
210 TUGboat, Volume 28 (2007), No. 2

Software & Tools

Hacking DVI files: Birth of DVIasm

Jin-Hwan Cho

Abstract

This paper is devoted to the first step of developing a
new DVI editing utility, called DVIasm. Editing DVI

files consists of three parts: disassembling, editing,
and assembling. DVIasm disassembles a DVI file to
a human-readable text format (more flexible than
DTL), and assembles the output back to a DVI file.

DVIasm is useful for people who have a DVI file
without TEX source, but need to modify the doc-
ument. It enables us to put a preprint number, a
watermark, or an emblem on the document with-
out touching the TEX source. DVIasm is attractive
to even a TEX expert who wants to modify a few
words in his document more than a hundred pages
long.

We discuss in the paper how DVIasm supple-
ments TEX. The current version supports only the
standard DVI file format as in DVItype and DTL.
The next versions will support 16-bit TEX exten-
sions including Omega, pTEX, and X ETEX.

1 Introduction

Have you ever heard of DVI, not the Digital Visual
Interface1 but the DeVice-Independent file format?
In past years, every TEX user knew what DVI is and
used DVI utilities to view and print TEX results.
However, in recent times, TEX users have paid at-
tention to DVI less and less because pdfTEX outputs
directly to the PDF2 file format. It is true without
doubt that PDF is more powerful than DVI in al-
most all aspects. Then, do we have to obsolete DVI

as PostScript is gradually replaced by PDF?
The DVI file format was designed by David R.

Fuchs in 1979, in contrast to the release of PDF ver-
sion 1.0 in 1993. It is intended to be both compact
and easily interpreted by a machine [4, §14]. The
most powerful aspect of DVI compared to PDF is

Editor’s note: Reprinted from The PracTEX Journal 2007-1
(http://tug.org/pracjourn), by permission.

1 A video interface standard designed to maximize the
visual quality of digital display devices such as flat panel LCD

computer displays and digital projectors [Wikipedia, http:

//en.wikipedia.org/wiki/DVI].
2 PDF (Portable Document Format) is an open file format

created and controlled by Adobe Systems, for representing
two-dimensional documents in a device independent and reso-
lution independent fixed-layout document format [Wikipedia,
http://en.wikipedia.org/wiki/PDF].

nothing but simplicity. Imagine the speed of three
previewers of DVI, PostScript, and PDF, and com-
pare also the file size of the three different file for-
mats. Furthermore, simplicity enables us to control
DVI files in various ways. One of these is to edit DVI

files directly — the main object of this paper.
There are many applications of editing DVI files.

The most critical situation is when we have a DVI

file without TEX source, but we want to modify or to
add something to the document. A technical editor
may want to put a preprint number on each paper
without touching the TEX source. He may also want
to put a watermark or an emblem on every paper.

Editing a DVI file is much faster for a TEX
novice than learning TEX, when all he wants to do is
to add some decorations to his document, and is not
familiar with TEX codes. It may even be attractive
to a TEX expert who wants to modify a few words
in a long document.

Since a DVI file consists of binary data, it must
be converted to a human readable format to inspect
and edit its contents. The original DVI utility is
DVItype [4], written by Donald E. Knuth in 1982. It
has two chief purposes: to validate DVI files, and to
give an example for developers of DVI utilities [4, §1].
DVItype is a nice utility to inspect the contents of a
DVI file because of its human readable text output.
However, it lacks any procedure for converting the
output back to a DVI file.

A true DVI editing utility is the Device-indepen-
dent Text Language (DTL) package [5] developed
by Geoffrey Tobin. It includes two utilities dv2dt
and dt2dv for converting from DVI to DTL and vice
versa. It is notable that there is a one-to-one cor-
respondence between DTL and DVI, and that DTL

does not require TFM (font metric) files, in contrast
to DVItype. However, DTL is not flexible for or-
dinary TEX users. For example, users must choose
the correct command from r1 to r4 according to the
width of the move to the right. Moreover, the lat-
est version of DTL was released in 1995, and so it
does not support extended DVI formats generated
by Omega3 or Japanese pTEX.4

The development plan for a new DVI editing
utility, called DVIasm, consists of three phases. This
paper is devoted to the first step, where DVIasm is
introduced with several examples. The current ver-
sion of DVIasm supports only the standard DVI file
format, like DVItype and DTL, but is more flexible
than DTL.

3 An extension of TEX by John Plaice and Yannis Hara-
lambous, http://omega.enstb.org.

4 ASCII Nihongo TEX by ASCII Corporation, http://www.
ascii.co.jp/pb/ptex/index.html.

TUGboat, Volume 28 (2007), No. 2 211

In the second phase we will focus on 16-bit char-
acters, for instance, Chinese, Japanese, Korean, and
Unicode, to support Omega, pTEX, and the subfont
scheme5 which enables us to use 16-bit characters in
TEX and pdfTEX. In the final phase, DVIasm will
communicate with the Kpathsea library, so that it
will read font metric information from TFM, OFM,
JFM, TrueType, and OpenType font files. DVIasm
will also support X ETEX6 which reads font metric
information directly from the font file itself.

2 Prerequisite

2.1 Download and installation

The current version of DVIasm is written in the
Python programming language.7 Why Python not
C? The main reason is that Python does not re-
quire compiling and linking to get an executable
file. Thus, DVIasm consists of a single Python pro-
gram dviasm.py in a human-readable text format
and it can run on any platform in which Python is
installed. If speed-up is required later, some parts
of DVIasm will be translated into C.

The development of DVIasm is controlled by
Subversion, a popular version control system, and
all revisions of DVIasm can be downloaded at [2].
From now on we assume that dviasm.py is in the
working directory. The basic usage of DVIasm will
be output if the option --help is specified as follows:

python dviasm.py --help

2.2 Creating a DVI file without TEX

For our first example, let’s suppose we have saved
following three lines as hello.dump. (The number
at the beginning of each line is just the line number
for reference and should not be typed.)

1 [page 1 0 0 0 0 0 0 0 0 0]
2 fnt: cmr10 at 50pt
3 set: ’Hello, World!’

Then run the following command:

python dviasm.py hello.dump -o hello.dump.dvi

to get a new DVI file, hello.dump.dvi. Its contents
are shown in Figure 1(a).

5 The subfont scheme is a way of splitting a set of 16-bit
characters into groups of 256 characters or less, the number
of characters that TFM format can accommodate [3].

6 A typesetting system based on a merger of TEX with
Unicode and Mac OSX font technologies, by Jonathan Kew,
http://scripts.sil.org/xetex.

7 Python is a dynamic object-oriented programming lan-
guage that runs on almost all operating systems. Just type
‘python’ and hit the return key in the terminal to check
whether Python is already installed or not. If not installed,
visit the official website http://www.python.org.

(a) hello.dump.dvi

(b) hello.dvi

Figure 1: DVI result generated by (a) DVIasm and
(b) TEX.

All DVI files in this paper are converted to PDF

with DVIPDFMx8 version 20061211. The DVI result
can also be converted to PostScript with Dvips,9

or viewed on the screen with the DVI previewers,
xdvi,10 dviout,11 or yap.12

In the input, each page begins with the opening
square bracket followed by the string ‘page’ (with-
out a colon), ten numbers, and the closing square
bracket. Among the numbers the first one usually
stands for the page number. In the second line the
DVI command ‘fnt:’ selects the Computer Modern
font, cmr10 scaled at 50 pt. In the last line the text
‘Hello, World!’ is typeset by the command ‘set:’.

2.3 Disassembling a DVI file

We now try to disassemble a DVI file. First, make a
TEX file hello.tex consisting of the following:

\nopagenumbers \font\fnt=cmr10 at 50pt
\noindent\fnt Hello, World! \bye

and run TEX (not LATEX) to get hello.dvi. The
result is shown in Figure 1(b).

8 A DVI to PDF converting utility by Shunsaku Hirata
and Jin-Hwan Cho, http://project.ktug.or.kr/dvipdfmx/.
It is an extension of DVIPDFM written by Mark A. Wicks,
http://gaspra.kettering.edu/dvipdfm/.

9 A DVI to PostScript converter by Tom Rokicki, http:
//www.radicaleye.com/dvips.html.

10 A DVI previewer in X Window system by Paul Vojta,
http://math.berkeley.edu/~vojta/xdvi.html.

11 The most popular DVI previewer in Japan that supports
pTEX, http://akagi.ms.u-tokyo.ac.jp/dviout-ftp.html.

12 The DVI previewer in the MiKTEX system by Christian
Schenk, http://www.miktex.org.

212 TUGboat, Volume 28 (2007), No. 2

1 [preamble]

2 id: 2

3 numerator: 25400000

4 denominator: 473628672

5 magnification: 1000

6 comment: ’ TeX output 2007.01.24:1740’

7

8 [postamble]

9 maxv: 667.202545pt

10 maxh: 469.754990pt

11 maxs: 2

12 pages: 1

13

14 [font definitions]

15 fntdef: cmr10 (10.0pt) at 50.0pt

16

17 [page 1 0 0 0 0 0 0 0 0 0]

18 push:

19 down: -14.0pt

20 pop:

21 down: 643.202545pt

22 push:

23 down: -608.480316pt

24 push:

25 fnt: cmr10 (10.0pt) at 50.0pt

26 set: ’Hello,’

27 right: 16.666687pt

28 set: ’W’

29 right: -4.166702pt

30 set: ’orld!’

31 pop:

32 pop:

33 down: 24.0pt

Code 1: Output of disassembling hello.dvi with
DVIasm.

One may easily find two points of difference be-
tween (a) and (b) in Figure 1. The first is the lo-
cation of the text,13 and the other one is the bar
for the Polish letters l and L14 in (a) instead of the
blank space in (b).

Looking at the figures closely, one more differ-
ence can be found: there is no kerning between the
two characters ‘W’ and ‘o’ in (a). The kerning in-
formation is stored in TFM files; the implication is
that DVIasm would need to communicate with the
Kpathsea library to fetch the information. Thus,
DVIasm no longer works if the whole TEX system is
not installed. This is the reason why DTL and the
current version of DVIasm do not require TFM files.

13 The upper left corner of the paper has the coordinate
(−1 in,−1 in), since the default x- and y-offsets are both one
inch as usual. So the reference point of ‘H’ is the origin (0,0)
in Figure 1(a). However, it is common to place the upper left
corner of ‘H’ at the origin as in Figure 1(b).

14 The ASCII code of the blank space is 32, and glyph at
position 32 in cmr10 is the bar for Polish l and L.

1 [page 1 0 0 0 0 0 0 0 0 0]

2 putrule: 1cm 0.5pt

3 putrule: 0.5pt 1cm

4 push:

5 down: -14.0pt

6 pop:

7 ... (skip) ...

Code 2: Put a mark at the origin (0,0).

To see the exact differences, let us disassemble
hello.dvi with DVIasm by running

python dviasm.py hello.dvi

to get the output15 shown in Code 1. One can see
four new commands, ‘push:’, ‘pop:’, ‘right:’, and
‘down:’. An amount to move follows ‘right:’ and
‘down:’ as an argument. The meaning of these two
commands seems clear.

However, there are two things to keep in mind.
First, the coordinate system of DVI is different from
the standard Cartesian coordinate system16 used in
PostScript and PDF. In DVI the x-coordinate in-
creases from left to right, like Cartesian coordinates,
but the y-coordinate increases from top to bottom,
the opposite of Cartesian coordinates. Second, all
positions in DVI are specified relatively, not abso-
lutely. It is not possible in DVI to give a command
like “go to the coordinate (100 pt, 100 pt).” Only
‘right:’ and ‘down:’ are allowed in DVI.

Then how do we move to a specific position in
DVI? We can use the two commands ‘push:’ and
‘pop:’. The command ‘push:’ stores the current po-
sition in the stack, and ‘pop:’ restores the position
saved in the stack to the current position.

3 DVI commands

Let’s now assume that the lines in Code 1 from the
17th line to the end are saved as hello.dump. The
first example is to put some mark at the origin (0,0).

15 DVIasm always outputs to standard output if the -o

option is not specified.
16 The Cartesian coordinate system is used to determine

each point uniquely in a plane through a pair of numbers
(x, y), usually called the x-coordinate and the y-coordinate
of the point [Wikipedia, http://en.wikipedia.org/wiki/

Cartesian_coordinate_system].

TUGboat, Volume 28 (2007), No. 2 213

command argument description

set: string draw [string] and move to the right by the total width of the string

put: string draw [string] without moving to the right

setrule: length1 length2 draw a box with width [length2] and height [length1] and then move
to the right by [length2]

putrule: length1 length2 draw a box with width [length2] and height [length1] without moving
to the right

push: save the current position to the stack

pop: restore the position in the stack to the current position

right: length move to the right by [length]
move to the left if [length] is negative

down: length move down by [length]
move up if [length] is negative

fnt: name at length select the font [name] scaled at [length]
[name] does not allow spaces

xxx: string DVI special command to be processed by DVI utilities; see the next
section

Figure 2: DVIasm commands.

command argument description

w: length the same as right:, but [length] is stored in the ’w’ variable

x: length the same as right:, but [length] is stored in the ’x’ variable

y: length the same as down:, but [length] is stored in the ’y’ variable

z: length the same as down:, but [length] is stored in the ’z’ variable

w0: move to the right by the length in the ’w’ variable

x0: move to the right by the length in the ’x’ variable

y0: move down by the length in the ’y’ variable

z0: move down by the length in the ’z’ variable

Figure 3: DVIasm move commands.

This is achieved by inserting two lines after the first
line, as in Code 2.

DVI has only two commands for drawing graph-
ics, ‘putrule:’ and ‘setrule:’. Both commands
draw a box filled with black. The first and the sec-
ond arguments indicate the size of the height and
the width of the box, respectively. (Do not con-
fuse the order of height and width!) The command
‘setrule:’ is the same as ‘putrule:’ except for
moving to the right by the amount of the width af-
ter drawing the box.

The next example is to put a box filled with red
under the text. Since DVI has no color command,
Code 3 uses the special command ‘xxx:’ that will
be explained in the next section.

Exercise. Put the red box over the string to hide
the overlapped part of the text.

Figures 2 and 3 give the input commands sup-
ported by DVIasm. There are two types of argu-
ments, string and length. The string type consists
of a text string surrounded by either apostrophes (’)
or double quotation marks ("). It has the same for-

8 ... (skip) ...

9 down: -608.480316pt

10 xxx: ’color push rgb 1 0 0’

11 putrule: 10pt 4in

12 xxx: ’color pop’

13 push:

14 ... (skip) ...

Code 3: Put a box filled with red under the text.

mat as the Python string type.17 The length type is
either an integer or a floating point number followed

17 We can input any 8-bit character with hexadecimal
value hh by ’\xhh’. Thus, ‘\\’ must be used to type the
escape character ‘\(backslash)’.

214 TUGboat, Volume 28 (2007), No. 2

1 [page 1 0 0 0 0 0 0 0 0 0]

2 xxx: ’papersize=6in,3in’

3 putrule: 1cm 0.5pt

4 putrule: 0.5pt 1cm

5 push:

6 down: -14.0pt

7 pop:

8 ... (skip) ...

Code 4: Resize the page of Code 3.

by unit (e.g., sp, pt, bp, mm, cm, in).18 If no unit
is specified, the number is in units of sp by default.
The argument of ‘fnt:’ is exceptional. The name
of the font is given without apostrophes.

4 DVI specials

We saw all the DVI commands in the previous sec-
tion, and we may note that there are no commands
for color, graphics, or transformations in DVI. But
we already know that they are possible in TEX. How
do they work?

The answer is the DVI special command ‘xxx:’.
It is the only way for TEX to communicate with DVI

utilities. However, each DVI utility supports its own
DVI specials. For example, neither DVIPDFM nor
DVIPDFMx support a PostScript literal special con-
taining PostScript code. On the other hand, almost
none of the PDF specials work with Dvips.

In this section we introduce common DVI spe-
cials and show some examples using DVIasm. The
material in this section is based on the author’s talk
at the TUG 2005 conference [1].

4.1 Page specials

There are two kinds of page specials. Code 4 is an
example of the first, specifying a page size; it resizes
the previous example (Code 3).
papersize=[width],[height] changes the size

of whole pages. But it has no effect on the paper
size that can be changed by the command line option

18 1 in = 2.54 cm = 25.4 mm = 72 bp = 72.27 pt, and
1 pt = 216 sp = 65, 536 sp

1 [page 1 0 0 0 0 0 0 0 0 0]

2 xxx: ’landscape’

3 putrule: 1cm 0.5pt

4 putrule: 0.5pt 1cm

5 push:

6 down: -14.0pt

7 pop:

8 ... (skip) ...

Code 5: Landscape orientation.

or by the configuration file (supported by Dvips∗,19

DVIPDFM, and DVIPDFMx).

pdf:pagesize width [length] height [length]

changes the size of the page containing this special
(supported by DVIPDFM∗(?) and DVIPDFMx).

Code 5 shows an example of the second kind
of page special: landscape paper orientation, rather
than portrait.
landscape swaps the width and the height of the

paper size (supported by Dvips∗, DVIPDFM, and
DVIPDFMx).

4.2 Color specials

All of the common color specials originated with
Dvips. In the specials below, color values can be
specified in various ways (Code 6):
• cmyk [c] [m] [y] [k]

• rgb [r] [g] [b]

• hsb [h] [s] [b]

• gray [g]

• or a predefined color name.
The value of each color component is a num-

ber between 0.0 and 1.0. We refer to [6, pp. 12–13]
and [1, p. 11] for PDF color specials, which are easier
to understand than PostScript color specials.

19 ∗ denotes the original source of the feature, and (?)
means that the behavior looks mysterious or buggy.

TUGboat, Volume 28 (2007), No. 2 215

1 [page 1 0 0 0 0 0 0 0 0 0]

2 xxx: ’background cmyk .183 .054 0 0’

3 down: 643.202545pt

4 push:

5 down: -608.480316pt

6 xxx: ’color push LimeGreen’

7 push:

8 fnt: cmr10 (10.0pt) at 50.0pt

9 set: ’Hello,’

10 right: 16.666687pt

11 xxx: ’color push rgb 0 0 .625’

12 set: ’W’

13 xxx: ’color pop’

14 right: -4.166702pt

15 set: ’orld!’

16 pop:

17 xxx: ’color pop’

18 pop:

Code 6: Example of coloring background and text.

background [PScolor] sets a fill color for the
background (supported by Dvips∗, DVIPDFM, and
DVIPDFMx).

color push [PScolor] saves the current color
on the color stack and sets the current color to the
given one (supported by Dvips∗, DVIPDFM, and
DVIPDFMx).

color pop pops a color from the color stack and
sets the current color to be that color (supported by
Dvips∗, DVIPDFM, and DVIPDFMx).

color [PScolor] clears the color stack, and saves
and sets the given color (supported by Dvips∗, DVI-

PDFM(?), DVIPDFMx).

[page 1 0 0 0 0 0 0 0 0 0]

down: 150bp

xxx: ’psfile=tiger.eps rhi=1500

llx=17 lly=171 urx=617 ury=771 clip’

right: 150bp

xxx: ’psfile=tiger.eps rhi=750

llx=17 lly=171 urx=617 ury=771

angle=45 clip’

right: 75bp

xxx: ’psfile=tiger.eps rwi=1500 rhi=750

llx=17 lly=171 urx=617 ury=771 clip’

right: 150bp

xxx: ’psfile=tiger.eps rwi=750 rhi=1500

llx=17 lly=171 urx=617 ury=771 clip’

Code 7: Manipulating an image. (Line breaks are
editorial.)

4.3 Image specials

The special ‘psfile’ is used for including an EPS

(PostScript) graphics file. EPS files contain bound-
ing box information. For example, the bounding box
of the EPS file in the following example20 is

%%BoundingBox: 17 171 567 739

Four options llx, lly, urx, and ury specify the clip-
ping area of the EPS file, and two options rwi and
rhi (0.1 bp unit) are used to resize the clipped area.

psfile=[name] hsize=[num] vsize=[num]
hoffset=[num] voffset=[num]
hscale=[num] vscale=[num] angle=[num]
llx=[num] lly=[num] urx=[num] ury=[num]
rwi=[num] rhi=[num] [clip]

Although Dvips∗, DVIPDFM, and DVIPDFMx all
recognize psfile, neither DVIPDFM nor DVIPDFMx
have internal PostScript interpretation support, so
they cannot process EPS files without Ghostscript
or another PostScript “distiller” available.

However, both DVI utilities support JPEG and
PDF image files, which are not processed by Dvips.
The PDF image special for JPEG and PDF images

20 Namely tiger.eps, which can be found in the examples

directory of Ghostscript, the most popular free software in-
terpreter (available under the GPL) for PostScript and PDF.
See http://www.ghostscript.com for more information.

216 TUGboat, Volume 28 (2007), No. 2

has reader-friendly syntax. We refer to [6, p. 13]
and [1, pp. 12–14] for examples.

pdf:image width [length] height [length]
depth [length] rotate [num]
scale [num] xscale [num] yscale [num]
bbox [ulx] [uly] [lrx] [lry]
matrix [a] [b] [c] [d] [x] [y] ([name])

(Supported by DVIPDFM∗(?) and DVIPDFMx).

4.4 Transformation specials

AAAA
It is possible in LATEX
to rotate and scale
text and figure. But
Dvips has no trans-
formation special
for this purpose.
Instead, it enables
us to insert literal
PostScript code.

" [PScode] inserts literal PostScript code sur-
rounded by a gsave and grestore pair, so that it
will have no effect on the rest of the document (sup-
ported by Dvips∗ only).

ps:[PScode] inserts literal PostScript code with-
out gsave and grestore (supported by Dvips∗ only).

The code for the example above follows (line
breaks in the long specials are editorial):
[page 1 0 0 0 0 0 0 0 0 0]

xxx: ’papersize 2in,2in’

xxx: ’" Goldenrod newpath 0 0 moveto 50 0 lineto

0 0 50 0 90 arc closepath fill’

xxx: ’" Dandelion newpath 0 0 moveto 0 50 lineto

0 0 50 90 180 arc closepath fill’

xxx: ’" Apricot newpath 0 0 moveto -50 0 lineto

0 0 50 180 270 arc closepath fill’

xxx: ’" Peach newpath 0 0 moveto 0 -50 lineto

0 0 50 270 0 arc closepath fill’

xxx: ’color gray 1’

fnt: ptmr8r at 50pt

xxx: ’ps:gsave’

put: ’A’

xxx: ’ps:currentpoint currentpoint translate

90 rotate neg exch neg exch translate’

put: ’A’

xxx: ’ps:currentpoint currentpoint translate

90 rotate neg exch neg exch translate’

put: ’A’

xxx: ’ps:currentpoint currentpoint translate

90 rotate neg exch neg exch translate’

put: ’A’

xxx: ’ps:grestore’

On the other hand, DVIPDFM and DVIPDFMx
have a PDF transformation special for rotation and
scaling, etc. Note that literal PDF code is used in
the following example.

AAAA
pdf:btrans [same options as pdf:image]

applies the spec-
ified transforma-
tion to all subse-
quent text (sup-
ported by DVI-

PDFM∗ and
DVIPDFMx).

pdf:etrans

concludes the ac-
tion of the imme-
diately preceding pdf:btrans special (supported by
DVIPDFM∗ and DVIPDFMx).

pdf:content [PDFcode] inserts literal PDF code
surrounded by a q and Q pair, so it will have no
effect on the rest of the document (supported by
DVIPDFM∗ and DVIPDFMx).

pdf:literal [PDFcode] inserts literal PDF code
without the q and Q pair (supported by DVIPDFMx∗

only).
Here is the PDF implementation of the figure

above (again, line breaks are editorial):
[page 1 0 0 0 0 0 0 0 0 0]

xxx: ’papersize 2in,2in’

xxx: ’color Goldenrod’

xxx: ’pdf:content 0 0 m 50 0 l

50 25 25 50 0 50 c f’

xxx: ’color Dandelion’

xxx: ’pdf:content 0 0 m 0 50 l

-25 50 -50 25 -50 0 c f’

xxx: ’color Apricot’

xxx: ’pdf:content 0 0 m -50 0 l

-50 -25 -25 -50 0 -50 c f’

xxx: ’color Peach’

xxx: ’pdf:content 0 0 m 0 -50 l

25 -50 50 -25 50 0 c f’

xxx: ’color gray 1’

fnt: ptmr8r at 50pt

put: ’A’

xxx: ’pdf:btrans rotate 90 scale .5’

put: ’A’

xxx: ’pdf:btrans rotate 90 scale 2’

put: ’A’

xxx: ’pdf:btrans rotate 90 scale 2’

put: ’A’

xxx: ’pdf:etrans’

xxx: ’pdf:etrans’

xxx: ’pdf:etrans’

(This figure is not quite circular, compared to the
previous PostScript one, since that would require
much longer code.)

To this point, we have discussed common DVI

specials, mostly originated by Dvips. There are also
many PDF specials not yet mentioned. DVIPDFM

originates almost all PDF specials, and its manual [6]

TUGboat, Volume 28 (2007), No. 2 217

is a good source. Moreover, the present author dis-
cussed at TUG 2005 [1] how differently the three DVI

utilities, Dvips, DVIPDFM, and DVIPDFMx behave
on the same special command.

5 Conclusion

Imagine that one has a DVI file without TEX source,
but wishes to modify or to add something to the doc-
ument. For example, a technical editor may want to
put a preprint number on each paper, which was not
fixed at the time of writing. He may also want to
put a watermark or an emblem on every paper.

We also imagine a TEX novice who wants to
include some decorations in his document, but has
trouble writing TEX code. Is it the best advice for
him to learn TEX? It might be — if he has enough
time. If not, DVIasm is an alternative. In fact, he
may learn DVI commands more quickly than TEX
commands. DVIasm may even be attractive to a
TEX expert who wants to modify a few words in a
long document.

DVIasm is written for these purposes, as a sup-
plement to TEX and its extended versions. Of course,
DVIasm is not an alternative to TEX! Neither line
breaking nor page breaking is (or ever will be) sup-
ported.

As mentioned at the beginning of the paper,
DVIasm development is in its first phase. The next
paper will discuss how to support 16-bit characters
in DVIasm. Any comments are welcome, and will be
helpful to improve the program.

References

[1] Jin-Hwan Cho, Practical Use of Special
Commands in DVIPDFMx, TUG 2005,
International Typesetting Conference. Wuhan,
China. http://project.ktug.or.kr/
dvipdfmx/doc/tug2005.pdf

[2] Jin-Hwan Cho, The DVIasm Python script.
http://svn.ktug.or.kr/viewvc/dviasm/
?root=ChoF

[3] Jin-Hwan Cho and Haruhiko Okumura,
Typesetting CJK languages with Omega. TEX
XML, and Digital Typography, Lecture Notes
in Computer Science 3130 (2004), 139–148.

[4] Donald E. Knuth, The DVItype processor
(Version 3.6, December 1995). http:
//ctan.org/tex-archive/systems/knuth/
texware/dvitype.web.

[5] Geoffrey Tobin, The DTL Package (Version
0.6.1, March 1995). http://ctan.org/
tex-archive/dviware/dtl/.

[6] Mark A. Wicks, DVIPDFM User’s Manual
(Version 0.12.4, September 1999). http:
//gaspra.kettering.edu/dvipdfm/
dvipdfm-0.12.4.pdf.

� Jin-Hwan Cho
Department of Mathematics
The University of Suwon
Republic of Korea
chofchof (at) ktug dot or dot kr

