
256 TUGboat, Volume 28 (2007), No. 2

Macros

Writing numbers in words in TEX

Edward M. Reingold

We present TEX macros to write integers, even ex-
tremely large integers, in words according to the
American English nomenclature [2, pp. 12 and 22–
24], [3, p. 1549]; the method here is easily adapted
to the British English nomenclature, or that of other
languages. The imaginative nomenclatures of [1, pp.
14–15] or [4, pp. 311–312] are also easy to accom-
modate with the ideas presented here. Although
macros for writing numbers in words are already
available on CTAN, none of them has the generality
of those presented here. Our approach, which covers
the full range of American English, (−1066, 1066), is
based on [6, sec. 8.1]; [5, p. 6] has a similar method.

We want to be able to capitalize the first word
produced, as well as insert spaces, commas, and hy-
phens between words appropriately. Because the
words produced are written by various macros and
at various levels of recursion, we centralize the pro-
duction of text by calling a macro \@String that
does the actual insertion of the word into the out-
put. We use global flags to indicate whether the
next word produced will be the first word (which
should not be preceded by a space and which may
need to be capitalized),
\def\@firstwordtrue{%

\global\let\if@firstword\iftrue}

\def\@firstwordfalse{%

\global\let\if@firstword\iffalse}

and similar global variables to indicate whether a
capital letter is needed,
\def\@capitalfirstwordtrue{%

\global\let\if@capitalfirstword\iftrue}

\def\@capitalfirstwordfalse{%

\global\let\if@capitalfirstword\iffalse}

\@capitalfirstwordfalse

or whether a hyphen or comma is needed,
\def\@needhyphentrue{%

\global\let\if@needhyphen\iftrue}

\def\@needhyphenfalse{%

\global\let\if@needhyphen\iffalse}

\def\@needcommatrue{%

\global\let\if@needcomma\iftrue}

\def\@needcommafalse{%

\global\let\if@needcomma\iffalse}

\@needcommafalse

The macro that inserts a word into the output then
is

\def\@String#1{%

\if@firstword

\expandafter\@firstoftwo\else

\expandafter\@secondoftwo\fi

{\if@capitalfirstword

\Capitalize{#1}%

\@capitalfirstwordfalse

\else

{#1}%

\fi}%

{\if@needhyphen

{-#1}%

\else

\if@needcomma

{, #1}%

\@needcommafalse

\else

{ #1}%

\fi

\fi}%

\@firstwordfalse}

where capitalization is done by
\def\Capitalize#1{%

\edef\@tempa{#1}%

\expandafter\@capitalize

\expandafter{\@tempa}\@EndOfString}

\def\@capitalize#1{%

\ifx\@EndOfString#1%

\expandafter\@firstoftwo\else

\expandafter\@secondoftwo\fi

{}{\@@capitalize#1}}

\def\@@capitalize#1#2\@EndOfString{%

\uppercase{#1}#2}

Numbers less than twenty are idiosyncratic, so
we handle them with a case statement:
\def\Small@Number#1{% Less than 20

\relax

\ifcase#1

\@String{zero}\or

\@String{one}\or

\@String{two}\or

\@String{three}\or

\@String{four}\or

\@String{five}\or

\@String{six}\or

\@String{seven}\or

\@String{eight}\or

\@String{nine}\or

\@String{ten}\or

\@String{eleven}\or

\@String{twelve}\or

\@String{thirteen}\or

\@String{fourteen}\or

\@String{fifteen}\or

\@String{sixteen}\or

\@String{seventeen}\or

\@String{eighteen}\or

\@String{nineteen}%



TUGboat, Volume 28 (2007), No. 2 257

\else

\errmessage{Small number out of range}

\fi}

We need some scratch counters to do our work:
\newcount\@number

\newcount\@@number

\newcount\@@@number

\newcount\@millenary

We use \Medium@Number to handle numbers smaller
than 1000:
\def\Medium@Number#1{% At most three digits

\@number=#1\relax

\ifnum\@number>99

\@@number=\@number

\divide\@@number by 100

\Small@Number{\the\@@number}%

\@String{hundred}%

\multiply\@@number by 100

\advance\@number by -\@@number

\fi

% \@number is now \number mod 100

\ifnum\@number>19

\@@number=\@number

\divide\@@number by 10

% \@@number is now the tens digit

\@Decade{\the\@@number}%

\multiply\@@number by 10

\advance\@number by -\@@number

% \@number is now the ones digit

\@needhyphentrue

\fi

% \@number is now 19 or less

\ifnum\@number>0

\Small@Number{\the\@number}%

\fi

\@needhyphenfalse}

where the “decade” is written by
\def\@Decade#1{%

\ifcase#1

\errmessage{Decade out of range}\or

\errmessage{Decade out of range}\or

\@String{twenty}\or \@String{thirty}\or

\@String{forty}\or \@String{fifty}\or

\@String{sixty}\or \@String{seventy}\or

\@String{eighty}\or \@String{ninety}%

\else

\errmessage{Decade out of range}

\fi}

Some usage requires the word “and” after the word
“hundred”, especially for the rightmost three dig-
its of a number (for example, “one hundred and
twenty”); this would require another global variable
and a slight modification of \Medium@Number.

Numbers with four or more digits are handled
recursively. To express n× 1000i in words, we

express bn/1000c × 1000i+1 in words,

express n mod 1000 in words, and
write the name of 1000i in words.

The last step, writing the name of 1000i, is done
with

\def\@Millenary#1{%

\ifcase#1\or

\@String{thousand}\or

\@String{million}\or

\@String{billion}\or

\@String{trillion}\or

\@String{quadrillion}\or

\@String{quintillion}\or

\@String{sextillion}\or

\@String{septillion}\or

\@String{octillion}\or

\@String{nonillion}\or

\@String{decillion}\or

\@String{undecillion}\or

\@String{duodecillion}\or

\@String{tredecillion}\or

\@String{quattuordecillion}\or

\@String{quindecillion}\or

\@String{sexdecillion}\or

\@String{septendecillion}\or

\@String{octodecillion}\or

\@String{novemdecillion}\or

\@String{vigintillion}%

\else

\errmessage{Number too large for words}

\fi

\ifnum#1>0 \@needcommatrue\fi}

A “vigintillion” (1063) is as high as American nomen-
clature goes; this is far larger than a TEX counter
can go, but we are aiming high! With \@Millenary
we translate our recursive structure into

\def\Big@Number#1#2{%

\@@number=#2\relax % number to be written...

\@millenary=#1\relax % times this power of 1000

\ifnum\@@number>0

\@@@number=\@@number

\divide\@@@number by 1000

\begingroup% Preserve \@millenary value

\advance\@millenary by 1

\Big@Number{\the\@millenary}%

{\the\@@@number}%

\endgroup

\multiply\@@@number by 1000

\advance\@@number by -\@@@number

% \@@number is now #2 mod 1000

\ifnum\@@number>0

\Medium@Number{\the\@@number}%

\@Millenary{#1}%

\fi

\fi}

Calling \Big@Number produces #2 × 1000#1 in
words, so the initial call to \Big@Number should have



258 TUGboat, Volume 28 (2007), No. 2

a first parameter of zero. Thus we write the public
macros
\def\inwords#1{%

\edef\@tempa{#1}%

\expandafter\@inwords\expandafter{\@tempa}}

\def\Inwords#1{%

\@capitalfirstwordtrue

\edef\@tempa{#1}%

\expandafter\@inwords\expandafter{\@tempa}%

\@capitalfirstwordfalse}

where
\def\@inwords#1{%

\@firstwordtrue

\@needcommafalse

\@needhyphenfalse

\ifnum#1<0

\@String{minus}%

\@number=-#1\relax

\Big@Number{0}{\the\@number}%

\else\ifnum#1=0

\Small@Number{0}%

\else%

\Big@Number{0}{#1}%

\fi\fi}

For example, \inwords{-1234567890} produces
minus one billion, two hundred thirty-four
million, five hundred sixty-seven thousand,
eight hundred ninety

and \Inwords{31415926} produces
Thirty-one million, four hundred fifteen thou-
sand, nine hundred twenty-six.
The size limitation of TEX count registers, 231−

1, means that we get an error in trying to write
8018018851 in words (Conway and Guy [1, p. 15]
call this “Knuth’s number”, the first prime number
in the alphabetic ordering of the natural numbers [5,
p. 4]). To write larger numbers in words we need to
use the recursive structure of \Big@Number without
resorting to count registers. This means that we
have to trap a minus sign and ignore leading zeros,
before we can split the number into the rightmost
three digits and everything to their left. Hence we
redefine
\def\Inwords#1{%

\@capitalfirstwordtrue

\inwords{#1}%

\@capitalfirstwordfalse}

\def\inwords#1{%

\@firstwordtrue

\@needhyphenfalse

\Trap@Minus{#1}}%

where
\def\Trap@Minus#1{%

\edef\@tempa{#1}%

\expandafter\@Trap@Minus%

\expandafter{\@tempa}\@EndOfString}

\def\@Trap@Minus#1{%

\ifx\@EndOfString#1%

\expandafter\@firstoftwo\else

\expandafter\@secondoftwo\fi

{}{\@@Trap@Minus#1}}

\def\@@Trap@Minus#1#2{%

\ifx\@EndOfString#2%

\expandafter\@firstoftwo\else

\expandafter\@secondoftwo\fi

{\ifx#1-%

\errmessage{Orphan minus sign}%

\else

\Small@Number{#1}\fi}%

{\@@@Trap@Minus#1#2}}

\def\@@@Trap@Minus#1#2\@EndOfString{%

\ifx#1-%

\expandafter\@firstoftwo\else

\expandafter\@secondoftwo\fi

{\@String{minus}%

\@TrapLeadingZeros{#2\@EndOfString}}%

{\@TrapLeadingZeros{#1#2\@EndOfString}}}

traps a leading minus sign and then traps leading
zeros with the similar

\def\@TrapLeadingZeros#1{%

\ifx\@EndOfString#1%

\expandafter\@firstoftwo\else

\expandafter\@secondoftwo\fi

{}{\@@TrapLeadingZeros#1}}

\def\@@TrapLeadingZeros#1#2{%

\ifx\@EndOfString#2%

\expandafter\@firstoftwo\else

\expandafter\@secondoftwo\fi

{\Small@Number{#1}}%

{\@@@TrapLeadingZeros#1#2}}

\def\@@@TrapLeadingZeros#1#2\@EndOfString{%

\ifx0#1%

\expandafter\@firstoftwo\else

\expandafter\@secondoftwo\fi

{\@TrapLeadingZeros{#2\@EndOfString}}%

{\@numberinwords{0}{#1#2\@EndOfString}}}

before calling a version of \Big@Number that avoids
the use of count registers by splitting a number into
the rightmost three digits and everything else:

\def\@numberinwords#1#2{%

% #1 = power of 1000

% #2 = the next token, either

% a digit or \@EndOfString

\ifx\@EndOfString#2%

\expandafter\@firstoftwo\else

\expandafter\@secondoftwo\fi

{}{\@@numberinwords{#1}{}#2}}

\def\@@numberinwords#1#2#3#4{%

% #1 = power of 1000

% #2 = string digits so far,

% excluding the final one, #3



TUGboat, Volume 28 (2007), No. 2 259

% #3 = the next digit

% #4 = the next token, either another

% digit or \@EndOfString

\ifx\@EndOfString#4%

\expandafter\@firstoftwo\else

\expandafter\@secondoftwo\fi

{\Small@Number{#3}\@Millenary{#1}#2}%

{\@@@numberinwords{#1}{#2}#3#4}}

\def\@@@numberinwords#1#2#3#4#5{%

% #1 = power of 1000

% #2 = string digits so far,

% excluding the final two, #3#4

% #3#4 = the final two digits so far

% #5 = the next token, either another

% digit or \@EndOfString

\ifx\@EndOfString#5%

\expandafter\@firstoftwo\else

\expandafter\@secondoftwo\fi

{\Medium@Number{#3#4}\@Millenary{#1}#2}%

{\@@@@numberinwords{#1}{#2}#3#4#5}}

\def\@@@@numberinwords#1#2#3#4#5#6{%

% #1 = power of 1000

% #2 = string digits so far,

% excluding the final three, #3#4#5

% #3#4#5 = the final three digits so far

% #6 = the next token, either another

% digit or \@EndOfString

\ifx\@EndOfString#6%

\expandafter\@firstoftwo\else

\expandafter\@secondoftwo\fi

{\@millenary=#1\relax

\advance\@millenary by 1

\@numberinwords{\the\@millenary}

{#2\@EndOfString}%

\advance\@millenary by -1

\ifnum#3#4#5>0

\Medium@Number{#3#4#5}%

\@Millenary{#1}%

\fi}%

{\@@@@numberinwords{#1}{#2#3}#4#5#6}}

Given this machinery, we can write Knuth’s
number using \inwords{8018018851}, eight billion,
eighteen million, eighteen thousand, eight hundred
fifty-one, and 2×1063+2×1036+2×1012+2293, the
last prime in alphabetical order [5, p. 12], two vig-
intillion, two undecillion, two trillion, two thousand,
two hundred ninety-three. Or,

2219 = 842498333348457493583344221469363
458551160763204392890034487820288,

which in words is

Eight hundred forty-two vigintillion, four
hundred ninety-eight novemdecillion,
three hundred thirty-three octodecillion,
three hundred forty-eight septendecillion,
four hundred fifty-seven sexdecillion, four

hundred ninety-three quindecillion, five
hundred eighty-three quattuordecillion,
three hundred forty-four tredecillion, two
hundred twenty-one duodecillion, four
hundred sixty-nine undecillion, three
hundred sixty-three decillion, four hundred
fifty-eight nonillion, five hundred fifty-one
octillion, one hundred sixty septillion,
seven hundred sixty-three sextillion, two
hundred four quintillion, three hundred
ninety-two quadrillion, eight hundred ninety
trillion, thirty-four billion, four hundred
eighty-seven million, eight hundred twenty
thousand, two hundred eighty-eight.
A final note: to number pages in words in LATEX

we need to \protect the call, as in:
\renewcommand*{\thepage}

{Page \protect\inwords{\c@page}}

Acknowledgments The author is grateful to Na-
chum Dershowitz for pointing out various errors in
the original macros, and to both him and Peter Wil-
son for suggesting the inclusion of appropriate hy-
phens and commas.

References

[1] John H. Conway and Richard Guy. The Book of
Numbers. Springer-Verlag, New York, 1996.

[2] Philip J. Davis. The Lore of Large Numbers. Yale
University, New Haven, CT, 1961.

[3] Philip B. Gove. Webster’s Third New Interna-
tional Dictionary of the English Language. Mer-
riam, Springfield, MA, 1961.

[4] Donald E. Knuth. Supernatural numbers. In
David A. Klarner, editor, The Mathematical
Gardner, pages 310–325. Wadsworth, Boston,
1981.

[5] Donald E. Knuth and Allan A. Miller. A pro-
gramming and problem-solving seminar. Tech-
nical Report STAN-CS-81-863, Department of
Computer Science, Stanford University, Stan-
ford, CA, June 1981.

[6] Edward M. Reingold and Ruth N. Reingold.
PascAlgorithms. Scott, Foresman and Company,
Glenview, Illinois, 1988.

� Edward M. Reingold
Department of Computer Science
Illinois Institute of Technology
10 West 31st Street
Chicago, Illinois 60616-2987
USA
reingold (at) iit dot edu


