
Writing and checking complete proofs in TEX

Bob Neveln
Widener University

Bob Alps
Towers Perrin
Chicago, Illinois

Abstract

TEX files are text files which are readable by other programs. Mathematical
proofs written using TEX can be checked by a Python program provided they
are expressed in a sufficiently strict proof language. Such a language can be con-
structed using only a few extensions beyond the syntax of A.P. Morse’s A Theory
of Sets, one being the incorporation of explicit theorem number references into
the syntax. Such a program has been applied to and successfully checked the the-
orems in a significant initial segment of a book length mathematical manuscript.

1 Introduction

The present work is an unplanned side-effect of a
book project by the authors [7]. As work on the
book progressed proofs were written more and more
carefully. Programs in Python were developed to
check the mathematical syntax, then to re-number
theorems following insertions or deletions and finally
to check the proofs written.

These developments were possible because the
book is written in TEX using a formal mathemat-
ical language. Although most mathematical text
is intended to be formalizable, usually in terms of
first order predicate logic, it is almost never formal
as written. Checking proofs written in a conven-
tional style would consequently require a formaliza-
tion step requiring clarification of the author’s in-
tentions on many details. Checking proofs written
in a formal language obviates these difficulties. In
the work presented here we use a syntax derived
from that of A. P. Morse. In his book, A Theory
of Sets [5], he presented a formal syntax which was
used to express all the definitions and theorems in
his book, see [6]. A key feature of his treatment
of mathematical language was the inclusion of def-
initions themselves into the formal syntax, see [1].
The first theorem of the book was given a complete
proof, but no attempt was made to continue the pre-
sentation of complete proofs. Indeed with the small
set of inference rules given this would not have been
feasible.

The formal syntax of Morse’s book enabled the
creation of a program capable of parsing its lan-
guage and checking some of its theorems using an ex-
panded inference rule set as early as 1966 at Sandia
Laboratories [3]. Soon after that most of the math-

ematics in the book was checked by W.W. Bledsoe
working at MIT.

This paper describes some additions to Morse’s
syntax implemented in TEX and Python programs
which together enable writing and checking com-
plete proofs. The resulting environment is a work
in progress.

2 Tools and Files

Unix utilities are based on the idea that it is good
to have many tools each of which does a single task
well. Along those lines, the environment described
here to enable writing and checking complete proofs
consists of many different TEX files and Python pro-
grams. As Richter noted in [8], it is easy to write
Python scripts which conveniently operate on TEX
files. Those described here include a program which
checks the syntax of the mathematics in the TEX
file, a program which renumbers the propositions,
a program which adds horizontal space to variable
scope clauses in TEX files, in addition to the pro-
gram which checks a proof whose number is given
as a command line argument.

The logic on which proofs depend is supplied in
a variety of ways. Some logic is built into the parser;
for example, (x < y < z) is parsed as (x < y∧y < z).
Some logic is built into the checking program which
uses the commutative and associative properties of
“and” as well as the transitivity of numerous rela-
tions including logical implication and set inclusion.
Most of the logic resides in a file of rules of inference
which is consulted in a blind linear search each time
a step of the proof to be checked is attempted. An-
other file consists of propositions which are generally
recognized as obvious such as

(x ∈ A ∧A ⊂ B → x ∈ B)

80 TUGboat, Volume 28 (2007), No. 1 — Proceedings of the Practical TEX 2006 Conference

Writing and checking complete proofs in TEX

Further logic consisting of material which is at least
as elementary, but ordinarily “below the radar” of
everyday mathematics, is listed in a special appen-
dix added to the work being checked. It uses the
logic developed in [2].

Our tools create an environment which sets in
motion a work cycle related to an ongoing paper
or book, consisting of steps like those involved in
writing a computer program:

1. Add or revise the statement or proof of a theo-
rem in a TEX source file.

2. Run TEX to get a viewable DVI file and detect
TEX errors.

3. Run the parser to find mathematical syntax er-
rors.

4. Run the check program to find logical errors
and gaps in the proof.

At the very end it is also useful to run a program
which uses the parser to add horizontal spacing at
points where TEX would otherwise crowd symbols.

Because the logical steps which can be checked
at this time are quite small, the process is both ar-
duous and tedious.

3 Proof Syntax

The basis for the proof syntax is the mathemati-
cal syntax of Tony Morse’s book [5]. Changes to
Morse’s mathematical syntax including additional
abbreviation schemes and restrictions on the format
of bound variable forms are introduced but do not
alter the mathematical language markedly. To get a
notation capable of expressing complete proofs just
a few additional elements suffice.

3.1 Reference Numbering

An important element in the proof syntax described
here is the inclusion of theorem numbers themselves
into the syntax.

An example from the manuscript [7] follows:
\tabc 1.17 $(b\in\bfun \Iff \Patch_0 b\in\U)$

\lineb Proof:

\notea 1$(b \in \bfun$

\linec $\c\Patch_0 b\in \SI

\rng b\setdif\dmn b$\By 1.16

\linec $\c\Patch_0 b \in \U)$ \By 01.14

\lineb

\notea 2$(\Patch_0 b\in\U$

\linec$\c\ex\Patch_0 b$ \By 01.8

\linec$\c b\in\bfun)$\By 1.13

\lineb \Bye .1, .2

\lineb

In this example a theorem numbered 1.17 is stated
and proved. The statement involves the plain TEX
macro ‘\in’ as well as other macros such as ‘\c’ for

‘\rightarrow’ and ‘\Iff’ for ‘\leftrightarrow’.
Using Morse style mathematical language in TEX
involves a large number of such macros, basically at
least one for each defined formula as well as some
special symbols which can be implemented in Meta-
font. The ‘\tabc’, ‘\notea’ and ‘\By’ macros per-
form space formatting, but also serve as reference
handles for the checking program. For example The-
orem 1.16, which is referred to at the end of the sec-
ond line of the proof, must be identified by a ‘\tabc’
macro. The ‘\lineb’ macro has only a space for-
matting role. The ‘\Bye’ macro prints QED and
indicates that the theorem itself is to be checked.

References such as the closing ‘.1’ and ‘.2’ refer
to the notes tagged by the ‘\notea’ macros. The
zero-plus references 01.14 and 01.8 point to the file
of “obvious” theorems.

Propositions which are referenced must have a
traditional number-dot-number identification which
is used to invoke them in proofs. This numbering
convention is similar to that produced by LATEX but
less flexible. It is used instead of LATEX because its
use requires slightly less labor and the labor involved
in specifying references is a large component of the
work of specifying a complete proof. A Python pro-
gram is needed to renumber all references when the-
orems are inserted, deleted, or moved.

3.2 Significant Punctuation

Reference notations may include punctuation. The
punctuation marks must be identical to the corre-
sponding marks in the rule of inference itself. If
rules are marked in such a way that rules of a sim-
ilar nature get similar punctuation, then a meaning
is associated with the punctuation mark.

For instance, the semi-colon is used in refer-
ences that have a major premise followed by minor
premises. As an example, if in note 5 below we
prove a result q by using a theorem (p → q) which
is numbered 1.23 and we have previously obtained p
in note 3 then we might have the following note to
establish q:

Note 5 (−a ∈ Z) ‡ 1.23; .3

In order for this note to be checked there must be a
theorem 1.23 such as

Thm 1.23 (x ∈ Z→ −x ∈ Z)

a previous note 3 like this

Note 3 (a ∈ Z)

as well as a rule of inference (modus ponens) which
has the form

From: (p→ q); p

Infer: q

TUGboat, Volume 28 (2007), No. 1 — Proceedings of the Practical TEX 2006 Conference 81

Bob Neveln and Bob Alps

The semi-colon in the reference limits the number
of rules which match that reference. The intended
meaning of the semi-colon is that it sets the “ma-
jor premise” apart from the “minor premises”. At
present approximately 250 of the stored inference
rules use the semi-colon to separate major and mi-
nor premises. Another example of such a rule is the
following rule:

From: (p→ q ↔ r); q

Infer: (p→ r)
Further developments towards a syntax of ref-

erence expressions will no doubt be found useful.

3.3 Given-Hence Blocks

Notes which are not proven but which merely state a
“given” may be justified using ‡G, in place of a proof
reference. These remain in force until a “hence”
referring to them is encountered. The “hence” at-
taches the given notes to the “henced note” as ex-
plicit hypotheses. The “hence” note is tagged using
‡ H as a proof reference. For example we might have:

Note 2 (x ∈ A) ‡ G
. . .

Note 7 (x ∈ B) ‡ .2, . . .
Note 8 (x ∈ A→ x ∈ B) ‡ .7 H .2

The variables introduced in each given note are local
to that block. Reference may be made to notes 2–7
only from within that block, only so long as note 2
is in force in other words.

3.4 Local Definitions

Sometimes it is useful to introduce locally defined
variables. To do this we may “set” a variable to a
described object. A note of this form is justified by ‡
S and it retains validity as long as the last preceding
given note. For example given a non-empty set A it
is useful to have a name for a member of A.

Note 2 (A 6= ∅) ‡ G
Note 3 (a ≡ anx(x ∈ A)) ‡ S
Note 4 (a ∈ A) ‡ .2, .3

This feature of the proof syntax depends on using a
logic which allows descriptions, see [2].

3.5 Reasoning Chains

A note may consist of lines all but the first of which
are introduced by some transitive relation. In this
case each pair of consecutive lines defines a step to
be checked on its own proof. When used as a ref-
erence the note is then telescoped. For example in
this note:

Note 7 (A ⊂ B ‡ . . .
⊂ C) ‡ . . .

the inclusions (A ⊂ B) and (B ⊂ C) are checked
separately, but if note 7 is referred to later, just the
inclusion (A ⊂ C) will be invoked by this reference.

4 The Unifier

Each step to be checked is matched against rules of
inference in a blind linear search. Each rule whose
sequence of arguments and punctuators matches with
numerical references and punctuators in the refer-
ence note is submitted to a unifier. If a unification
is found the step is checked.

The unifier is based on standard first order uni-
fication, but goes beyond this in two ways. Although
much less general than [4], it allows the terms of a
conjunction to be re-ordered in order to accomplish
a match. It also attempts to match the second order
variables which occur in Morse’s language.

It is written to succeed or fail quickly. It may
fail to find a unifier even when one exists. For ex-
ample if a conjunction with n conjuncts is matched
against a conjunction ‘(p∧ q)’, where ‘p’ and ‘q’ are
unmatched variables, this unification will not be at-
tempted because of the (2n − 2) different possible
matchings. A rule of inference must avoid present-
ing such unifications to the checker or it will be ig-
nored. The unifier does not aim at any ambitious
sort of completeness.

5 Results and Prospects

The manuscript being checked contains over 1200
theorems, with proofs in various stages of comple-
tion. Roughly 250 of these including the first 120
have been checked.

As the work proceeds, bugs are encountered in
the checking program, as well as cases which should
check but do not. The program is then revised, rules
of inference are added, and “obvious” theorems are
added to the zero-plus references file. There are now
over 700 rules of inference and over 500 theorems
in the zero-plus references file. The checking pro-
gram now contains about 4500 lines of code. The
manuscript also has appendices containing over 200
elementary results which can be referenced in the
proofs.

Each execution of the program checks a single
proof. Although Python is an interpreted language,
a few seconds suffices for one run of the program on
a machine of recent vintage.

The proof syntax at its present stage of devel-
opment is and should be “low-level”. Once avenues
of checkable proof begin flowing it will be time for
the appearance of higher levels of expression which
will attenuate to some extent the labor of picking
through all the details of a proof.

82 TUGboat, Volume 28 (2007), No. 1 — Proceedings of the Practical TEX 2006 Conference

Writing and checking complete proofs in TEX

6 Observations

We close with a few observations.
1. Including the details necessary to get a proof to

check requires roughly an order of magnitude
more time than writing a conventional proof.

2. Proofs stated in checkable detail become longer
by a factor less than an order of magnitude.

3. Reading checkable proofs requires slightly more
effort on the part of a reader with specialized
knowledge than proofs which are written with
such a reader in mind.

4. Checkable proofs can be read by any mathe-
matician whether a specialist or not.

7 Conclusion

Despite its preliminary and incomplete nature the
checking program as it stands now shows that it
is practicable to write and check complete proofs,
given a willingness to adopt a formal language and
to submit to the discipline of itemizing all necessary
references.

References

[1] R.A. Alps. A Translation Algorithm for Morse
Systems, PhD dissertation, Northwestern Uni-
versity, 1979.

[2] R.A. Alps and R.C. Neveln, A Predicate Logic
Based on Indefinite Description and Two No-
tions of Identity. Notre Dame Journal of Formal
Logic 22(3), 251–263, 1981.

[3] W.W. Bledsoe and E.J. Gilbert. Automatic The-
orem Proof-Checking in Set Theory, Sandia Lab-
oratories Research Report SC-RR-67-525, July
1967.

[4] J. Gallier and W. Snyder. Complete sets of trans-
formations for general E-unification. Theoretical
Computer Science, 67:203–260, 1989.

[5] A.P. Morse. A Theory of Sets, Second Edition.
Academic Press, 1986.

[6] R.C. Neveln. Basic Theory of Morse Lan-
guages, PhD dissertation, Northwestern Univer-
sity, 1975.

[7] Bob Neveln and Bob Alps. Foundations of the
Topology of Manifolds (book in preparation).

[8] William Richter. TEX and Scripting Languages.
TUGboat 25(1), 71–88, 2004.

TUGboat, Volume 28 (2007), No. 1 — Proceedings of the Practical TEX 2006 Conference 83

