
TUGboat, Volume 28 (2007), No. 2 181

Creation of a PostScript Type 1 logo font
with MetaType 1

Klaus Höppner

Abstract
MetaType 1 is a tool created by Bogusław Jackow-
ski, Janusz Nowacki, and Piotr Strzelczyk for cre-
ating PostScript Type 1 fonts. It uses METAPOST,
t1utils and some AWK scripts to start from a META-
POST source with some special macros, resulting in
the AFM, TFM and PFB files needed to use the font
as any other PostScript font.

MetaType 1 was used to create the Latin Mod-
ern fonts, derived from Computer Modern fonts but
including many more accented characters and nowa-
days part of most TEX distributions. Other new
fonts such as Iwona and Kurier have also been cre-
ated by the developers of MetaType 1.

I came into contact with METAPOST when I
wanted to convert an existing logo font from META-
FONT to PostScript Type 1. Unfortunately there
doesn’t yet exist a tutorial or cookbook for using
MetaType 1. So I started to play with the example
fonts supplied as part of MetaType 1 and to read the
comments in the source. This tutorial will give an
example and the lessons I learned.

1 Introduction
When Donald E. Knuth invented TEX, he also cre-
ated his own description language for high quality
fonts. It was named METAFONT. So the process
from a TEX source to some paperwork was as fol-
lows: Compile the TEX source to get a DVI file that
contains references to the fonts that were used in the
document— in fact the only thing that TEX knows
about a font is its metrics. To produce the docu-
ment on paper, the DVI driver invoked METAFONT

(the program) to convert the METAFONT source of
the font, i. e. the geometrical description of the font
outlines, to a bitmapped font suited for the resolu-
tion and technical details of the printer by using the
METAFONT mode for this special printer.

While this approach works fine if you work
alone and just send your documents to your personal
printer, it has some disadvantages if you want to
exchange documents electronically. Normally, dis-
tributing DVI isn’t the best idea, since it requires
that the recipient has a TEX system installed includ-
ing all fonts that were used in your document—not
to mention any graphics included in your document.
So in most cases you will send a PostScript file or
nowadays a PDF file. In this case, all the fonts from
METAFONT sources will be embedded as bitmapped

PostScript Type 3 fonts. When the recipient prints
your document, it may look fine, but it may look
poor if the METAFONT mode used to create the bit-
mapped font didn’t match the printer, and the doc-
ument will probably look very poor on the screen
(especially in old versions of Acrobat Reader).

So when exchanging documents, it is preferable
to embed the fonts as outline fonts. For these, the
usual format used in the TEX world is PostScript
Type 1 (though this is gradually being replaced by
OpenType). The Type 1 format uses a subset of the
well established PostScript language.1

Meanwhile, most of the fonts used in the TEX
world are available as PostScript Type 1 fonts, start-
ing with the Type 1 version of Knuth’s CM fonts up
to the Latin Modern fonts that augment CM with a
complete set of diacritic characters.

2 MetaType 1
MetaType 1 is the tool that was used to create the
Latin Modern fonts from the METAFONT sources of
CM fonts, and for the creation of completely new
fonts such as Iwona.

MetaType 1 relies on METAPOST, a variant of
METAFONT producing small pieces of PostScript as
output, written by John Hobby. Bogusław Jackow-
ski, Janusz Nowacki, and Piotr Strzelczyk wrote a
set of METAPOST macros and added some AWK
scripts to create the input files that can be con-
verted to Type 1 with t1utils. Thus, one advantage
of MetaType 1 is that it uses a source format that is
very similar to the old METAFONT sources.

3 Our example
I came into touch with MetaType 1 when I wasn’t
satisfied with the DANTE logo being typeset from
the old METAFONT source with all the disadvan-
tages mentioned above. So I wanted to give Meta-
Type 1 a try to convert the DANTE logo font into
a PostScript Type 1 font.

Fortunately, the DANTE logo font contains just
the characters needed to set the logo:

DANTE
So, it was just five characters for which the META-
FONT source had to be made suitable to be pro-
cessed with MetaType 1.

Unfortunately, I found out that the available
documentation for MetaType 1 was rather limited:
articles from conference talks [1, 2], the commented

1 It is sometimes said that Type 1 fonts are outline fonts
while Type 3 are bitmap fonts. That’s not true, since Type 3
fonts may comprise both outlines and bitmaps.

182 TUGboat, Volume 28 (2007), No. 2

source for the MetaType 1 macros and two sample
fonts that are part of the MetaType 1 distribution.

But in the end, I found my way, and as you
will see, was able to create my own Type 1 font.
To make things a bit simpler for this tutorial, I will
show the steps I made for a small test font with just
two characters, “a” and “t”, simplified compared to
the original characters from the DANTE logo font.
Hopefully it will make the presented source more
understandable, even if you haven’t programmed in
METAPOST before.

3.1 Installation
Installing MetaType 1 was easy enough. I down-
loaded the ZIP archive file from CTAN [3] and copied
the files to the appropriate locations of my lo-
cal texmf tree: the .mp files into metapost/mt1,
the .mft files into mft/mt1, the .sty files into
macros/generic/mt1, and finally the .awk and
.dat files into scripts/mt1.2

The main problem in my case was that Meta-
Type 1 was shipped with a set of DOS batch files
that are used to create the fonts, but I was using
GNU/Linux. So I looked into these files to find out
what they do— in fact they were rather simple, just
calling METAPOST to produce a small PostScript
file for every glyph in the font and then using some
AWK scripts to merge and assemble these files into
a raw PostScript font that is converted into Post-
Script Type 1 with t1asm (part of t1utils). So sev-
eral immediate files and steps are involved, but the
workflow is straightforward. Eventually, I wrote a
small Makefile that does the job on a Unix system,
as shown in listing 3. From this point, I could cre-
ate the TFM, PFB and MAP files for a font with the
command make FONT=myfont.

I also manually created an FD file for using
the font in LATEX. These files could all be installed
into the appropriate locations inside a texmf tree.
Testing of a font is convenient in pdfTEX since one
can use a MAP file locally in a document using the
\pdfmapfile primitive, while for a real font one nor-
mally will install the MAP file using the updmap
script (or equivalent).

3.2 The first font
After these prerequisites were done, I could start
with my first font. I copied the file tapes.mp (a
sample font that is part of the MetaType 1 distri-
bution) into myfont.mp, found several settings with
font parameters starting with pf_info_*, changed

2 This location isn’t required since these files aren’t found
by the Kpathsea library, but instead via an environment vari-
able, but at least this location seemed to be meaningful.

Listing 1: First definition of “a” and “t”.
encode ("a") (ASCII "a");
introduce "a" (store+utilize) (0) ();
beginglyph("a");
path pa, pb, pc;
z0 = (round_hdist+radius,radius);
z1 = (round_hdist+2radius-strength,0);
pa = fullcircle scaled 2 radius shifted z0;
pb = reverse fullcircle

scaled (2radius-2strength) shifted z0;
pc = unitsquare xscaled strength

yscaled 2radius shifted z1;
Fill pa;
unFill pb;
Fill pc;
fix_hsbw(2radius+round_hdist+hdist,0,0);
endglyph;

encode ("t") (ASCII "t");
introduce "t" (store+utilize) (0) ();
beginglyph("t");
path pa, pb;
z0 = (hdist+3.5strength,1.5strength);
x1 = hdist + 2strength;
x2 = x1 + strength;
y1 = y2 = height;
z3 = (hdist,height-3strength);
pa = z1

-- (halfcircle rotated 180
scaled 3strength shifted z0)

-- (reverse halfcircle rotated 180
scaled strength shifted z0)

-- z2 -- cycle;
pb = unitsquare xscaled 5strength

yscaled strength shifted z3;
Fill pa;
Fill pb;
fix_hsbw(2hdist+5strength,0,0);
endglyph;

them where appropriate (font name, family, creator,
etc.) and kept the rest unchanged.

Then I defined the first two characters accord-
ing to the following rule:

Characters consist of closed paths, filled or
unfilled paths, where filled paths always turn
counter clockwise and unfilled paths always
clockwise.
So when designing the letter “a”, I defined an

outer circle that was filled and then an inner circle
to be unfilled and then a rectangular shape as ver-
tical stem. And the letter “t” was just built from a
vertical stem (with a hook at the right bottom) and
a horizontal bar. The definitions for the characters
are shown in listing 1.

TUGboat, Volume 28 (2007), No. 2 183

Please notice in the definition of letter “a”, that
the path for the outer circle is a (counter clockwise)
fullcircle, while the inner circle is a reverse fullcircle,
since the former one is filled while the latter one is
unfilled. Filling and unfilling of the paths is done
by the macros Fill and unFill; these macros warn
you if the turning direction of the path is wrong.

Proofs for the glyphs are produced by compiling
the file myfont.mp with METAPOST. As you can
see, they really do look like an “a” and a “t”:

Now let’s see how the Type 1 font looks:

Something went wrong. After taking a closer
look, it becomes obvious. The regions where filled
paths overlap become unfilled. This is due to the
fact that filling of paths is done with an exclusive-or
fill, i. e. when filling a path, regions inside that are
already black become white. As this isn’t what we
want to achieve, we formulate another rule to keep
in mind:

Paths must not overlap!
Although it is possible with pure METAPOST to

find the intersection points of paths to remove over-
lapping parts, this tends to be painful. Since Meta-
Type 1 was used to attach cedilla and ogonek accents
to various characters in the extension of CM to LM,
this painful work of finding the outline of two over-
lapping paths was encapsulated into a macro that is
part of MetaType 1, named find_outlines. Let’s
see how this macro is utilized for the letter “a”:
find_outlines(pa,pc)(r);
Fill r1;

It finds the outline of the two overlapping paths pa
and pc, with the result written in the path array
r. The result is an array because the outline of the
paths may consist of more than one path, but in our
case it is just one path, accessible as r1. The same
is applied for the letter “t” (just the names of the
two paths slightly differ).

When filling the new outlines instead of the
overlapping paths, we now get the following result:

a t
So, obviously finding the outline path for the

“t” worked, but it failed for the “a”. Why? Be-
cause in the case of the “a”, both paths touch in one
point without crossing at the right side of the ver-
tical stem, i. e. they have an intersection point with
the same direction vector. This confuses the macro
that finds the outlines since it doesn’t know which
path to follow—and in this case it chooses wrong.
So, let’s bear in mind another rule:

Paths must not touch tangentially!
To resolve the problem, we use a simple trick:

Shift the vertical stem a tiny amount to the right,
so that the paths don’t touch anymore. In META-
POST you can use eps as a tiny positive number (in
mathematics, an arbitrary small number is usually
denoted by ε). The following lovely characters are
the result (the METAPOST definitions are shown in
listing 2):

a t
3.3 Kerning
Our glyphs are ready, but a normal font has more
features, such as kerning pairs and ligatures. In the
former case, for a pair of characters the horizontal
spacing between them is changed, while in the latter
case a character pair is replaced by another glyph.

Defining a kerning pair in MetaType 1 is sim-
ple. After the definition of the glyphs, we can add
a kerning table. In our case it looks like this:

LK("a") KP("t")(-3ku); KL;

In the list of ligatures and kernings for the letter “a”
we define a kerning of −3 ku if it is followed by the
letter “t” to remove the optical gap between them
(the kerning unit ‘ku’ is defined elsewhere in the
METAPOST source). The effect of kerning is shown
in figure 1.

Ligatures don’t make sense for our sample font,
so I leave them out for this tutorial. In principle they
work similarly; you merely define from which slot in
the font the replacement for a specified character
pair is to be taken.

184 TUGboat, Volume 28 (2007), No. 2

Listing 2: Definition of “a” and “t” with outlines.
encode ("a") (ASCII "a");
introduce "a" (store+utilize) (0) ();
beginglyph("a");
path pa, pb, pc, r;
z0 = (round_hdist+radius,radius);
z1 = (round_hdist+2radius-strength+eps,0);
pa = fullcircle scaled 2 radius shifted z0;
pb = reverse fullcircle

scaled (2radius-2strength) shifted z0;
pc = unitsquare xscaled strength

yscaled 2radius shifted z1;
find_outlines(pa,pc)(r);
Fill r1;
unFill pb;
fix_hsbw(2radius+round_hdist+hdist,0,0);
endglyph;

encode ("t") (ASCII "t");
introduce "t" (store+utilize) (0) ();
beginglyph("t");
path pa, pb, r;
z0 = (hdist+3.5strength,1.5strength);
x1 = hdist + 2strength;
x2 = x1 + strength;
y1 = y2 = height;
z3 = (hdist,height-3strength);
pa = z1

-- (halfcircle rotated 180
scaled 3strength shifted z0)

-- (reverse halfcircle rotated 180 scaled
strength shifted z0)

-- z2 -- cycle;
pb = unitsquare xscaled 5strength

yscaled strength shifted z3;
find_outlines(pa,pb)(r);
Fill r1;
fix_hsbw(2hdist+5strength,0,0);
endglyph;

3.4 Hinting
When you embed fonts as outline fonts, you leave
the task of rasterizing the glyphs to your output de-
vice (printer or viewer). Unfortunately, this final
result may look rather poor, especially on low res-
olution devices such as screens. Imagine the letter
“H” and how it is rasterized into pixels. If we’re
unlucky, the left and right vertical stem will have
a different width. On a printer with 1200 dpi it’s
nearly unnoticeable, but on the screen a difference
of one pixel makes it look quite ugly.

To prevent this, high quality fonts use a mech-
anism called “hinting” to help the rasterizer (e. g.
the PostScript RIP in a printer) to keep vertical or
horizontal stems the same width.

at
at

Figure 1: Our font without (top) and with (bottom)
kerning.

Figure 2: Hinting informations (shaded areas).

MetaType 1 supports hinting by providing the
macros fix_hstem and fix_vstem that try to find
horizontal or vertical stems of a given width and add
hinting information for them. For example, since we
know that our letters “a” and “t” have stems of the
width strength, we add hinting information by
fix_hstem(strength,pa,pb);
fix_vstem(strength,pa,pb);

You can see what hinting information was found
as shaded areas in the proofs (figure 2).

4 Conclusions
I found that MetaType 1 is a suitable tool to create
PostScript Type 1 fonts. Though there is a lack of
beginning documentation, I was able to create a first
font quite quickly by relying on an existing META-
FONT source. Of course, knowledge of METAPOST

or METAFONT is highly desirable. Understanding
hinting is a bit more difficult, but finally possible.

References
[1] Bogusław Jackowski, Janusz M. Nowacki, Piotr

Strzelczyk, MetaType 1: A MetaPost-based
engine for generating Type 1 fonts, Proc. of
EuroTEX 2001, published in MAPS 26, 2001,
111–119.

[2] Bogusław Jackowski, Janusz M. Nowacki, Piotr
Strzelczyk, Programming PostScript Type 1
fonts using MetaType 1: Auditing, enhancing,
creating, TUGboat, volume 24 (2003), no. 3.

[3] http://mirror.ctan.org/fonts/utilities/
metatype1/

TUGboat, Volume 28 (2007), No. 2 185

Listing 3: Makefile for font creation with MetaType 1.
METATYPE1 = /home/klaus/texmf/scripts/mt1

.PHONY: pfb tfm proof all

all: pfb tfm
proof: $(FONT).pdf

pfb: $(FONT).pfb

tfm: $(FONT).tfm

%.p: %.mp
mpost "\generating:=0; \input $<"
gawk -f $(METATYPE1)/mp2pf.awk \

-vCD=$(METATYPE1)/pfcommon.dat \
-vNAME=‘basename $< .mp‘

%.pn: %.p
gawk -f $(METATYPE1)/packsubr.awk \

-vVERBOSE=1 -vLEV=5 -vOUP=$@ $<

%.pfb: %.pn
t1asm -b $< $@

%.tfm: %.mp
mpost "\generating:=1; \input $<"

%.pdf: %.ps
ps2pdf $< $@

%.ps: %.dvi
dvips -o $@ $<

%.dvi: %.tex
tex $<

%.tex: %.mp
mpost $<
cp $< _t_m_p.mp
mft _t_m_p.mp -style=mt1form.mft
echo ’\input mt1form.sty’ > $@
test -f piclist.tex && cat piclist.tex >> $@
test -f _t_m_p.tex && cat _t_m_p.tex >> $@
echo ’\endproof’ >> $@

Listing 4: The complete font.
% A sample font for PRACTEX2006
input fontbase;

% Global parameters for all characters
size := 1000; depth := 0; math_axis := 1/2size;
radius := 300; hight := 900; strength := 80;
ku := 18; hdist := 3ku; round_hdist := 1ku;

% Font settings
pf_info_familyname "MyFont";
pf_info_fontname "MyFont-Regular";
pf_info_weight "Normal";
pf_info_version "0.01";
pf_info_capheight hight;
pf_info_xheight 2radius;
pf_info_space 10ku;
pf_info_adl size, 0, 0;
pf_info_author "Made by KH for PRACTEX2006"
pf_info_overshoots (1000,10), (0, -10);
pf_info_encoding "at";
pf_info_creationdate;

beginfont

encode ("a") (ASCII "a");
introduce "a" (store+utilize) (0) ();
beginglyph("a");
path pa, pb, pc, r;
z0 = (round_hdist+radius,radius);
z1 = (round_hdist+2radius-strength+eps,0);
pa = fullcircle scaled 2 radius shifted z0;
pb = reverse fullcircle scaled (2radius-2strength)

shifted z0;
pc = unitsquare xscaled strength yscaled 2radius

shifted z1;
find_outlines(pa,pc)(r);
Fill r1;
unFill pb;
fix_hstem(strength,pa,pb,pc);
fix_vstem(strength,pa,pb,pc);
fix_hsbw(2radius+round_hdist+hdist,0,0);
endglyph;

encode ("t") (ASCII "t");
introduce "t" (store+utilize) (0) ();
beginglyph("t");
path pa, pb, r;
z0 = (hdist+3.5strength,1.5strength);
x1 = hdist + 2strength;
x2 = x1 + strength;
y1 = y2 = hight;
z3 = (hdist,hight-3strength);
pa = z1 -- (halfcircle rotated 180

scaled 3strength shifted z0)
-- (reverse halfcircle rotated 180

scaled strength shifted z0)
-- z2 -- cycle;

pb = unitsquare xscaled 5strength yscaled strength
shifted z3;

find_outlines(pa,pb)(r);
Fill r1;
fix_hstem(strength,pa,pb);
fix_vstem(strength,pa,pb);
fix_hsbw(2hdist+5strength,0,0);
endglyph;

LK("a") KP("t")(-3ku); KL;
endfont.

