX files are text files which are readable by other programs. Mathematical
proofs written using TEX can be checked by a Python program provided they
are expressed in a sufficiently strict proof language. Such a language can be con-
structed using only a few extensions beyond the syntax of A.P. Morse’s A Theory
of Sets, one being the incorporation of explicit theorem number references into
the syntax. Such a program has been applied to and successfully checked the the-
orems in a significant initial segment of a book length mathematical manuscript.

1 Introduction

The present work is an unplanned side-effect of a
book project by the authors [7]. As work on the
book progressed proofs were written more and more
carefully. Programs in Python were developed to
check the mathematical syntax, then to re-number
theorems following insertions or deletions and finally
to check the proofs written.

These developments were possible because the
book is written in TEX using a formal mathemat-
ical language. Although most mathematical text
is intended to be formalizable, usually in terms of
first order predicate logic, it is almost never formal
as written. Checking proofs written in a conven-
tional style would consequently require a formaliza-
tion step requiring clarification of the author’s in-
tentions on many details. Checking proofs written
in a formal language obviates these difficulties. In
the work presented here we use a syntax derived
from that of A. P. Morse. In his book, A Theory
of Sets [5], he presented a formal syntax which was
used to express all the definitions and theorems in
his book, see [6]. A key feature of his treatment
of mathematical language was the inclusion of def-
initions themselves into the formal syntax, see [1].
The first theorem of the book was given a complete
proof, but no attempt was made to continue the pre-
sentation of complete proofs. Indeed with the small
set of inference rules given this would not have been
feasible.

The formal syntax of Morse’s book enabled the
creation of a program capable of parsing its lan-
guage and checking some of its theorems using an ex-
panded inference rule set as early as 1966 at Sandia
Laboratories [3]. Soon after that most of the math-

ematics in the book was checked by W.W. Bledsoe
working at MIT.

This paper describes some additions to Morse’s
syntax implemented in TEX and Python programs
which together enable writing and checking com-
plete proofs. The resulting environment is a work
in progress.

2 Tools and Files

Unix utilities are based on the idea that it is good
to have many tools each of which does a single task
well. Along those lines, the environment described
here to enable writing and checking complete proofs
consists of many different TEX files and Python pro-
grams. As Richter noted in [8], it is easy to write
Python scripts which conveniently operate on TEX
files. Those described here include a program which
checks the syntax of the mathematics in the TEX
file, a program which renumbers the propositions,
a program which adds horizontal space to variable
scope clauses in TEX files, in addition to the pro-
gram which checks a proof whose number is given
as a command line argument.

The logic on which proofs depend is supplied in
a variety of ways. Some logic is built into the parser;
for example, (x < y < z) is parsed as (x < y∧y < z).
Some logic is built into the checking program which
uses the commutative and associative properties of
“and” as well as the transitivity of numerous rela-
tions including logical implication and set inclusion.
Most of the logic resides in a file of rules of inference
which is consulted in a blind linear search each time
a step of the proof to be checked is attempted. An-
other file consists of propositions which are generally
recognized as obvious such as

(x ∈ A ∧ A ⊂ B → x ∈ B)

80 TUGboat, Volume 28 (2007), No. 1 — Proceedings of the Practical TEX 2006 Conference

Writing and checking complete proofs in TEX

Further logic consisting of material which is at least
as elementary, but ordinarily “below the radar” of
everyday mathematics, is listed in a special appen-
dix added to the work being checked. It uses the
logic developed in [2].

Our tools create an environment which sets in
motion a work cycle related to an ongoing paper
or book, consisting of steps like those involved in
writing a computer program:

1. Add or revise the statement or proof of a theo-
rem in a TEX source file.

2. Run TEX to get a viewable DVI file and detect
TEX errors.

3. Run the parser to find mathematical syntax er-
rors.

4. Run the check program to find logical errors
and gaps in the proof.

At the very end it is also useful to run a program
which uses the parser to add horizontal spacing at
points where TEX would otherwise crowd symbols.

Because the logical steps which can be checked
at this time are quite small, the process is both ar-
duous and tedious.

3 Proof Syntax

The basis for the proof syntax is the mathemati-
cal syntax of Tony Morse’s book [5]. Changes to
Morse’s mathematical syntax including additional
abbreviation schemes and restrictions on the format
of bound variable forms are introduced but do not
alter the mathematical language markedly. To get a
notation capable of expressing complete proofs just
a few additional elements suffice.

3.1 Reference Numbering

An important element in the proof syntax described
here is the inclusion of theorem numbers themselves
into the syntax.

An example from the manuscript [7] follows:

\tabc 1.17 $(b\in\bfun \Iff \Patch_0 b\in\U)$

\lineb Proof:

\notea 1$(b \in \bfun$

\linec $\c\Patch_0 b\in \SI

\rng b\setdif\dmn b$\By 1.16

\linec $\c\Patch_0 b \in \U)$ \By 01.14

\lineb

\notea 2$(\Patch_0 b\in\U$

\linec$\c\ex\Patch_0 b$ \By 01.8

\linec$\c b\in\bfun)$\By 1.13

\lineb \Bye .1, .2

\lineb

In this example a theorem numbered 1.17 is stated
and proved. The statement involves the plain TEX
macro ‘\in’ as well as other macros such as ‘\c’ for

‘\rightarrow’ and ‘\Iff’ for ‘\leftrightarrow’.
Using Morse style mathematical language in TEX
involves a large number of such macros, basically at
least one for each defined formula as well as some
special symbols which can be implemented in Meta-
font. The ‘\tabc’, ‘\notea’ and ‘\By’ macros per-
form space formatting, but also serve as reference
handles for the checking program. For example The-
orem 1.16, which is referred to at the end of the sec-
ond line of the proof, must be identified by a ‘\tabc’
macro. The ‘\lineb’ macro has only a space for-
matting role. The ‘\Bye’ macro prints QED and
indicates that the theorem itself is to be checked.

References such as the closing ‘.1’ and ‘.2’ refer
to the notes tagged by the ‘\notea’ macros. The
zero-plus references 01.14 and 01.8 point to the file
of “obvious” theorems.

Propositions which are referenced must have a
traditional number-dot-number identification which
is used to invoke them in proofs. This numbering
convention is similar to that produced by LATEX but
less flexible. It is used instead of LATEX because its
use requires slightly less labor and the labor involved
in specifying references is a large component of the
work of specifying a complete proof. A Python pro-
gram is needed to renumber all references when the-
orems are inserted, deleted, or moved.

3.2 Significant Punctuation

Reference notations may include punctuation. The
punctuation marks must be identical to the corre-
sponding marks in the rule of inference itself. If
rules are marked in such a way that rules of a sim-
ilar nature get similar punctuation, then a meaning
is associated with the punctuation mark.

For instance, the semi-colon is used in refer-
ences that have a major premise followed by minor
premises. As an example, if in note 5 below we
prove a result q by using a theorem (p → q) which
is numbered 1.23 and we have previously obtained p
in note 3 then we might have the following note to
establish q:

Note 5 (−a ∈ Z) ‡ 1.23; .3

In order for this note to be checked there must be a
theorem 1.23 such as

Thm 1.23 (x ∈ Z → −x ∈ Z)

a previous note 3 like this

Note 3 (a ∈ Z)

as well as a rule of inference (modus ponens) which
has the form

From: (p → q); p

Infer: q

TUGboat, Volume 28 (2007), No. 1 — Proceedings of the Practical TEX 2006 Conference 81

Bob Neveln and Bob Alps

The semi-colon in the reference limits the number
of rules which match that reference. The intended
meaning of the semi-colon is that it sets the “ma-
jor premise” apart from the “minor premises”. At
present approximately 250 of the stored inference
rules use the semi-colon to separate major and mi-
nor premises. Another example of such a rule is the
following rule:

From: (p → q ↔ r); q

Infer: (p → r)

Further developments towards a syntax of ref-
erence expressions will no doubt be found useful.

3.3 Given-Hence Blocks

Notes which are not proven but which merely state a
“given” may be justified using ‡ G, in place of a proof
reference. These remain in force until a “hence”
referring to them is encountered. The “hence” at-
taches the given notes to the “henced note” as ex-
plicit hypotheses. The “hence” note is tagged using
‡ H as a proof reference. For example we might have:

Note 2 (x ∈ A) ‡ G

. . .

Note 7 (x ∈ B) ‡ .2, . . .

Note 8 (x ∈ A → x ∈ B) ‡ .7 H .2

The variables introduced in each given note are local
to that block. Reference may be made to notes 2–7
only from within that block, only so long as note 2
is in force in other words.

3.4 Local Definitions

Sometimes it is useful to introduce locally defined
variables. To do this we may “set” a variable to a
described object. A note of this form is justified by ‡
S and it retains validity as long as the last preceding
given note. For example given a non-empty set A it
is useful to have a name for a member of A.

Note 2 (A 6= ∅) ‡ G

Note 3 (a ≡ anx(x ∈ A)) ‡ S

Note 4 (a ∈ A) ‡ .2, .3

This feature of the proof syntax depends on using a
logic which allows descriptions, see [2].

3.5 Reasoning Chains

A note may consist of lines all but the first of which
are introduced by some transitive relation. In this
case each pair of consecutive lines defines a step to
be checked on its own proof. When used as a ref-
erence the note is then telescoped. For example in
this note:

Note 7 (A ⊂ B ‡ . . .

⊂ C) ‡ . . .

the inclusions (A ⊂ B) and (B ⊂ C) are checked
separately, but if note 7 is referred to later, just the
inclusion (A ⊂ C) will be invoked by this reference.

4 The Unifier

Each step to be checked is matched against rules of
inference in a blind linear search. Each rule whose
sequence of arguments and punctuators matches with
numerical references and punctuators in the refer-
ence note is submitted to a unifier. If a unification
is found the step is checked.

The unifier is based on standard first order uni-
fication, but goes beyond this in two ways. Although
much less general than [4], it allows the terms of a
conjunction to be re-ordered in order to accomplish
a match. It also attempts to match the second order
variables which occur in Morse’s language.

It is written to succeed or fail quickly. It may
fail to find a unifier even when one exists. For ex-
ample if a conjunction with n conjuncts is matched
against a conjunction ‘(p∧ q)’, where ‘p’ and ‘q’ are
unmatched variables, this unification will not be at-
tempted because of the (2n − 2) different possible
matchings. A rule of inference must avoid present-
ing such unifications to the checker or it will be ig-
nored. The unifier does not aim at any ambitious
sort of completeness.

5 Results and Prospects

The manuscript being checked contains over 1200
theorems, with proofs in various stages of comple-
tion. Roughly 250 of these including the first 120
have been checked.

As the work proceeds, bugs are encountered in
the checking program, as well as cases which should
check but do not. The program is then revised, rules
of inference are added, and “obvious” theorems are
added to the zero-plus references file. There are now
over 700 rules of inference and over 500 theorems
in the zero-plus references file. The checking pro-
gram now contains about 4500 lines of code. The
manuscript also has appendices containing over 200
elementary results which can be referenced in the
proofs.

Each execution of the program checks a single
proof. Although Python is an interpreted language,
a few seconds suffices for one run of the program on
a machine of recent vintage.

The proof syntax at its present stage of devel-
opment is and should be “low-level”. Once avenues
of checkable proof begin flowing it will be time for
the appearance of higher levels of expression which
will attenuate to some extent the labor of picking
through all the details of a proof.

82 TUGboat, Volume 28 (2007), No. 1 — Proceedings of the Practical TEX 2006 Conference

Writing and checking complete proofs in TEX

6 Observations

We close with a few observations.

1. Including the details necessary to get a proof to
check requires roughly an order of magnitude
more time than writing a conventional proof.

2. Proofs stated in checkable detail become longer
by a factor less than an order of magnitude.

3. Reading checkable proofs requires slightly more
effort on the part of a reader with specialized
knowledge than proofs which are written with
such a reader in mind.

4. Checkable proofs can be read by any mathe-
matician whether a specialist or not.

7 Conclusion

Despite its preliminary and incomplete nature the
checking program as it stands now shows that it
is practicable to write and check complete proofs,
given a willingness to adopt a formal language and
to submit to the discipline of itemizing all necessary
references.

References

[1] R.A. Alps. A Translation Algorithm for Morse
Systems, PhD dissertation, Northwestern Uni-
versity, 1979.

[2] R.A. Alps and R.C. Neveln, A Predicate Logic
Based on Indefinite Description and Two No-
tions of Identity. Notre Dame Journal of Formal
Logic 22(3), 251–263, 1981.

[3] W.W. Bledsoe and E.J. Gilbert. Automatic The-
orem Proof-Checking in Set Theory, Sandia Lab-
oratories Research Report SC-RR-67-525, July
1967.

[4] J. Gallier and W. Snyder. Complete sets of trans-
formations for general E-unification. Theoretical
Computer Science, 67:203–260, 1989.

[5] A.P. Morse. A Theory of Sets, Second Edition.
Academic Press, 1986.

[6] R.C. Neveln. Basic Theory of Morse Lan-
guages, PhD dissertation, Northwestern Univer-
sity, 1975.

[7] Bob Neveln and Bob Alps. Foundations of the
Topology of Manifolds (book in preparation).

[8] William Richter. TEX and Scripting Languages.
TUGboat 25(1), 71–88, 2004.

TUGboat, Volume 28 (2007), No. 1 — Proceedings of the Practical TEX 2006 Conference 83

A beginner’s guide to METAPOST for creating high-quality graphics

Troy Henderson
Department of Mathematical Sciences
United States Military Academy
West Point, NY 10996, USA
troy (at) tlhiv dot org

http://www.tlhiv.org

Abstract

Individuals that use TEX (or any of its derivatives) to typeset their documents
generally take extra measures to ensure paramount visual quality. Such doc-
uments often contain mathematical expressions and graphics to accompany the
text. Since TEX was designed “for the creation of beautiful books— and especially
for books that contain a lot of mathematics” [4], it is clear that it is sufficient
(and in fact exceptional) at dealing with mathematics and text. TEX was not
designed for creating graphics; however, certain add-on packages can be used to
create modest figures. TEX, however, is capable of including graphics created
with other utilities in a variety of formats. Because of their scalability, Encap-
sulated PostScript (EPS) graphics are the most common types used. This paper
introduces METAPOST and demonstrates the fundamentals needed to generate
high-quality EPS graphics for inclusion into TEX-based documents.

1 Introduction

To accompany TEX, Knuth developed METAFONT

as a method of “creating entire families of fonts
from a set of dimensional parameters and outline de-
scriptions” [1]. Approximately ten years later, John
Hobby began work on METAPOST — “a powerful
graphics language based on Knuth’s METAFONT,
but with PostScript output and facilities for includ-
ing typeset text” [3]. Although several packages
(e.g., PICTEX, XY-pic, and the native LATEX picture
environment to name a few) are available for cre-
ating graphics within TEX-based documents, they
all rely on TEX. Since TEX was designed to typeset
text, it seems natural that an external utility should
be used to generate graphics instead. Furthermore,
in the event that the graphics require typeset text,
then the utility should use TEX for this requirement.
This premise is exactly the philosophy of META-
POST.

Since METAPOST is a programming language,
it accommodates data structures and flow control,
and compilation of the METAPOST source code
yields EPS graphics. These features provide an
elegant method for generating graphics. Figure 1
illustrates how METAPOST can be used programat-

1 All graphics in this article (except Figure 2) are created
with METAPOST, and the source code and any required ex-
ternal data files for each of these graphics are embedded as
file attachments in the electronic PDF version of the article.

ically. The figure is generated by rotating one of
the circles multiple times to obtain the desired cir-
cular chain. The programming language constructs

Figure 1: Rotated circles

of METAPOST also deliver a graceful mechanism
for creating animations without having to manually
create each frame of the animation. The primary
advantage of EPS is that it can be scaled to any
resolution without a loss in quality. It can also
be easily converted to raster formats, e.g. Portable
Network Graphics (PNG) and Joint Photographic
Experts Group (JPEG), et al., or other vector for-
mats including Portable Document Format (PDF)
and Scalable Vector Graphics (SVG), et al.

84 TUGboat, Volume 28 (2007), No. 1 — Proceedings of the Practical TEX 2006 Conference

A beginner’s guide to METAPOST for creating high-quality graphics

Figure 2: METAPOST Previewer

2 METAPOST compilation

A typical METAPOST source file consists of one or
more figures. Compilation of the source file gen-
erates an EPS graphic for each figure. These EPS

graphics are not self-contained in that fonts used in
labels are not embedded into the graphic.

If foo.mp is a typical METAPOST source file,
then its contents are of the following form:

beginfig(1);

draw commands

endfig;

beginfig(2);

draw commands

endfig;

...

beginfig(n);

draw commands

endfig;

end;

Executing

mpost foo.mp

yields the following output:

This is MetaPost, Version 〈version〉
(foo.mp [1] [2] . . . [n])

n output files written: foo.1 .. foo.n

Transcript written on foo.log.

For users who just want to “get started” using
METAPOST, a METAPOST previewer is available
at http://www.tlhiv.org/MetaPostPreviewer.
This previewer (illustrated in Figure 2) is simply
a graphical interface to METAPOST itself. It gen-
erates a single graphic with the option to save the
output in both EPS and PDF formats. Users may
also choose to save the source code and can view
the compilation log to assist in debugging.

3 Data types

There are nine data types in METAPOST: numeric,
pair, path, transform, color, string, boolean, picture,
and pen. These data types allow users to store frag-
ments of the graphics for later use. We will briefly
discuss each of these data types and elaborate on
how they are used in a typical METAPOST program.

numeric — numbers

pair — ordered pairs of numerics

path — Bézier curves (and lines)

picture — pictures

transform — transformations such as shifts,
rotations, and slants

color — triplets in the unit cube with red,
green, and blue (RGB) components

string — strings to be labeled

boolean — “true” or “false” values

pen — stroke properties

TUGboat, Volume 28 (2007), No. 1 — Proceedings of the Practical TEX 2006 Conference 85

Troy Henderson

Virtually all programming languages provide a
way of storing and retrieving numerical values. This
is precisely the purpose of the numeric data type
in METAPOST. Since graphics drawn with META-
POST are simply two dimensional pictures, it is clear
that an ordered pair is needed to identify each point
in the picture. The pair data type provides this
functionality. Each point in the plane consists of an
x (i.e., abscissa) part and a y (i.e., ordinate) part.
METAPOST uses the standard syntax for defining
points in the plane, e.g., (x,y) where both x and y
are numeric data typed variables.

In order to store paths between points, the path
data type is used. All paths in METAPOST are
represented as cubic Bézier curves. Cubic Bézier
curves are simply parametric splines of the form
(x(t), y(t)) where both x(t) and y(t) are piecewise
cubic polynomials of a common parameter t. Since
Bézier curves are splines, they pairwise interpolate
the points. Furthermore, cubic Bézier curves are di-
verse enough to provide a “smooth” path between all
of the points for which it interpolates. METAPOST

provides several methods for affecting the Bézier
curve between a list of points. For example, piece-
wise linear paths (i.e., linear splines) can be drawn
between a list of points since all linear polynomials
are also cubic polynomials. Furthermore, if a spe-
cific direction for the path is desired at a given point,
this constraint can be forced on the Bézier curve.

The picture data type is used to store an entire
picture for later use. For example, in order to create
animations, usually there are objects that remain
the same throughout each frame of the animation.
So that these objects do not have to be manually
drawn for each frame, a convenient method for re-
drawing them is to store them into a picture variable
for later use.

When constructing pairs, paths, or pictures in
METAPOST, it is often convenient to apply affine
transformations to these objects. As mentioned
above, Figure 1 can be constructed by rotating the
same circle several times before drawing it. META-
POST provides built-in affine transformations as
“building blocks” from which other transformations
can be constructed. These include shifts, rotations,
horizontal and vertical scalings, and slantings.

There are five built-in colors in METAPOST:
black, white, red, green, and blue. However, cus-
tom colors can be defined using the color data type.
Colors in METAPOST are simply ordered triplets of
the form (r,g,b) where r, g, and b are numerics
between 0 and 1. These values r, g, and b identify
what fraction of the color is red, green, and blue,
respectively. For example, the built-in color red is

simply a synonym for (1, 0, 0) and black is a syn-
onym for (0, 0, 0). If a particular color is to be used
several times throughout a figure, it is natural to
store this color into a variable (of type color) for
multiple uses.

The most common application of string data
types is reusing a particular string that is typeset
(or labeled). The boolean data type is the same
as in other programming languages, used in con-
ditional statements for testing. Finally, the pen
data type is used to affect the actual stroke paths.
The default unit of measurement in METAPOST

is 1 bp = 1/72 in, and the default thickness of all
stroked paths is 0.5 bp. An example for using the
pen data type may include changing the thickness of
several stroked paths. This new pen can be stored
and then referenced for drawing each of the paths.

4 Common commands

The METAPOST manual [3] lists 26 built-in com-
mands along with 23 function-like macros for which
pictures can be drawn and manipulated using
METAPOST. We will not discuss each of these
commands here; however, we will focus on several of
the most common commands and provide examples
of their usage.

4.1 The draw command

The most common command in METAPOST is the
draw command. This command is used to draw
paths or pictures. In order to draw a path from
z1:=(0,0) to z2:=(54,18) to z3:=(72,72), we
should first decide how we want the path to look.
For example, if we want these points to simply be
connected by line segments, then we use

draw z1--z2--z3;

However, if we want a smooth path between these
points, we use

draw z1..z2..z3;

In order to specify the direction of the path at the
points, we use the dir operator. In Figure 3 we see
that the smooth path is horizontal at z1, a 45◦ angle
at z2, and vertical at z3. These constraints on the
Bézier curve are imposed by

draw z1{right}..z2{dir 45}..{up}z3;

Notice that z2{dir 45} forces the outgoing direc-
tion at z2 to be 45◦. This implies an incoming di-
rection at z2 of 45◦. In order to require different
incoming and outgoing directions, we would use

draw z1{right}..{dir θi}z2{dir θo}..{up}z3;

where θi and θo are the incoming and outgoing di-
rections, respectively.

86 TUGboat, Volume 28 (2007), No. 1 — Proceedings of the Practical TEX 2006 Conference

A beginner’s guide to METAPOST for creating high-quality graphics

z1

z2

z3

Figure 3: draw examples

Figure 4: fill example

4.2 The fill Command

Another common command in METAPOST is the
fill command. This is used to fill closed paths (or
cycles). In order to construct a cycle, cycle may be
appended to the path declaration. For example,

path p;

p:=z1{right}..z2{dir 45}..{up}z3--cycle;

fill p withcolor red;

draw p;

produces Figure 4. Notice that p is essentially the
same curved path as in Figure 3 with the additional
piece that connects z3 back to z1 with a line segment
using --cycle.

Just as it is necessary to fill closed paths, it
may also be necessary to unfill closed paths. For
example, the annulus in Figure 5 can be constructed
by

color bbblue;

bbblue:=(3/5,4/5,1);

path p,q;

p:=fullcircle scaled (2*54);

q:=fullcircle scaled (2*27);

fill p withcolor bbblue;

unfill q;

draw p;

draw q;

The fullcircle path is a built-in path that closely
approximates a circle in METAPOST with diameter
1 bp traversed counter-clockwise. This path is not
exactly a circle since it is parameterized by a Bézier
curve and not by trigonometric functions; however,
visually it is essentially indistinguishable from an

Figure 5: unfill example

p

q

Figure 6: Avoiding an unfill

exact circle. Notice that p is a fullcircle of radius
54 bp (3/4 in) and q is a fullcircle of radius 27 bp
(3/8 in). The annulus is constructed by filling p with
the baby blue color bbblue and then unfilling q. The
unfill command above is equivalent to

fill q withcolor background;

where background is a built-in color which is white
by default.

Often the unfill command appears to be the
natural method for constructing figures like Figure
5. However, the fill and unfill commands in Fig-
ure 5 can be replaced by

fill p--reverse q--cycle withcolor bbblue;

The path p--reverse q--cycle travels around p

in a counter-clockwise directions (since this is the
direction that p traverses) followed by a line seg-
ment to connect to q. It then traverses clockwise
around q (using the reverse operator) and finally
returns to the starting point along a line segment
using --cycle. This path is illustrated in Figure 6.
One reason for using this method to construct the
annulus as opposed to the unfill command is to
ensure proper transparency when placing the figure
in an external document with a non-white back-
ground. If the former method is used and the an-
nulus is placed on a non-white background, say ma-
genta, then the result is Figure 7. It may be de-
sired to have the interior of q be magenta instead

TUGboat, Volume 28 (2007), No. 1 — Proceedings of the Practical TEX 2006 Conference 87

Troy Henderson

Figure 7: Improper transparency using unfill

of white. This could be accomplished by redefining
background; however, the latter method described
above is a much simpler solution.

4.3 Arrow commands

When drawing simple graphs and other illustrations,
the use of arrows is often essential. There are two
arrow commands in METAPOST for accommodating
this need — drawarrow and drawdblarrow. Both of
these commands require a path argument. For ex-
ample,

drawarrow (0,0)--(72,72);

draws an arrow beginning at (0,0) and ending at
(72,72) along the line segment connecting these
points.

The path argument of both drawarrow and
drawdblarrow need not be line segmented paths—
they may be any METAPOST path. The only dif-
ference between drawarrow and drawdblarrow is
that drawarrow places an arrow head at the end of
the path and drawdblarrow places an arrow head
at the beginning and the end of the path. As an
example, to draw the curved path in Figure 3 with
an arrow head at the end of the path (i.e., at z3),
the following command can be used

drawarrow z1{right}..z2{dir 45}..{up}z3;

and is illustrated in Figure 8.

z1

z2

z3

Figure 8: Using drawarrow along a path

4.4 The label command

One of the nicest features of METAPOST is that it
relies on TEX (or LATEX) to typeset labels within fig-
ures. Almost all figures in technical documents are
accompanied by labels which help clarify the situ-
ation for which the figure is assisting to illustrate.
Such labels may include anything from simple type-
setting as in Figures 3, 6, and 8 to typesetting func-
tion declarations and even axes labeling.

The label command requires two arguments —
a string to typeset and the point for which label is
placed. For example, the command

label("A",(0,0));

will place the letter “A” at the coordinate (0,0)

and the box around this label is centered vertically
and horizontally at this point. Simple strings like
"A" require no real typesetting to ensure that they
appear properly in the figure. However, many type-
set strings in technical figures require the assistance
of TEX to properly display them. For example, Fig-

f(x) = x2

x

y

Figure 9: Labeling text

ure 9 is an example where typesetting is preferred.
That is, the axes labels and the function declaration
look less than perfect if TEX is not used. For reasons
such as this, METAPOST provides a way to escape
to TEX in order to assist in typesetting the labels.
Therefore, instead of labeling the “A” as above,

label(btex A etex,(0,0));

provides a much nicer technique for typesetting the
label. The btex ... etex block instructs META-
POST to process everything in between btex and
etex using TEX. Therefore, the function declara-
tion in Figure 9 is labeled using

label(btex $f(x)=x^2$ etex,(a, b));

where (a, b) is the point for which the label is to be
centered.

Since many METAPOST users prefer to typeset
their labels using LATEX instead of plain TEX, META-
POST provides a convenient method for accommo-
dating this, done in the preamble of the META-
POST source file. The following code ensures that

88 TUGboat, Volume 28 (2007), No. 1 — Proceedings of the Practical TEX 2006 Conference

A beginner’s guide to METAPOST for creating high-quality graphics

the btex...etex block escapes to LATEX (instead of
plain TEX) for text processing.

verbatimtex

%&latex

\documentclass{minimal}

\begin{document}

etex

beginfig(n);

〈draw commands〉
endfig;

end

Often times it is desirable to typeset labels with
a justification that is not centered. For example, one
may wish to place an “A” not centered horizontally
about (0,0) but placed above (0,0). METAPOST

provides eight suffixes to accommodate such needs.
The suffixes .lft, .rt, .bot, and .top align the la-
bel on the left, right, bottom, and top, respectively,
of the designated point. A hybrid of these four
justifications provide four additional ones, namely,
.llft, .ulft, .lrt, and .urt to align the label on
the lower left, upper left, lower right, and upper
right, respectively, of the designated point. For ex-
ample,

label.top(btex A etex,(0,0));

places the “A” directly above (0,0). Figure 10
demonstrates each of the suffixes and their corre-
sponding placement of the labels.

•lft rt
bot

top
•

llft

ulft

lrt

urt

Figure 10: Label suffixes

5 Graphing functions

Among the most common types of figures for TEX
users are those which are the graphs of functions of
a single variable. Hobby recognized this and con-
structed a package to accomplish this task. It is
invoked by

input graph;

METAPOST has the ability to construct data (i.e.,
ordered pairs) for graphing simple functions. How-
ever, for more complicated functions, the data
should probably be constructed using external pro-
grams such as MATLAB (or Octave), Maple, Math-
ematica, Gnuplot, et. al.

A typical data file, say data.d, to be used with
the graph package may have contents

0.0 0.0

0.2 0.447214

0.4 0.632456

0.6 0.774597

0.8 0.894427

1.0 1.0

This data represents the graph of f(x) =
√

x for six
equally spaced points in [0, 1]. To graph this data,
the size of the graph must first be decided. Choosing
a width of 144 bp and a height of 89 bp, a minimally
controlled plot (as in Figure 11) of this data can be
generated by

draw begingraph(144bp,89bp);

gdraw "data.d";

endgraph;

The graph package provides many commands used
to customize generated graphs, and these commands
are fully documented in the manual [2] for the graph
package.

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Figure 11: f(x) =
√

x using the graph package

6 Including METAPOST figures in LATEX

In order to include a METAPOST figure in LATEX, the
graphicx package is suggested. Below is an example
of including a METAPOST figure (with name foo.1)
in a LATEX document.

\documentclass{article}

\usepackage{graphicx}

\usepackage{ifpdf}

\ifpdf

\DeclareGraphicsRule{*}{mps}{*}{}

\fi

\begin{document}

...

\includegraphics{foo.1}

...

\end{document}

TUGboat, Volume 28 (2007), No. 1 — Proceedings of the Practical TEX 2006 Conference 89

Troy Henderson

The ifpdf package and \ifpdf...\fi command is
used to prompt PDFLATEX to convert the META-
POST graphic to PDF “on the fly” using Hans Ha-
gen’s mptopdf. This conversion is necessary since
PDFLATEX performs no PostScript processing.

7 Conclusion

METAPOST is an elegant programming language,
and it produces beautiful graphics. The graphics are
vectorial and thus can be scaled to any resolution
without degradation. There are many advanced
topics that are not discussed in this article (e.g.,
loops, flow control, subpaths, intersections, etc.),
and the METAPOST manual [3] is an excellent re-
source for these advanced topics. However, the
METAPOST manual may seem daunting for begin-
ners. There are many websites containing META-
POST examples, and several of these are referenced
at http://www.tug.org/metapost. Finally, we
mention that Knuth uses nothing but METAPOST

for his diagrams.

References

[1] N. H. F. Beebe. Metafont. http://www.math.

utah.edu/~beebe/fonts/metafont.html,
2006.

[2] J. D. Hobby. Drawing graphs with MetaPost.
Technical Report 164, AT&T Bell Laborato-
ries, Murray Hill, New Jersey, 1992. Also avail-
able at http://www.tug.org/docs/metapost/

mpgraph.pdf.

[3] J. D. Hobby. A user’s manual for MetaPost.
Technical Report 162, AT&T Bell Laborato-
ries, Murray Hill, New Jersey, 1992. Also avail-
able at http://www.tug.org/docs/metapost/

mpman.pdf.

[4] D. E. Knuth. The TEXbook, volume A of Com-
puters and Typesetting. Addison Wesley, Boston,
1986.

90 TUGboat, Volume 28 (2007), No. 1 — Proceedings of the Practical TEX 2006 Conference

Graphics with PGF and TikZ

Andrew Mertz, William Slough
Department of Mathematics and Computer Science
Eastern Illinois University
Charleston, IL 61920
aemertz (at) eiu dot edu, waslough (at) eiu dot edu

Abstract

Beautiful and expressive documents often require beautiful and expressive graph-
ics. PGF and its front-end TikZ walk a fine line between power, portability and
usability, giving a TEX-like approach to graphics. While PGF and TikZ are ex-
tensively documented, first-time users may prefer learning about these packages
using a collection of graduated examples. The examples presented here cover a
wide spectrum of use and provide a starting point for exploration.

1 Introduction

Users of TEX and LATEX intending to create and use
graphics within their documents have a multitude
of choices. For example, the UK TEX FAQ [1] lists
a half dozen systems in its response to “Drawing
with TEX”. One of these systems is PGF and its
associated front-end, TikZ [4].

All of these systems have similar goals: namely,
to provide a language-based approach which allows
for the creation of graphics which blend well with
TEX and LATEX documents. This approach stands
in contrast to the use of an external drawing pro-
gram, whose output is subsequently included in the
document using the technique of graphics inclusion.

PGF provides a collection of low-level graphics
primitives whereas TikZ is a high-level user inter-
face. Our intent is to provide an overview of the
capabilities of TikZ and to convey a sense of both
its power and relative simplicity. The examples used
here have been developed with Version 1.0 of TikZ.

2 The name of the game

Users of TEX are accustomed to acronyms; both
PGF and TikZ follow in this tradition. PGF refers
to Portable Graphics Format. In a tip of the hat to
the recursive acronym GNU (i.e., GNU’s not Unix),
TikZ stands for “TikZ ist kein Zeichenprogramm”,
a reminder that TikZ is not an interactive drawing
program.

3 Getting started

TikZ supports both plain TEX and LATEX input for-
mats and is capable of producing PDF, PostScript,
and SVG outputs. However, we limit our discussion
to one choice: LATEX input, with PDF output, pro-
cessed by pdfLATEX.

TikZ provides a one-step approach to adding

graphics to a LATEX document. TikZ commands
which describe the desired graphics are simply inter-
mingled with the text. Processing the input source
yields the PDF output.

Figure 1 illustrates the layout required for a
document which contains TikZ-generated graphics.
Of central interest is the tikzpicture environment,
which is used to specify one graphic. Within the
preamble, the tikz package must be specified, along
with optional PGF-based libraries. Exactly which
additional libraries are needed will depend on the
type of graphics being produced. The two PGF li-
braries shown here allow for a variety of arrowheads
and “snakes”, a class of wavy lines.

\documentclass[11pt]{article}

...

\usepackage{tikz}

% Optional PGF libraries

\usepackage{pgflibraryarrows}

\usepackage{pgflibrarysnakes}

...

\begin{document}

...

\begin{tikzpicture}

...

\end{tikzpicture}

...

\end{document}

Figure 1: Layout of a TikZ-based document.

Commands which describe the graphic to be
drawn appear within a tikzpicture environment.
In the simplest case, these commands describe paths
consisting of straight line segments joining points in
the plane. For more complex graphics, other prim-
itive graphics objects can appear; e.g., rectangles,

TUGboat, Volume 28 (2007), No. 1 — Proceedings of the Practical TEX 2006 Conference 91

Andrew Mertz, William Slough

\begin{tikzpicture}

\draw (1,0) -- (0,1) -- (-1,0) -- (0,-1) -- cycle;

\end{tikzpicture}

Figure 2: Drawing a diamond with a closed path.

\begin{tikzpicture}

\draw[step=0.25cm,color=gray] (-1,-1) grid (1,1);

\draw (1,0) -- (0,1) -- (-1,0) -- (0,-1) -- cycle;

\end{tikzpicture}

Figure 3: Adding a grid.

circles, arcs, text, grids, and so forth.
Figure 2 illustrates how a diamond can be ob-

tained, using the draw command to cause a “pen”
to form a closed path joining the four points (1, 0),
(0, 1), (−1, 0), and (0,−1), specified with familiar
Cartesian coordinates. The syntax used to spec-
ify this path is very similar to that used by Meta-
Post [2]. Unlike MetaPost, TikZ uses one centimeter
as the default unit of measure, so the four points
used in this example lie on the x and y axes, one
centimeter from the origin.

In the process of developing and “debugging”
graphics, it can be helpful to include a background
grid. Figure 3 expands on the example of Figure 2 by
adding a draw command to cause a grid to appear:

\draw[step=0.25cm,color=gray]

(-1,-1) grid (1,1);

In this command, the grid is specified by providing
two diagonally opposing points: (−1,−1) and (1, 1).
The two options supplied give a step size for the grid
lines and a specification for the color of the grid lines,
using the xcolor package [3].

4 Specifying points and paths in TikZ

Two key ideas used in TikZ are points and paths.
Both of these ideas were used in the diamond exam-
ples. Much more is possible, however. For example,
points can be specified in any of the following ways:

• Cartesian coordinates

• Polar coordinates

• Named points

• Relative points

As previously noted, the Cartesian coordinate
(a, b) refers to the point a centimeters in the x-
direction and b centimeters in the y-direction.

A point in polar coordinates requires an angle
α, in degrees, and distance from the origin, r. Unlike
Cartesian coordinates, the distance does not have a

default dimensional unit, so one must be supplied.
The syntax for a point specified in polar coordinates
is (α : r dim), where dim is a dimensional unit such
as cm, pt, in, or any other TEX-based unit. Other
than syntax and the required dimensional unit, this
follows usual mathematical usage. See Figure 4.

α

r

x

y

(α : r dim)

Figure 4: Polar coordinates in TikZ.

It is sometimes convenient to refer to a point by
name, especially when this point occurs in multiple
\draw commands. The command:

\path (a,b) coordinate (P);

assigns to P the Cartesian coordinate (a, b). In a
similar way,

\path (α:r dim) coordinate (Q);

assigns to Q the polar coordinate with angle α and
radius r.

Figure 5 illustrates the use of named coordi-
nates and several other interesting capabilities of
TikZ. First, infix-style arithmetic is used to help de-
fine the points of the pentagon by using multiples
of 72 degrees. This feature is made possible by the
calc package [5], which is automatically included by
TikZ. Second, the \draw command specifies five line
segments, demonstrating how the drawing pen can
be moved by omitting the -- operator.

92 TUGboat, Volume 28 (2007), No. 1 — Proceedings of the Practical TEX 2006 Conference

Graphics with PGF and TikZ

\begin{tikzpicture}

% Define the points of a regular pentagon

\path (0,0) coordinate (origin);

\path (0:1cm) coordinate (P0);

\path (1*72:1cm) coordinate (P1);

\path (2*72:1cm) coordinate (P2);

\path (3*72:1cm) coordinate (P3);

\path (4*72:1cm) coordinate (P4);

% Draw the edges of the pentagon

\draw (P0) -- (P1) -- (P2) -- (P3) -- (P4) -- cycle;

% Add "spokes"

\draw (origin) -- (P0) (origin) -- (P1) (origin) -- (P2)

(origin) -- (P3) (origin) -- (P4);

\end{tikzpicture}

Figure 5: Using named coordinates.

P

Q

∆x

∆y

α

r

P

Q

Figure 6: A relative point, Q, determined with Carte-
sian or polar offsets.

The concept of the current point plays an im-
portant role when multiple actions are involved. For
example, suppose two line segments are drawn join-
ing points P and Q along with Q and R:

\draw (P) -- (Q) -- (R);

Viewed as a sequence of actions, the drawing pen
begins at P , is moved to Q, drawing a first line seg-
ment, and from there is moved to R, yielding a sec-
ond line segment. As the pen moves through these
two segments, the current point changes: it is ini-
tially at P , then becomes Q and finally becomes R.

A relative point may be defined by providing
offsets in each of the horizontal and vertical direc-
tions. If P is a given point and ∆x and ∆y are two
offsets, a new point Q may be defined using a ++

prefix, as follows:

\path (P) ++(∆x,∆y) coordinate (Q);

Alternately, the offset may be specified with polar
coordinates. For example, given angle α and radius
r, with a dimensional unit dim, the command:

\path (P) ++(α:r dim) coordinate (Q);

specifies a new point Q. See Figure 6.
There are two forms of relative points — one

which updates the current point and one which does

not. The ++ prefix updates the current point while
the + prefix does not.

Consider line segments drawn between points
defined in a relative manner, as in the example of
Figure 7. The path is specified by offsets: the draw-
ing pen starts at the origin and is adjusted first by
the offset (1, 0), followed by the offset (1, 1), and
finally by the offset (1,−1).

By contrast, Figure 8 shows the effect of using
the + prefix. Since the current point is not updated
in this variation, every offset which appears is per-
formed relative to the initial point, (0, 0).

Beyond line segments

In addition to points and line segments, there are a
number of other graphic primitives available. These
include:

• Grids and rectangles

• Circles and ellipses

• Arcs

• Bézier curves

As previously discussed, a grid is specified by pro-
viding two diagonally opposing points and other op-
tions which affect such things as the color and spac-
ing of the grid lines. A rectangle can be viewed as
a simplified grid — all that is needed are two diago-
nally opposing points of the rectangle. The syntax

\draw (P) rectangle (Q);

draws the rectangle specified by the two “bounding
box” points P and Q. It is worth noting that the
current point is updated to Q, a fact which plays a
role if the \draw command involves more than one
drawing action. Figure 9 provides an example where

TUGboat, Volume 28 (2007), No. 1 — Proceedings of the Practical TEX 2006 Conference 93

Andrew Mertz, William Slough

\begin{tikzpicture}

\draw (0,0) -- ++(1,0) -- ++(1,1) -- ++(1,-1);

\end{tikzpicture}

Figure 7: Drawing a path using relative offsets.

\begin{tikzpicture}

\draw (0,0) -- +(1,0) -- +(0,-1) -- +(-1,0) -- +(0,1);

\end{tikzpicture}

Figure 8: Drawing a path using relative offsets without updating the current point.

\begin{tikzpicture}

\draw (0,0) rectangle (1,1)

rectangle (3,2)

rectangle (4,3);

\end{tikzpicture}

Figure 9: Drawing rectangles.

\begin{tikzpicture}

\draw (0,0) circle (1cm)

circle (0.6cm)

circle (0.2cm);

\end{tikzpicture}

Figure 10: Drawing circles — one draw command with multiple actions.

\begin{tikzpicture}

\draw (0,0) circle (1cm);

\draw (0.5,0) circle (0.5cm);

\draw (0,0.5) circle (0.5cm);

\draw (-0.5,0) circle (0.5cm);

\draw (0,-0.5) circle (0.5cm);

\end{tikzpicture}

Figure 11: Drawing circles — a sequence of draw commands.

three rectangles are drawn in succession. Each rect-
angle operation updates the current point, which
then serves as one of the bounding box points for
the following rectangle.

A circle is specified by providing its center point
and the desired radius. The command:

\draw (a,b) circle (r dim);

causes the circle with radius r, with an appropri-
ate dimensional unit, and center point (a, b) to be
drawn. The current point is not updated as a result.
Figures 10 and 11 provide examples.

The situation for an ellipse is similar, though
two radii are needed, one for each axis. The syntax:

\draw (a,b) ellipse (r1 dim and r2 dim);

causes the ellipse centered at (a, b) with semi-axes

x

y

a

b
r1

r2

Figure 12: An ellipse in TikZ.

94 TUGboat, Volume 28 (2007), No. 1 — Proceedings of the Practical TEX 2006 Conference

Graphics with PGF and TikZ

\begin{tikzpicture}

\draw (0,0) ellipse (2cm and 1cm)

ellipse (0.5cm and 1 cm)

ellipse (0.5cm and 0.25cm);

\end{tikzpicture}

Figure 13: Three ellipses produced with a single draw command.

P

r

α

β

Figure 14: An arc in TikZ.

\begin{tikzpicture}

\draw (0:0.7cm) -- (0:1.5cm)

arc (0:60:1.5cm) -- (60:0.7cm)

arc (60:0:0.7cm) -- cycle;

\end{tikzpicture}

Figure 15: Combining arcs and line segments.

x

y

P Q

C D

Figure 16: A Bézier curve.

r1 and r2 to be drawn. See Figure 12. Like circle,
the ellipse command does not change the current
point, so multiple ellipses which share the same cen-
ter point can be drawn with a single draw command,
as Figure 13 shows.

Arcs may also be specified in TikZ. For a cir-
cular arc, what is required is an initial point on the
circle, the radius of the circle and an indication of
how much of the circle to be swept out. In more
detail, the syntax

\draw (P) arc (α:β:r dim);

draws the arc shown in Figure 14. At first glance
it might seem unusual to use the point P and not
the center point of the circle. However, when one
realizes that the arc might be just one of several
components of a draw command, it is very natural
to use the point P , as it will be the current point.

For example, Figure 15 shows how to draw a
portion of an annulus by drawing two arcs and two
line segments. This particular figure is drawn by
directing the pen in a counter-clockwise fashion—
the horizontal line segment, the outer circular arc,
a line segment, and finally the inner arc.

TikZ also provides the ability to produce Bézier
curves. The command

\draw (P) .. controls (C)

and (D) .. (Q);

draws the curve shown in Figure 16. Four points are
needed: an initial point P , a final point Q, and two
control points. The location of the control points
controls the extent of the curve and the slope of the
curve at the initial and final points.

Bézier curves provide for a wealth of variety, as
Figure 17 indicates.

An alternate syntax for Bézier curves allows for
a more convenient specification of the curvature at
the starting and ending points. Using polar coordi-
nates with respect to these two points provides this
capability. The syntax is as follows:

\draw (P) .. controls +(α:r1 dim)

and +(β:r2 dim) .. (Q);

See Figure 18.

TUGboat, Volume 28 (2007), No. 1 — Proceedings of the Practical TEX 2006 Conference 95

Andrew Mertz, William Slough

P Q

C D

P Q

C

D

P Q

C D

P Q

CD

Figure 17: Various Bézier curves.

P Q

r1

r2

α β

Figure 18: A Bézier curve specified with relative coor-
dinates.

5 From coordinates to nodes

A node is a generalization of the coordinate primi-
tive. Two characteristics of a node are its shape and
its text. A node allows for arbitrary TEX text to
appear within a diagram. The command

\path (0,0)

node[draw,shape=circle] (v0)

{v_0};

defines a node named v0, centered at the origin,
with a circular shape and text component v_0.
The draw option causes the associated shape (in
this case, a circle) to be drawn. Figure 19 illustrates
how nodes can be used to draw an undirected graph.
Notice how line segments which join nodes stop at
the boundary of the shape rather than protruding
into the center point of the node. In this example,
we have made use of the tikzstyle command to
factor out code that would otherwise be repeated in
each of the node commands.

Additionally, this example illustrates the use of
the option [scale=2], which indicates the result is
to be scaled by a factor of 2. Using scale factors
allows the picture to be designed in convenient units,
then resized as desired. However, scaling a TikZ

picture does not scale the font size in use.
There are various features within TikZ which

provide fine control over nodes. Many of these are
related to how line segments or curves connect a pair
of nodes. For example, one can provide specific loca-
tions on the node’s shape where connections should
touch, whether or not to shorten the connection,
how and where to annotate the connection with text,
and so forth.

6 Loops

TikZ provides a loop structure which can simplify
the creation of certain types of graphics. The basic
loop syntax is as follows:

\foreach \var in {iteration list}
{

loop body
}

The loop variable, \var, takes on the values given in
the iteration list. In the simplest case, this list can
be a fixed list of values, such as {1,2,3,4} or as an
implied list of values, such as {1,...,4}.

Consider the following loop. Four coordinates,
X1 through X4 are introduced at (1, 0), (2, 0), (3, 0),
and (4, 0), respectively. In addition, a small filled
circle is drawn at each coordinate.

\foreach \i in {1,...,4}

{

\path (\i,0) coordinate (X\i);

\fill (X\i) circle (1pt);

}

Figure 20 shows how to extend this idea to yield
a bipartite graph. As one might expect, foreach

loops can be nested, a feature utilized here to specify
all the edges in the graph.

Iteration lists need not consist of consecutive
integers. An implicit step size is obtained by pro-
viding the first two values of the list in addition to

96 TUGboat, Volume 28 (2007), No. 1 — Proceedings of the Practical TEX 2006 Conference

Graphics with PGF and TikZ

\begin{tikzpicture}[scale=2]

\tikzstyle{every node}=[draw,shape=circle];

\path (0:0cm) node (v0) {v_0};

\path (0:1cm) node (v1) {v_1};

\path (72:1cm) node (v2) {v_2};

\path (2*72:1cm) node (v3) {v_3};

\path (3*72:1cm) node (v4) {v_4};

\path (4*72:1cm) node (v5) {v_5};

\draw (v0) -- (v1)

(v0) -- (v2)

(v0) -- (v3)

(v0) -- (v4)

(v0) -- (v5);

\end{tikzpicture}

v0 v1

v2

v3

v4

v5

Figure 19: An undirected graph drawn with nodes.

\begin{tikzpicture}[scale=2]

\foreach \i in {1,...,4}

{

\path (\i,0) coordinate (X\i);

\fill (X\i) circle (1pt);

}

\foreach \j in {1,...,3}

{

\path (\j,1) coordinate (Y\j);

\fill (Y\j) circle (1pt);

}

\foreach \i in {1,...,4}

{

\foreach \j in {1,...,3}

{

\draw (X\i) -- (Y\j);

}

}

\end{tikzpicture}

Figure 20: A bipartite graph drawn using loops.

the final value. For example,

\foreach \angle in {0,60,...,300}

{

loop body
}

causes \angle to take on values of the form 60k,
where 0 ≤ k ≤ 5.

Specifying pairs of values in an iteration list
provides simultaneous iteration over these values.
For example,

\foreach \angle / \c in

{0/red,120/green,240/blue}

{

loop body
}

produces three iterations of the loop body, succes-
sively assigning the pairs (0, red), (120, green), and
(240, blue) to the variables \angle and \c.

7 Plotting

A list of points can be plotted using the TikZ plot

command. Lists can be generated three ways: on-
the-fly by gnuplot [6], read from a file, or specified
within a plot itself. These approaches are sup-
ported by the following commands:

\draw plot function{gnuplot formula};
\draw plot file{filename};
\draw plot coordinates{point sequence};

Using other TikZ commands, these graphs can be
enhanced with symbols or other desired annotations.

TUGboat, Volume 28 (2007), No. 1 — Proceedings of the Practical TEX 2006 Conference 97

Andrew Mertz, William Slough

y

x
π
2

π 3π
2

2π

Figure 21: The graph of a function, with tick marks
and annotations.

y

x
1

1

2

2

3

3

Figure 22: A graph that includes a bar chart.

Figure 21 provides an example of one such plot,
the graph of y = sin(2x)e−x/4. The curve itself is
generated with the command:

\draw[smooth,domain=0:6.5]

plot function{sin(2*x)*exp(-x/4)};

This command causes gnuplot† to generate points
of the graph, saving them in a file, which is sub-
sequently processed by TikZ. The smooth option
joins these points with a curve, in contrast to line
segments. Although not used in this example, the
samples option can be used to control the number
of generated points. The domain option specifies the
desired range of x values. Everything else which ap-
pears in this graph, including axes, tick marks, and
multiples of π/2 have been added with additional
TikZ commands.

A list of points can be used to create a bar chart,
as illustrated in Figure 22. Each of the bars is drawn
by command:

\draw[ycomb,

color=gray,

line width=0.5cm]

plot coordinates{(1,1) (2,2) (3,3)};

The ycomb option specifies vertical bars are to be
drawn and line width establishes the width of the
bars.

† To generate points with gnuplot, TEX must be configured
to allow external programs to be invoked. For TEX Live, this
can be accomplished by adjusting texmf.cnf to allow a shell
escape.

8 Clipping and scope

It is sometimes useful to be able to specify regions of
a graphic where drawing is allowed to take place —
any drawing which falls outside this defined region
is “clipped” and is not visible.

This feature is made available by the \clip

command, which defines the clipping region. For
example,

\clip (-0.5,0) circle (1cm);

specifies that all future drawing should take place
relative to the clipping area consisting of the circle
centered at (−0.5, 0) with radius 1 cm. Figure 23
shows how to fill a semicircle with clipping. The
yin-yang symbol, a popular example, can be easily
obtained by superimposing four filled circles on this
filled semicircle:

When multiple \clip commands appear, the ef-
fective clipping region is the intersection of all spec-
ified regions. For example,

\clip (-0.5,0) circle (1cm);

\clip (0.5,0) circle (1cm);

defines a clipping area corresponding to the inter-
section of the two indicated circles. All subsequent
commands which cause drawing to occur are clipped
with respect to this region.

A scoping mechanism allows a clipping region
to be defined for a specified number of commands.
This is achieved with a scope environment. Any
commands inside this environment respect the clip-
ping region; commands which fall outside behave as
usual. For example,

\begin{scope}

\clip (-0.5,0) circle (1cm);

\clip (0.5,0) circle (1cm);

\fill (-2,1.5) rectangle (2,-1.5);

\end{scope}

shades the intersection of two overlapping circles,
since the filled rectangle is clipped to this region.
Commands which follow this scope environment are
not subject to this clipping region. Figure 24 shows
a complete example which makes use of \clip and
scoping.

The scoping mechanism may also be used to ap-
ply options to a group of actions, as illustrated in
Figure 25. In this example, options to control color
and line width are applied to each of three succes-
sive \draw commands, yielding the top row of the
figure. At the conclusion of the scope environment,
the remaining \draw commands revert to the TikZ
defaults, yielding the lower row of the figure.

98 TUGboat, Volume 28 (2007), No. 1 — Proceedings of the Practical TEX 2006 Conference

Graphics with PGF and TikZ

\begin{tikzpicture}

\draw (0,0) circle (1cm);

\clip (0,0) circle (1cm);

\fill[black] (0cm,1cm) rectangle (-1cm,-1cm);

\end{tikzpicture}

Figure 23: An example of clipping.

\begin{tikzpicture}

\draw (-2,1.5) rectangle (2,-1.5);

\begin{scope}

\clip (-0.5,0) circle (1cm);

\clip (0.5,0) circle (1cm);

\fill[color=gray] (-2,1.5) rectangle (2,-1.5);

\end{scope}

\draw (-0.5,0) circle (1cm);

\draw (0.5,0) circle (1cm);

\end{tikzpicture}

Figure 24: Using clipping and scope to show set intersection.

\begin{tikzpicture}[scale=1.5]

\begin{scope}[color=gray,line width=4pt]

\draw (0,0) -- (1,1);

\draw (1,0) -- (0,1);

\draw (-0.5,0.5) circle (0.5cm);

\end{scope}

\draw (0,0) -- (-1,-1);

\draw (0,-1) -- (-1,0);

\draw (0.5,-0.5) circle (0.5cm);

\end{tikzpicture}

Figure 25: Using scope to apply options.

9 Summary

TikZ, a high-level interface to PGF, is a language-
based tool for specifying graphics. It uses famil-
iar graphics-related concepts, such as point, line,
and circle and has a concise and natural syntax. It
meshes well with pdfLATEX in that no additional pro-
cessing steps are needed. Another positive aspect of
TikZ is its ability to blend TEX fonts, symbols, and
mathematics within the generated graphics.

We are especially indebted to Till Tantau for
developing TikZ and for contributing it to the TEX
community.

References

[1] Robin Fairbairns, ed. The UK TEX FAQ.
ftp://cam.ctan.org/tex-archive/help/

uk-tex-faq/letterfaq.pdf.

[2] John Hobby. Introduction to MetaPost.
http://cm.bell-labs.com/who/hobby/92_

2-21.pdf.

[3] Uwe Kern. Extending LATEX’s color facilities:
the xcolor package. http://www.ctan.org/

tex-archive/macros/latex/contrib/xcolor.

[4] Till Tantau. TikZ and PGF, Version 1.01.
http://sourceforge.net/projects/pgf/.

[5] Kresten Krab Thorup, Frank Jensen, and
Chris Rowley. The calc package: infix
arithmetic in LATEX. ftp://tug.ctan.org/

pub/tex-archive/macros/latex/required/

tools/calc.pdf.

[6] Thomas Williams and Colin Kelley. gnuplot.
http://www.gnuplot.info/.

TUGboat, Volume 28 (2007), No. 1 — Proceedings of the Practical TEX 2006 Conference 99

Drawing medical pedigree trees with TEX and PSTricks

Boris Veytsman
Computational Materials Science Center, MS 5A2
George Mason University
Fairfax, VA 22030
borisv (at) lk dot net

Leila Akhmadeeva
Bashkir State Medical University
3 Lenina Str. Ufa, 450077, Russia
leila_ufa (at) mail dot ru

Abstract

Medical pedigrees look like genealogical trees, but also have certain interesting
features. Usually they are drawn by hand by medical geneticists. This is a
cumbersome and time-consuming process. Freely available programs for drawing
genealogies are not fully suitable for this task because of the special format of
medical pedigrees.

We discuss a package for drawing pedigrees based on PSTricks. The infor-
mation is input by geneticists in a spreadsheet; a Perl program extracts it and
calls TEX to produce the final output.

1 Introduction

A medical pedigree is a very important tool for clin-
icians, genetic researchers and medical educators.
As noted by Bennett, Steinhaus, Uhrich, O’Sullivan,
Resta, Lochner-Doyle, Markei, Vincent, and Ham-
anishi, 1995, “The construction of an accurate fam-
ily pedigree is a fundamental component of a clinical
genetic evaluation and of human genetic research.”
Regrettably, at present most geneticists make pedi-
grees manually. There are several programs for mak-
ing pedigrees (see the list at http://www.kumc.edu/
gec/prof/genecomp.html#pedigree), but they are
rather expensive, lack multi-language support and
the quality of typesetting is wanting. Maybe this is
why they are not in wide use.

We tried to write a program suitable for con-
structing complex pedigrees from genetics data in
English, Russian and possibly other languages. TEX
and PSTricks (Van Zandt, 1993) seemed to be a nat-
ural choice. First, the quality of TEX typesetting is
unsurpassed. Pedigrees combine graphical and tex-
tual data, therefore a package like PSTricks is handy
to produce them. There are good facilities for multi-
language support in TEX, therefore we could easily
deploy them. TEX code can be easily generated by
other programs, which is another advantage of im-
plementing the drawing as a TEX file.

The idea to draw genealogical trees with TEX
and PSTricks is by no means new. One can enjoy the
beautiful trees at http://www.tug.org/PSTricks/
main.cgi?file=Examples/Genealogy/genealogy.

The problem is, medical pedigrees differ from
genealogical trees. They might not even be trees
from the mathematical point of view: any marriage
between relatives adds a cycle to the graph of rela-
tionships. Even if there are no such marriages, pedi-
grees are not layered rooted trees in the terminology
of graph theory (Di Battista, Eades, Tamassia, and
Tollis, 1999). The difference is the following. Lay-
ered rooted trees have an “oldest” node (global an-
cestor). This node has no ancestors. It has descen-
dants, and each of them is an ancestor for its own
layered rooted tree. On the other hand, a geneticist
drawing a pedigree is interested both in the male
and female ancestors of the patient, as well as in the
male and female ancestors of them, etc. Therefore a
pedigree might have several “local ancestors”: nodes
that do not have ancestors. This makes the problem
of drawing pedigrees quite interesting.

We divided the problem of drawing pedigrees
into two parts. First, we developed a set of PSTricks
macros (Veytsman and Akhmadeeva, 2006a) to draw
(almost) any pedigree. They can be used “manu-
ally”, i.e., the user can put nodes at any place on the

100 TUGboat, Volume 28 (2007), No. 1 — Proceedings of the Practical TEX 2006 Conference

Drawing medical pedigree trees with TEX and PSTricks

canvas and make any connections between them, us-
ing \rput, \psmatrix or even \pstree (if the pedi-
gree is in fact a layered tree). Second, we devel-
oped a Perl program (Veytsman and Akhmadeeva,
2006b) that can process relationship data in the CSV

(comma separated values) format and output TEX
code for an important subset of pedigrees: when
there is no inbreeding, and only the people having
common genes with the primary patient (proband)
are shown. Both these parts are discussed below.

2 PSTricks macros

From the perspective of graph theory a pedigree is a
collection of nodes and connections. There are three
main kinds of nodes in our macros: \PstPerson to
show persons, \PstAbortion to show terminated
pregnancies, and a marriage node,1 which is im-
plemented as a simple \pnode.2 Each node except
\PstAbortion may have descendants: children of
this person or of this marriage. Each node except
the marriage node has exactly one ancestor node: a
person or a marriage. Additionally a marriage node
has a male and a female spouse.

The nodes may have a number of properties:
they might be affected by a disease (or not), they
might be deceased, they are male or female. These
properties are shown by optional arguments to the
corresponding command. Each node drawing com-
mand has one obligatory argument: the name of the
node, which is used to draw node connections.

The first and simplest connection command is
\PstDescent, which shows the relationship between
an ancestor (a person or marriage node) and descen-
dant. It is implemented internally as an \ncangle

command. There are special commands to show
relationships between twins and their parents, be-
tween spouses, infertility of a union or a person, etc.

An extremely complex pedigree is used as an
example in the paper of Bennett, Steinhaus, Uhrich,
O’Sullivan, Resta, Lochner-Doyle, Markei, Vincent,
and Hamanishi (1995). In Figure 1 we reproduce
this pedigree. The corresponding code is shown in
Figures 2, 3 and 4.

A version of node-drawing commands makes
tree nodes. They are useful if the pedigree is a tree
or can be constructed from a tree by adding sev-
eral connections. An example of such a pedigree is
shown in Figure 5, and the corresponding code in
Figure 6. Note that the pedigree on this figure is

1 For our purposes both official marriages and unofficial
unions are loosely referred to as marriages.

2 There are also special nodes for special circumstances:
twin node is used to show the relation between twins, a special
node is used to show infertility of person or a marriage, etc.

not a tree from the mathematical point of view due
to the marriage between Peter and Joan.

The user manual (Veytsman and Akhmadeeva,
2006a) is distributed with the macros. By tradition,
PSTricks-related code works with both LATEX and
plain TEX, so our code is written to work in both
these modes too. However, most of testing was done
in the LATEX mode only.

3 Perl program

The TEX code in the examples above is straightfor-
ward. Nevertheless, it might be too much to expect
from geneticists to write it themselves. Therefore
if we want the code to work not only for the au-
thors, but also for medical and science profession-
als, we must find a way to generate this code from
the relationship data automatically. This is the aim
of the second part of our project (Veytsman and
Akhmadeeva, 2006b).

The idea of the program is to take the data in a
simple format, easy for the users to understand (and
easy to generate in turn from databases or other
sources) and convert them into TEX code above.
The input format was chosen to be a plain text CSV

format (originally the acronym meant Comma Sep-
arated Values, but it is often used now for any plain
text separated data). In this format each person
record is a line separated into fields by the symbol
“|”. The fields show the name of the person, the
dates of birth and death, the genetic condition, etc.
An important field is Id, a unique identifier of the
person. The relations between the persons are set by
the fields “Mother” and “Father”, which contain Ids
of the parents of the given person. In this way we do
not need to specifically show the relations between
spouses, siblings, etc.: spouses in our system are the
persons who have common children, and siblings are
the persons with common parent(s). An example of
an input file is shown in Figure 7. Such files are easy
to generate by common spreadsheet programs and
from databases.

The code generated from the input file in Fig-
ure 7 is shown in Figure 8, and the typeset pedigree
in Figure 9.

Our program works with a subset of all possi-
ble pedigrees. Still, this subset covers most pedi-
grees used by geneticists. First, we do not include
inbreeding unions in the pedigrees, so our graphs are
in fact trees. Second, we show only the persons that
have common genes with the proband.3 Note that
a pedigree that violates these rules may not allow

3 The proband is the first person among the relatives who
came to a geneticist; he or she is the primary patient.

TUGboat, Volume 28 (2007), No. 1 — Proceedings of the Practical TEX 2006 Conference 101

B
o
ris

V
ey

tsm
an

an
d

L
eila

A
k
h
m

ad
eeva

Ethnic Background Ethnic Background

O’Type ?

I
1

�

2 3 4 5 6

?

d. 72 y
7

d. 70 y
8

9–14

5

II
Proto

1 ∗

Sterrie

32 y
E3−

E4+(45n/18n)
2

?

3

D

?

4

D

5 ∗

Gary

36 y
E3−

6

∗

Gene

36 y
E3−

7

O’Type

Feene

35 y
8

9

//

Stacey

33y
10

Sam

31 y
E2+
11

✁

Donald

29 y
E2+
12

13 14

S n

III
1 2

P

6 wk
3

P female
18wk

E1+(tri 21)
4

16wk
5

P 6 female
19 wk

7

10 y
8

9 male
20 wk

E1+ (tri 18)
10

SB
32 wk

11

12

P

F
ig

u
r
e

1
:

A
co

m
p

lex
p

ed
ig

ree
fro

m
B

en
n

ett,
S

tein
h

a
u

s,
U

h
rich

,
O

’S
u

lliva
n

,
R

esta
,

L
o
ch

n
er-D

oy
le,

M
a
rk

ei,
V

in
cen

t,
a
n

d
H

a
m

a
n

ish
i

(1
9
9
5
)

1
0
2

T
U

G
b
o
a
t,

V
olu

m
e

28
(2007),

N
o.

1
—

P
ro

ceed
in

g
s

of
th

e
P

ra
ctica

l
T
E
X

2006
C

on
feren

ce

Drawing medical pedigree trees with TEX and PSTricks

\psset{armB=1.1, hatchsep=1.5pt}

\rput(3.5,8){Ethnic Background}

\rput(18.5,8){Ethnic Background}

\rput(3.5,7.5){\rnode{OType1}{O’Type}}

\rput(18.5,7.5){\pnode{Origin2}}

\rput(6.5,7.5){\rnode{Quest1}{?}}

\rput(1,6.5){\Huge I}

\rput(1.5,6.5){\pstPerson[male, belowtext=1]{I1}}

\rput(2.5,6.5){\pstPerson[female, obligatory, belowtext=2]{I2}}

\rput(3.5,6.5){\pstPerson[male, belowtext=3]{I3}}

\rput(4.5,6.5){\pstPerson[male, belowtext=4]{I4}}

\rput(5.5,6.5){\pstPerson[male, belowtext=5]{I5}}

\rput(6.5,6.5){\pstPerson[female, affected,

belowtext=6]{I6}}

\rput(2,7.2){\pnode{Twins1}}

\rput(4,7.2){\pnode{Twins2}}

\pstTwins[armB=0]{OType1}{Twins1}{I1}{I2}

\pstTwins[qzygotic, armB=0, mzlinepos=0.8]{OType1}{Twins2}{I3}{I4}

\pstDescent[armB=0]{OType1}{I5}

\pstDescent[armB=0]{Quest1}{I6}

\pstRelationship[descentnode=I5I6]{I5}{I6}

\rput(1.5,5.5){\pstChildless{CI1}}

\ncline{I1}{CI1}

\rput(13.5,6.5){\pstPerson[male, deceased, belowtextrp=t,

belowtext=\parbox{2cm}{\centering d. 72 y\\7}]{I7}}

\rput(15.5,6.5){\pstPerson[female, deceased, belowtextrp=t,

belowtext=\parbox{2cm}{\centering d. 70 y\\8}]{I8}}

\pstRelationship[descentnode=I7I8]{I7}{I8}

\rput(21,6.5){\pstPerson[insidetext=5, belowtext=9--14,

belowtextrp=rt]{I9}}

\pstDescent[armB=0]{Origin2}{I8}

\pstDescent[armB=0]{Origin2}{I9}

Figure 2: Code for Figure 1: Generation I

two-dimensional drawing without self-intersections
at all.

The biggest problem is that even with these
rules the pedigree tree is in the general case not
a layered tree, and the algorithm by Reingold and
Tilford (Di Battista, Eades, Tamassia, and Tollis,
1999, § 3.1) would not work. We therefore describe
a generalization of the Reingold-Tilford algorithm.

First we will summarize the main idea of the
Reingold-Tilford algorithm. We draw a tree down
in the y direction. The algorithm is recursive. We
start from the root of the tree. If it has no descen-
dants, it is easy to draw it. If it has descendants,
each descendant is a rooted layered tree. We draw
them, recursively applying the algorithm. Then we
move them in the horizontal direction as close as
possible, and put the root one layer above with an
x coordinate in the middle of the descendants.

Now we can generalize this algorithm for our
case.

There are two kinds of nodes in the pedigree
graph: person nodes and marriage nodes. A node
has a predecessor and children. A marriage node
does not have a predecessor, but has male spouse
and female spouse (usually male spouses are on the
left and female spouses are on the right on pedi-
grees). Any node has a downward tree of its chil-
dren, grandchildren, etc. The downward tree may
be empty.

Any node in an acyclic graph can be a root.
However, in layered trees there is a special root: the
one that has no predecessor. Similarly, we will call
a local root a node that has no predecessor. All
marriage nodes are local roots. Some person nodes
can be local roots as well.

TUGboat, Volume 28 (2007), No. 1 — Proceedings of the Practical TEX 2006 Conference 103

Boris Veytsman and Leila Akhmadeeva

\rput(1,4.5){\Huge II}

\rput(2.5,4.5){\pstPerson[male, affected, belowtext=1,

abovetext=Proto, abovetextrp=rB]{II1}}

\rput(4.5,4.5){\pstPerson[female, asymptomatic,

belowtext=\parbox{3cm}{32 y\\ E_3-\\E_4+(45n/18n)\\2},

abovetext={Sterrie}, abovetextrp=rB, evaluated]{II2}}

\pstDescent{I2}{II1}\pstDescent{I5I6}{II2}

\pstRelationship[consanguinic, descentnode=II1II2]{II1}{II2}

\rput(5.5,5.2){\rnode{Quest2}{?}}

\rput(5.5,4.5){\pstPerson[female, insidetext=D, belowtext=3]{II3}}

\rput(6.5,5.2){\rnode{Quest3}{?}}

\rput(6.5,4.5){\pstPerson[male, insidetext=D, belowtext=4]{II4}}

\ncline{Quest2}{II3}\ncline{Quest3}{II4}

\rput(7.5,4.5){\pstPerson[female, belowtext=5]{II5}}

\rput(8.5,4.5){\pstPerson[male, abovetext=Gary, abovetextrp=rB,

belowtext=\parbox{2cm}{36 y\\E_3-\\6}, evaluated]{II6}}

\rput(9.5,4.5){\pstPerson[male, abovetext={Gene},

belowtext=\parbox{2cm}{36 y\\E_3-\\7}, evaluated]{II7}}

\rput(9,5.2){\pnode{Twins3}}

\pstTwins[monozygotic]{I5I6}{Twins3}{II6}{II7}

\pstRelationship{II5}{II6}

\rput(7.5,5.7){O’Type}

\rput(11.5,4.5){\pstPerson[female, proband,

belowtext=\parbox{1cm}{35 y\\8}, abovetext=Feene]{II8}}

\pstRelationship[descentnode=II7II8]{II7}{II8}

\rput(13.5,4.5){\pstPerson[male, belowtext=9]{II9}}

\pstRelationship[broken, descentnode=II8II9,

descentnodepos=0.85]{II8}{II9}

\rput(16,4.5){\pstPerson[abovetext=Stacey, female,

abovetextrp=rB, belowtext=\parbox{1cm}{33y\\ 10}]{II10}}

\def\affectedstyle{fillstyle=crosshatch}

\rput(17,4.5){\pstPerson[male, affected, abovetext=Sam,

belowtext=\parbox{3cm}{31 y\\ E_2+\\ 11}, hatchsep=3pt]{II11}}

\rput(17,3.5){\pstChildless[infertile]{C2}}

\ncline{II11}{C2}

\rput(18,4.5){\pstPerson[male, obligatory, abovetext=Donald,

belowtext=\parbox{3cm}{29 y\\ E_2+ \\ 12}]{II12}}

\pstDescent{I7I8}{II8}\pstDescent{I7I8}{II10}

\pstDescent{I7I8}{II11}\pstDescent{I7I8}{II12}

\rput(19,4.5){\pstPerson[female, belowtext=13]{II13}}

\pstRelationship[descentnode=II12II13]{II12}{II13}

\rput(20,4.5){\pstPerson[female, insidetext=S, belowtext=14]{II14}}

\rput(21,4.5){\pstPerson[insidetext=n]{II15}}

\pstDescent{I9}{II15}

Figure 3: Code for Figure 1: Generation II

104 TUGboat, Volume 28 (2007), No. 1 — Proceedings of the Practical TEX 2006 Conference

Drawing medical pedigree trees with TEX and PSTricks

\rput(1,2.5){\Huge III}

\rput(3,2.5){\pstPerson[male, adopted, belowtext=1]{III1}}

\rput(4,2.5){\pstPerson[insidetext=P, belowtext=2]{III2}}

\pstDescent[linestyle=dashed]{II1II2}{III1}

\pstDescent{II1II2}{III2}

\ncline{II3}{III2}

\rput(7.5,2.5){\pstPerson[insidetext=P,

belowtext=\parbox{2cm}{6 wk\\3}]{III3}}

\pstDescent{II5}{III3}

\ncline{II4}{III3}

\def\affectedstyle{fillstyle=vlines}

\rput(10,2.5){\pstAbortion[affected,

belowtext=\parbox{2cm}{\centering

female\\18wk\\E_1+(tri 21)\\4}, belowtextrp=t]{III4}}

\rput(11,2.5){\pstPerson[insidetext=P,

belowtext=\parbox{1cm}{16wk\\5}]{III5}}

\pstDescent{II7II8}{III4}

\pstDescent{II7II8}{III5}

\rput(12,2.5){\pstAbortion[belowtext=6]{III6}}

\rput(13,2.5){\pstAbortion[sab, belowtextrp=t,

belowtext=\parbox{2cm}{\centering female\\19 wk\\ 7}]{III7}}

\rput(14,2.5){\pstPerson[adopted, male,

belowtext=\parbox{1cm}{10 y\\ 8}]{III8}}

\pstDescent{II8II9}{III6}

\pstDescent{II8II9}{III7}

\pstDescent{II8II9}{III8}

\ncline[linestyle=dashed]{II10}{III8}

\rput(15,2.5){\pstAbortion[sab, belowtext=9]{III9}}

\def\affectedstyle{fillstyle=hlines}

\rput(16,2.5){\pstAbortion[sab, belowtextrp=t, affected,

belowtext=\parbox{2cm}{\centering male\\ 20 wk\\ E_1+

(tri 18)\\ 10}]{III10}}

\rput(17,2.5){\pstPerson[deceased, female,

belowtext=\parbox{1cm}{\centering SB\\32 wk\\ 11}]{III11}}

\pstDescent{II10}{III9}

\pstDescent{II10}{III10}

\pstDescent{II10}{III11}

\rput(20,2.5){\pstPerson[insidetext=P,

belowtext=12]{III12}}

\pstDescent{II14}{III12}

\ncline{II12II13}{III12}

Figure 4: Code for Figure 1: Generation III

Our algorithm is recursive and starts from a lo-
cal root. Strictly speaking, it can start from any
local root, but since medical pedigrees have the spe-
cial proband mentioned earlier, it makes sense to
start from the local root which has the proband in
its downward tree.

If this local root is a person node, the pedigree is
the layered tree, and the Reingold-Tilford algorithm
is sufficient. Therefore we should consider only the

case when the local root is a marriage node. In this
case we can typeset the downward tree using the
Reingold-Tilford algorithm. The male and female
spouses do not belong to this tree. However, each
of them belongs to each own subpedigree. We will
call them left subpedigree and right subpedigree. We
recursively apply our algorithm to typeset left and
right subpedigrees. Then we move the left subpedi-
gree to the right and right subpedigree to the left

TUGboat, Volume 28 (2007), No. 1 — Proceedings of the Practical TEX 2006 Conference 105

Boris Veytsman and Leila Akhmadeeva

�

Ann

John

Sue Paul
male

Peter

Mary

Joan

Figure 5: Example of pedigree with tree-making commands

\begin{pspicture}(0,1)(7,7)

\rput(3,4){%

\pstree{\TpstPerson[female, obligatory, belowtext=Ann]{Ann}}{%

\def\psedge{\pstDescent}\psset{armB=1}

\pstree{\TpstPerson[male, affected, belowtext=John]{John}}{%

\TpstPerson[female, belowtext=Sue]{Sue}

\TpstPerson[male, belowtext=Paul]{Paul}

\TpstAbortion[affected, belowtext=male]{A1}

\pstree[thislevelsep=1.2]{\TpstPerson[male,

belowtext=Peter, affected, proband]{Peter}}{%

\def\psedge{\ncline}

\TpstChildless[infertile]{C1}

}

}

\pstree{\TpstPerson[female, belowtext=Mary]{Mary}}{

\TpstPerson[female, belowtext=Joan]{Joan}

}

}

}

\pstRelationship[consanguinic]{Peter}{Joan}

\end{pspicture}

Figure 6: Code producing Figure 5

Id |Name |Sex |DoB | DoD |Mother|Father|Proband|Condition |Comment

P |John Smith |male |1970/02/05| |M1 |F1 | yes |affected |Evaluated 2005/12/01

M1 |Mary Smith (Brown)|female|1940/02/05| |GM2 |GF2 | |normal |

F1 |Bill Smith |male |1938/04/03| |GM1 | GF1 | |affected |

GM1|Joan Smith |female|1902/07/01|1975/12/13| | | |asymptomatic |

GF1|Joseph Smith |male |unknown |unknown | | | |normal |

GF2|Jim Brown |male |1905/11/01| | | | |normal |

GM2|Lisa Brown |female|1910/03/03| | | | |normal |

S1 |Rebecca Smith |female|1972/12/25| |M1 |F1 | |affected |

S2 |Alexander Smith |male |1975/11/12| |M1 |F1 | |normal |

A1 |Ann Gold (Smith) |female|1941/09/02| |GM1 | GF1 | |asymptomatic |Aunt of the proband

C1 | Jenny Smith |female|1969/12/03| |A1 | | |affected |Cousin of the proband

Figure 7: Example of data file

106 TUGboat, Volume 28 (2007), No. 1 — Proceedings of the Practical TEX 2006 Conference

Drawing medical pedigree trees with TEX and PSTricks

\begin{pspicture}(-8,-4)(6,4)

\rput(-6, 2){\pstPerson[male, normal, belowtext=I:1, deceased]{GF1}}

\rput(-4, 2){\pnode{GF1_m_GM1}}

\rput(-2, 2){\pstPerson[female, asymptomatic, belowtext=I:2, deceased]{GM1}}

\rput(0, 2){\pstPerson[male, normal, belowtext=I:3]{GF2}}

\rput(2, 2){\pnode{GF2_m_GM2}}

\rput(4, 2){\pstPerson[female, normal, belowtext=I:4]{GM2}}

\rput(-5, 0){\pstPerson[female, asymptomatic, belowtext=II:1]{A1}}

\rput(-3, 0){\pstPerson[male, affected, belowtext=II:2]{F1}}

\rput(0, 0){\pnode{F1_m_M1}}

\rput(2, 0){\pstPerson[female, normal, belowtext=II:3]{M1}}

\rput(-5, -2){\pstPerson[female, affected, belowtext=III:1]{C1}}

\rput(-2, -2){\pstPerson[male, affected, belowtext=III:2, proband]{P}}

\rput(0, -2){\pstPerson[female, affected, belowtext=III:3]{S1}}

\rput(2, -2){\pstPerson[male, normal, belowtext=III:4]{S2}}

\pstDescent{GF1_m_GM1}{A1}

\pstDescent{GF1_m_GM1}{F1}

\ncline{GF1_m_GM1}{GM1}

\ncline{GF1_m_GM1}{GF1}

\pstDescent{GF2_m_GM2}{M1}

\ncline{GF2_m_GM2}{GM2}

\ncline{GF2_m_GM2}{GF2}

\pstDescent{A1}{C1}

\pstDescent{F1_m_M1}{P}

\pstDescent{F1_m_M1}{S1}

\pstDescent{F1_m_M1}{S2}

\ncline{F1_m_M1}{M1}

\ncline{F1_m_M1}{F1}

\end{pspicture}

\begin{description}

\item[I:1] Joseph Smith; born: unknown; died: unknown.

\item[I:2] Joan Smith; born: 1902/07/01; died: 1975/12/13.

\item[I:3] Jim Brown; born: 1905/11/01.

\item[I:4] Lisa Brown; born: 1910/03/03.

\item[II:1] Ann Gold (Smith); born: 1941/09/02; Aunt of the proband.

\item[II:2] Bill Smith; born: 1938/04/03.

\item[II:3] Mary Smith (Brown); born: 1940/02/05.

\item[III:1] Jenny Smith; born: 1969/12/03; Cousin of the proband.

\item[III:2] John Smith; born: 1970/02/05; Evaluated 2005/12/01.

\item[III:3] Rebecca Smith; born: 1972/12/25.

\item[III:4] Alexander Smith; born: 1975/11/12.

\end{description}

Figure 8: Example of program output (data from Figure 7)

TUGboat, Volume 28 (2007), No. 1 — Proceedings of the Practical TEX 2006 Conference 107

Boris Veytsman and Leila Akhmadeeva

I:1 I:2 I:3 I:4

II:1 II:2 II:3

III:1 III:2 III:3 III:4

I:1 Joseph Smith; born: unknown; died: unknown.

I:2 Joan Smith; born: 1902/07/01; died: 1975/12/13.

I:3 Jim Brown; born: 1905/11/01.

I:4 Lisa Brown; born: 1910/03/03.

II:1 Ann Gold (Smith); born: 1941/09/02; Aunt of the proband.

II:2 Bill Smith; born: 1938/04/03.

II:3 Mary Smith (Brown); born: 1940/02/05.

III:1 Jenny Smith; born: 1969/12/03; Cousin of the proband.

III:2 John Smith; born: 1970/02/05; Evaluated 2005/12/01.

III:3 Rebecca Smith; born: 1972/12/25.

III:4 Alexander Smith; born: 1975/11/12.

Figure 9: Example of the typeset pedigree (code from Figure 8)

as far as we can without intersection between them
and the downward tree.

This process is shown in Figure 10. Obviously
this algorithm converges and leads to typesetting the
pedigree without intersections between the subtrees
and subpedigrees.

The program is implemented in Perl and can
process input in English or Russian, creating a pedi-
gree legend in any of these languages (the Russian
examples can be found in the manual (Veytsman and
Akhmadeeva, 2006b)). It is quite straightforward
to add language modules for any other language or
script that TEX can typeset.

4 Installation notes

A couple of words about the installation of the pack-
ages.

The installation of the TEX part follows the
usual guidelines (http://www.tex.ac.uk/cgi-bin/
texfaq2html?label=instpackages).

The TEX package depends on a number of other
packages, which should be installed on your system.
You need fresh versions of pstricks and pst-xkey.
If you want to typeset the documentation you also
need pstricks-add, but if you are satisfied with the
PDF manual provided with the package, you might
skip this step.

The Perl part includes the executable, library
and manual pages. There is a Makefile, and in
most cases the command make install suffices.

5 Conclusions and future work

Our programs were written mostly as a proof of con-
cept. Surprisingly (or unsurprisingly if we recall the

108 TUGboat, Volume 28 (2007), No. 1 — Proceedings of the Practical TEX 2006 Conference

Drawing medical pedigree trees with TEX and PSTricks

I:1 I:2 I:3 I:4

II:1 II:2 II:3

III:1 III:2 III:3 III:4

Left subpedigree Right subpedigree

Downward tree

�Local root

Figure 10: Subpedigrees and downward tree

properties of TEX) the typesetting quality of the out-
put is rather high. The next logical step is to make
them user-friendly, so any genetic specialist can use
them without reading manual.

Since we cannot count on the medical and ge-
netic personnel to have TEX and Perl on their com-
puters, we envision a “Pedigree Live” disk akin to
TEX Live: a CD with Perl and a subset of TEX on
it, which “just works” after inserting in the com-
puter. This requires creating a cross-platform user
interface and the selection of programs and tools to
be included on a CD.

Acknowledgements

One of the authors (LA) would like to thank Russian
Foundation for Fundamental Research (travel grant
06-04-58811), Russian Federation President Council
for Grants Supporting Young Scientists and Flag-
ship Science Schools (grant MD-4245.2006.7) and
TUG for support at the Practical TEX 2006 confer-
ence.

References

Bennett, Robin L., K. A. Steinhaus, S. B.
Uhrich, C. K. O’Sullivan, R. G. Resta,
D. Lochner-Doyle, D. S. Markei, V. Vincent,
and J. Hamanishi. “Recommendations for
Standardized Human Pedigree Nomenclature”.
Am. J. Hum. Genet. 56(3), 745–752, 1995.

Di Battista, Giuseppe, P. Eades, R. Tamassia, and
I. G. Tollis. Graph Drawing: Algorithms for the
Visualization of Graphs. An Alan R. Apt Book.
Prentice Hall, New Jersey, 1999.

Van Zandt, Timothy. PSTricks: PostScript
Macros for Generic TEX, 1993. http:
//tug.org/PSTricks/doc.

Veytsman, Boris, and L. Akhmadeeva. Creating
Medical Pedigrees with PSTricks and LATEX,
2006a. http://ctan.tug.org/tex-archive/
graphics/pstricks/contrib/pedigree/

pst-pdgr.

Veytsman, Boris, and L. Akhmadeeva. A
Program For Automatic Pedigree Construction
With pst-pdgr. User Manual and Algorithm
Description, 2006b. http://ctan.tug.org/
tex-archive/graphics/pstricks/contrib/

pedigree/pedigree-perl.

TUGboat, Volume 28 (2007), No. 1 — Proceedings of the Practical TEX 2006 Conference 109

Rolling your own Document Class:

Using LATEX to keep away from the Dark Side

Peter Flynn
Silmaril Consultants

peter (at) silmaril dot ie

http://silmaril.ie/cgi-bin/blog

Abstract

Document classes in LATEX provide automation to improve consistency, produc-
tivity, and accuracy in creating and maintaining documents, thereby avoiding the
inefficiencies of wordprocessors. However, users who want to package their macros
or applications as a document class are often put off by the apparent complexity
of the sample classes in the standard distribution. This paper describes what the
code in the article document class file does and suggests solutions to some of the
popular requirements for changes.

1 Know thine enemy

One of the key features of TEX systems is the ex-
tensibility offered by re-usable pieces of program-
ming called macros. Rudimentary macros exist
in many text-handling packages (in fact they were
at the heart of the first editors for markup ap-
plications), and some wordprocessors make use of
general-purpose programming languages such as
Visual Basic or Java; but only typesetters have ded-
icated languages to doing typesetting, and TEX’s is
by far the most accessible.

This has led to several large and well-known
macro packages (LATEX, ConTEXt, Texinfo, Eplain,
etc) which have all but taken the place of Knuth’s
original language as the end-user’s primary inter-
faces. Most users now only have to use the macro
commands of their chosen interface instead of hav-
ing to write their own macros afresh or maintain a
large private collection of personal macros.

This is not to say that there is no place for
homebrew macros in plain TEX: some people have
perfectly valid reasons for avoiding the aforemen-
tioned packages and continuing to use TEX in the
raw. Using one of the above ‘standards’ does not
always mean that you avoid raw TEX in your own
code, because you may need some advanced oper-
ations which operate at a lower level than normal.
It nevertheless remains true that the use of macros
to perform groups of frequently-used functions pro-
vides a level of automation not found in most word-
processing systems, and is a major factor in helping
users become and remain more productive.

1.1 Standard document classes

The standard document classes installed with LATEX
(article, report, book, and letter) were written in a hy-
brid of LATEX and plain TEX code. Sometimes this
was because the function Lamport wanted was not
worth writing a single-use LATEX macro for; some-
times it is because (as Knuth describes in another
context) “TEX is only ‘half obedient’ while these
definitions are half finished” [4, p. 352]; and some-
times because of the need mentioned above to per-
form lower-level functions. While the LATEX2ε de-
velopers and maintainers have replaced much of the
earlier plain TEX code with updated LATEX equiva-
lents, the code remains fairly dense and is not im-
mediately obvious to the beginner; and the mix of
syntax variants can be confusing to the user accus-
tomed to the fairly small set of commands used for
common LATEX documents. Plain TEX itself has
some 900 ‘control sequences’ (commands) of which
about 350 are ‘primitives’ (indivisible low-level op-
erations), whereas many regular LATEX users get by
with some 20–30 commands, if even that.

Users who have started to write their own
macros, or who have encountered the need to mod-
ify LATEX’s defaults for whatever reason, sometimes
find the need to encapsulate their favourite format
as a document class, governing the entire document,
rather than just a package (style file) handling one
or two specific features. In this paper we will dissect
one of the common document classes and examine
what the features and functions are.

1.2 Caveats

This paper uses the article class as the example. The
book and report classes are structured very similarly

110 TUGboat, Volume 28 (2007), No. 1 —Proceedings of the Practical TEX 2006 Conference

Rolling your own Document Class: Using LATEX to keep away from the Dark Side

and the user who has examined the following sec-
tions should have no difficulty in identifying the dif-
ferences.

The letter class, however, is a very different ani-
mal. It implements a vertically-centered format once
common in typewritten letters but rarely seen nowa-
days, and has no provision for many of the features
users expect to be able to find in a letter template.
For this reason I do not refer any further to this
format.

The ConTEXt system implements a different
and extensible set of document classes — including
letters — in a radically different manner to LATEX
and has been discussed and presented extensively in
recent years. The Eplain macros implement many
of the features of the LATEX internal mechanisms,
but without imposing any document format at all,
leaving the plain TEX user free to write those herself.

1.3 More background

The essential documentation to read before you start
writing your own classes is LATEX2ε for class and

package writers [8] (available on all modern TEX
installations by typing texdoc clsguide, and The

LATEX Companion [6, App : A.4]. These describe in
detail the additional commands available to class
and package authors. There are also some spe-
cial declarations explained in Companion [6, p. 847].
The article by Hefferon [3] which I refer to later is a
good example of how to build on an existing class.
If you have to deal with an obsolete LATEX 2.09 style
file, there is an older paper in TUGboat [1].

2 Dissection of article.cls

In this example, we use the file from the TEX Live
2005 distribution (so the line numbers refer to that
version only). Lines 1–53 are comments and are
omitted here for brevity: they explain where the file
came from and how it can be used. This is auto-
generated because the document class and pack-
age files in the standard distributions of LATEX are
derived from master copies maintained in docTEX
(.dtx) format [7], which combines documentation
and LATEX code in a single file, much in the same
way that Knuth’s WEB system does for many pro-
gramming languages [9].1 A short explanation of
the sources of the class files is in the TEX FAQ [2,
label : ltxcmds].

1 If you intend making your document class available to
the rest of the LATEX community (eg via CTAN), you should
make it a docTEX document so that you can combine docu-
mentation with your code. Actually, you should probably be
doing this anyway. . .

2.1 Version and identification

The first thing a document class or package must do
is identify itself by name, and specify the oldest ver-
sion of LATEX with which it will work (it is assumed
that it will therefore work with all later versions).

article.cls

54 \NeedsTeXFormat{LaTeX2e}[1995/12/01]

55 \ProvidesClass{article}

56 [2004/02/16 v1.4f

57 Standard LaTeX document class]

In your new document class file you should set
the date and version to the earliest version you have
tested your code with (probably your current ver-
sion). The name of the document class being pro-
vided gets checked against the name requested in the
\documentclass declaration, and LATEX will give a
warning if there is a discrepancy. You may provide a
label for the class as well: this will appear in the log
file. The linebreaks and indentation are for human
readability only.

\NeedsTeXFormat{LaTeX2e}[1995/12/01]

\ProvidesClass{ladingbill} [2006/07/01 v0.01 Bill of Lading

specialist LaTeX document class]

2.2 Initial code and compatibility

On a number of occasions, classes define values as
null or a default for later use, so that subsequent
code won’t trip up as it would if they were undefined.
In most cases you will probably need to keep the
internal definitions (such as \@ptsize here) for use
later on (see section 2.4.1 on p. 113).2

article.cls

58 \newcommand\@ptsize{}

59 \newif\if@restonecol

60 \newif\if@titlepage

61 \@titlepagefalse

The conditionals \if@restonecol (which flags
the restoration of one-column layout after using
LATEX’s built-in two-column usage, as distinct from
using the multicol package) and \if@titlepage

(which flags use of the separate title-page layout—
set to false in the following line) are used in the
default \maketitle command in section 2.4.4 on

2 The use of the @ sign may be unfamiliar to newcomers:
in normal LATEX it is classified as an ‘other’ character [4,
p. 37]. This means it cannot be used as part of a control
sequence (command) in your document. But in class and
package files, LATEX reclassifies it as a ‘letter’, and uses it in
command definitions which are intended to be inaccessible
to the normal user. Its use here indicates that the \@ptsize

command is going to be given a value that the end-user should
not be able to interfere with, or even know exists.

TUGboat, Volume 28 (2007), No. 1 —Proceedings of the Practical TEX 2006 Conference 111

Peter Flynn

p. 116. If you’re planning to rewrite \maketitle to
your own design you may need to take these condi-
tionals into account.3

If you are going to invoke additional pack-
ages to provide facilities needed by your options,
use the \RequirePackage command here, before
the options section. If the additional packages are
unconnected with your option definitions, use the
\RequirePackage command after the options are
executed (see section 2.3.4 on p. 113).

2.3 Options

In an ideal world we wouldn’t have to support obso-
lete versions of software, but the LATEX defaults still
allow v2.09-type \documentstyle declarations to be
processed, with a warning. However, for a modern
class file this is not necessary, so in your own class
you can omit all the tests for \@ifcompatibility

and their \else and terminating \fi commands,
here and throughout, leaving just the code that was
in the \else blocks.

2.3.1 Paper sizes

How many paper size options you want to support
in your class is entirely up to you. You should allow
at least A4 and Letter for normal office work.

article.cls

62 \if@compatibility\else

63 \DeclareOption{a4paper}

64 {\setlength\paperheight {297mm}%

65 \setlength\paperwidth {210mm}}

66 \DeclareOption{a5paper}

67 {\setlength\paperheight {210mm}%

68 \setlength\paperwidth {148mm}}

69 \DeclareOption{b5paper}

70 {\setlength\paperheight {250mm}%

71 \setlength\paperwidth {176mm}}

72 \DeclareOption{letterpaper}

73 {\setlength\paperheight {11in}%

74 \setlength\paperwidth {8.5in}}

75 \DeclareOption{legalpaper}

76 {\setlength\paperheight {14in}%

77 \setlength\paperwidth {8.5in}}

78 \DeclareOption{executivepaper}

79 {\setlength\paperheight {10.5in}%

80 \setlength\paperwidth {7.25in}}

81 \DeclareOption{landscape}

82 {\setlength\@tempdima {\paperheight}%

83 \setlength\paperheight {\paperwidth}%

84 \setlength\paperwidth {\@tempdima}}

85 \fi

3 How much to cater for and how much to ignore will
depend on how much your class deviates from the default.
Many LATEX users will expect to be able to use options like
twocolumn and titlepage simply because they are available
in the default classes. But if you are writing a much more
prescriptive format, you may want to remove these options
entirely, which means removing all references to conditional
flags which depend on them.

In some cases you may be writing for a highly
specific environment such as your own office or em-
ployer, where only one size is required. If so, just
omit all the other declarations and add the one op-
tion to the \ExecuteOptions command (see sec-
tion 2.3.4 on p. 113).

2.3.2 Type sizes and layout options

As mentioned above, the compatibility settings in
this block can be removed in your own class, because
modern class files use default option settings via the
\DeclareOption command instead.

article.cls

86 \if@compatibility

87 \renewcommand\@ptsize{0}

88 \else

89 \DeclareOption{10pt}{\renewcommand\@ptsize{0}}

90 \fi

91 \DeclareOption{11pt}{\renewcommand\@ptsize{1}}

92 \DeclareOption{12pt}{\renewcommand\@ptsize{2}}

93 \if@compatibility\else

94 \DeclareOption{oneside}{\@twosidefalse \@mparswitchfalse}

95 \fi

96 \DeclareOption{twoside}{\@twosidetrue \@mparswitchtrue}

97 \DeclareOption{draft}{\setlength\overfullrule{5pt}}

98 \if@compatibility\else

99 \DeclareOption{final}{\setlength\overfullrule{0pt}}

100 \fi

101 \DeclareOption{titlepage}{\@titlepagetrue}

102 \if@compatibility\else

103 \DeclareOption{notitlepage}{\@titlepagefalse}

104 \fi

105 \if@compatibility\else

106 \DeclareOption{onecolumn}{\@twocolumnfalse}

107 \fi

108 \DeclareOption{twocolumn}{\@twocolumntrue}

109 \DeclareOption{leqno}{\input{leqno.clo}}

110 \DeclareOption{fleqn}{\input{fleqn.clo}}

111 \DeclareOption{openbib}{%

112 \AtEndOfPackage{%

113 \renewcommand\@openbib@code{%

114 \advance\leftmargin\bibindent

115 \itemindent -\bibindent

116 \listparindent \itemindent

117 \parsep \z@

118 }%

119 \renewcommand\newblock{\par}}%

120 }

The other options should probably be retained,
as users may expect them to work, bearing in mind
the comment about two-column and title-page set-
tings above. Note that the openbib declaration is
10 lines long, and defers itself to end of the package

112 TUGboat, Volume 28 (2007), No. 1 —Proceedings of the Practical TEX 2006 Conference

Rolling your own Document Class: Using LATEX to keep away from the Dark Side

as a \renewcommand so that it doesn’t conflict with
the command being declared later.

As with paper sizes above, if your class only
needs one specific size setup, just invoke it in
\ExecuteOptions.

2.3.3 Your own options

Now is the time to add your own option declarations,
if any. Note that option names have no backslash;
otherwise the \DeclareOption command works the
same way as the \newcommand command (but with
no parameters).

Details of how to preserve the options of an ex-
isting class you are ‘borrowing’ via the \LoadClass

command are discussed in section 3.1 on p. 122.

2.3.4 Applying options

Two commands control when the options are ap-
plied:

article.cls

121 \ExecuteOptions{letterpaper,10pt,oneside,onecolumn,final}

122 \ProcessOptions

\ExecuteOptions applies all the options you
specify in the argument, in order, as your selected
defaults. The \ProcessOptions command then
applies any options the user has selected in their
\documentclass declaration.

2.4 Layout

A large number of size and shape settings depend
on the selected point size (default 10pt, otherwise
as selected in your options). The exact sizes of
type chosen for all the different type-size commands
are kept in three Class Option files, size10.clo,
size11.clo, and size12.clo. There are some oth-
ers available from CTAN, such as James Kilfiger’s
size14.clo for readers needing larger type editions,
but the three mentioned above cover the vast ma-
jority of normal text setting.

If you are going to invoke additional packages
that are unconnected with your option definitions,
put the \RequirePackage commands here (see sec-
tion 3.2 on p. 122). Be aware that some packages
expect certain variables or definitions already to be
present, so their invocation may need to be deferred
until after everything else. In this case, enclose the
\RequirePackage command in a \AtEndOfPackage

or \AtBeginDocument command. This will invoke
the package[s] at the specified point in processing,
and thus avoid error messages or interference with
code in the class file that has not yet been executed.

2.4.1 Type size

To invoke the right settings, the \@ptsize command
is embedded in the argument to an \input com-
mand:

article.cls

123 \input{size1\@ptsize.clo}

124 \setlength\lineskip{1\p@}

125 \setlength\normallineskip{1\p@}

126 \renewcommand\baselinestretch{}

127 \setlength\parskip{0\p@ \@plus \p@}

A number of basic settings are then made using
the internal definition of a point (\p@). The class
option files contain a lot of other size-specific set-
tings as well as the font size specifications for the
chosen body size.

2.4.1.1 Identity and basic sizes The class op-
tion files (we show size10.clo here) identify them-
selves in the same way as class files, but using the
\ProvidesFile instead of \ProvidesClass.

size10.clo

54 \ProvidesFile{size10.clo}

55 [2004/02/16 v1.4f

56 Standard LaTeX file (size option)]

57 \renewcommand\normalsize{%

58 \@setfontsize\normalsize\@xpt\@xiipt

59 \abovedisplayskip 10\p@ \@plus2\p@ \@minus5\p@

60 \abovedisplayshortskip \z@ \@plus3\p@

61 \belowdisplayshortskip 6\p@ \@plus3\p@ \@minus3\p@

62 \belowdisplayskip \abovedisplayskip

63 \let\@listi\@listI}

64 \normalsize

65 \newcommand\small{%

66 \@setfontsize\small\@ixpt{11}%

67 \abovedisplayskip 8.5\p@ \@plus3\p@ \@minus4\p@

68 \abovedisplayshortskip \z@ \@plus2\p@

69 \belowdisplayshortskip 4\p@ \@plus2\p@ \@minus2\p@

70 \def\@listi{\leftmargin\leftmargini

71 \topsep 4\p@ \@plus2\p@ \@minus2\p@

72 \parsep 2\p@ \@plus\p@ \@minus\p@

73 \itemsep \parsep}%

74 \belowdisplayskip \abovedisplayskip

75 }

76 \newcommand\footnotesize{%

77 \@setfontsize\footnotesize\@viiipt{9.5}%

78 \abovedisplayskip 6\p@ \@plus2\p@ \@minus4\p@

79 \abovedisplayshortskip \z@ \@plus\p@

80 \belowdisplayshortskip 3\p@ \@plus\p@ \@minus2\p@

81 \def\@listi{\leftmargin\leftmargini

82 \topsep 3\p@ \@plus\p@ \@minus\p@

83 \parsep 2\p@ \@plus\p@ \@minus\p@

84 \itemsep \parsep}%

85 \belowdisplayskip \abovedisplayskip

86 }

87 \newcommand\scriptsize{\@setfontsize\scriptsize\@viipt\@viiipt}

88 \newcommand\tiny{\@setfontsize\tiny\@vpt\@vipt}

89 \newcommand\large{\@setfontsize\large\@xiipt{14}}

TUGboat, Volume 28 (2007), No. 1 —Proceedings of the Practical TEX 2006 Conference 113

Peter Flynn

90 \newcommand\Large{\@setfontsize\Large\@xivpt{18}}

91 \newcommand\LARGE{\@setfontsize\LARGE\@xviipt{22}}

92 \newcommand\huge{\@setfontsize\huge\@xxpt{25}}

93 \newcommand\Huge{\@setfontsize\Huge\@xxvpt{30}}

The first block defines the standard LATEX sizes.
These are named using roman numerals (eg \@xiipt

for 12pt) because digits are not allowed in control se-
quence names. The more frequently-used sizes also
define the display math spacing and the spacing for
top-level lists (list definition names also use roman
numerals like \@listi).

2.4.1.2 Spacing This section controls para-
graph indentation (differing between one-column
and two-column setting); the dimensions of the three
‘shortcut’ spacing commands (small, med, and big)
but not the actual commands themselves, which are
defined in LATEX itself; and some top-of-page and
bottom-of-page spacing settings (normally reset us-
ing the geometry package).

size10.clo

94 \if@twocolumn

95 \setlength\parindent{1em}

96 \else

97 \setlength\parindent{15\p@}

98 \fi

99 \setlength\smallskipamount{3\p@ \@plus 1\p@ \@minus 1\p@}

100 \setlength\medskipamount{6\p@ \@plus 2\p@ \@minus 2\p@}

101 \setlength\bigskipamount{12\p@ \@plus 4\p@ \@minus 4\p@}

102 \setlength\headheight{12\p@}

103 \setlength\headsep {25\p@}

104 \setlength\topskip {10\p@}

105 \setlength\footskip{30\p@}

106 \if@compatibility \setlength\maxdepth{4\p@} \else

107 \setlength\maxdepth{.5\topskip} \fi

2.4.1.3 Text area Text width and text height
are set to depend on the columnar setting and a
multiple of line-heights respectively.

size10.clo

108 \if@compatibility

109 \if@twocolumn

110 \setlength\textwidth{410\p@}

111 \else

112 \setlength\textwidth{345\p@}

113 \fi

114 \else

115 \setlength\@tempdima{\paperwidth}

116 \addtolength\@tempdima{-2in}

117 \setlength\@tempdimb{345\p@}

118 \if@twocolumn

119 \ifdim\@tempdima>2\@tempdimb\relax

120 \setlength\textwidth{2\@tempdimb}

121 \else

122 \setlength\textwidth{\@tempdima}

123 \fi

124 \else

125 \ifdim\@tempdima>\@tempdimb\relax

126 \setlength\textwidth{\@tempdimb}

127 \else

128 \setlength\textwidth{\@tempdima}

129 \fi

130 \fi

131 \fi

132 \if@compatibility\else

133 \@settopoint\textwidth

134 \fi

135 \if@compatibility

136 \setlength\textheight{43\baselineskip}

137 \else

138 \setlength\@tempdima{\paperheight}

139 \addtolength\@tempdima{-2in}

140 \addtolength\@tempdima{-1.5in}

141 \divide\@tempdima\baselineskip

142 \@tempcnta=\@tempdima

143 \setlength\textheight{\@tempcnta\baselineskip}

144 \fi

145 \addtolength\textheight{\topskip}

(The compatibility-mode settings were absolute
values in points.) As with paper size and type size,
you can preselect exact values for the text area and
margins (see next section) using the geometry pack-
age.

2.4.1.4 Page margins Margins also depend on
the column settings, and on the one-side/two-side
setting.

size10.clo

146 \if@twocolumn

147 \setlength\marginparsep {10\p@}

148 \else

149 \setlength\marginparsep{11\p@}

150 \fi

151 \setlength\marginparpush{5\p@}

152 \if@compatibility

153 \if@twoside

154 \setlength\oddsidemargin {44\p@}

155 \setlength\evensidemargin {82\p@}

156 \setlength\marginparwidth {107\p@}

157 \else

158 \setlength\oddsidemargin {63\p@}

159 \setlength\evensidemargin {63\p@}

160 \setlength\marginparwidth {90\p@}

161 \fi

162 \if@twocolumn

163 \setlength\oddsidemargin {30\p@}

114 TUGboat, Volume 28 (2007), No. 1 —Proceedings of the Practical TEX 2006 Conference

Rolling your own Document Class: Using LATEX to keep away from the Dark Side

164 \setlength\evensidemargin {30\p@}

165 \setlength\marginparwidth {48\p@}

166 \fi

167 \else

168 \if@twoside

169 \setlength\@tempdima {\paperwidth}

170 \addtolength\@tempdima {-\textwidth}

171 \setlength\oddsidemargin {.4\@tempdima}

172 \addtolength\oddsidemargin {-1in}

173 \setlength\marginparwidth {.6\@tempdima}

174 \addtolength\marginparwidth {-\marginparsep}

175 \addtolength\marginparwidth {-0.4in}

176 \else

177 \setlength\@tempdima {\paperwidth}

178 \addtolength\@tempdima {-\textwidth}

179 \setlength\oddsidemargin {.5\@tempdima}

180 \addtolength\oddsidemargin {-1in}

181 \setlength\marginparwidth {.5\@tempdima}

182 \addtolength\marginparwidth {-\marginparsep}

183 \addtolength\marginparwidth {-0.4in}

184 \addtolength\marginparwidth {-.4in}

185 \fi

186 \ifdim \marginparwidth >2in

187 \setlength\marginparwidth{2in}

188 \fi

189 \@settopoint\oddsidemargin

190 \@settopoint\marginparwidth

191 \setlength\evensidemargin {\paperwidth}

192 \addtolength\evensidemargin{-2in}

193 \addtolength\evensidemargin{-\textwidth}

194 \addtolength\evensidemargin{-\oddsidemargin}

195 \@settopoint\evensidemargin

196 \fi

197 \if@compatibility

198 \setlength\topmargin{27pt}

199 \else

200 \setlength\topmargin{\paperheight}

201 \addtolength\topmargin{-2in}

202 \addtolength\topmargin{-\headheight}

203 \addtolength\topmargin{-\headsep}

204 \addtolength\topmargin{-\textheight}

205 \addtolength\topmargin{-\footskip}% this might be wrong

206 \addtolength\topmargin{-.5\topmargin}

207 \@settopoint\topmargin

208 \fi

Again, the compatibility-mode settings are ab-
solute, whereas the modern defaults are computed.

2.4.1.5 Footnote space Spacing for footnotes
and floats is flexible (plus and minus a certain
amount) so that the page-breaking routine doesn’t
become too rigid.

size10.clo

209 \setlength\footnotesep{6.65\p@}

210 \setlength{\skip\footins}{9\p@ \@plus 4\p@ \@minus 2\p@}

211 \setlength\floatsep {12\p@ \@plus 2\p@ \@minus 2\p@}

212 \setlength\textfloatsep{20\p@ \@plus 2\p@ \@minus 4\p@}

213 \setlength\intextsep {12\p@ \@plus 2\p@ \@minus 2\p@}

214 \setlength\dblfloatsep {12\p@ \@plus 2\p@ \@minus 2\p@}

215 \setlength\dbltextfloatsep{20\p@ \@plus 2\p@ \@minus 4\p@}

216 \setlength\@fptop{0\p@ \@plus 1fil}

217 \setlength\@fpsep{8\p@ \@plus 2fil}

218 \setlength\@fpbot{0\p@ \@plus 1fil}

219 \setlength\@dblfptop{0\p@ \@plus 1fil}

220 \setlength\@dblfpsep{8\p@ \@plus 2fil}

221 \setlength\@dblfpbot{0\p@ \@plus 1fil}

222 \setlength\partopsep{2\p@ \@plus 1\p@ \@minus 1\p@}

2.4.1.6 Lists Finally, for the values dependent
on type size, the dimensions of lists are set. As
mentioned above, names are fabricated using roman
numerals (i to vi).

size10.clo

223 \def\@listi{\leftmargin\leftmargini

224 \parsep 4\p@ \@plus2\p@ \@minus\p@

225 \topsep 8\p@ \@plus2\p@ \@minus4\p@

226 \itemsep4\p@ \@plus2\p@ \@minus\p@}

227 \let\@listI\@listi

228 \@listi

229 \def\@listii {\leftmargin\leftmarginii

230 \labelwidth\leftmarginii

231 \advance\labelwidth-\labelsep

232 \topsep 4\p@ \@plus2\p@ \@minus\p@

233 \parsep 2\p@ \@plus\p@ \@minus\p@

234 \itemsep \parsep}

235 \def\@listiii{\leftmargin\leftmarginiii

236 \labelwidth\leftmarginiii

237 \advance\labelwidth-\labelsep

238 \topsep 2\p@ \@plus\p@\@minus\p@

239 \parsep \z@

240 \partopsep \p@ \@plus\z@ \@minus\p@

241 \itemsep \topsep}

242 \def\@listiv {\leftmargin\leftmarginiv

243 \labelwidth\leftmarginiv

244 \advance\labelwidth-\labelsep}

245 \def\@listv {\leftmargin\leftmarginv

246 \labelwidth\leftmarginv

247 \advance\labelwidth-\labelsep}

248 \def\@listvi {\leftmargin\leftmarginvi

249 \labelwidth\leftmarginvi

250 \advance\labelwidth-\labelsep}

251 \endinput

TUGboat, Volume 28 (2007), No. 1 —Proceedings of the Practical TEX 2006 Conference 115

Peter Flynn

2.4.2 Spacing penalties

Three penalties are set which get invoked in vari-
ous decisions on paragraph-breaking. You probably
don’t want to change these unless you are doing deep
surgery.

article.cls

128 \@lowpenalty 51

129 \@medpenalty 151

130 \@highpenalty 301

131 \setcounter{topnumber}{2}

132 \renewcommand\topfraction{.7}

133 \setcounter{bottomnumber}{1}

134 \renewcommand\bottomfraction{.3}

135 \setcounter{totalnumber}{3}

136 \renewcommand\textfraction{.2}

137 \renewcommand\floatpagefraction{.5}

138 \setcounter{dbltopnumber}{2}

139 \renewcommand\dbltopfraction{.7}

140 \renewcommand\dblfloatpagefraction{.5}

The fractions and numbers refer to the propor-
tions of the page that can be taken up by figures
and tables, and the number of floats allowed, when
calculating the location of floats.

2.4.3 Running heads

Depending on the imposition (one-sided or two-
sided), the default running heads are specified as
in the original LATEX manual [5].

article.cls

141 \if@twoside

142 \def\ps@headings{%

143 \let\@oddfoot\@empty\let\@evenfoot\@empty

144 \def\@evenhead{\thepage\hfil\slshape\leftmark}%

145 \def\@oddhead{{\slshape\rightmark}\hfil\thepage}%

146 \let\@mkboth\markboth

147 \def\sectionmark##1{%

148 \markboth {\MakeUppercase{%

149 \ifnum \c@secnumdepth >\z@

150 \thesection\quad

151 \fi

152 ##1}}{}}%

153 \def\subsectionmark##1{%

154 \markright {%

155 \ifnum \c@secnumdepth >\@ne

156 \thesubsection\quad

157 \fi

158 ##1}}}

159 \else

160 \def\ps@headings{%

161 \let\@oddfoot\@empty

162 \def\@oddhead{{\slshape\rightmark}\hfil\thepage}%

163 \let\@mkboth\markboth

164 \def\sectionmark##1{%

165 \markright {\MakeUppercase{%

166 \ifnum \c@secnumdepth >\m@ne

167 \thesection\quad

168 \fi

169 ##1}}}}

170 \fi

171 \def\ps@myheadings{%

172 \let\@oddfoot\@empty\let\@evenfoot\@empty

173 \def\@evenhead{\thepage\hfil\slshape\leftmark}%

174 \def\@oddhead{{\slshape\rightmark}\hfil\thepage}%

175 \let\@mkboth\@gobbletwo

176 \let\sectionmark\@gobble

177 \let\subsectionmark\@gobble

178 }

In many cases it may be preferable to use the
fancyhdr package instead. This lets you specify a
very wide range of header and footer layouts, with
left/right switching for double-sided work.

2.4.4 Titling

This is possibly the first big change you’ll need to
make. There are two \maketitle commands de-
fined, one for use on a separate title page (without
facilities for attribution), and one for normal use on
the starting page (with attributions, and allowing
for two columns, using the \@maketitle command
as well). Both are controlled by the \if@titlepage
switch.

article.cls

179 \if@titlepage

180 \newcommand\maketitle{\begin{titlepage}%

181 \let\footnotesize\small

182 \let\footnoterule\relax

183 \let \footnote \thanks

184 \null\vfil

185 \vskip 60\p@

186 \begin{center}%

187 {\LARGE \@title \par}%

188 \vskip 3em%

189 {\large

190 \lineskip .75em%

191 \begin{tabular}[t]{c}%

192 \@author

193 \end{tabular}\par}%

194 \vskip 1.5em%

195 {\large \@date \par}% % Set date in \large size.

196 \end{center}\par

197 \@thanks

198 \vfil\null

199 \end{titlepage}%

200 \setcounter{footnote}{0}%

201 \global\let\thanks\relax

202 \global\let\maketitle\relax

203 \global\let\@thanks\@empty

204 \global\let\@author\@empty

205 \global\let\@date\@empty

206 \global\let\@title\@empty

207 \global\let\title\relax

208 \global\let\author\relax

209 \global\let\date\relax

116 TUGboat, Volume 28 (2007), No. 1 —Proceedings of the Practical TEX 2006 Conference

Rolling your own Document Class: Using LATEX to keep away from the Dark Side

210 \global\let\and\relax

211 }

212 \else

213 \newcommand\maketitle{\par

214 \begingroup

215 \renewcommand\thefootnote{\@fnsymbol\c@footnote}%

216 \def\@makefnmark{\rlap{\@textsuperscript{\normalfont\@thefnmark}}}%

217 \long\def\@makefntext##1{\parindent 1em\noindent

218 \hb@xt@1.8em{%

219 \hss\@textsuperscript{\normalfont\@thefnmark}}##1}%

220 \if@twocolumn

221 \ifnum \col@number=\@ne

222 \@maketitle

223 \else

224 \twocolumn[\@maketitle]%

225 \fi

226 \else

227 \newpage

228 \global\@topnum\z@ % Prevents figures from going at top of page.

229 \@maketitle

230 \fi

231 \thispagestyle{plain}\@thanks

232 \endgroup

233 \setcounter{footnote}{0}%

234 \global\let\thanks\relax

235 \global\let\maketitle\relax

236 \global\let\@maketitle\relax

237 \global\let\@thanks\@empty

238 \global\let\@author\@empty

239 \global\let\@date\@empty

240 \global\let\@title\@empty

241 \global\let\title\relax

242 \global\let\author\relax

243 \global\let\date\relax

244 \global\let\and\relax

245 }

246 \def\@maketitle{%

247 \newpage

248 \null

249 \vskip 2em%

250 \begin{center}%

251 \let \footnote \thanks

252 {\LARGE \@title \par}%

253 \vskip 1.5em%

254 {\large

255 \lineskip .5em%

256 \begin{tabular}[t]{c}%

257 \@author

258 \end{tabular}\par}%

259 \vskip 1em%

260 {\large \@date}%

261 \end{center}%

262 \par

263 \vskip 1.5em}

264 \fi

In all of these you can redefine the size, loca-
tion, and spacing of the three basic titling elements,
\@title, \@author, and \@date. (\author itself
is defined as part of the LATEX core.) If you are
not using two-column setting, or a title-page op-
tion, you could replace the whole lot with a single
\renewcommand{\maketitle}{...} of your own de-
sign.

You can also make up your own additional ele-
ments, for example an optional subtitle:

\def\@subtitle{\relax}

\newcommand{\subtitle}[1]{\gdef\@subtitle{#1}}

\renewcommand{\maketitle}{

\begin{titlepage}

\huge\@author\par

\Large\@title\par

\if\@subtitle\relax\else\large\@subtitle\par\fi

\normalsize\@date\par

\end{titlepage}

}

This lets the phantom \@subtitle exist unused,
set to \relax unless an author explicitly uses the
\subtitle command, because the titling routine
can test whether it is still set to \relax, and if not,
format it accordingly. This technique can be used
to add many of the items of metadata used by pub-
lishers, such as author affiliations, email and web
addresses, and dates of submission.

2.5 Structure

Unless you are doing a very rigid class for data-
handling, you probably want to keep the basic sec-
tional structures for normal continuous text as they
are, and only change the formatting.

article.cls

265 \setcounter{secnumdepth}{3}

266 \newcounter {part}

267 \newcounter {section}

268 \newcounter {subsection}[section]

269 \newcounter {subsubsection}[subsection]

270 \newcounter {paragraph}[subsubsection]

271 \newcounter {subparagraph}[paragraph]

272 \renewcommand \thepart {\@Roman\c@part}

273 \renewcommand \thesection {\@arabic\c@section}

274 \renewcommand\thesubsection {\thesection.\@arabic\c@subsection}

275 \renewcommand\thesubsubsection{\thesubsection .\@arabic\c@subsubsection}

276 \renewcommand\theparagraph {\thesubsubsection.\@arabic\c@paragraph}

277 \renewcommand\thesubparagraph {\theparagraph.\@arabic\c@subparagraph}

278 \newcommand\part{%

279 \if@noskipsec \leavevmode \fi

280 \par

281 \addvspace{4ex}%

282 \@afterindentfalse

283 \secdef\@part\@spart}

The \part command is defined separately, as it
operates like \chapter in other classes, with more
space and a prefix (the book and report classes define
a separate \chapter command).

article.cls

285 \def\@part[#1]#2{%

286 \ifnum \c@secnumdepth >\m@ne

287 \refstepcounter{part}%

288 \addcontentsline{toc}{part}{\thepart\hspace{1em}#1}%

289 \else

TUGboat, Volume 28 (2007), No. 1 —Proceedings of the Practical TEX 2006 Conference 117

Peter Flynn

290 \addcontentsline{toc}{part}{#1}%

291 \fi

292 {\parindent \z@ \raggedright

293 \interlinepenalty \@M

294 \normalfont

295 \ifnum \c@secnumdepth >\m@ne

296 \Large\bfseries \partname\nobreakspace\thepart

297 \par\nobreak

298 \fi

299 \huge \bfseries #2%

300 \markboth{}{}\par}%

301 \nobreak

302 \vskip 3ex

303 \@afterheading}

304 \def\@spart#1{%

305 {\parindent \z@ \raggedright

306 \interlinepenalty \@M

307 \normalfont

308 \huge \bfseries #1\par}%

309 \nobreak

310 \vskip 3ex

311 \@afterheading}

The sectional formatting is one of the most
common features of a document class that need
to change. Details of the operation of the
\@startsection command are in the LATEX man-
ual [5] if you want to do a complete rewrite, but in
many cases one of the packages like sectsty can be
used to change fonts or spacing without you having
to redo everything from scratch.

article.cls

312 \newcommand\section{\@startsection {section}{1}{\z@}%

313 {-3.5ex \@plus -1ex \@minus -.2ex}%

314 {2.3ex \@plus.2ex}%

315 {\normalfont\Large\bfseries}}

316 \newcommand\subsection{\@startsection{subsection}{2}{\z@}%

317 {-3.25ex\@plus -1ex \@minus -.2ex}%

318 {1.5ex \@plus .2ex}%

319 {\normalfont\large\bfseries}}

320 \newcommand\subsubsection{\@startsection{subsubsection}{3}{\z@}%

321 {-3.25ex\@plus -1ex \@minus -.2ex}%

322 {1.5ex \@plus .2ex}%

323 {\normalfont\normalsize\bfseries}}

324 \newcommand\paragraph{\@startsection{paragraph}{4}{\z@}%

325 {3.25ex \@plus1ex \@minus.2ex}%

326 {-1em}%

327 {\normalfont\normalsize\bfseries}}

328 \newcommand\subparagraph{\@startsection{subparagraph}{5}{\parindent}%

329 {3.25ex \@plus1ex \@minus .2ex}%

330 {-1em}%

331 {\normalfont\normalsize\bfseries}}

2.6 Indents and margins

In this section the class file defines the internal mar-
gins set around block elements like lists. For control-
ling lists, LATEX provides four levels of indentation.
As explained earlier, because digits are not permit-

ted in command names, all these parameters end in
the Roman-numeral equivalents.

article.cls

332 \if@twocolumn

333 \setlength\leftmargini {2em}

334 \else

335 \setlength\leftmargini {2.5em}

336 \fi

337 \leftmargin \leftmargini

338 \setlength\leftmarginii {2.2em}

339 \setlength\leftmarginiii {1.87em}

340 \setlength\leftmarginiv {1.7em}

341 \if@twocolumn

342 \setlength\leftmarginv {.5em}

343 \setlength\leftmarginvi {.5em}

344 \else

345 \setlength\leftmarginv {1em}

346 \setlength\leftmarginvi {1em}

347 \fi

348 \setlength \labelsep {.5em}

349 \setlength \labelwidth{\leftmargini}

350 \addtolength\labelwidth{-\labelsep}

351 \@beginparpenalty -\@lowpenalty

352 \@endparpenalty -\@lowpenalty

353 \@itempenalty -\@lowpenalty

354 \renewcommand\theenumi{\@arabic\c@enumi}

355 \renewcommand\theenumii{\@alph\c@enumii}

356 \renewcommand\theenumiii{\@roman\c@enumiii}

357 \renewcommand\theenumiv{\@Alph\c@enumiv}

358 \newcommand\labelenumi{\theenumi.}

359 \newcommand\labelenumii{(\theenumii)}

360 \newcommand\labelenumiii{\theenumiii.}

361 \newcommand\labelenumiv{\theenumiv.}

362 \renewcommand\p@enumii{\theenumi}

363 \renewcommand\p@enumiii{\theenumi(\theenumii)}

364 \renewcommand\p@enumiv{\p@enumiii\theenumiii}

365 \newcommand\labelitemi{\textbullet}

366 \newcommand\labelitemii{\normalfont\bfseries \textendash}

367 \newcommand\labelitemiii{\textasteriskcentered}

368 \newcommand\labelitemiv{\textperiodcentered}

369 \newenvironment{description}

370 {\list{}{\labelwidth\z@ \itemindent-\leftmargin

371 \let\makelabel\descriptionlabel}}

372 {\endlist}

373 \newcommand*\descriptionlabel[1]{\hspace\labelsep

374 \normalfont\bfseries #1}

The variables and their meaning are described
in more detail in the LATEX manual [5] and the Com-

panion [6], but essentially:

\leftmarginrr are the list level indentations from
outer page margin to the start of the text;

\labelsep is the space between the number or bul-
let and the start of the text;

118 TUGboat, Volume 28 (2007), No. 1 —Proceedings of the Practical TEX 2006 Conference

Rolling your own Document Class: Using LATEX to keep away from the Dark Side

\labelwidth is how much space to allow for the
numbering or bulleting;

\theenumrr controls the style of numbering;

\labelenumrr controls the style of bulleting.

In all these cases, you can remove the conditional
code surrounding the variants for two-column work,
and have just one setting, if you are not going to
provide for two-column setting.

The description environment works slightly dif-
ferently: the \makelabel command is equated to a
\descriptionlabel command to indent and format
the item label. This is easily redefined, for example
to make the labels use the sans-serif font instead of
the default roman typeface, and add an automatic
em-rule afterwards:

\renewcommand*\descriptionlabel[1]{

\hspace\labelsep

\relax\sffamily{\bfseries #1}~---\space

\ignorespaces}

2.7 Abstract

The default abstract is formatted differently accord-
ing to where it appears: on the first page or on a
page by itself after a separate title page.

article.cls

375 \if@titlepage

376 \newenvironment{abstract}{%

377 \titlepage

378 \null\vfil

379 \@beginparpenalty\@lowpenalty

380 \begin{center}%

381 \bfseries \abstractname

382 \@endparpenalty\@M

383 \end{center}}%

384 {\par\vfil\null\endtitlepage}

385 \else

386 \newenvironment{abstract}{%

387 \if@twocolumn

388 \section*{\abstractname}%

389 \else

390 \small

391 \begin{center}%

392 {\bfseries \abstractname\vspace{-.5em}\vspace{\z@}}%

393 \end{center}%

394 \quotation

395 \fi}

396 {\if@twocolumn\else\endquotation\fi}

397 \fi

One common requirement is for the Abstract
formatting to follow the pattern of a subsection
when it appears on a separate page, eg

\newenvironment{abstract}{%

\titlepage

\subsection*{\abstractname}}%

{\par\vfil\null\endtitlepage}

Some styles require turning off the initial indenta-
tion when the abstract is on the first page, for con-
sistency with the default Anglo-American style used
in sections:

\newenvironment{abstract}{%

\if@twocolumn

\section*{\abstractname}%

\else

\small

\begin{center}%

{\bfseries \abstractname\vspace{-.5em}

\vspace{\z@}}%

\end{center}%

\quotation\noindent\ignorespaces

\fi}

{\if@twocolumn\else\endquotation\fi}

Note that if you will be adding to an existing class in
the manner described in section 3.1 on p. 122, these
last two examples will use the \renewenvironment

command instead.

2.8 Structural elements

The default classes contain some rudimentary envi-
ronments for verse and quotations, and a compat-
ibility setting for LATEX 2.09 users, which can be
omitted from new classes (make sure you keep one
definition of the titlepage environment, though!

article.cls

398 \newenvironment{verse}

399 {\let\\\@centercr

400 \list{}{\itemsep \z@

401 \itemindent -1.5em%

402 \listparindent\itemindent

403 \rightmargin \leftmargin

404 \advance\leftmargin 1.5em}%

405 \item\relax}

406 {\endlist}

407 \newenvironment{quotation}

408 {\list{}{\listparindent 1.5em%

409 \itemindent \listparindent

410 \rightmargin \leftmargin

411 \parsep \z@ \@plus\p@}%

412 \item\relax}

413 {\endlist}

414 \newenvironment{quote}

415 {\list{}{\rightmargin\leftmargin}%

416 \item\relax}

TUGboat, Volume 28 (2007), No. 1 —Proceedings of the Practical TEX 2006 Conference 119

Peter Flynn

417 {\endlist}

418 \if@compatibility

419 \newenvironment{titlepage}

420 {%

421 \if@twocolumn

422 \@restonecoltrue\onecolumn

423 \else

424 \@restonecolfalse\newpage

425 \fi

426 \thispagestyle{empty}%

427 \setcounter{page}\z@

428 }%

429 {\if@restonecol\twocolumn \else \newpage \fi

430 }

431 \else

432 \newenvironment{titlepage}

433 {%

434 \if@twocolumn

435 \@restonecoltrue\onecolumn

436 \else

437 \@restonecolfalse\newpage

438 \fi

439 \thispagestyle{empty}%

440 \setcounter{page}\@ne

441 }%

442 {\if@restonecol\twocolumn \else \newpage \fi

443 \if@twoside\else

444 \setcounter{page}\@ne

445 \fi

446 }

447 \fi

448 \newcommand\appendix{\par

449 \setcounter{section}{0}%

450 \setcounter{subsection}{0}%

451 \gdef\thesection{\@Alph\c@section}}

The quotation environment is another which
benefits from the removal of the initial indentation:

\newenvironment{quotation}

{\list{}{\listparindent 1.5em%

\itemindent \z@

\rightmargin \leftmargin

\parsep \z@ \@plus\p@}%

\item\relax}

{\endlist}

For the reasons noted in section 2.7 on p. 119, this
may need to be a \renewcommand.

This section ends with a definition for
\appendix which switches the \section settings to
produce labels with A, B, C, etc instead of 1, 2, 3.

2.9 Figures and tables

These are controlled by a number of dimensions
which you may already be familiar with, such as
\tabcolsep for the gap between table columns. The
\fboxsep and \fboxrule dimensions control the
gap and rule thickness around boxed text.

article.cls

452 \setlength\arraycolsep{5\p@}

453 \setlength\tabcolsep{6\p@}

454 \setlength\arrayrulewidth{.4\p@}

455 \setlength\doublerulesep{2\p@}

456 \setlength\tabbingsep{\labelsep}

457 \skip\@mpfootins = \skip\footins

458 \setlength\fboxsep{3\p@}

459 \setlength\fboxrule{.4\p@}

460 \renewcommand \theequation {\@arabic\c@equation}

461 \newcounter{figure}

462 \renewcommand \thefigure {\@arabic\c@figure}

463 \def\fps@figure{tbp}

464 \def\ftype@figure{1}

465 \def\ext@figure{lof}

466 \def\fnum@figure{\figurename\nobreakspace\thefigure}

467 \newenvironment{figure}

468 {\@float{figure}}

469 {\end@float}

470 \newenvironment{figure*}

471 {\@dblfloat{figure}}

472 {\end@dblfloat}

473 \newcounter{table}

474 \renewcommand\thetable{\@arabic\c@table}

475 \def\fps@table{tbp}

476 \def\ftype@table{2}

477 \def\ext@table{lot}

478 \def\fnum@table{\tablename\nobreakspace\thetable}

479 \newenvironment{table}

480 {\@float{table}}

481 {\end@float}

482 \newenvironment{table*}

483 {\@dblfloat{table}}

484 {\end@dblfloat}

485 \newlength\abovecaptionskip

486 \newlength\belowcaptionskip

487 \setlength\abovecaptionskip{10\p@}

488 \setlength\belowcaptionskip{0\p@}

489 \long\def\@makecaption#1#2{%

490 \vskip\abovecaptionskip

491 \sbox\@tempboxa{#1: #2}%

492 \ifdim \wd\@tempboxa >\hsize

493 #1: #2\par

494 \else

495 \global \@minipagefalse

496 \hb@xt@\hsize{\hfil\box\@tempboxa\hfil}%

120 TUGboat, Volume 28 (2007), No. 1 —Proceedings of the Practical TEX 2006 Conference

Rolling your own Document Class: Using LATEX to keep away from the Dark Side

497 \fi

498 \vskip\belowcaptionskip}

At the end of this section is the \@makecaption
command, another popular candidate for redesign,
but consider also using the ccaption package.

2.10 Legacy support

The obsolescent commands \rm, \it, \bf, etc are
declared here to function as their modern equiva-
lents.

article.cls

499 \DeclareOldFontCommand{\rm}{\normalfont\rmfamily}{\mathrm}

500 \DeclareOldFontCommand{\sf}{\normalfont\sffamily}{\mathsf}

501 \DeclareOldFontCommand{\tt}{\normalfont\ttfamily}{\mathtt}

502 \DeclareOldFontCommand{\bf}{\normalfont\bfseries}{\mathbf}

503 \DeclareOldFontCommand{\it}{\normalfont\itshape}{\mathit}

504 \DeclareOldFontCommand{\sl}{\normalfont\slshape}{\@nomath\sl}

505 \DeclareOldFontCommand{\sc}{\normalfont\scshape}{\@nomath\sc}

506 \DeclareRobustCommand*\cal{\@fontswitch\relax\mathcal}

507 \DeclareRobustCommand*\mit{\@fontswitch\relax\mathnormal}

2.11 Table of contents

The Table of Contents section starts with some
commands which evaluate to dimensions, plus the
\tableofcontents command itself.

article.cls

508 \newcommand\@pnumwidth{1.55em}

509 \newcommand\@tocrmarg{2.55em}

510 \newcommand\@dotsep{4.5}

511 \setcounter{tocdepth}{3}

512 \newcommand\tableofcontents{%

513 \section*{\contentsname

514 \@mkboth{%

515 \MakeUppercase\contentsname}{\MakeUppercase\contentsname}}%

516 \@starttoc{toc}%

517 }

518 \newcommand*\l@part[2]{%

519 \ifnum \c@tocdepth >-2\relax

520 \addpenalty\@secpenalty

521 \addvspace{2.25em \@plus\p@}%

522 \setlength\@tempdima{3em}%

523 \begingroup

524 \parindent \z@ \rightskip \@pnumwidth

525 \parfillskip -\@pnumwidth

526 {\leavevmode

527 \large \bfseries #1\hfil \hb@xt@\@pnumwidth{\hss #2}}\par

528 \nobreak

529 \if@compatibility

530 \global\@nobreaktrue

531 \everypar{\global\@nobreakfalse\everypar{}}%

532 \fi

533 \endgroup

534 \fi}

535 \newcommand*\l@section[2]{%

536 \ifnum \c@tocdepth >\z@

537 \addpenalty\@secpenalty

538 \addvspace{1.0em \@plus\p@}%

539 \setlength\@tempdima{1.5em}%

540 \begingroup

541 \parindent \z@ \rightskip \@pnumwidth

542 \parfillskip -\@pnumwidth

543 \leavevmode \bfseries

544 \advance\leftskip\@tempdima

545 \hskip -\leftskip

546 #1\nobreak\hfil \nobreak\hb@xt@\@pnumwidth{\hss #2}\par

547 \endgroup

548 \fi}

549 \newcommand*\l@subsection{\@dottedtocline{2}{1.5em}{2.3em}}

550 \newcommand*\l@subsubsection{\@dottedtocline{3}{3.8em}{3.2em}}

551 \newcommand*\l@paragraph{\@dottedtocline{4}{7.0em}{4.1em}}

552 \newcommand*\l@subparagraph{\@dottedtocline{5}{10em}{5em}}

553 \newcommand\listoffigures{%

554 \section*{\listfigurename}%

555 \@mkboth{\MakeUppercase\listfigurename}%

556 {\MakeUppercase\listfigurename}%

557 \@starttoc{lof}%

558 }

559 \newcommand*\l@figure{\@dottedtocline{1}{1.5em}{2.3em}}

560 \newcommand\listoftables{%

561 \section*{\listtablename}%

562 \@mkboth{%

563 \MakeUppercase\listtablename}%

564 {\MakeUppercase\listtablename}%

565 \@starttoc{lot}%

566 }

567 \let\l@table\l@figure

There are \l@ttt commands (\l@part,
\l@section, etc) which produce the ToC lines from
the .aux file. The List of Tables and List of Figures
are implemented in the same way as the ToC. As
with other features, consider the tocloft package for
common modifications.

2.12 Bibliography and index

Bibliography styles themselves are implemented in
.bst files, but the style of the section can be changed
here, including indentation and spacing.

article.cls

568 \newdimen\bibindent

569 \setlength\bibindent{1.5em}

570 \newenvironment{thebibliography}[1]

571 {\section*{\refname}%

572 \@mkboth{\MakeUppercase\refname}{\MakeUppercase\refname}%

573 \list{\@biblabel{\@arabic\c@enumiv}}%

574 {\settowidth\labelwidth{\@biblabel{#1}}%

575 \leftmargin\labelwidth

576 \advance\leftmargin\labelsep

577 \@openbib@code

578 \usecounter{enumiv}%

579 \let\p@enumiv\@empty

580 \renewcommand\theenumiv{\@arabic\c@enumiv}}%

581 \sloppy

582 \clubpenalty4000

583 \@clubpenalty \clubpenalty

584 \widowpenalty4000%

585 \sfcode‘\.\@m}

586 {\def\@noitemerr

587 {\@latex@warning{Empty ‘thebibliography’ environment}}%

588 \endlist}

589 \newcommand\newblock{\hskip .11em\@plus.33em\@minus.07em}

590 \let\@openbib@code\@empty

591 \newenvironment{theindex}

592 {\if@twocolumn

593 \@restonecolfalse

TUGboat, Volume 28 (2007), No. 1 —Proceedings of the Practical TEX 2006 Conference 121

Peter Flynn

594 \else

595 \@restonecoltrue

596 \fi

597 \twocolumn[\section*{\indexname}]%

598 \@mkboth{\MakeUppercase\indexname}%

599 {\MakeUppercase\indexname}%

600 \thispagestyle{plain}\parindent\z@

601 \parskip\z@ \@plus .3\p@\relax

602 \columnseprule \z@

603 \columnsep 35\p@

604 \let\item\@idxitem}

605 {\if@restonecol\onecolumn\else\clearpage\fi}

606 \newcommand\@idxitem{\par\hangindent 40\p@}

607 \newcommand\subitem{\@idxitem \hspace*{20\p@}}

608 \newcommand\subsubitem{\@idxitem \hspace*{30\p@}}

609 \newcommand\indexspace{\par \vskip 10\p@ \@plus5\p@ \@minus3\p@\relax}

2.13 Odds ’n’ ends

The final section starts with the footnote ‘fence’ and
the footnote alignment. There is also a list of the
section names, which are the ones which get cus-
tomised for other languages when you use the babel

multilingual/multicultural package.
article.cls

610 \renewcommand\footnoterule{%

611 \kern-3\p@

612 \hrule\@width.4\columnwidth

613 \kern2.6\p@}

614 \newcommand\@makefntext[1]{%

615 \parindent 1em%

616 \noindent

617 \hb@xt@1.8em{\hss\@makefnmark}#1}

618 \newcommand\contentsname{Contents}

619 \newcommand\listfigurename{List of Figures}

620 \newcommand\listtablename{List of Tables}

621 \newcommand\refname{References}

622 \newcommand\indexname{Index}

623 \newcommand\figurename{Figure}

624 \newcommand\tablename{Table}

625 \newcommand\partname{Part}

626 \newcommand\appendixname{Appendix}

627 \newcommand\abstractname{Abstract}

628 \def\today{\ifcase\month\or

629 January\or February\or March\or April\or May\or June\or

630 July\or August\or September\or October\or

631 November \or December\fi \space\number\day, \number\year}

632 \setlength\columnsep{10\p@}

633 \setlength\columnseprule{0\p@}

634 \pagestyle{plain}

635 \pagenumbering{arabic}

636 \if@twoside

637 \else

638 \raggedbottom

639 \fi

640 \if@twocolumn

641 \twocolumn

642 \sloppy

643 \flushbottom

644 \else

645 \onecolumn

646 \fi

647 \endinput

To end with, there is the \today date, which
non-Americans can recode as:

\def\today{\number\day\space\ifcase\month\or

January\or February\or March\or April\or May\or June\or

July\or August\or September\or October\or November\or

December\fi\space\number\year}

The last few lines include the column spacing, page
style, and page numbering setups. Single-sided work
is allowed to have a slightly variable text height (the
\raggedbottom command), and two-column setting
has a strict height but slightly greater tolerance on
justification.

3 Rolling your own

Having seen what the article class does and how it
works, you have a choice: create your new class file
from scratch, or build onto an existing class.

Writing a wholly new class requires a significant
knowledge of LATEX and TEX internals, but will have
the advantage of being dedicated to the specific task
on hand, and may offer more scope for automation,
particularly if the process of generating the output
is to be embedded within a larger application.

3.1 Re-using an existing class

Building on the work of other classes is more com-
mon, and has been described for a specific appli-
cation (Minutes of meetings) in [3]. This involves
loading the existing class file, handling any existing
or new options, and then adding or modifying the
commands and environments it provides.

We have already seen the use of \renewcommand
(section 2.4.4 on p. 116) and its counterpart for
environments, \renewenvironment (section 2.7 on
p. 119), but you need to ensure the command
and environments you are replacing are correctly
preloaded. Hefferon [3] describes in detail the use of
the \LoadClass and \DeclareOption* commands
to specify the class on which you want to base yours,
how to preserve existing options, and how to add
your own.

3.2 Packages

As well as rewriting or modifying the code of an
existing class, you can also invoke extra packages.
In most cases this is faster, more reliable, and easier
to do than rewriting the code of the existing class.

122 TUGboat, Volume 28 (2007), No. 1 —Proceedings of the Practical TEX 2006 Conference

Rolling your own Document Class: Using LATEX to keep away from the Dark Side

We have mentioned several useful packages:

geometry for the text area and page margins;

multicol for multiple columns of text;

fancyhdr for running headers and footers;

sectsty for changes to section and title styles;

ccaption for changes to the layout of Table and Fig-
ure captions;

tocloft for changes to the layout of the Table of
Contents and Lists of Figures and Tables;

babel for working in multiple languages.

In your new class file, use the \RequirePackage

command after the options (see section 2.3.4 on
p. 113). If an option needs to refer to a specific pack-
age, put the \RequirePackage after the version and
identification section but before your options (see
section 2.2 on p. 111).

3.3 Four last things

The Companion [6, p. 888] specifies that ‘every class
file must contain four things’:

1. a definition of \normalsize;

2. a value for \textwidth;

3. a value for \textheight;

4. a specification for \pagenumbering.

Beyond that, it’s up to you! If you have been doc-
umenting your class file in docTEX format as you
go along, as explained in the first paragraph in sec-
tion 2, you should now consider releasing it for gen-
eral use by submitting it to the CTAN maintainers
so that others can use it.

Acknowledgments

This article originally appeared in the PracTEX

Journal (2006:4) where it was set full out. The
challenge in a two-column layout of fitting wide
lines of verbatim code from files whose line-numbers
are needed for reference was met by a sugges-
tion from Karl Berry to use the Latin Modern
Typewriter Light Condensed font (lmttlc) in the
\VerbatimInput command of the fancyvrb package.

References

[1] Johannes Braams. Document classes and
packages in LATEX2ε. TUGboat, 15(3),
Sep 1994. http://www.tug.org/TUGboat/

Contents/contents15-3.html.

[2] Robin Fairbairns (Ed). Frequently Asked
Questions about TEX. Technical report,
UK TEX Users Group, Cambridge, UK, Nov
2005. http://www.tex.ac.uk/cgi-bin/

texfaq2html?label=ltxcmds.

[3] Jim Hefferon. Minutes in less than hours:
Using LATEX resources. The PracTEX Journal,
2005(4), Oct 2005. http://www.tug.org/

pracjourn/2005-4/hefferon/.

[4] Donald Knuth. The TEXbook. Addison-Wesley,
Reading, MA, Jun 1986.

[5] Leslie Lamport. LATEX: A document

preparation system. Addison-Wesley, Reading,
MA, 2nd edition, 1994.

[6] Frank Mittelbach, Michel Goossens, Johannes
Braams, David Carlisle, Chris Rowley,
Christine Detig, and Joachim Schrod. The

LATEX Companion: Tools and Techniques

for Computer Typesetting. Addison-Wesley,
Reading, MA, 2nd edition, May 2004.

[7] Scott Pakin. How to package your LATEX
package. CTAN, Nov 2005. http://www.ctan.

org/tex-archive/info/dtxtut/dtxtut.pdf.

[8] The LATEX3 Project. LATEX2ε for class and
package writers, Dec 2003. $TEXMFMAIN/

texmf-dist/doc/latex/base/clsguide.

{dvi|pdf}.

[9] Wayne Sewell. Literate Programming in WEB.
Van Nostrand Reinhold, New York, NY, 1989.

TUGboat, Volume 28 (2007), No. 1 —Proceedings of the Practical TEX 2006 Conference 123

LATEX resources

Jim Hefferon
St. Michael’s College
Vermont, USA

ftpmaint (at) alan dot smcvt dot edu

You were lucky. We lived for three months in a
paper bag in a septic tank.

Monty Python’s Four Yorkshiremen sketch

When I started TEX-ing, things were right tough. I
got my distribution in twenty four separate emails,
which I had to stick together, to run a decode pro-
gram, to convert to a file, to drop to the disk to
make the executables. And, there was no shelf of
books to consult, no pile of tutorials to peruse, no
Internet group with fancy-pants search capabilities.

But it built character. It made you hard . . . or
nuts — why the heck did I ever continue? Of course,
I continued because of the output, which was won-
derful.

No, the old days were the bad old days. Today
there are many resources for someone who is trying
to begin working with TEX and LATEX. So many, in
fact, that a person can be unsure of which to use.

This is my guide to which books to check out,
documentation files to print, and software packages
to know about. It is meant for, say, a student or ad-
ministrative assistant who has work to do and finds
that they need to get it done with TEX.

I’m a Linux person so I can’t give Mac or Win-
dows advice, I unfortunately am comfortable in no
language other than English, and I’ve read only the
books that I’ve read. So I admit that my opinions
are biased. But what can you do with opinions be-
sides impose them on others?

1 Carrying on

I know that I am going to regret, in this age of search
engines, writing an article that will appear online
containing both terms “LATEX” and “Carrying on”
but I mean this in the way that it is used in the
LATEX manual: here’s the information.

1.1 Books and journals

Someone starting out should use LATEX. I keep these
two books in reach.

• LATEX: A Document Preparation System (2nd
ed.)1 by Lamport is the manual by the soft-
ware’s author. It is well-written, if perhaps
spare.

1 ISBN-13: 978-0-201-52983-8

• The LATEX Companion2 by Mittelbach, et al., is
a monumental effort that summarizes most of
the important packages and techniques.

Also widely recommended for its how-to material is
A Guide to LATEX 3 by Kopka and Daly. I like to
have access to Knuth’s TEXbook4 and to TEX By
Topic5 by Eijkhout. However, I don’t use these of-
ten; for instance, Knuth’s book is across campus in
the library.

I read two journals. The journal of the TEX
Users Group is TUGboat .6 Getting this is one of
the major benefits of joining TUG (many languages
and areas have their own user group;7 consider join-
ing for the publications and for the meetings). The
online journal The PracTEX Journal8 is a recent en-
try but perfect for someone feeling their way around
the landscape.

1.2 Shorter writings

Suck these down off the Internet, print them out,
and three-hole punch them.

• The most-often recommended tutorial is The
Not-So Short Guide to LATEX2e.9

• The American Math Society’s material is doc-
umented in the AMS Math Guide.10

• I look for symbols that I don’t even know the
name of in the Comprehensive List of Symbols.11

• To understand how to incorporate and place
graphics I refer to Using Imported Graphics in
LATEX and pdfLATEX .12

• Sometimes the best way to learn the right thing
to do is to be smacked for doing something that
you shouldn’t. If you know that you have bad

2 ISBN-13: 978-0-201-36299-2
3 ISBN-13: 978-0-321-17385-0
4 ISBN-13: 978-0-201-13448-3
5 http://www.eijkhout.net/tbt/
6 http://www.tug.org/TUGboat/
7 http://www.tug.org/usergroups.html
8 http://www.tug.org/pracjourn/
9 http://www.ctan.org/tex-archive/info/lshort/

10 http://www.ctan.org/tex-archive/macros/latex/

required/amslatex/
11 http://www.ctan.org/tex-archive/info/symbols/

comprehensive/
12 http://www.ctan.org/tex-archive/info/epslatex/

124 TUGboat, Volume 28 (2007), No. 1 — Proceedings of the Practical TEX 2006 Conference

LATEX resources

habits, or if you need to find out that you have
them, then l2tabu13 will tell you what is taboo.

1.3 Web pages

Many web pages offer help with TEX and LATEX.
One that I cannot live without is Robin Fairbairns’s
English FAQ .14 Another favorite is the TUG web
resources page.15

Even with those two, I sometimes just google
for an answer. The advice that I get is typically
useful, although it can be outdated.

1.4 Discussion

Internet talk about TEX and LATEX has been go-
ing on for . . . as long as there has been an Inter-
net. From time to time I scan the Usenet group
comp.text.tex16 for ideas and help; you can also
search this group.

1.5 CTAN

The Comprehensive TEX Archive Network17 is our
community’s archive. You can search18 or browse
the tree19 including the LATEX subtree.20 We (I run
one of the core nodes) hold about 5000 packages of
TEX-related materials.

1.6 Supporting tools

There are many tools that help you work with LATEX.
To type the input I use Emacs with the AUC-TEX21

macro package. I output everything to PDF so I
view it with Adobe Reader22 or xpdf 23 (which lets
me easily refresh the document and comes up faster
than the Reader on a slow connection, but some-
times shows my document a bit differently).

I don’t use bibliography tools but the standard
is BibTEX.24

1.7 Add-on LATEX packages

There are many packages to enhance LATEX, but
these are the ones that I find essential. They are
all available from CTAN; however, most likely they
are all already included in your TEX installation,
because they are all popular.

13 http://www.ctan.org/tex-archive/info/l2tabu
14 http://www.tex.ac.uk/faq
15 http://tug.org/interest.html
16 http://groups.google.com/group/comp.text.tex
17 http://www.ctan.org/
18 http://www.ctan.org/search.html
19 http://www.ctan.org/tex-archive/
20 http://www.ctan.org/tex-archive/macros/latex/
21 http://www.gnu.org/software/auctex/
22 http://www.adobe.com/products/acrobat/

readermain.html
23 http://www.foolabs.com/xpdf/
24 http://en.wikipedia.org/wiki/BibTeX

• Make the most of the mathematical capabilities
of (LA)TEX with the AMS LATEX 25 package.

• Page layout is tricky. Adjust the size and orien-
tation of your page with geometry .26 Get con-
trol over headers and footers with fancyhdr .27

• Import graphics into a LATEX document with
the graphicx28 package. This package includes
the color material. If there is more that you
want to do in color than this package seems to
provide then use xcolor .29

• Make an index with makeidx .30

• The verbatim31 package has a number of use-
ful environments, including a comment environ-
ment to omit parts of the document. For com-
puter code, I use listings.32

• I like footnotes numbered per-page so I use foot-
misc.33

• The hyperref 34 package gives you hyperdocu-
ment features, such as making table of con-
tents entries link to the corresponding docu-
ment part.

• Typeset web addresses with url ,35 which is also
great for computer file names and works either
with or without hyperref.

• Beamer36 gives me fine presentation slides.

2 Signing off

There are many more resources around than there
used to be, thank goodness. The ones here are what
I would mention to someone who is only trying to
use TEX and LATEX to get their work out the door.

To repeat, these are my opinions only. If you
don’t like them— if for instance you think footnotes
numbered per-page should be a capital offense—
then you can go live in a paper bag!

25 http://www.ams.org/tex/amslatex.html
26 http://www.ctan.org/tex-archive/macros/latex/

contrib/geometry/
27 http://www.ctan.org/tex-archive/macros/latex/

contrib/fancyhdr/
28 http://www.ctan.org/tex-archive/macros/latex/

required/graphics/
29 http://www.ctan.org/tex-archive/macros/latex/

contrib/xcolor/
30 http://www.ctan.org/tex-archive/macros/latex/

base/
31 http://www.ctan.org/tex-archive/macros/latex/

required/tools/
32 http://www.ctan.org/tex-archive/macros/latex/

contrib/listings/
33 http://www.ctan.org/tex-archive/macros/latex/

contrib/footmisc/
34 http://www.tug.org/applications/hyperref/
35 http://www.ctan.org/tex-archive/macros/latex/

contrib/misc/url.sty
36 http://latex-beamer.sourceforge.net/

TUGboat, Volume 28 (2007), No. 1 — Proceedings of the Practical TEX 2006 Conference 125

LATEX for academics and researchers who (think they) don’t need it

Peter Flom
National Development and Research Institutes, Inc.
71 West 23rd St., 8th floor
New York, NY 10010
flom (at) ndri dot org

http://www.peterflom.com

Abstract

This paper is written for academics and researchers who don’t use LATEX and
wonder why anyone does. People who do use LATEX (probably all of the readers
of the article in this journal) may wish to share the article with their colleagues.

1 Introduction

Why should you learn LATEX? To the uninitiated,
LATEX code looks bizarre. Like this:

\item Order each distribution. Let

$x_{(1)}\dots x_{(n)}$ be the ordered x

values, and $y_{(1)} \dots y_{(m)}$ be the

ordered y values; and let $m \leq n$.

\item If $m=n$ then x_i and y_i are both

$(i-0.5)/m$ quantiles of their distributions;

in this case, simply graph x_i against

y_i (if m is very large, say, more than

500, then fewer quantiles are needed).

Why would anyone bother with all that arcane
stuff to prepare documents? Why not just use Word
or some other word processor?

Well, there are lots of good reasons. For peo-
ple in some disciplines, LATEX is virtually indispens-
able. You’ve managed to get along without it. But
if you give it a try, you may wonder how you got
along without it. It takes some getting used to,
and you’ll probably have some problems at first,
but it’s not really that hard; simple things can be
done very quickly, and there are lots of resources
to help. Once you are used to it, LATEX is easier
to use than word processors; in particular, it makes
certain parts of writing scholarly articles much eas-
ier. Most of these articles include bibliographies and
LATEX has tools to manage bibliographies. Different
publishers require different formats, LATEX has tools
to manage these, and some publishers may even pro-
vide their own LATEX formatting templates, so that
everything is set up automatically. Papers may in-
clude figures and tables, and, when they do, they
will require cross-referencing, and, yes, you guessed
it, LATEX has tools to handle this as well. And
many papers require revisions, both before and after
they are submitted. LATEX will renumber everything
automatically — references, cross-references, section
numbers — everything.

When you want to make presentations, LATEX
has add-on packages which can help create presenta-
tions that look good, and can include many options
for overlays and navigating through a presentation.
Finally, if you decide to write a book, LATEX can
handle books of any length, and can produce books
of real beauty (for one example, take a look at [3]).

This article is organized as follows: in section 2,
I cover some of the basics of using LATEX. In sec-
tion 3, I give more detail on the helpful things LATEX
can do that I listed above. In section 4, I show why
some of the bad things you may have heard about
LATEX aren’t true. Finally, in section 5, I give some
resources for those who want to learn more.

2 The very basics

LATEX is not a word processor. It’s a document
preparation system. Rather than type words and
then format them using drop-down menus, in LATEX
the formatting is part of the text, all of which is writ-
ten in ASCII characters. At first, this seems bizarre,
but after a while (not too long a while) you begin
to appreciate it.

LATEX does exactly what you tell it. You can
see what you are telling it; if something goes wrong
(and it will) you can try to find the problem your-
self, and, if you can’t, you can show it to others. You
can even e-mail it. Try doing that with something
you did in a word processor; ”Well, I was using ver-
sion 9 and I clicked on this, and then on that, then
the pull-down menu appeared and I clicked on the
default . . . then I entered 2”. Sheesh. With LATEX,
you can e-mail your actual code to an expert, or
to one of the help groups listed below. The LATEX
community is friendly, there are places to go to get
help, probably right on your campus. In my experi-
ence, LATEX experts welcome LATEX novices. (Some
suggestions of where to get help are in section 5.)

126 TUGboat, Volume 28 (2007), No. 1 — Proceedings of the Practical TEX 2006 Conference

LATEX for academics and researchers who (think they) don’t need it

3 The good stuff

3.1 Sectioning

So, you’re writing a long article. It has sections.
How to create them? An example:

\section*{Introduction}

In this article I prove that the key dependent

variable in my field is related to the

particular independent variables I have

available to me, and in just the ways I

thought it would be.

\section{Methods}

\subsection{Subjects}

A bunch of students who happened to be

in my class the day I had a bad cold

and couldn’t give a lecture.

\subsection{Analysis}

I think I tried ANOVA.

\section{Results}

All my null hypotheses were rejected.

Now they feel bad.

\section{Discussion}

If this doesn’t get me a big grant, I’m

history in this department. Maybe I can

find work as a \LaTeX{} compositor?

(Note that you can indent your source however you
like). LATEX will handle the numbering, the format-
ting, the spacing, and all that, leaving you free to
do the writing and the thinking. And LATEX won’t
try to guess what you’re thinking, or start number-
ing sections whenever you type a number, or start
indenting like crazy.

3.2 Cross-referencing

At some points in your article you want to refer to
other parts, or to figures, or tables. No problem.
At the part you want to refer to you need a \label

command, and at the point where you make your
reference, you need a corresponding \ref command.
Like this:

In subsection \ref{SS:section} I showed you how

to create sections and subsections.

This produces the following:

In subsection 3.1 I showed you how to create
sections and subsections.

3.3 A simple table

OK, I admit it. It can be hard to create compli-
cated tables in LATEX.1 It’s hard to create good
complicated tables in any program. But simple ta-
bles aren’t so bad. Here’s an example:

1 Some LATEX systems automatically put the basics of
an environment in place for you, such as XEmacs, LyX,
TEXmacs, and others.

\begin{table}

\centering

\begin{tabular}{lrr}

Quantile & Male & Female\\\hline

0\% & 59 & 44\\

50\% & 69 & 64\\

100\% & 77 & 71\\

\end{tabular}

\caption{Quantiles of male and female heights}

\label{tab:malefemale}

\end{table}

which produces Table 1:

Quantile Male Female
0% 59 44
50% 69 64
100% 77 71

Table 1: Quantiles of male and female heights

What does all this do? Well, there isn’t space
here to go into everything even for this table (see
Section 5). But for a start:

• The \begin{table} and \end{table} define a
table which can be placed anywhere in a docu-
ment, and given a caption and a label. Every
\begin must have an \end.

• The \centering command horizontally centers
everything following until the \end{table}.

• The \begin{tabular} sets up a table, and the
{lrr} makes it three columns with the first left
aligned and the others right aligned.

• The ampersands (the & character) separate col-
umns.

• A double backslash (\\) ends each row.

• The \hline adds the printed horizontal line.

3.4 Graphics

LATEX also provides extensive methods to deal with
graphics. For social scientists, perhaps the most use-
ful are ways to directly import .pdf and .eps files
that are created by other programs, such as statis-
tical packages. Although the full use of imported
graphics can be complex (see Section 5) a basic ex-
ample takes the following steps:

1. Create your graphics file (e.g., diagram1.pdf)
and store it in the same directory with your
LATEX file for the article you are writing.

2. In the preamble include the following command:
\usepackage{graphicx}.

3. At the spot where you want your diagram, put
\includegraphics{diagram1}.

TUGboat, Volume 28 (2007), No. 1 — Proceedings of the Practical TEX 2006 Conference 127

Peter Flom

If you want LATEX to move the figure to the
closest position where it will fit in your document,
give it a label and cross-reference inside a figure,
similar to the previous table example. For instance:

\begin{figure}

\centering

\includegraphics{diagram1}

\caption{This is an example of a figure.}

\label{fig:example}

\end{figure}

3.5 BibTEX

Although space here does not permit a full discus-
sion of bibliography creation in LATEX, you should
know that there is a package called BibTEX which al-
lows you to create extensive bibliographies, enter the
information for each citation in a natural way, and
then never have to reenter the information again.
There are methods for formatting the citations to
match a wide variety of styles.

4 The (supposedly) bad stuff

4.1 LATEX is hard to learn

OK, this is partially true, in that, if you want to or
need to, there is a lot you can do with LATEX. You
can create complicated diagrams, write long books
with complex and beautiful formatting, create mul-
tiple indexes, and multiple lists, and on and on. But
the basics of LATEX are not so hard; in fact, you’re
well on your way with what you’ve seen here.

4.2 LATEX can’t be annotated

This one is simply incorrect. There are several ways
to insert editorial comments into LATEX files. One is
to use the \textcolor command to insert comments
in a different color. Another is to use \marginpar

to insert comments in the margin.

4.3 You can’t share LATEX files with people
who use Word

There are some free programs which attempt to con-
vert LATEX to Word, for example, latex2rtf (http:
//tug.org/utilities/texconv/latex2rtf.html).
I haven’t tried these extensively. For Windows, I
have found the commercial program TeX2Word to
be quite useful; see http://www.chikrii.com/ and
Dave Walden’s articles [4] for more information on
this software.

4.4 You can’t see the output while you
type

While technically true, typesetting a file and pre-
viewing the result is typically a matter of a sin-

gle keystroke or mouse click, and typesetting is ex-
tremely fast.

5 Where to go from here

There is a huge variety of materials to help you learn
more about LATEX:

• CTAN (The Comprehensive TEX Archive Net-
work) is a repository of TEX macros, packages,
formats, utilities, and other goodies, and has
lots of material, some of it for beginners. Two
that I found useful are

– For more on graphics, see http://www.

ctan.org/tex-archive/info/epslatex.

– For a thorough introduction to LATEX, see
http://www.ctan.org/tex-archive/

info/beginlatex.

There are numerous other introductory materi-
als there, as well — the above are just my own
preferences.

• Books, including:

1. Guide to LATEX [2] which is an excellent
introduction to LATEX.

2. Math into LATEX [1], which is particularly
useful if you have to type a lot of math.

3. The LATEX Companion [3]. This is a great
reference, but not for beginners; it’s also
good for impressing people with the power
of LATEX. If you start using LATEX a lot you
will probably wind up wanting this one.

• The mailing list for general questions and dis-
cussion is http://lists.tug.org/texhax.

• The TEX newsgroup, comp.text.tex, is also
for general questions and discussion.

• There are a number of FAQs and lists of tips
and tricks; two I’ve used are

1. http://www.tex.ac.uk/faq

2. http://www.texnik.de/

References

[1] George Grätzer. Math into LATEX. Birkhäuser,
New York, 3rd edition, 2000.

[2] Helmut Kopka and Patrick W. Daly. Guide to
LATEX. Addison Wesley, Boston, 4th edition,
2004.

[3] Frank Mittelbach, Michel Goossens, et al. The
LATEX Companion. Addison Wesley, Boston,
2nd edition, 2004.

[4] David Walden. Travels in TEX Land. The
PracTEX Journal, 2005 (issues 3 and 4).
http://tug.org/pracjourn/2005-3/

walden-travels and http://tug.org/

pracjourn/2005-4/walden-travels.

128 TUGboat, Volume 28 (2007), No. 1 — Proceedings of the Practical TEX 2006 Conference

Hypertext capabilities with pdfLATEX

Federico Garcia
federook (at) gmail dot com

1 Introduction

With the standardization of electronic publishing
and sharing of manuscripts, a wealth of new tech-
nical resources and possibilities is open to authors,
resources that go beyond habitual on-paper typo-
graphic uses, to involve the new everyday tool of
the reader: the mouse click.

The TEX world, as usual, has been quick to take
up the new possibilities. In particular, pdfTEX by
Hàn Thé̂ Thành et al., along with its companion
pdfLATEX, and the hyperref LATEX package by Sebas-
tian Rahtz and Heiko Oberdiek— both available in
standard distributions of TEX and LATEX —are espe-
cially successful implementations of the possibilities
of the PDF format —by far the most standardized,
and by now ubiqitious, electronic format.

This article is intended as a quick guide to the
most immediately usable functions of these tools. It
is not intended to replace the available documenta-
tion, which is much more precise and complete. In
fact, my intention is to steer away from complete-
ness. For example, the file options.pdf in the hy-
perref distribution lists all the options to the pack-
age. This list, containing no explanations or run-
ning text, is enough to fill more than two pages —
there’s well over 60 options. The main fact about
them, however, is that most of them are completely
meaningless to the average user, who probably won’t
understand them anyway (at least in my case).

In other words, only a small portion of the uni-
verse of possibilities of on-screen documents is di-
rectly relevant for the average author. But the doc-
umentation of these features (the relevant ones) is
all too often obscured by the rest of them. The
whole business appears more overwhelming than it
actually is. Hopefully, this article will help this per-
ceived situation. It is an exposition of the (relevant)
extended possibilities of pdfLATEX in terms of the
LATEX we all know. In some cases this will actu-
ally imply a lie, a white one. A footnote will state
as much in such cases, without going into further
details.

2 Immediate special effects of hyperref

When hyperref is loaded (for useful options, and tips
on loading the package, see Hypersetup and options)

in an otherwise normal LATEX document, a number
of things happen without further intervention:

• The items in the table of contents, the list of
figures, and the list of tables, will be links: when
the reader clicks on them, the cursor will jump
to the corresponding target.

• The superscript that calls for a footnote will be
a link to the footnote itself.

• Bibliographical references through \cite will
create links to the entries in the final bibliogra-
phy list.

• All pairs of \label-\ref will also produce links
(the result of a \ref leading by mouse click to
the corresponding \label).

The last point merits a few notes. First of all,
this is true of all elements capable of cross referenc-
ing in LATEX: not only chapters and sections, but
also to enumerate items, equations, and footnotes.
For example, after

\footnote{This is the footnote.}\label{note}

\begin{enumerate}

\item \label{item1} This is the first item.

\item \label{item2} This, the second.

\end{enumerate}

a \ref to any of these keys will produce the corre-
sponding number as a link.

The same is true for \pageref, which prints the
number of the page where the referenced element ap-
pears (rather than the number of the element itself).
With hyperref, this page number will be a link.

For chapters and sections, in addition, hyper-
ref offers a third command in the family: \nameref.
Instead of printing the chapter or section number,
\nameref will typeset the name of the chapter/sec-
tion. This is much better and elegant than using the
number if the document is intended to be read on
the screen.

3 Arbitrary cross references

\label and \ref function in connection with LATEX
counters. But on-screen reading is not limited to
refer to things that have a number. Thus, hyper-
ref offers commands for the creation of cross refer-
ences that are independent from counters. These are
\hypertarget and \hyperlink, exact analogues of
\label and \ref respectively.

TUGboat, Volume 28 (2007), No. 1 — Proceedings of the Practical TEX 2006 Conference 129

Federico Garcia

Both of these commands, however, have a sec-
ond argument:

\hypertarget{〈key〉}{〈text〉} (like \label)
\hyperlink{〈key〉}{〈text〉} (like \ref)

For \hypertarget, 〈text〉 is the destination of
the user’s click; for \hyperlink, it is the text of the
link itself. The 〈text〉, in both cases, is any LATEX
box.

As an example, the following code creates a pic-
ture (from the file logo.png) that is the destination
of a link:

\hypertarget{ref1}{\includegraphics{logo.png}}

The link itself, with the text ‘see the logo’, would be
created with

\hyperlink{ref1}{see the logo}

4 External links

4.1 Cross referencing between files

The links made by \label-\ref and \hypertarget-
\hyperlink work within a single file. Cross refer-
encing between files is possible thanks to a third pair
of commands provided by hyperref, described next.

This time, however, the commands are less than
analogous to the usual \label-\ref. They require
not one, but two ‘keys’, called 〈key〉 and 〈category〉
in the syntax below). Why this is so has to do
with PDF syntax, but the LATEX user can think of
〈category〉 as a second key.

\hyperdef{〈category〉}{〈key〉}
\hyperref{〈file〉}{〈category〉}{〈key〉}{〈text〉}

For example, the following line sets up a desti-
nation in the present file (note the space at the end
of the line):

\hyperdef{xmpl}{dest} %

An external file would link to this destination (in
the present file) with

\hyperref{hypertext.pdf}{xmpl}{dest}

{to the destination}

4.2 Links to the web

The other kind of common external link is to a web-
page. The command \url takes one argument—
the destination’s URL address —and creates a link
to it (a click on it opens the system’s browser on the
requested page). For example, \url{www.tug.org}
leads to the TUG web site.

A related kind of link is the ‘mailto’ link: with a
click on it, the system opens the local email program
and creates a new message to the indicated email
address. This is done through the command:

\href{mailto:〈email address〉}{〈link text〉}

5 Bookmarks

The hyperref package handles virtually everything
related to bookmarks (sometimes called “outlines”)
that the average user comes across. If instructed
(see Hypersetup and options), the package will au-
tomatically compile the bookmark panel from the
items in the table of contents. This includes sec-
tions, chapters, etc., and also the usual LATEX results
of \addtocontents and related commands.

There are two things that are not so direct:
first, how to get a bookmark that does not corre-
spond to an item in the TOC. For this, hyperref
offers \pdfbookmark[〈level〉]{〈text〉}{〈key〉}.

The 〈level〉 is 0 for chapters, 1 for sections, etc.,
and −1 for \parts. The 〈text〉 is the text of the
bookmark itself. The 〈key〉 doesn’t really matter
to us (it’s another of those PDF-format-related re-
quirements), except for the requirement that it be
unique.

The destination of a bookmark created by such
a \pdfbookmark command is the exact place where
the command is issued. The bookmark itself will be
appended, in the bookmark panel, in the position
where the command is issued with respect to other
chapters, sections, etc.

For example, the present article has a “Dummy
Bookmark”, which is created right here with

\pdfbookmark[2]{"Dummy Bookmark"}{"bmkey"}

As a result, it appears (in the bookmark panel) right
below the one for this section (“Bookmarks”) and
before the one for the next (“Text and TEX”). The
fact that it appears as a subitem of “Bookmarks” is
due to the [2] argument (the 〈level〉).

So, how to get bookmarks appended to other
places in the panel? For example, how to create
a bookmark whose destination comes after a sec-
tion heading, but with the bookmark itself being
placed before the one for that section in the book-
mark panel?

This question is not simply a puzzle, but has a
potentially useful application: the mapping of the
list of figures or the list of tables (as well as the
table of contents) in the bookmark panel. This is
the second thing that is not so direct with hyperref
(or pdfLATEX, for that matter).

In fact, it is a relatively hard thing to achieve. I
found a solution when writing pittetd, the electronic
dissertations class at the University of Pittsburgh. I
have a project of abstracting this part of the pittetd
code and uploading it to CTAN as a small, indepen-
dent package, but for the moment interested read-
ers can consult the documentation of the solution in
pittetd.dtx.

130 TUGboat, Volume 28 (2007), No. 1 — Proceedings of the Practical TEX 2006 Conference

Hypertext capabilities with pdfLATEX

6 Text and TEXt

Bookmarks are the main environment of another is-
sue PDF writers should be aware of: they are made
only of plain text, and cannot support what LATEX
can put in — for example — section titles. For ex-
ample, the next subsection:

6.1 α-expressions and H2O

This heading looks right in the text, but the corre-
sponding bookmark is wrong.

The alternative takes care of the bookmark:

6.2 Alpha-expressions and water

But the heading in the text is not satisfactory.

6.3 α-expressions and H2O

The solution is to use another command from hyper-
ref, this one named \texorpdfstring:

\texorpdfstring{〈TEX text〉}{〈plain text〉}
The result is a flexible expression that behaves like
TEX text (TEXt) in a LATEX context, and like plain
text in PDF-related strings.

For example, the present subsection was created
with:

\subsection{%

\texorpdfstring{α}{Alpha}-expressions

and \texorpdfstring{H$_2$O}{water}}

This procedure is generally not needed with ac-
cents and commands with immediate expansion, in-
cluding common logos and symbols. But hyperref
cannot convert more advanced stuff— notably math
mode— without help, and gives a warning. It is in
these cases that \texorpdfstring is useful.

7 Post-it notes

On page 130 above there is an expandable ‘post-it’
note. In my opinion, this easily overlooked resource
of PDF offers an excellent alternative to the foot-
note when a document is intended to be read on the
screen. hyperref does not include support for these
notes, but their creation (through pdfTEX primi-
tives) is not hard:

\pdfannot width w height h depth d

{ /Subtype /Text /Contents (text) }

The three dimensions w, h, and d are all LATEX di-
mensions. But the one that is important is h (the
height), because it determines where the note ap-
pears in relation to the text baseline. It is a good
idea use a \qquad after the command.

One thing to keep in mind with post-it notes
is that their exact behavior (color, size, when it
opens, how it closes, etc.) is not very standardized,
and tends to change from version to version of Ac-

robat Reader. Nevertheless, the note can be given a
different color if, between the braces of \pdfannot,
/C [r g b] is appended; a title for the note is deter-
mined with /T (title); and the note can be open
by default with /Open true.

If post-it notes are used at all, the document
has to be typeset by pdfTEX (rather than converted
from DVI), since otherwise the primitive \pdfannot

is not available. See the next section.

8 Hypersetup and options

The hyperref package has so many options that it
provides a separate command \hypersetup for con-
figuration. Thus, options to the package can be
specified either in the usual way

\usepackage[〈options〉]{hyperref}
or in a separate line:

\hypersetup{〈option, option, . . . 〉}
Some of the many options of hyperref are of partic-
ular interest.

colorlinks

linkcolor=red

urlcolor=blue

citecolor=green

bookmarks

bookmarksopen

bookmarksnumbered=false

pdftitle="Hypertext capabilities with pdfTeX"

pdfauthor="Federico Garcia"

pdfkeywords="Bookmarks, links, PDF, LaTeX"

The last three are useful to set up the fields of the
‘Document Properties’ information. (Again, the be-
havior of this is not reliably standard from version
to version of Acrobat Reader.)

Another thing to keep in mind is that hyper-
ref has to know the way the PDF file is produced:
whether pdfTEX is run on the document, or a sep-
arate program will convert the DVI — in which case
hyperref needs to load the corresponding driver. This
information is given to the package as an option
(‘pdftex’ for pdfTEX, ‘dvipdfm’ if this program is
used, etc.). Since this information is also used by
other packages — notably graphicx— it is customary
to indicate this option as a general option to the doc-
ument class, which will then pass it to any package
that needs it.

9 A tip

hyperref changes the internal mechanism of cross ref-
erences. The change is truly magical, in the sense
that the user, most of the time, has and needs to
have no idea that a change occurred.

However, there is one case in which the change

TUGboat, Volume 28 (2007), No. 1 — Proceedings of the Practical TEX 2006 Conference 131

Federico Garcia

becomes relevant: when a document is ‘converted’
from plain to hyperlinked, or the reverse; in other
words, when the \usepackage{hyperref} line is
added or removed. The presence of auxiliary files
created by one mechanism and used by the other
will create quite unintelligible error messages.

Therefore, a tip: make sure to delete all aux-
iliary files (.aux, .toc, .lot, .lof, . . .) when you
will run a document for the first time with hyperref
(or, later, for the first time without it).

10 Material not covered

Two main things are not covered in this document:
‘hyper-bibliography’, in which the entries in the bib-
liography list can link back to the citations in the
text; and ‘hyper-index’, in which the page numbers
in the index are links to the corresponding pages.

These topics are not so easy to deal with in
a general manner. In the main, support for these
tends to be fragile, because of the myriad of styles
for both bibliography and index. As a result, deal-
ing with them essentially requires proficiency with
BibTEX and MakeIndex. Given this proficiency, the
file hyperref.dtx is a source of information on how
to get things done.

In the case of bibliographies, a more immediate
guide is the file backref.pdf, actually the docu-
mentation to the sub-package of the same name (by
David Carlisle and Sebastian Rahtz). The file is part
of the doc directory of hyperref.

11 Documentation of hyperref

This is a description of the PDF files in the doc

directory of hyperref:

manual by Sebastian Rahtz is a reference guide to
the package. Not very useful for beginners, it
contains often crucial information on details,
important when you are doing something ex-
traordinary.

paper by Heiko Oberdiek is a precise and complete
explanation of many of the topics treated here,
from the point of view of ‘how does it work?’
(rather than ‘how do I use it?’).

slides is the set of slides used by Heiko in his pre-
sentation of ‘paper’. It is an illustration of the
possibilities of using hyperref, pdfTEX, and the
package thumbpdf.

132 TUGboat, Volume 28 (2007), No. 1 — Proceedings of the Practical TEX 2006 Conference

Removing vertical stretch—mimicking traditional typesetting with TEX

Kaveh Bazargan and CV Radhakrishnan
River Valley Technologies
www.river-valley.com

Abstract

One of TEX’s advantages over traditional typesetting systems is the mechanism to
stretch horizonal and vertical glue as needed, in order to aid paragraph building
and pagination. But all TEX operators involved in day-to-day page make-up know
that this inbuilt intelligence is often ‘too clever’ and frustrating for the user. TEX
will not do what you want it to do, and only over many years can operators gain
the knowledge that allows them to make just the right change to the source code
in order to coerce TEX to produce the desired result.

Recently we have been experimenting with removing vertical stretchability,
with promising results. Our approach is to round off the height of all vertical
material, including floats and displayed equations, to be an integral number of
the leading of the main text. One advantage is that this allows true ‘grid’ setting
in double column text.

1 Some things we have always wanted

It is useful to look at some things we have always
wanted to do in TEX but found difficult.

1.1 More control over glue

Anyone involved with ‘real world’ pagination of TEX
and LATEX files is aware of the frustration that TEX’s
‘glue’ can generate. TEXies have long learned to ac-
cept this limitation, and developed tricks to work
efficiently. However, some apparently simple tasks
are still mysteriously complex to the non-TEXie. For
example, in figure 1, suppose that two lines have to
move from the first to the second column. Logic
would imply that two lines from the second column
would have to move to the next page. But in TEX
this rarely happens; for instance, the glue around
the displayed equation might shrink or stretch in-
stead.

1.2 Grid setting

One of the most frequent complaints about TEX
when setting double column text is that, normally,
the lines of text are not set on a grid. In other words,
the baselines of one column do not align with those
of the other. This is another consequence of the
inherent stretchability of TEX’s glue mechanism.

1.3 Precise control over positioning
of graphics

This is another related problem. Suppose we want
to move a floating graphic slightly higher or lower,
without affecting pagination. For example we might

Figure 1: In TEX documents, taking two lines over from
the first column does not necessarily result in two lines
from the second column moving over.

TUGboat, Volume 28 (2007), No. 1 — Proceedings of the Practical TEX 2006 Conference 133

Kaveh Bazargan and CV Radhakrishnan

Natural glue Stretched glue

Figure 2: Stretching of glue to fit text to a page. The
positions of the baselines are hard to predict when glue
has stretchability.

want the top of a graphic appearing at the beginning
of a column to be moved up a fraction in order to
align with the top of the text in the next column.
With the usual LATEX commands this is not easy. It
turns out that our macros for controlling glue allow
us to control the exact positioning of graphics too.

2 How TEX makes up pages

Figure 2 shows TEX’s normal mechanism for setting
a page. First of all the boxes are arranged in the
vertical list, spaced out by the natural height of the
glues assigned. Then, TEX stretches or shrinks the
glues so as to fit the boxes and make the last baseline
align with the bottom of the page. As is evident, it
is difficult to control the positions of the baselines
using this method.

3 Our approach to the solution

At River Valley, we have thought about and dis-
cussed extensively the methods we might use to ef-
fect grid setting. These include testing each box in
the vertical list on the fly, and tweaking the verti-
cal position. We tried to do this, both using TEX
macros, and also doing it at compiler level, using
pdfTEX. Unfortunately this approach did not work.

The more successful strategy was to try and
make sure that all items in the vertical list had
heights which were integral multiples of the value
of \baselineskip. Examples of these items are:

• Floating elements (e.g. figures and tables)

• Displayed equations

• Section headers

• All skips between paragraphs, etc.

\topskip

\textfloatsep

\intextsep

\dblfloatsep

...

\abovedisplayskip

\belowdisplayskip

...

\parskip

Figure 3: Some of the many vertical glues that can af-
fect pagination. In general, baselines of the two columns
are not aligned on a grid.

Figure 3 shows some of the many glue parame-
ters that are inserted in the vertical list and which
must conform to this rule.

Let’s look in more detail at how we dealt with
specific issues.

3.1 Glue at the top of each column

When TEX starts typesetting a page, it inserts a glue
called \topskip at the top of the column. The value
of this glue is derived from a complex formula involv-
ing the elements in the first line. We set \topskip to
the value of \baselineskip which simplified mat-
ters considerably and did not produce any problems.

3.2 Stretching baseline glue

\lineskip and \lineskiplimit are two more pa-
rameters that can cause big headaches in grid set-
ting. Here is the logic: TEX sets paragraphs by
putting one line above another, normally spacing
out lines by the value of \baselineskip. The ex-
ception comes when TEX thinks two adjacent lines
might clash. In particular, TEX examines the depth
of each line of text and the height of the succeed-
ing line. If, when placing the usual \baselineskip,
TEX finds that the boundaries of the boxes con-
taining the adjacent lines is closer than the value
of \lineskiplimit, then the normal procedure is
aborted, and a glue equal to the value of \lineskip
is inserted. As we can see from figure 4, this can
result in variable line spacing, making grid setting
impossible.

We looked at the instances where \lineskip

had been applied. In most cases, the normal leading
would have sufficed, as the oversized elements were

134 TUGboat, Volume 28 (2007), No. 1 — Proceedings of the Practical TEX 2006 Conference

Removing vertical stretch — mimicking traditional typesetting with TEX

Figure 4: Variation of leading when large inline maths
is present.

not aligned with each other. TEX does not know
the horizontal position of the offending boxes, so in
general there is no clash of text. Even when they
were aligned, in most cases we could avoid the clash
by reformatting the paragraph. The publications we
were considering for grid setting contained only light
mathematics, so we decided that we would do away
with using \lineskip and just keep an eye out for
clashing items, and deal with them on a case by case
basis. So we chose the following values:

\lineskiplimit = -10pt

\lineskip = 0pt

This negative value for \lineskiplimit instructs
TEX not to apply \lineskip unless there is an over-
lap of more than 10pt between two adjacent lines.
The value given to \lineskip is unimportant. Of
course this might give very ugly overlapping lines,
but we would pick these up while checking proofs,
and we would deal with them manually. For se-
riously overlapping maths, we would change from
inline to display math.

3.3 Dealing with floating elements

Floating elements, such as figures or tables, gener-
ally consist of the main float, namely the graphic
or the table, a caption, and three glue items, one
above the complete float, one below, and one sepa-
rating the main element from the caption. In order
to maintain grid setting, we need to control the ver-
tical size of all these five elements. The three glue
elements are set such that the total natural height
is equal to an integral number of \baselineskips.
The main element and the caption are rounded up
or down, so that their heights are also an integral
number of \baselineskips. This is done through a
‘\roundoff’ macro that is executed at run time.

Our general macro for floats is as follows:

\begin{figure}

\centering

\XFigure{figure1}

\caption{Caption of figure.}

\label{fig1}

\end{figure}

which is similar to the normal LATEX float macro.
We have made the control of spacing more useful by
using keyval.sty, and adding the following options:

[beforegr = ...pt]

[aftergr = ...pt]

[beforecap = ...pt]

[aftercap = ...pt]

[line = ...]

These options allow the main element or the cap-
tion to be moved up or down. This is done before
the \roundoff macro is executed, so the final height
of each element will still be an integral number of
\baselineskips. The final option is a negative or
positive integer, and adjusts the three glue parame-
ters such that the complete height of the float is an
integral number of lines larger or smaller. This is
useful in solving pagination problems.

3.4 Displayed equations

For equations that do not break across pages, we
again use \roundoff to make them fit the grid. The
display glues such as \abovedisplayskip are set to
fixed amounts, as before.

3.5 The one problem: breaking displays

There is one problem we have not solved yet, namely
that of automatically breaking displayed equations,
and maintaining grid setting. The problem is that
\roundoff produces one TEX box, so TEX’s normal
page breaking mechanism cannot be applied. For
manuscripts with light mathematics, this is not a
major problem, as the few such occurrences can be
fixed manually, but it would be good to have an
automated solution.

4 Results

Figures 5 and 6 show a double column page set on
a grid. The floating figure and the mathematics are
all rounded off so that the text is set on a grid.

We have found that the time taken in pagina-
tion has reduced considerably after using the grid
macros. When we need to move some lines from
one column to the next, it results in exactly the
same number of lines being taken over from the sec-
ond column. The keyval options in floats allows us
to deal easily with widows and orphans, by making
a float one line longer or shorter.

TUGboat, Volume 28 (2007), No. 1 — Proceedings of the Practical TEX 2006 Conference 135

Kaveh Bazargan and CV Radhakrishnan

Figure 5: Example of a double column page with heavy maths, set on a grid.

5 Availability

We intend to release these macros under a free and
open license. Our intention is to include them in a
style file.

6 Acknowledgments

Hàn Thé̂ Thành did a lot of preliminary work in de-
termining which route to take. CV Rajagopal helped
in writing the macros. Jagath and Rishi did the re-
finements and testing.

Figure 6: Example of a double column page set on a grid.

136 TUGboat, Volume 28 (2007), No. 1 — Proceedings of the Practical TEX 2006 Conference

Abstracts

(We hope that full papers will be published in a future
issue. Ed.)

TypeSpec v.2: Typesetting font specimens

William Adams

Stephen Moye’s plain TEX TypeSpec macros converted
to work as a LATEX document class and organized into
macros will be shown, including a number of new lay-
outs. Additional ideas for specimen layouts will be so-
licited, and some will be constructed interactively during
the presentation.

LATEX and the different bibliography styles

Federico Garcia

The myriad of different styles for bibliography and ref-
erence layouts can be, in the main, classified into three
main families: the ‘label’ family, where references are
denoted with a label, usually in [square brackets]; the
‘author-year’ family (Adorno, 1978); and the ‘footnote’
family. Although there are arguments for each of those
families, the choice between them is, in the last analy-
sis, decided by tradition: different disciplines have come
to adopt different styles, and new generations of authors
will naturally follow the uses of their predecessors (which
are also enforced institutionally, for example with jour-
nal guidelines).

LATEX itself (with BibTEX) is designed toward the
label family. Some packages, like cite, provide extra
functionality in that family. The other two families are
reflected in the LATEX world by special packages. The
author-year family is well illustrated by packages such
as harvard, natbib, and achicago. Footnote-style refer-
ences are implemented by the package opcit. A basic
description of these packages follows. I will spend rela-
tively longer with opcit, which is comparatively recent
(2002) and the one I know best.

Creation of a PostScript Type 1 logo font

with MetaType1

Klaus Höppner

MetaType1 is a tool created by Bogus law Jackowski,
Janusz Nowacki, and Piotr Strzelczyk for creation of
PostScript Type 1 fonts. It uses MetaPost, t1utils and
some awk scripts to create a MetaPost font source with
some special macros.

MetaPost was used to create the Latin Modern
fonts, which are derived from Computer Modern fonts
but include many additional characters, especially ac-
cented ones. It is part of most modern TEX distribu-
tions. Some original fonts, notably Iwona and Kurier,
have also been created by the developers of MetaType1.

I came into touch with MetaPost when I wanted to
convert an existing logo font from METAFONT to Post-
Script Type 1. Unfortunately there exists no tutorial
or cookbook for using MetaType1. So I started to play

with the example fonts supplied as part of MetaType1
and to read the comments in the source. This tutorial
gives a simple example and the lessons I learned.

Common macro pitfalls and how to avoid them

Ned W. Hummel

In the process of learning LATEX there are a number of
common pitfalls that many of us fall into at some point.
Most of us encounter these pitfalls when writing macros
for the first time. One of the great advantages of LATEX
is the ability to logically markup our document. Unfor-
tunately, a number of us tend not to apply that same
logical markup philosophy when writing macros.

We will consider several examples and discuss ways
to re-write them using a logical markup philosophy.

A wayward wayfarer’s way to TEX

Stephen Moye

The amusing recollections of one particular humanities
TEX user’s adventures in TEXLand.

Fonts, typefaces, glyphs & sorts

Steve Peter

This presentation focuses on the general characteristics
and usages of typefaces, without specific reference to
TEX. I will begin by covering the history of printing
technologies and offering an overview of some useful clas-
sification schemes for typefaces. I then turn to a practi-
cal discussion of selecting the right typeface for the right
job, with a nod toward using TEX to its fullest.

Introduction to memoir

Steve Peter

This presentation serves as a gentle introduction to Peter
Wilson’s memoir class, an alternative to the standard
LATEX classes. Memoir is quite flexible, and makes it
easy to create beautiful book, article, and report designs,
without having to search for, install, and load numerous
third-party packages.

TEX and after dinner speaking

Alan Wetmore

I will discuss a somewhat novel use for TEX, preparing an
after dinner speech for a scientific conference. My expe-
rience some years ago required me to prepare, at quite
short notice when a scheduled dignitary was forced to
cancel, an entertaining diversion for the attendees of a
conference banquet. Inspired by the then-current popu-
larity of Who wants to be a Millionaire? , and The Weak-

est Link , I produced a domain-specific trivia “contest”
based on some frenzied Internet sleuthing. Formatted
using pdfscreen and pdfLATEX I produced an attractive
presentation for the audience. In the process I learned
a little about various TEX’s presentation capabilities.
Some examples will be given.

TUGboat, Volume 28 (2007), No. 1 — Proceedings of the Practical TEX 2006 Conference 137

2007

Mar 7 – 9 DANTE 2007, 36th meeting, Westfälische
Wilhelms-Universität, Münster,
Germany. For information, visit
http://www.dante.de/dante2007.

Feb 9 –
Mar 18

Guild of Book Workers 100th Anniversary
Exhibition: A traveling juried exhibition
of books by members of the Guild
of Book Workers. Utah Museum of
Fine Arts, Salt Lake City, Utah. Sites
and dates are listed at http://

palimpsest.stanford.edu/byorg/gbw.

Mar 24 – 25 First International ConTEXt User
Meeting, Epen, The Netherlands.
For information, visit
http://context.aanhet.net/epen2007.

Apr 9 –
May 20

Guild of Book Workers 100th
Anniversary Exhibition: A traveling
juried exhibition of books by
members of the Guild of Book
Workers. Branford P. Millar Library,
Portland State University, Oregon.
Sites and dates are listed at http://

palimpsest.stanford.edu/byorg/gbw.

Apr 23 TUG 2007 (July 17–20), abstracts
due. For information, visit
http://www.tug.org/tug2007/.

Apr 28 –
May 2

17th EuroTEX Conference +

15th BachoTEX Conference =
EuroBachoTEX 2007, Bachotek,
Poland. For information, visit
http://www.gust.org.pl/BachoTeX/

EuroBachoTeX2007.

May 31 –
Jun 1

Sixth Annual St. Bride Conference,
“Great British Design?”,
London, England.
For information, visit http://

stbride.org/friends/conference.

Jun 4 –
Aug 3

Rare Book School, University of Virginia,
Charlottesville, Virginia. Many one-week
courses on type, bookmaking, printing,
and related topics. For information, visit
http://www.virginia.edu/oldbooks.

138 TUGboat, Volume 28 (2007), No. 1

Calendar

TUG 2007

Practicing TEX,

San Diego, California.

Jul 17 Workshops (free for attendees).

Jul 18 – 20 The 28th annual meeting of the TEX
Users Group. For information, visit
http://www.tug.org/tug2007.

Aug 1 – 5 TypeCon 2007, Seattle,
Washington. For information, visit
http://www.typecon.com/.

Aug 5 – 9 SIGGRAPH 2007, San Diego,
California. For information, visit
http://www.siggraph.org/s2007/.

Aug 6 – 10 Extreme Markup Languages 2007,
Montréal, Québec. For information, visit
http://www.extrememarkup.com/extreme/.

Aug 28 – 31 ACM Symposium on Document
Engineering, University of Manitoba,
Winnipeg, Canada. For information, visit
http://www.documentengineering.org/.

Sep 12 – 16 Association Typographique Internationale
(ATypI) annual conference,
Brighton, UK. For information, visit
http://www.atypi.org/.

Sep 18 – 19 Conference on “Non-Latin typeface
Design”, St. Bride Library, London,
and the Department of Typography,
University of Reading, UK.
For information, visit
http://stbride.org/

events_education/events/.

Oct 11 – 13 American Printing History Association
2007 annual conference,
“Transformations: The persistence of
Aldus Manutius”, University of California
at Los Angeles. For information, visit
http://www.printinghistory.org/.

Status as of 1 March 2007

For additional information on TUG-sponsored events listed here, contact the TUG office
(+1 503 223-9994, fax: +1 206 203-3960, e-mail: office@tug.org). For events sponsored
by other organizations, please use the contact address provided.

An updated version of this calendar is online at http://www.tug.org/calendar/.
Additional type-related events are listed in the Typophile calendar, at

http://www.icalx.com/html/typophile/month.php?cal=Typophile.

TUG 2007: Practicing TEX

Workshops and presentations on

LATEX, TEX, MetaPost,

ConTEXt, LuaTEX,
and more

July 17–20, 2007

San Diego State University

San Diego, California, USA

http://tug.org/tug2007

tug2007@tug.org

Keynote address: Peter Wilson,

The Herries Press

April 23, 2007 —presentation proposal deadline

May 18, 2007 —early bird registration deadline

July 17–20, 2007 —workshop and conference

Further information

Conference attendees will enjoy an opening night reception and an (optional)
banquet one evening. Coffee and lunch will be served each day of the meeting.
Located on the campus of San Diego State University, an easy trolley ride from
downtown San Diego. Inexpensive campus housing is available.

Conference fee, hotel, and other information is available on the web site.

Sponsorship

If you’d like to support the conference, promote TEX products and services, or
otherwise provide sponsorship, see the web site for donation and advertising options.

We thank the present sponsors: the German-speaking TEX users group DANTE

e.V., von Hoerner & Sulger GmbH, and Adobe Systems Inc. have provided
generous support; San Diego State University is our host; and special thanks
to the many individual contributors.

Hope to see you there! Sponsored by the TEX Users Group

Invitation to EuroTEX 2007

The XVII European TEX Conference, EuroTEX

2007, April 28th until May 2nd, 2007, is orga-

nized jointly by CSTUG, the Czechoslovak TEX

Users Group and GUST, the Polish TEX Users

Group,atBachotek,nearBrodnica, inthenorth-

east of Poland. This is the place where the an-

nual GUST BachoTEX conferences are organized

yearly since 1993. EuroTEX 2007 will also be the

XV BachoTEX, hence it is also called EuroBacho-

TEX 2007.

The conference motto is

TEX: Paths to the Future

Looking into the future of TEX seems to be justified by some recent developments

around our beloved system. In no particular order:

• new pdfTEX release,

• METAPOST v. 1.1,

• a batch of new font familes from the new project called TEX Gyre,

• a working version of Omega 2,

• LuaTEX,

• X ETEX, and

• many more.

To where will they lead us? What potential do they have? Will they attract more

users? Will they converge and if so will we get a new quality? Will we be able to

typeset documents better? Or perhaps easier? These and more questions will and

should be asked and discussed during the conference.

Watch the conference site:

http://www.gust.org.pl/BachoTeX/EuroBachoTeX2007

It contains all the necessary information and is regularly updated as new infor-

mation becomes available.

Please contribute papers to make EuroBachoTEX 2007 even more interesting.

Dates for abstracts and paper submissions are on the conference web page.

Help advertise EuroBachoTEX! You can freely use its poster

http://www.gust.org.pl/BachoTeX/EuroBachoTeX2007/poster.html

And, of course: put this event into your calendar and then come and join the

TEXies from around Europe and the world. You are indispensable here!

Jerzy Ludwichowski

(for the Organizing Committee)

TUGboat, Volume 28 (2007), No. 1 141

TUG Business

TUG 2007 election report

Steve Peter
for the Elections Committee

Nominations for TUG President and the Board of
Directors in 2007 have been received and validated.
Because there is a single nomination for the office
of President, and fewer nominations for Board of
Directors than there are open seats, there will be no
requirement for a ballot this election.

For President, Karl Berry was nominated. As
there were no other nominees, he is duly elected and
will serve for another two years.

For the Board of Directors, the following indi-
viduals were nominated: Barbara Beeton, Jon Breit-
enbucher, Kaja Christiansen, Sue DeMeritt, Ross
Moore, Cheryl Ponchin, and Philip Taylor. As there
were fewer nominations than open positions, all the
nominees are duly elected.

Terms for both President and members of the
Board of Directors will begin with the 2007 Annual
Meeting in San Diego. Congratulations to all.

Sam Rhoads has decided to step down at the
end of his term this year. On behalf of the Board,
I wish to thank him for his service. The bonds
with the TUG Board are not entirely loosed just
yet, though, as he will continue to chair the Bur-
sary Committee.

Continuing board members, with terms ending
in 2009, are: Steve Grathwohl, Jim Hefferon, Klaus
Höppner, Arthur Ogawa, Steve Peter and Dave Wal-
den. Also, Dick Koch has agreed to an appointment
to the Board starting with the 2007 Annual Meeting;
his term will also expire in 2009.

Statements for all the candidates, both for Pres-
ident and for the Board, are appended (in alphabeti-
cal order). They are also available online at http://
www.tug.org/election, along with announcements
and results of previous elections.

⋄ Steve Peter
for the Elections Committee

Barbara Beeton

Biography:
For the TEX Users Group:

• charter member of the TEX Users Group; char-
ter member of the TUG Board of Directors;

• TUGboat production staff since 1980, Editor
since 1983;

• committees: publications, bylaws, elections;

• chair, Technical Working Group on Extended
Math Font Encoding;

• liaison from Board to Knuth Scholarship Com-
mittee 1991–1992.

Employed by American Mathematical Society:

• Staff Specialist for Composition Systems; in-
volved with typesetting of mathematical texts
since 1973; assisted in initial installation of TEX
at AMS in 1979; implemented the first AMS

document styles; created the map and ligature
structure for AMS cyrillic fonts.

• Standards organizations: active 1986–1997 in:
ANSI X3V1 (Text processing: Office & publish-
ing systems), ISO/IEC JTC1/SC18/WG8 (Doc-
ument description and processing languages);
developing the standard ISO/IEC 9541:1991
Information technology–Font information in-
terchange.

• AFII (Association for Font Information Inter-
change): Board of Directors, Secretary 1988–
1996.

• STIX representative to the Unicode Technical
Committee for adoption of additional math
symbols.

Personal statement:
Four years ago, I expected to be retiring from

the AMS about now, but I’ve decided I’m not ready
yet. And the ability to participate in the decisions
that help direct TUG is still important to me too.

I recently read about a new position: “Corpo-
rate Memory Officer”. I think that even without the
title, that’s the function I perform — letting other
members of the Board know whether something has
been tried before, and with what results, to help
inform decisions, without (I hope) standing in the
way.

With support from the members of this won-
derful community, I’d like to continue for four more
years.

142 TUGboat, Volume 28 (2007), No. 1

Karl Berry

Biography:
I have served as TUG president since 2003 and

was a board member for two terms prior to that.
During my term as president, we’ve enacted new
initiatives, notably expanding the scope of the spe-
cial member and institutional memberships. We’ve
also partnered with Addison-Wesley for online book
sales, with Bigelow&Holmes for making the Lucida
fonts available through TUG and with Adobe mak-
ing the Utopia typeface family freely available.

As president, I also coordinate the formal and
informal meetings of the Board, provide direction
and oversight to the Executive Director, and moni-
tor TUG’s financial transactions. I also serve on the
conference committee, and thus have been one of the
organizers for all TUG-sponsored conferences since
2004, both the annual meetings and the Practical
TEX conferences, including web site and program
creation, coordination of publicity, and so forth.

I have been on the TUG technical council for
many years. I co-sponsored the creation of the TEX
Development Fund in 2002, and am one of the pri-
mary system administrators and webmasters for the
TUG servers. I’m also one of the production staff for
the TUGboat journal and have driven the successful
effort to get it back on schedule.

On the TEX development side, I’m currently
editor of TEX Live, the largest free software TEX
distribution, and thus coordinate with many other
TEX projects around the world, such as pdfTEX and
MetaPost. I developed and still work on Web2c
(Unix TEX) and Kpathsea, a freely redistributable
library for path searching, Eplain (a macro package
extending plain TEX), GNU Texinfo, and many other
projects. I was also a co-author of TEX for the Im-
patient, an early comprehensive book on TEX, which
is now freely available. I first encountered and in-
stalled TEX in 1982, as a college undergraduate.

Personal statement:
I believe TUG can best serve its members and

the general TEX community by working in part-
nership with the other TEX user groups worldwide,
and sponsoring projects and conferences that will in-
crease interest in and use of TEX. I’ve been fortunate
enough to be able to work essentially full time, pro
bono, on TUG and TEX activities the past several
years, and plan to continue doing so if re-elected. It
would be an honor to serve another term.

Jon Breitenbucher

Biography:
I am currently an Adjunct Professor and In-

structional Technology Specialist at the College of
Wooster. I began using TEX and LATEX in 1992
while a graduate student at The Ohio State Uni-
versity. I helped customize the thesis class while at
OSU and since then have written one for Wooster’s
Independent Study Thesis (IS). I have also created
templates for homework solutions and papers while
at Wooster.

Personal statement:
If elected my desire is to help introduce LATEX to

undergraduates and to encourage undergraduates to
join TUG. Over the past five years I have helped over
70 undergraduates learn LATEX for their IS projects.
I have also formed a self sustained community at
Wooster. I would like to find ways in which TUG

can help others who are doing the same things at
their institutions or in their communities. I would
also like to see TUG develop a mechanism to turn
these TEX initiates into members.

Kaja Christiansen

Biography:
I live in the city of Århus, Denmark and work

at the University of Aarhus. My job at the De-
partment of Computer Science involves system ad-
ministration and software support, including the re-
sponsibility for all aspects of TEX & friends: local
styles, in-house classes, (very) frequent user support
and maintainance. The department has about 550
students, 80 employees, a large number of active re-
search groups and close ties to the BRICS Research
Centre.

I heard about TEX for the first time in fall of
1979. In Palo Alto at the time, I wanted to audit
courses at Stanford; my top priority was lectures by
Prof. Donald Knuth but that, I was told, was not
possible as Prof. Knuth was on leave due to work on
a text processing project . . . This project was TEX!
Back home, it didn’t take long till we had a runnable

TUGboat, Volume 28 (2007), No. 1 143

system and thus introduced an early version of TEX
in Denmark.

Personal statement:
I have served as the chair of TUG’s Technical

Council since 1997 and co-sponsored the creation of
TEX Development Fund. I share system adminis-
trator’s responsibilities for the TUG server (which
access to the Internet is currently facilitated by my
Department). In my role as a member of the board,
my special interests have been projects of immediate
value to the TEX community: TEX Live, TUGboat

and TUG’s web site. Since September 2002, I have
also served as the president of the Danish TEX Users
Group (DK-TUG).

Susan Demeritt

My name is Susan DeMeritt, I live in Lakeside, Cal-
ifornia (just outside San Diego).

I am employed by the Center for Communica-
tions Research, La Jolla, in San Diego, California for
almost 18 years doing technical typing in the Pub-
lications Department. I started the position learn-
ing TEX and working up to LATEX2ε. I enjoy using
LATEX2ε to typeset mathematical and scientific pa-
pers.

I have been a member of the TEX Users Group
since 1989. I have been a member of the Board of
Directors since March of 1998, and Secretary since
2001. I really enjoy being part of the Board of Di-
rectors of the TEX Users Group and I hope my par-
ticipation has been helpful.

I have successfully taught (along with Cheryl
Ponchin) three LATEX classes, one at Rutgers Uni-
versity, one at Duke University, and one at the Uni-
versity of Delaware.

Richard Koch

After degrees from Harvard and Princeton, I taught
mathematics at the University of Oregon from 1966
to 2002, working on pseudogroups and filtered Lie
algebras. For the last fifteen of these years I was di-
rector of the Undergraduate Program in Mathemat-
ics, and won the University’s Ersted and Hermann
teaching awards.

I began using TEX on a NeXt cube, running
Tomas Rokicki’s TeXView. After Apple bought
NeXt, the Unix TEX binaries were ported to OS

X, but predictions from campus Apple represen-
tatives that a TEX front end would follow didn’t
materialize. So I wrote TeXShop, a TEX front end,
releasing it while OS X was still in beta. In those
days, Apple’s pdf display engine didn’t understand
non-native fonts and TeXShop users had to use
the Times Roman font and avoid mathematical
symbols.

Work on TeXShop continues. Recently I have
been involved in maintaining the MacTEX install
package for OS X. This package was written by
Jonathan Kew, and originally based on Gerben
Wierda’s redistribution of teTEX. This year’s ver-
sion is based on the full TEX Live 2007.

From TEX meetings I know that these are just
tips of the iceberg, and enjoy hearing about the ex-
citing developments underway from a host of people
which affect TEX on all platforms.

Ross Moore

I am an academic mathematician, living in Sydney,
Australia.

Since the mid-80s I have been a user of TEX
and LATEX, mostly for mathematical applications,
such as journal articles, books and Proceedings vol-
umes. The need for special content layouts has led
to my involvement in the development of several
packages and other software, most notably XY-pic
and LATEX2HTML, both of which I have presented
at TUG annual meetings.

My first TUG meeting, in 1997, saw me joining
the TUG Board of Directors where I have served
ever since, and wish to continue to serve for at least

144 TUGboat, Volume 28 (2007), No. 1

another term. For TUG I’ve worked on the Technical
Council, the Publications Committee, assisted with
organising annual meetings, been the contact person
for the technical working groups TFAA and MacTEX
(though the important work is done by others), and
administer email discussion groups (LATEX2HTML,
XY-pic, X ETEX). Frequently I answer queries and
give advice on the ‘TEX on Mac OS X’ mailing list,
for Macintosh users of TEX.

Currently I am working with Chris Rowley, Will
Robertson and others, preparing LATEX support for
mathematics in the new world of Unicode and STIX

fonts, which is soon to be upon us. This is in addi-
tion to working on ways to generate webs of inter-
linked mathematical documents, as web-pages and
in PDF format, for online journals, conference ab-
stracts, and encyclopaedic collections, all generated
from (LA)TEX sources.

For the TUG board, I feel that my experience as
both a TEX programmer, as well as a mathematical
author and editor, provides a detailed understanding
of how TEX and LATEX have been used in the past,
as well as insight into new ways that the TEX family
of programs may be used in coming years.

Cheryl Ponchin

My name is Cheryl Ponchin, I live in Plainsboro,
New Jersey, and I am employed by the Center for
Communications Research in Princeton. I have been
a technical typist for more than 20 years. I started
with TEX and I am now using LATEX2ε as well as
many of the different packages available. I enjoy
using this software to typeset mathematical and sci-
entific papers.

I have been a member of the TEX Users Group
since 1989. I have been a member of the TUG Board
of Directors since March of 1998. I really enjoy being
part of the TUG Group.

I have taught LATEX classes for TUG on my own
and with Sue DeMeritt, as well as other classes for
Princeton University. I was also asked my opinion
on A Guide to LATEX2ε, which was very interesting
and rewarding for me.

Philip Taylor

Philip Taylor has been involved with TEX for ap-
proximately 20 years, ever since seeing an exam-
ple of typeset copy produced using TEX by a friend
at British Aerospace. Despite regular attempts to
understand why anyone might use LATEX, he re-
mains completely baffled and continues to believe
that Plain TEX (or, even better, IniTEX) and a few
home-grown macros are all that anyone could ever
need. On a more serious note, he is completely
convinced by the arguments in favour of semantic
markup, and believes that TEX should adopt the
HTML/CSS model, with one language used for doc-
ument markup and a second, quite different, lan-
guage used to ascribe appearance to semantics. He
is also convinced that, had it not been for Hàn Thế
Thành’s invention and development of PdfTEX, the
future for TEX might well have been very bleak in-
deed.

As a long-serving TUG Board member (a clas-
sic example of poacher-turned-gamekeeper), Phil is
rarely willing to accept the status quo, and regu-
larly argues that TUG should be more receptive to
innovative suggestions from its members, no matter
how much these ideas might challenge the current
received wisdom.

TUGboat, Volume 28 (2007), No. 1 145

TUG financial statements for 2006

Dave Walden, TUG treasurer

This financial report for 2006 has been reviewed by
the TUG board but has not been audited. It may
change slightly when the final 2006 tax return is
filed. TUG’s tax returns are publicly available on
our web site: http://www.tug.org/tax-exempt.

Revenue highlights

Revenue increased 21 percent for 2006 compared to
2005. Total membership dues were $102.6K at the
end of 2006, compared to $91.1K in 2005; this re-
sulted from essentially flat membership from 2005 to
2006 combined with the first dues increase in many
years. We ended 2006 with 1492 paid members. The
auto-renewal option initiated in 2006 was chosen by
176 members, and 114 members selected the new
electronic-only option.

TUG had $31.6K in income in 2006 from other
sources than membership fees. Three areas of par-
ticular note:

• Contribution income from generous TUG mem-
bers and individuals worldwide increased by
about $1,000 from 2005 to 2006 (this included a
one-time contribution of $5K from LinuxFund.

org).

• TUG store revenue of $11.6K included signifi-
cant sales of:

– the Lucida font collection through our ar-
rangement with Bigelow & Holmes

– TEX CDs and DVDs

– discounted TEXnical books, through our
arrangement with the Pearson Publishing
Group (which includes Addison-Wesley)

• Interest income was up from 2005, on account of
increased interest rates and the above increases
in income and thus cash on hand.

Cost of Goods Sold and Expenses highlights

Payroll and office expenses, TUGboat production
and mailing, and software production and mailing
continue to be the major expense items.

Payroll was down slightly in 2005 from 2004
(as it was from 2003 to 2004) by phasing out use of
temporary office help.

Software production and mailing was budgeted
and accrued in 2006 although the actual shipment
is scheduled for early 2007.

TUGboat production and mailing (which in-
cluded the EuroTEX 2005 proceedings and two nor-
mal issues of TUGboat) averaged over $9,000 in
2006. This was up in 2006 from 2005 for two primary

reasons: (1) more pages in 2006 than in 2005, and
(2) higher than average expenses for the EuroTEX
proceedings.

A significant part of the Postage/Delivery—
Members line item is individually mailing issues
of TUGboat and software discs as members join
throughout the year.

In 2006, TUG made the usual contributions of
$2,000 to the TUG Bursary and $1,000 to EuroTEX.
The 2006 contributions budget was less than the
contributions for 2005 because of the Board’s un-
certainty about membership numbers in the face of
the 2006 dues increase. The 2007 budget includes
an increase in contributions.

The bottom line

Netting the major line items of Revenue, Cost of
Goods Sold, and Expenses, TUG had a gain of
$17,536 for the year, compared with a net ordinary
income loss of almost $3,000 in 2005.

There was a small prior year adjustment of
$−1,785, shown near the bottom of the Profit and
Loss comparison. This resulted from an underes-
timate of the cost of publication in early 2006 of
the last TUGboat issue of 2005 and unpaid invoices
from 2005 which have been written off.

Balance sheet highlights

The increased income mentioned above, combined
with continued care with expenses, resulted in a
significantly higher end-of-year assets level in 2006
compared with 2005.

The year-end accounts receivable is primarily
for reimbursement of unused bursary funds. The
final payment is due in February 2007.

The Committed Funds come to TUG specifi-
cally designated for the LATEX project, the TEX De-
velopment fund, etc.; they have been allocated ac-
cordingly and are disbursed as the projects progress.
TUG charges no overhead for administering these
funds.

The payroll liabilities are for 2006 state and fed-
eral taxes due January 15, 2007.

Summary

TUG was in better financial condition at the end
of 2006 than at the end of 2005. We are hopeful
this will continue in 2007. As announced elsewhere,
there is no fee increase in 2007. Also, as mentioned
above, the TUG board is planning to increase direct
TUG contributions (fund more TEX development)
in 2007. TUG continues to work closely with the
local user groups and ad hoc committees on many
activities to benefit TEX and its users.

146 TUGboat, Volume 28 (2007), No. 1

TUG 12/31/2006 (versus 2005) Balance Sheet

ASSETS Jan - Dec 06 Jan - Dec 05

Current Assets

Checking/Savings $133,790 $115,994

Accounts Receivable $395 $635

Other Current Assets $728

Total Current Assets $134,185 $117,357

Fixed Assets $5,224 $5,591

TOTAL ASSETS $139,409 $122,948

LIABILITIES & EQUITY

Liabilities

Late TUGboat Accrual $7,000

Software Delay until 2007 $6,500

Committed Funds $9,322 $7,005

Prepaid Member Income $1,710

Payroll Liabilities $1,057 $1,037

Deferred Conf Donations $1,794

Deferred Member Income $1,160

Total Liabilities $18,589 $17,996

Equity

Equity as of 1/1 $104,972 $117,722

Net Income $15,848 -$12,770

Total Equity $120,820 $104,952

TOTAL LIABILITIES & EQUITY $139,409 $122,948

TUG 2006 (versus 2005) Revenue and Expenses

Jan - Dec 06 Jan - Dec 05

Ordinary Income/Expense

Income

Membership Dues 101,669 91,173

Product Sales 11,776 7,410

Contributions Income 11,376 7,939

Practical TeX Conference 2,909 406

Conference Classes 965

Annual Conference -275 -204

Interest Income 4,589 3,672

Advertising Income 370 200

Total Income 133,379 110,596

Cost of Goods Sold

TUGboat Prod/Mailing 28,998 18,626

Software Production/Mailing 6,500 8,092

Postage/Delivery - Members 2,702 4,874

Conf Expense, office + overhead 1,651 2,082

Copy/Printing for members 60 300

Total COGS 39,911 33,974

Gross Profit 93,468 76,622

Expense

Contributions made by TUG 3,000 4,950

Office Overhead 12,229 13,411

Payroll Exp 58,622 59,066

Professional Fees 318 119

Depreciation Expense 1,667 2,041

Total Expense 75,836 79,587

Net Ordinary Income 17,632 -2,965

Other Income/Expense

Prior year adjust -1,785 -9,784

Total Other Income -1,785 -9,784

Net Other Income -1,785 -9,784

Net Income 15,847 -12,749

Institutional

Members

Aalborg University, Department
of Mathematical Sciences,
Aalborg, Denmark

American Mathematical Society,
Providence, Rhode Island

Banca d’Italia, Roma, Italy

Center for Computing Sciences,
Bowie, Maryland

Certicom Corp.,
Mississauga, Ontario Canada

CNRS - IDRIS, Orsay, France

CSTUG, Praha, Czech Republic

Florida State University,
School of Computational Science
and Information Technology,
Tallahassee, Florida

IBM Corporation,
T J Watson Research Center,
Yorktown, New York

Institute for Defense Analyses,
Center for Communications
Research, Princeton, New Jersey

MacKichan Software,
Washington/New Mexico, USA

Marquette University,
Department of Mathematics,
Statistics and Computer Science,
Milwaukee, Wisconsin

Masaryk University, Faculty of
Informatics, Brno, Czech Republic

Moravian College, Department
of Mathematics and Computer
Science, Bethlehem, Pennsylvania

New York University,
Academic Computing Facility,
New York, New York

Princeton University,
Department of Mathematics,
Princeton, New Jersey

Springer-Verlag Heidelberg,
Heidelberg, Germany

Stanford Linear Accelerator Center
(SLAC), Stanford, California

Stanford University,
Computer Science Department,
Stanford, California

Stockholm University, Department
of Mathematics, Stockholm, Sweden

United States Environmental
Protection Agency,
Narragansett, Rhode Island

University College, Cork,
Computer Centre, Cork, Ireland

University of Delaware,
Computing and Network Services,
Newark, Delaware

Université Laval,
Ste-Foy, Québec, Canada

Universiti Tun Hussein
Onn Malaysia,
Pusat Teknologi Maklumat,
Batu Pahat, Johor, Malaysia

University of Oslo,
Institute of Informatics,
Blindern, Oslo, Norway

Vanderbilt University,
Nashville, Tennessee

TEX Users Group
Membership Form

2007

Promoting the use

of TEX throughout

the world.

mailing address:

P. O. Box 2311

Portland, OR 97208-2311 USA

shipping address:

1466 NW Naito PKWY, Suite 3141

Portland, OR 97209-2820 USA

phone: +1 503-223-9994

fax: +1 206-203-3960

email: office@tug.org

web: http://www.tug.org

President Karl Berry

Vice-President Kaja Christiansen

Treasurer David Walden

Secretary Susan DeMeritt

Executive Director Robin Laakso

TUG membership rates are listed below. Please check the appropriate boxes and
mail the completed form with payment (in US dollars) to the mailing address at
left. If paying by credit/debit card, you may alternatively fax the form to the
number at left or join online at http://tug.org/join.html. The web page also
provides more information than we have room for here.

Status (check one) New member Renewing member

Automatic membership renewal in future years
Using the same payment information; contact office to cancel.

Rate Amount

Early bird membership for 2007
After May 31, dues are $85.

$75

Special membership for 2007
You may join at this special rate ($55 after May 31) if you are a
senior (62+), student, new graduate, or from a country with a
modest economy. Please circle accordingly.

$45

Subscription for 2007 (non-voting) $95

Institutional membership for 2007
Includes up to eight individual memberships.

$500

Don’t ship any physical benefits (TUGboat, software)
TUGboat and software distributions are available electronically.

deduct $20

Receive software on CD (always shipped on DVD)

Send TEX Live 2007 on CD $10
Send proTEXt 2007 on CD $10
Send CTAN 2007 on CD $15

Purchase last year’s materials:

TUGboat volume for 2006 (3 issues) $20

Voluntary donations (or see https://www.tug.org/donate.html)

General TUG contribution
Bursary Fund contribution
TEX Development Fund contribution
LATEX 3 contribution
MacTEX contribution
CTAN contribution

Total $

Tax deduction: The membership fee less $35 is generally deductible, at least in the US.

Multi-year orders: To join for more than one year at this year’s rate, just multiply.

Payment (check one) Payment enclosed Visa MasterCard AmEx

Account Number: Exp. date:

Signature:

Privacy: TUG uses your personal information only to send products, publications, notices, and (for voting members)
official ballots. TUG does not sell or otherwise provide its membership list to anyone.

Name

Department

Institution

Address

City State/Province

Postal code Country

Email address

Phone Fax

Position Affiliation

The information here comes from the consultants
themselves. We do not include information we
know to be false, but we cannot check out any of
the information; we are transmitting it to you as it
was given to us and do not promise it is correct.
Also, this is not an official endorsement of the
people listed here. We provide this list to enable
you to contact service providers and decide for
yourself whether to hire one.

TUG also provides an online list of consultants
at http://tug.org/consultants.html. If
you’d like to be listed, please fill out the form at
https://www.tug.org/consultants/listing.html

or email us at consult-admin@tug.org. To
place a larger ad in TUGboat, please see
http://tug.org/TUGboat/advertising.html.

Kinch, Richard J.
7890 Pebble Beach Ct
Lake Worth, FL 33467
+1 561-966-8400
Email: kinch (at) truetex.com

Publishes TrueTEX, a commercial implementation
of TEX and LATEX. Custom development for
TEX-related software and fonts.

Martinez, Mercè Aicart
Tarragona 102 4o 2a

08015 Barcelona, Spain
+34 932267827
Email: m.aicart (at) menta.net

Web: www.edilatex.com/

We provide, at reasonable low cost, TEX and
LATEX typesetting services to authors or publishers
world-wide. We have been in business since the
beginning of 1990. For more information visit our
web site.

MicroPress Inc.
68-30 Harrow Street
Forest Hills, NY 11375
+1 718-575-1816; fax: +1 718-575-8038
Email: support (at) micropress-inc.com

Web: www.micropress-inc.com

Makers of VTEX, fully integrated TEX system
running on Windows. VTEX system is capable of
one-pass output of PDF, PS, SVG and HTML;
VTEX IDE includes Visual Tools for writing
equations, function plots and other enhancements

148 TUGboat, Volume 28 (2007), No. 1

TEX Consultants

and a large number of fonts, many not available
elsewhere. Makers of many new and unique
mathematical font families for use with TEX, see
http://www.micropress-inc.com/fonts. Makers
of microIMP, a fully WYSIWYG LATEX-based
Word Processor. microIMP supports TEX and
AMSTEX math, lists, tables, slides, trees, graphics
inclusion, many languages and much else —all
without any need for knowing TEX commands, see
http://www.microimp.com. See our web page for
other products and services. Serving TEX users
since 1989.

Peter, Steve
310 Hana Road
Edison, NJ 08817
+1 (732) 287-5392
Email: speter (at) dandy.net

Specializing in foreign language, linguistic, and
technical typesetting using TEX, LATEX, and
ConTEXt, I have typeset books for Oxford
University Press, Routledge, and Kluwer, and have
helped numerous authors turn rough manuscripts,
some with dozens of languages, into beautiful
camera-ready copy. I have extensive experience in
editing, proofreading, and writing documentation.
I also tweak and design fonts. I have an MA in
Linguistics from Harvard University and live in the
New York metro area.

Veytsman, Boris
2239 Double Eagle Ct.
Reston, VA 20191
+1 (703) 860-0013
Email: borisv (at) lk.net

Web: http://borisv.lk.net

TEX and LATEX consulting, training and seminars.
Integration with databases, automated document
preparation, custom LATEX packages, conversions
and much more. I have about twelve years of
experience in TEX and twenty-five years of
experience in teaching & training. I have authored
several packages on CTAN and published papers in
TEX related journals.

olume 28, Number 1—Practical TEX 2006 Conference Proceedings 2007

TUGBOAT Volume 28 (2007), No. 1 Practical TEX 2006 Conference Proceedings

Table of Contents (ordered by difficulty)

Introductory
3 Barbara Beeton / Editorial comments

• typography and TUGboat news
29 Barbara Beeton / How to create a TEX Journal: A personal journey

• a look back at TUGboat experiences since its founding
3 Karl Berry / From the President

• some TUG activities and information for 2006
65 Jon Breitenbucher / LATEX at a liberal arts college

• experiences introducing LATEX in an undergraduate liberal arts setting
61 Elizabeth Dearborn / TEX and medicine

• experiences in self-publishing a medical transcription dictionary with TEX
126 Peter Flom / LATEX for academics and researchers who (think they) don’t need it

• advocating LATEX for scientists and dispelling myths
124 Jim Hefferon / LATEX resources

• a sampling of useful documentation, web sites, programs, and packages
84 Troy Henderson / A beginner’s guide to MetaPost for creating high-quality graphics

• introduction to MetaPost
24 LATEX Project Team / LATEX news, issue 17

• latest LATEX release notes: font encodings, graphics drivers, more
70 Boris Veytsman / Design of presentations: Notes on principles and LATEX implementation

• writing effective presentations and implementing them in LATEX
49 David Walden / A lifetime as an amateur compositor

• productivity with LATEX and typesetting experiences along the way

Intermediate
133 Kaveh Bazargan / Removing vertical stretch — mimicking traditional typesetting with TEX

• a method for typesetting on a grid, including double columns and math
129 Federico Garcia / Hypertext capabilities with pdfLATEX

• introduction to the hyperref package, links, bookmarks, and more
15 Mark LaPlante / The treasure chest

• selected new CTAN packages in 2006
91 Andrew Mertz and William Slough / Graphics with PGF and TikZ

• graduated examples of graphics within LATEX using a MetaPost-like syntax
20 Ignacio Llopis Tortosa and Maŕıa José Castro Bleda / paperTEX: Creating newspapers using LATEX2ε

• automatically generating a PDF newspaper from external sources
77 Boris Veytsman and Maria Shmilevich / Automatic report generation with Web, TEX and SQL

• creating high-quality project reports while minimizing overhead

Intermediate Plus
110 Peter Flynn / Rolling your own Document Class: Using LATEX to keep away from the Dark Side

5 Oleg Parashchenko / TEXML: Resurrecting TEX in the XML world
• transforming XML input syntax through TEX to PDF

12 Peter Wilson / Glisterings
• stringing along; loops

100 Boris Veytsman and Leila Akhmadeeva / Drawing medical pedigree trees with TEX and PSTricks
• typesetting medical pedigrees graphically

Advanced
4 Donald Knuth / TEX’s infinite glue is projective

• note about negative infinite glue
80 Bob Neveln and Bob Alps / Writing and checking complete proofs in TEX

• verifying formal mathematical proofs with TEX and Python

Reports and notices
11 Barbara Beeton and Idris Hamid / Oriental TEX: A new direction in scholarly complex-script typesetting
26 Practical TEX 2006 conference information

137 Abstracts (Adams, Garcia, Höppner, Hummel, Moye, Peter, Wetmore)
138 Calendar
139 TUG 2007 announcement
140 EuroBachoTEX 2007 announcement
141 Steve Peter / TUG 2007 election report
145 David Walden / Financial statements for 2006
146 Institutional members
147 TUG membership form
148 TEX consulting and production services

TUGBOAT

Volume 28, Number 1 / 2007
Practical TEX 2006 Conference Proceedings

General Delivery 3 Karl Berry / From the president

4 Barbara Beeton / Editorial comments
Erratum: TUGboat 27:1 (EuroTEX proceedings);
A new Korean TEX Society; LATEX goes to the movies;
Some TUGboat staff changes

Warnings 4 Donald E. Knuth / TEX’s infinite glue is projective

Software & Tools 5 Oleg Parashchenko / TEXML: Resurrecting TEX in the XML world

11 Barbara Beeton and Idris Hamid / Oriental TEX: A new direction in scholarly
complex-script typesetting

Hints & Tricks 12 Peter Wilson / Glisterings: stringing along; loops

15 Mark LaPlante / The treasure chest

LATEX 20 Ignacio Llopis Tortosa and Maŕıa José Castro Bleda / paperTEX: Creating
newspapers using LATEX2ε

24 LATEX Project Team / LATEX news, issue 17

Practical TEX 2006 26 Conference program, delegates, and sponsors

Keynote 29 Barbara Beeton / How to create a TEX journal: A personal journey

Publishing 49 David Walden / A lifetime as an amateur compositor

61 Elizabeth Dearborn / TEX and medicine

Teaching & Training 65 Jon Breitenbucher / LATEX at a liberal arts college

70 Boris Veytsman / Design of presentations: Notes on principles and
LATEX implementation

Software & Tools 77 Boris Veytsman and Maria Shmilevich / Automatic report generation
with Web, TEX and SQL

80 Bob Neveln and Bob Alps / Writing and checking complete proofs in TEX

Graphics 84 Troy Henderson / A beginner’s guide to MetaPost for creating high-quality graphics

91 Andrew Mertz and William Slough / Graphics with PGF and TikZ

100 Boris Veytsman and Leila Akhmadeeva / Drawing medical pedigree trees
with TEX and PSTricks

Tutorials 110 Peter Flynn / Rolling your own Document Class: Using LATEX to keep away
from the Dark Side

LATEX 124 Jim Hefferon / LATEX resources

126 Peter Flom / LATEX for academics and researchers who (think they) don’t need it

129 Federico Garcia / Hypertext capabilities with pdf LATEX

133 Kaveh Bazargan and CV Radhakrishnan / Removing vertical stretch— mimicking
traditional typesetting with TEX

Abstracts 137 Abstracts (Adams, Garcia, Höppner, Hummel, Moye, Peter, Wetmore)

News 138 Calendar

139 TUG 2007 announcement

140 EuroBachoTEX 2007 announcement

TUG Business 141 Steve Peter / TUG 2007 election report

145 David Walden / Financial statements for 2006

146 Institutional members

147 TUG membership form

Advertisements 148 TEX consulting and production services

TUGBOAT Volume 28 (2007), No. 1 Practical TEX 2006 Conference Proceedings

Table of Contents (ordered by difficulty)

Introductory

3 Barbara Beeton / Editorial comments
• typography and TUGboat news

29 Barbara Beeton / How to create a TEX Journal: A personal journey
• a look back at TUGboat experiences since its founding

3 Karl Berry / From the President
• some TUG activities and information for 2006

65 Jon Breitenbucher / LATEX at a liberal arts college
• experiences introducing LATEX in an undergraduate liberal arts setting

61 Elizabeth Dearborn / TEX and medicine
• experiences in self-publishing a medical transcription dictionary with TEX

126 Peter Flom / LATEX for academics and researchers who (think they) don’t need it
• advocating LATEX for scientists and dispelling myths

124 Jim Hefferon / LATEX resources
• a sampling of useful documentation, web sites, programs, and packages

84 Troy Henderson / A beginner’s guide to MetaPost for creating high-quality graphics
• introduction to MetaPost

24 LATEX Project Team / LATEX news, issue 17
• latest LATEX release notes: font encodings, graphics drivers, more

70 Boris Veytsman / Design of presentations: Notes on principles and LATEX implementation
• writing effective presentations and implementing them in LATEX

49 David Walden / A lifetime as an amateur compositor
• productivity with LATEX and typesetting experiences along the way

Intermediate

133 Kaveh Bazargan / Removing vertical stretch —mimicking traditional typesetting with TEX
• a method for typesetting on a grid, including double columns and math

129 Federico Garcia / Hypertext capabilities with pdfLATEX
• introduction to the hyperref package, links, bookmarks, and more

15 Mark LaPlante / The treasure chest
• selected new CTAN packages in 2006

91 Andrew Mertz and William Slough / Graphics with PGF and TikZ
• graduated examples of graphics within LATEX using a MetaPost-like syntax

20 Ignacio Llopis Tortosa and Maŕıa José Castro Bleda / paperTEX: Creating newspapers using LATEX2ε
• automatically generating a PDF newspaper from external sources

77 Boris Veytsman and Maria Shmilevich / Automatic report generation with Web, TEX and SQL
• creating high-quality project reports while minimizing overhead

Intermediate Plus

110 Peter Flynn / Rolling your own Document Class: Using LATEX to keep away from the Dark Side
5 Oleg Parashchenko / TEXML: Resurrecting TEX in the XML world

• transforming XML input syntax through TEX to PDF

12 Peter Wilson / Glisterings
• stringing along; loops

100 Boris Veytsman and Leila Akhmadeeva / Drawing medical pedigree trees with TEX and PSTricks
• typesetting medical pedigrees graphically

Advanced

4 Donald Knuth / TEX’s infinite glue is projective
• note about negative infinite glue

80 Bob Neveln and Bob Alps / Writing and checking complete proofs in TEX
• verifying formal mathematical proofs with TEX and Python

Reports and notices

11 Barbara Beeton and Idris Hamid / Oriental TEX: A new direction in scholarly complex-script typesetting
26 Practical TEX 2006 conference information

137 Abstracts (Adams, Garcia, Höppner, Hummel, Moye, Peter, Wetmore)
138 Calendar
139 TUG 2007 announcement
140 EuroBachoTEX 2007 announcement
141 Steve Peter / TUG 2007 election report
145 David Walden / Financial statements for 2006
146 Institutional members
147 TUG membership form
148 TEX consulting and production services

