
LATEX conversion into normalized forms and speech

Eitan M. Gurari
Ohio State University
gurari (at) cse dot ohio-state dot edu

http://www.cse.ohio-state.edu/~gurari

Abstract

LATEX is an authoring language designed for producing documents through native
TEX compilers. Over the years many other applications have been developed to
accept LATEX inputs via alternative engines programmed from scratch. These
engines are restricted in power to subsets of LATEX features.

The first part of this report shows how TEX4ht can translate general LATEX
constructs into the restricted dialects recognizable by such engines. The jsMath
dialect for rendering LATEX through JavaScript is employed as an example.

An especially significant use of LATEX input was T. V. Raman’s 1994 pioneer-
ing AsTeR program for automatically rendering technical documents into audio.
Newer audio browsers are expected to address XML documents that adhere to the
SSML and ACSS specifications. The second part of this report extends Raman’s
work by showing how TEX4ht can translate LATEX to XML-based representations
that support speech.

1 Applications of LATEX dialects

The LATEX system offers a rich set of high-level fea-
tures for authoring manuscripts, and a powerful en-
gine for typesetting documents. The human friendly
design of the language, in particular within its math-
ematical component, promoted different programs
to choose variants of LATEX as their input languages.
Similarly, the superior typesetting capabilities en-
couraged different tools to offer LATEX for exported
document formats.

For instance, the jsMath utility [2] is dedicated
to rendering restricted LATEX mathematical expres-
sions embedded within HTML files. In doing so it
offers a friendly medium for on-line content manage-
ment. Specifically, information is easy to enter and
edit, a single document file provides for both content
rendering and editing, document files can be accessi-
ble throughout the web as is the case for Wiki pages,
and viewers need not install new software. The pro-
gram is written in JavaScript. Figure 1(a) shows
the jsMath source code for obtaining the output in
Figure 1(b).

As another example, the source mathematical
code of MediaWiki [10] is expressed in LATEX. The
code is channeled to the texvc program [17] for con-
verting the expressions into images.

This material is based upon work supported by the National
Science Foundation under Award No. IIS-0312487. Any opin-
ions, findings, and conclusions or recommendations expressed
in this publication are those of the author and do not neces-
sarily reflect the views of the National Science Foundation.

On the other hand, the Scientific Notebook doc-
ument processing system [15] is an example of a
utility capable of exporting LATEX documents. The
LATEX mathematical code emitted by this program
can be imported into the Duxbury Braille Translator
for embossing the expressions into Nemeth braille [3].

In all of the above examples, only subsets of
the LATEX features are supported. In the first two
examples, minor non-LATEX features are added.

2 A TEX4ht mode for jsMath

The jsMath system supports only a few core fea-
tures of LATEX, and its vocabulary is quite restricted
due to the very limited macro capabilities of the sys-
tem. TEX4ht, on the other hand, is a highly config-
urable converter for TEX-based sources [4]. Hence,
TEX4ht can assume the bulk of the work of process-
ing given files into forms jsMath can handle. To
translate a LATEX file named file.tex into HTML,
with the mathematical expressions converted into
jsMath, one can issue the following command:

htlatex file "html,jsmath" " -cmozhtf"

The jsMath engine recognizes a limited set of
symbol names, but it fully supports Unicode rep-
resentations. The flag ‘-cmozhtf’ requests Unicode
encodings for the majority of the symbols usually
contributed from the (LA)TEX fonts, ignoring the pos-
sibility of using names for the symbols recognized by
the jsMath engine.

Figure 2(a) shows the jsMath output of TEX4ht
for the source of Figure 2(b), and Figure 4(a) ex-

TUGboat, Volume 28 (2007), No. 3 — Proceedings of the 2007 Annual Meeting 363

Eitan M. Gurari

<p> A quadratic equation

ax^2 + bx + c = 0

with

a \neq 0

has the following solution.

</p>

<div class="math">

x = \frac {-b \pm \sqrt{b^2 - 4ac} }

{2a}

</div>

A quadratic equation ax2 + bx + c = 0 with a 6= 0
has the following solution.

x =
−b±

√
b2 − 4ac

2a

(a) (b)

Figure 1: HTML code with embedded jsMath expressions and its rendering.

<p class="noindent">

A quadratic equation

a{x}^{2} + bx + c = 0

with

a\mathrel{≠}0

has the following solution.

</p>

<div class="math">

x ={ −b ±\sqrt{{b}^{2 }

− 4ac} \over 2a}

</div>

A quadratic equation $ax^2 + bx + c = 0$

with $a \ne 0$ has the following solution.

$$x={-b \pm \sqrt{b^2 - 4ac} \over 2 a}$$

(a) (b)

Figure 2: TEX4ht jsMath output for a LATEX source.

<p class="noindent">

A quadratic equation

 a{x}^{2} + bx + c = 0

with

 a\ne 0

has the following solution.

</p>

<div class="math">

x =\frac{ -b\pm \sqrt{{b}^{2 } - 4ac} }

{2a}

</div> Figure 3: Reconfigured TEX4ht output.

hibits the jsMath code created for the source of Fig-
ure 4(b).

3 A taste of the TEX4ht configurations

The default jsMath configurations of TEX4ht do not
take advantage of the full range of the LATEX fea-
tures permitted by the jsMath utility. As a result,
the jsMath code created by TEX4ht has room for im-
provements with respect to making the code more

friendly for handling by human beings. This sec-
tion demonstrates how TEX4ht can be reconfigured
to produce from the input of Figure 2(b) the output
of Figure 3, as an alternative to the default output
shown in Figure 2(a).

3.1 Using literal characters instead of
Unicode values

When LATEX encounters the minus character ‘-’ in

364 TUGboat, Volume 28 (2007), No. 3 — Proceedings of the 2007 Annual Meeting

LATEX conversion into normalized forms and speech

<div class="math">
W(Φ) = \left \Vert \array{
{ φ
\over ({φ}_{1},{ɛ}_{1})}

& 0
&\mathop{\mathop{…}}

\kern 1.66702pt
& 0

\cr
{ φ{k}_{n2}
\over ({φ}_{2},{ɛ}_{1})}

&{ φ
\over ({φ}_{2},{ɛ}_{2})}

&\mathop{\mathop{…}}
\kern 1.66702pt

& 0
\cr
.&.&.&.&.

\cr
{ φ{k}_{n1}
\over ({φ}_{n},{ɛ}_{1})}

&{ φ{k}_{n2}
\over ({φ}_{n},{ɛ}_{2})}

&\mathop{\mathop{…}}
\kern 1.66702pt

&{ φ{k}_{n\kern
1.66702pt n−1}

\over ({φ}_{n},
{ɛ}_{n−1})}

&{ φ
\over ({φ}_{n},{ɛ}_{n})} }
\right \Vert
</div>

\documentclass{article}
\usepackage{amsmath}

\begin{document}
\[W(\Phi)= \begin{Vmatrix}
\dfrac\varphi

{(\varphi_1,\varepsilon_1)}&
0&\dots&0\\
\dfrac{\varphi k_{n2}}

{(\varphi_2,\varepsilon_1)}&
\dfrac\varphi

{(\varphi_2,\varepsilon_2)}
&\dots&0\\

\hdotsfor{5}\\
\dfrac{\varphi k_{n1}}

{(\varphi_n,\varepsilon_1)}&
\dfrac{\varphi k_{n2}}

{(\varphi_n,\varepsilon_2)}&\dots&
\dfrac{\varphi k_{n\,n-1}}

{(\varphi_n,\varepsilon_{n-1})}&
\dfrac{\varphi}

{(\varphi_n,\varepsilon_n)}
\end{Vmatrix}\]

\end{document}

(a) (b)

W (Φ) =

∥∥∥∥∥∥∥∥∥
ϕ

(ϕ1,ε1)
0 . . . 0

ϕkn2
(ϕ2,ε1)

ϕ
(ϕ2,ε2)

. . . 0
. .

ϕkn1
(ϕn,ε1)

ϕkn2
(ϕn,ε2)

. . . ϕkn n−1
(ϕn,εn−1)

ϕ
(ϕn,εn)

∥∥∥∥∥∥∥∥∥
(c)

Figure 4: TEX4ht jsMath output for a LATEX input.

the input, it places in the dvi file a request that
the character will be typeset by the first symbol of
the cmsy font. When TEX4ht encounters the request
while processing the dvi file, it opens an alternative
hypertext font file of its own, named cmsy.htf, and
retrieves the first entry in that file. This entry gives
the Unicode value −.

Given this Unicode value −, the TEX4ht
utility searches for the value in the active encoding

file unicode.4hf. If the value − is not found
in the encoding file, it is inserted as is into the out-
put. If the value is found in the encoding file, the
replacement from the encoding file is instead placed
in the output.

The flag ‘-cmozhtf’ of the command line re-
quests an encoding file that does not include an en-
try for −. Consequently, in the default set-
ting, the Unicode value is placed in the output. The

TUGboat, Volume 28 (2007), No. 3 — Proceedings of the 2007 Annual Meeting 365

Eitan M. Gurari

following steps show how the simple ‘-’ character
can be output instead:
• Make a copy of the following font encoding file,

ht-fonts/mozilla/charset/unicode.4hf

• Add the following record to the new file:

’−’ ’’ ’-’ ’’

• Specify the location of the new encoding file on
the command line. If the file is in the current
directory, the command line can take the fol-
lowing form:

htlatex file "xhtml,jsmath"

3.2 Preventing the expansion of
symbol macros

A redefinition of the control sequences \pm and \ne
in the following manner prevents the expansion of
the symbol macros, respectively, into ‘±’ and
‘\mathrel{≠}’:

\edef\pm{\HCode{\string\pm\space}}
\edef\ne{\HCode{\string\ne\space}}

3.3 Transformations involving rewriting

A translation of the \over operator into the \frac
function can be achieved by introducing the follow-
ing TEX4ht configuration.
\Configure{over}

{\Send{GROUP}{0}{\string\frac\l:brace}}
{\HCode{\r:brace\l:brace}%
\Send{EndGROUP}{0}{\r:brace}}

The configuration relies on capabilities to in-
versely process DVI code into source code. The next
observations provide some insight into how the con-
figuration works:

1. The arguments of a configuration

\Configure{over} {...} {...}

are inserted by TEX4ht immediately before and
after the \over operator.

2. The \Send{GROUP}{0}{...} instruction sends
its argument backward to the start of the cur-
rent group.

3. The \Send{EndGROUP}{0}{...} code delivers
its argument forward to the end of the current
group.

4. The contribution of \Configure{over} to the
code fragment {...\over...} provides the fol-
lowing initial outcome.

{...
\Send{GROUP}{0}{\string\frac\l:brace}
\over
\HCode{\r:brace\l:brace}

\Send{EndGROUP}{0}{\r:brace}
...}

5. After applying the \Send instructions, the code
takes the following form.

{\frac\l:brace ...
\over
\r:brace\l:brace ... \r:brace}

6. The braces ‘{’ and ‘}’ and the \over opera-
tor do not introduce content to the output file.
Consequently, the net contribution is as follows,
where \l:brace and \r:brace produce left and
right braces, respectively.

\frac\l:brace ...\r:brace\l:brace
...\r:brace

4 Speech markup and synthesis

XML and Cascading Style Sheets (CSS) conventions
are commonly and increasingly being used for de-
scribing the desirable rendering of documents into
visual forms. Similar attention is also being given
to the development of analogous standards for ren-
dering documents in audio forms.

The aural conventions are concerned with prop-
erties such as pitches, volumes, rates, and pauses to
be associated with the different parts of the doc-
uments. The conventions are in particular valuable
for introducing annotations that highlight the struc-
tural characteristics of documents.

Of particular interest in this regard are the draft
proposals from the W3C consortium of the Speech
Synthesis Markup Language (SSML) [16] and Au-
ral Cascading Style Sheets (ACSS) [1]. Figures 5(a)
and 5(b), respectively, illustrate the notations in
those proposals. The SSML specifications are based
on, and are similar to, the Java Speech Markup Lan-
guage (JSML) specifications [7].

Emacspeak [13] supports a restricted variant
of ACSS, recognizing the properties of voice-family,
stress, richness, pitch, and pitch-range. The C++

program of Figure 5(c) renders, on the Microsoft
Windows Vista platform, files in SSML format. The
Java program of Figure 5(d) renders JSML files, on
platforms offering a JSML-based implementation to
the Java Speech APIs [6].

5 From LATEX to speech

Audio representations of documents are of great im-
portance for people with print disabilities [14] as in
many cases they have no alternative ways to access
the content of the documents. Yet, documents in au-
dio formats can be also useful for the general public.
For instance, that might be the case for people who
want to listen to a document while driving, or for

366 TUGboat, Volume 28 (2007), No. 3 — Proceedings of the 2007 Annual Meeting

LATEX conversion into normalized forms and speech

<speak> <p>Take a deep breath <break strength="weak"/> then

<prosody rate="-10%">speak slower</prosody>.</p>

<p>Also <prosody volume="loud">raise your voice</prosody>

so everyone will hear you.</p> </speak>

(a)

h1 { voice-stress: strong; voice-rate:-10%; pause-after: 20ms; }

msqrt.before { content: "Square root: " }

msqrt.after { content: "End root. " } (b)

#include <sapi.h>

int main(int argc, char* argv[]){

ISpVoice * synth = NULL;

if (FAILED(::CoInitialize(NULL))){ return 0; }

HRESULT hr = CoCreateInstance(CLSID_SpVoice, NULL,

CLSCTX_ALL, IID_ISpVoice, (void **)&synth);

if(SUCCEEDED(hr)){

int n = strlen(argv[1]);

wchar_t *s = (wchar_t *) malloc(n+1); s[n] = ’\0’;

while(n-- > 0){ s[n] = argv[1][n]; }

hr = synth->Speak(s, SPF_IS_FILENAME | SPF_PARSE_SSML, NULL);

synth->Release();

synth = NULL;

}

::CoUninitialize(); return 0;

} (c)

import javax.speech.*;
import javax.speech.synthesis.*;
import java.net.*;
import java.io.*;
public class Speaker{
public static void main(String args[]) {
try {
Synthesizer synth = Central.createSynthesizer(new SynthesizerModeDesc());
synth.allocate();
synth.resume();
synth.speak(new File(args[0]).toURI().toURL(), null);
synth.waitEngineState(Synthesizer.QUEUE_EMPTY);
synth.deallocate();

}catch(Exception e){
System.err.print("--- ERROR --- "); e.printStackTrace();

} } } (d)

Figure 5: (a) SSML. (b) ACSS. (c) SSML file speaker. (d) JSML file speaker.

authors wishing to “proof listen” their writings in
addition to (or instead of) proof reading.

LATEX documents can be translated by TEX4ht
into files annotated for speech [5]. For the ACSS

speech variant of Emacspeak the requests can be
made with commands similar to the following:

eslatex file

For output in JSML format the calling commands
can be as follows:

jslatex file

TEX4ht configurations similar to those provided
for the JSML and the Emacspeak variant of ACSS

can, and in time will, be also tailored for output
modes in SSML and the W3C version of ACSS.

TUGboat, Volume 28 (2007), No. 3 — Proceedings of the 2007 Annual Meeting 367

Eitan M. Gurari

It should be noted that currently no browser
is available for effectively inspecting and navigating
highly structural content in audio mode. In fact,
it is even not clear what features audio browsers
should offer to tackle this issue. Such a deficiency
makes it very difficult to use audio resources to study
technical topics, including those relying heavily on
mathematical notations. In addition, it makes it
difficult to decide what added information TEX4ht
should provide in the translated material to enhance
its accessibility.

Much of the approach for audio rendering of
mathematics is motivated by Nemeth braille and ex-
pressed in MathSpeak [9]. The audio cues for differ-
ent logical elements of data might also be specified
within browsers instead of being provided to them
within the data. MathPlayer [8], for instance, be-
haves so in rendering MathML expressions into au-
dio. LATEX files can be transformed by TEX4ht to
satisfy MathPlayer requirements with commands of
the following form:

mzlatex file "xhtml,mathplayer"

The pioneering work of automatically putting
technical content into audio format is due to T.V.
Raman and assumed the LATEX language for the in-
put data [11, 12].

Acknowledgement

I am grateful to Barbara Beeton, Karl Berry, and
Susan Jolly for their valuable input.

References

[1] Aural style sheets, W3C Working Drafts,
http://www.w3.org/TR/CSS21/aural.html,
http://www.w3.org/TR/css3-speech/.

[2] D. Cervone, jsMath: A Method of Including
Mathematics in Web Pages, http://www.
math.union.edu/~dpvc/jsMath/ and http:
//sourceforge.net/projects/jsmath/.

[3] Duxbury Braille Translator (DBT), Duxbury
Systems, http://www.duxburysystems.com/.

[4] E. Gurari, TEX4ht, http://www.cse.
ohio-state.edu/~gurari/TeX4ht.

[5] E. Gurari, LaSpeak: LATEX and Speech,
http://www.cse.ohio-state.edu/~gurari/
laspeak.

[6] Java Speech API, Sun Microsystems, http:
//java.sun.com/products/java-media/
speech/ (version 1) and http://jcp.org/
en/jsr/detail?id=113 (version 2, proposed
draft, 11 June 2007).

[7] Java Speech Markup Language (JSML),
Sun Microsystems, 1999, http://java.
sun.com/products/java-media/speech/
forDevelopers/JSML/index.html.

[8] MathPlayer, Design Science, http://www.
dessci.com/en/products/mathplayer/.

[9] MathSpeak Core Specification Grammar Rules,
http://www.gh-mathspeak.com/examples/
grammar-rules/.

[10] MediaWiki, http://www.mediawiki.org/
wiki/MediaWiki.

[11] T. V. Raman, An audio view of (LA)TEX
documents, TUGboat 13:3, October 1992,
372–379, http://www.tug.org/TUGboat/
Articles/tb13-3/raman.pdf.

[12] T. V. Raman, Audio System for Technical
Readings (AsTeR), Ph.D. Dissertation,
Cornell University, May 1994, http:
//emacspeak.sourceforge.net/raman/
publications/web-aster/root-thesis.
html, Examples: http://www.cs.cornell.
edu/home/raman/aster/aster-toplevel.
html.

[13] T. V. Raman, Emacspeak — The Complete
Audio Desktop, http://emacspeak.
sourceforge.net/.

[14] Recording for the Blind and Dyslexic,
http://www.rfbd.org/.

[15] Scientific Notebook, MacKichan Software,
http://www.mackichan.com/.

[16] Speech Synthesis Markup Language (SSML),
W3C Working Draft, 11 June 2007, http:
//www.w3.org/TR/speech-synthesis11/.

[17] T. Wegrzanowski, Texvc: TEX Validator and
Converter, http://en.wikipedia.org/wiki/
Texvc and http://meta.wikimedia.org/
wiki/Help:Formula.

368 TUGboat, Volume 28 (2007), No. 3 — Proceedings of the 2007 Annual Meeting

