
Automatic report generation with Web, TEX and SQL

Boris Veytsman
ITT, Advanced Engineering & Sciences
12975 Worldgate Dr, Herndon, VA 20170
boris dot veytsman (at) itt dot com

Maria Shmilevich
ITT, Advanced Engineering & Sciences
12975 Worldgate Dr, Herndon, VA 20170, USA
maria dot shmilevich (at) itt dot com

Abstract

One of the most time-consuming tasks of a manager for a federal contractor is
the creation of reports: weekly, monthly, quarterly and yearly as well as special
reports at the end of a project or on any given date. Such reports are usually
made by copying and pasting the daily reports of subordinates.

The system described here makes these reports automatically. The members
of project team file their daily work results using a Web interface. These entries
are kept in a SQL database. The report generation utility is launched through
a Web interface. It creates a LATEX file by selecting the data relevant to the
given set of contracts and tasks, employees, time periods, etc., and collating the
individual reports. The result is then run through pdftex or latex2html or latex2rtf
to create either a PDF report or an editable (e.g., in Microsoft Word) file.

1 Introduction

In the last several decades applied science and tech-
nology in the US have seen unprecedented break-
throughs. Internet, GPS, space missions, a complete
change in the civil aviation field and many advances
in the military area are just a few examples of rapid
technological progress. Of course there are many
reasons for this, but it seems that one reason is the
unique and fortunate method of technological co-
operation between the government, universities and
private contractors. In this scheme, the government
agencies set the technological goals and solicit bids
to achieve them. The winners of the bids get con-
tracts for development of high-end technology with
important military and civil uses.

Government agencies in this scheme are gate
keepers of the people’s money. They are obligated to
control spending and check that the contracted re-
search and development work is proceeding properly
and the milestones are to be met on time. There-
fore most agencies request detailed reports of the
contractor’s activity at regular intervals. These re-
ports, however, pose the following problem. Obvi-
ously the taxpayer is interested only in the results of
the contracted research and development. The time
and money spent on the intermediate reports does

not contribute to the value and should be minimized.
This is true both for the agency, which spends effort
on the analysis of the reports, and the contractor,
which spends effort on their preparation, and even-
tually passes the costs to the customer, thus increas-
ing the total cost of the bid.

A report of high quality (including typographic
quality!) is easier to analyze, so the report must be
good. On the other hand, a good report might take
a considerable effort to prepare. The goal is to make
good reports with minimal effort and costs.

The traditional way of making intermediate re-
ports is the following. The contractor’s employees
send e-mails to their managers describing their ac-
complishments. A manager copies and pastes these
data into a Microsoft Word file and sends the file to
the next level manager, who collates the received re-
ports together. The task is repeated regularly, and
each piece of information is copied and pasted sev-
eral times: in weekly, monthly, quarterly and yearly
reports. If the contract involves many tasks and
subtasks, the work is overwhelming. This is unpro-
ductive work, since the real task of managers is man-
agement, not copying and pasting repetitive chunks
of text.

Since most of this work is purely routine, it is

TUGboat, Volume 28 (2007), No. 1 — Proceedings of the Practical TEX 2006 Conference 77



Boris Veytsman and Maria Shmilevich

possible to teach a computer to do it, thus freeing en-
gineers and managers for more creative tasks. This
is the main idea of the system which was created at
ITT in 2000–2001 and successfully used ever since.

2 Analysis

The first thing in the creation of a system for auto-
matic report generation is to understand the struc-
ture of reports. A report is separated into contracts.
The contracts are separated into subcontracts, and
these are in turn separated in tasks and subtasks.
Each individual report covers a subset of a hier-
archy: it can include several contracts or just one
contract, or several tasks from a subcontract, etc.
It also covers a certain time period: week, month,
quarter, year, etc.

The actual contents of the report are collated
from the individual work by the engineers. Each of
the engineers describes her or his work made during
a particular week under each subtask, task, subcon-
tract and contract. Sometimes a report includes the
names of the engineers, and sometimes not, depend-
ing on the style chosen.

This structure is well suited for a SQL database.
Each individual entry can be a record in the data-
base, indexed by the subtask or task it belongs to,
the engineer who made the entry, the time covered
and the time it was made. The hierarchy “Contract-
Subcontract-Task-Subtask” can easily fit into a SQL

table with the usual parent-child relations. SQL op-
erators can be used to extract from the tables the
information that relates to the given task and time
period.

We wanted the report to be available in several
forms: a high quality PDF file as well as editable
RTF and HTML formats. We chose LATEX as the
base format for the report because it can be used
to produce beautiful PDF output, and the tools to
transform it into HTML and RTF are widely avail-
able.

The interface to the software should be avail-
able from different computers: engineers’ and man-
agers’ workstations. This makes an internal Web
server a natural choice.

3 User interface

3.1 Authentication

A user (engineer or manager) logs in to the web
server with her or his own user name and password.
The database of logins and passwords is integrated
with the system, so immediately after the user is
authenticated, she or he is assigned a role (access
level) in the system. There is a hierarchy of roles:

1. A normal user can input the information about
his or her work into the database or correct it.

2. A manager can view the information and create
reports, add or delete contracts and tasks.

3. An administrator can add or delete users, reset
passwords and change access levels of the users.

Below we discuss these functions in more detail.

3.2 User access

A user should log in at least once a week and choose
from the menu tasks and subtasks for which some
work was performed by him or her. Then she or he
inputs the work done under each category. There
is an important option of choosing a special entry
“Same as last week”; this will expand the time pe-
riod of the entry of the previous week in the given
category. The user can also set the priority of the
tasks completed. The tasks with high priority are
highlighted in the report.

3.3 Manager access

A manager can perform the functions of the user
plus additional functions related to report creation
and contracts and tasks changing.

A manager chooses from the menu the con-
tracts, subcontracts, tasks and subtasks to cover,
performance time, and report options: whether it
should be in PDF, RTF or HTML format, whether it
should include engineers’ names, etc. The report is
created and a link for download is presented to the
manager.

A manager can add or delete contracts, change
subcontracts, tasks and subtasks. This will update
the menus presented to all users.

3.4 Administrator access

An administrator can change the information about
users. She or he is presented with a menu, which in-
cludes changing of user personal information (name,
e-mail), resetting passwords, changing access levels,
etc.

3.5 Additional bells and whistles

The system generates reminders for the users to log
in and enter their information, and sends lists of the
procrastinators to the managers. It also generates
periodic backup dumps of its databases.

4 Implementation notes

The system is implemented on a Linux computer us-
ing the Apache Web server, MySQL database, send-
mail, teTEX suite and latex2html and latex2rtf pro-
grams. It is essentially a zero administration server:
since it was set up, only security patches have been

78 TUGboat, Volume 28 (2007), No. 1 — Proceedings of the Practical TEX 2006 Conference



Automatic report generation with Web, TEX and SQL

Report Criteria (from Web) Perl processor MySQL Database

LATEX file

PDF output HTML output RTF output

pdftex
latex2html

latex2rtf

Figure 1: Report creation

applied to the machine, and everything else “just
works”.

The flowchart for the report creation is shown
in Figure 1. The Perl program extracts from the
database the entries satisfying the selected criteria.
They are collated into a LATEX file. The hierarchy
“Contract-Subcontract-Task-Subtask” is mapped to
the hierarchy “Chapter-Section-Subsection-Subsub-
section” of the report document class. The entries
themselves are organized into itemized lists.

An example of the result is shown on Figure 2.
In this example the engineer (Archimedes) started
the work of moving Earth using a lever. His com-
pleted tasks include a high-priority development of
the background and low-priority work on geometry.

5 Conclusions

We developed a system to perform an important and
time-consuming task of generating periodic reports
by a federal contractor. The system is based on open
and free software. It provides a very efficient and
cost-effective solution, which has been successfully
working for half a decade.

Contract 1

Moving Earth With Lever

(ERTHMV)

1.1 Finding a place to stand

1.2 Mathematical Background

1.2.1 Development of series summation

• 12/23/0282: Developed background Archimedes

• 12/30/0282: Worked on geometry Archimedes

1.3 Create a lever

2

Figure 2: Example of a page from a report

TUGboat, Volume 28 (2007), No. 1 — Proceedings of the Practical TEX 2006 Conference 79


	Introduction
	Analysis
	User interface
	Authentication
	User access
	Manager access
	Administrator access
	Additional bells and whistles

	Implementation notes
	Conclusions

