
X ETEX Live

Jonathan Kew
SIL International
Horsleys Green
High Wycombe
Bucks HP14 3XL, England
jonathan_kew (at) sil dot org

1 X ETEX in TEX Live

e release of TEX Live 2007 marked a milestone for the
X ETEX project, as the first major TEX distribution to in-
clude X ETEX (version 0.996) as an integral part. Prior to
this, X ETEX was a tool that could be added to a TEX setup,
but version and configuration differences meant that it was
difficult to ensure smooth integration in all cases, and it was
only available for users who specifically chose to seek it out
and install it. (One exception to this is the MacTEX pack-
age, which has included X ETEX for the past year or so, but
this was just one distribution on one platform.) Integration
in TEX Live, in contrast, provides near-universal availabil-
ity and a more standardized configuration, which should
simplify setup, use and support.

Special thanks to Karl Berry for his encouragement
and support through this process, and to all the TEX Live
builders and testers on various platforms who helped to
make this possible.

1.1 Key features

e twomost significant features of X ETEX as found in TEX
Live remain the same as they have been since its first ap-
pearance: support for the use of the host operating system’s
fonts (PostScript, TrueType, or OpenType) with no TEX-
specific setup, and including layout features defined in the
fonts; and extensive support for Unicode, including com-
plex Asian and other scripts. With this release, users on
all platforms have the option of using the same OpenType
fonts in TEX documents as inmainstreamGUI applications,
including access to all the rich typographic features found
in modern fonts.

As an example of the simplicity X ETEX brings to font
usage, consider the present article. is is written using the
ltugproc class. Running this in X ELATEX, the lines:

\usepackage{fontspec}
\setmainfont[Mapping=tex-text]

{Adobe Garamond Pro}
\setmonofont[Scale=MatchLowercase]

{Andale Mono WT J}

Note: is article is based on the author’s presentations at both the
EuroBachoTEX 2007 and TUG 2007 conferences, but is printed in a single
Proceedings issue to avoid duplication.

in the preamble are sufficient to set the typefaces through-
out the document. ese fonts were installed by simply
dropping the .otf or .ttf files in the computer’s Fonts
folder; no .tfm, .fd, .sty, .map, or other TEX-related files
had to be created or installed.

Release 0.996 of X ETEX also provides some enhance-
ments over earlier, pre-TEX Live versions. In particular,
there are new primitives for low-level access to glyph infor-
mation (useful during font development and testing); some
preliminary support for the use of OpenType math fonts
(such as the Cambria Math font shipped with MS Office
2007); and a variety of bug fixes.

1.2 Hyphenation setup

A long-standing problem with integrating X ETEX has been
the variety of hyphenation patterns for various languages,
which are written using a variety of character encodings and
various ways to represent those encodings in 7-bit or 8-bit
files. Because X ETEX interprets 8-bit text files as Unicode
(UTF-8) by default, many old hyphenation files cannot be
read as-is. is in turn meant that the X ELATEX format
could fail to build, depending on the user’s language con-
figuration.

Older releases of X ETEXmade some attempt to address
this by including modified versions of some of the hyphen-
ation files from teTEX, adapted to load correctly as Unicode
patterns. However, ensuring that these were installed in the
right place for X ETEX to find them (without affecting other
engines or replacing standard files) was problematic.

In TEX Live 2007, this situation has been addressed
by modifying the language.dat file so that hyphen-
ation files are loaded via “wrappers” (except for those
that are simple ASCII files, which are already Unicode-
compatible). e wrapper files, provided in TEX Live
in texmf-dist/tex/generic/xu-hyphen, test whether the
format is being built by X ETEX, and if so they redefine the
input encoding and/or \catcodes, active character defini-
tions, etc., so that the patterns will be loaded as Unicode
data. Figure 1 shows an example of such a wrapper file; in
this case, the German vowels with umlauts and the ß char-
acter need Unicode-compliant definitions, in place of those
found in the original hyphenation file. e precise details
vary, of course, depending on the structure and encoding

146 TUGboat, Volume 29, No. 1—XVII European TEX Conference, 2007

X ETEX Live

% xu-dehyphn.tex
% Wrapper for XeTeX to read dehyphn.tex
% Jonathan Kew, 2006-08-17
% Public domain
\begingroup
\expandafter\ifx\csname XeTeXrevision\endcsname\relax
\else

\catcode`\?=7
% Define the accent macro " in such a way that it
% expands to single letters in Unicode
\catcode`\"=13
\def"#1{\ifx#1a??e4\else \ifx#1o??f6\else \ifx#1u??fc\else

\errmessage{Hyphenation pattern file corrupted!}%
\fi\fi\fi}

% - patterns with umlauts are ok
\def\n#1{#1}
% - define \3 to be character "00DF (\ss in Unicode)
\def\3{??df}
% - define \9 to throw an error
\def\9{\errmessage{Hyphenation pattern file corrupted!}}
% - duplicated patterns to support font encoding OT1 are not wanted
\def\c#1{}
%
\let\PATTERNS=\patterns
\def\patterns{% at the \patterns command in dehyphn.tex...

\endgroup % end group containing local definitions from dehyphn
\begingroup % and start our own (to match \endgroup in dehyphn)
\PATTERNS % and then load the real patterns

}
\fi
\input dehyphn.tex
\endgroup
\endinput
Figure 1: xu-dehyphn.tex, a typical hyphenation wrapper file from the TEX Live setup

of the pattern file being loaded, but similar techniques can
generally be used.

In the longer term, reorganization and standardization
of the hyphenation files, perhaps co-ordinated with work
in OpenOffice.org (which uses a very similar hyphenation
algorithm) would be a useful project. However, this will
require not only a good understanding of the language and
encoding issues, but also interaction with license holders
or maintainers of all the existing patterns. Meanwhile, the
current setup with xu- wrappers has proved to be a work-
able interim solution.

1.3 Package configuration

Another common problem for X ETEX users in the past has
been that some popular LATEX packages (e.g., graphics,
color, geometry, crop, hyperref, and others) depend on
knowing the intended output driver (direct PDF genera-
tion with pdfTEX, dvips, dvipdfm, etc.) in order to use
the correct implementation-specific methods to control the
output. Many such packages attempt to detect the TEX en-
gine in use and automatically choose the appropriate driver.
However, with X ETEX being a new engine, existing pack-
ages were unaware of it.

is situation is improving, as some major packages
have added a test for X ETEX and now choose the appropri-
ate driver options. For others, including important cases
like geometry and crop, TL2007 includes configuration
files in the xelatex subtree that provide the proper setup.
In most cases, therefore, users should find that the packages
work transparently in X ETEX just as with other TEX engines
and drivers.

One important package that did not work transpar-
ently with X ETEX in the TL2007 release is pgf; however,
since the release in February, pgf has also been updated so
that it recognizes the X ETEX engine automatically.

1.4 e ArabX ETEX package

A new package by François Charette provides an ArabTEX-
like interface for typesetting languages in Arabic script, us-
ing standard Unicode-based fonts. As shown in figure 2,
this supports both literal Unicode input of Arabic text, and
ArabTEX transliterations, and can work with any Open-
Type font, including complex calligraphic styles such as
Nastaliq script. is package was created after the cur-
rent TEX Live release, but can be obtained from CTAN and
works with the existing X ETEX version.

TUGboat, Volume 29, No. 1—XVII European TEX Conference, 2007 147

Jonathan Kew

% preamble...
\usepackage{arabxetex}
\newfontfamily\arabicfont

[Script=Arabic]{Scheherazade}
\newfontfamily\urdufont

[Script=Arabic,Scale=0.75]{Noori Nastaliq MT}
% body...
\begin{arab}[fullvoc]
mina 'l-qur'Ani 'l-karImi,

sUraTu 'l-ssajdaTi 15--16:
% ...etc...
\end{arab}
\begin{urdu}[voc]
اَںبیاءِ بنی‌اِسرائِیل وِچُّوں حضرت یُونسٔ
% ...etc...

Result:
:١٥–١٦ ǚَʤْةِ ѓʁ ٱͫ Ǎرَةُ ̵ُ ،ɨِ̈Ǩِ َ̃ ٱْͫ Ǩآنِ ُ̇ ٱْͫ ɬَͲِ

۩ Ǩُʒِونَ ْ̃ ʓَ ْʁ َ̈ ҙҏَ ɨْ΀َُو ɨْ ِ́ ѕ̑ رَ ǚِ ْ˳ ʥَِ̑ Ǎʥُѓʒا ̵َ وَ ǚاً ѓʤ ̵ُ єǨوا َ̥ Ǉ َ́ ِ̑ ذǨُѕُ͛وا اذَِٕا ɬَ̈Ǜِѓͫٱ Ǉ َ˶ ʓِٰ̈ــǇَ�ِٔ̑�ـ ɬُͲِǌُْ̈ Ǉ َ˳ ѓ إِ͵
Ϻϵҁ Ǎنَ ُ̇ ِˏ ْ˶ ُ̈ ɨْ ُ́ ٰ˶ْ͘ رَزَ Ǉ ѓ˳ Ͳَِو ًǇˈ َ˳ َ̈́ وَ ًǇ͎Ǎْ َ̥ ɨْ ُ́ ѓ̑ رَ Ǎنَ ُ͇ ǚْ َ̈ Ƚِ ِ̣ Ǉ َˁ َ˳ ٱْͫ ɬِ َ͇ ɨْ ُ́ ُ̑ Ǎُ˶ ُ̣ Νȅَ͎ Ǉʤَʓََ̒ Ϲϵҁ

۔   �م ۷۵۳ وُں ك �م ۷۸۱/۷۸۲    �ِدَور دا ٔٓا ۔    رد ا� ِ   ِ ٔ  ُ   ں ِو   ِٔاِا�   ءِ   َا
دے َر   ام دے “  ِ�  ” دےل  وِح كُ  ِا ٓا ۔    ام  ُ ه د دا   ٔاِا�   ِكُ  و اوُں
   ل ُدے ه   ا   ِ رَں    دے  ِ  ِل  ِ ام   ا ۔ ِںٓا ع“ رَّ ُا   ”ں ُ ه   ِا  َ ۔اَح  َ
ً  ِ   دَور ى ٓدےا ى  ام   ا   َّے   ّ  دےدَوراں  ٔاُ دى را د ںدےو ِا ۔   ےص دے   ِ  ٔا   
 ُود   ِ ٔ  ُ   را۔ د ٓا   �م ۶۰۰ وُں ك �م ۱۲۰۰ ً   ِ    ا ه د ى ُود وَلا ۔ د ٓا   �م ۱۲۰۰ وُں ك �م ۱۵۵۰
ار  دا ٔ  ُ    ُ دے  روا ”هد“۔ ں دا   َ  وس  ِ    ُ درا وُں ك را د    ِا ۔  َ وِح دَور

۔   ِ ٔ ِا

Figure 2: Examples of ArabX ETEX input and typeset output

2 Beyond TL2007 and X ETEX 0.996

In parallel with the integration of X ETEX 0.996 into TEX
Live, there has been continuing development of the next
version of X ETEX itself and the associated drivers and sup-
port files. Release 0.997 (preliminary code is in the Subver-
sion source repository at the time of writing) will include
several new and enhanced features, a few of which are de-
scribed here.

2.1 PSTricks graphics

One of the limitations of X ETEX has been that it natively
generates .xdv or “extended DVI” output, which needs to
be converted to PDF by a special X ETEX-specific output
driver. is excludes the use of the dvips+Ghostscript out-
put path, and therefore also prevents the use of packages
that rely on writing PostScript \special commands that
Ghostscript or a PostScript printer will interpret.

e most important such package, judging by dis-
cussion on the mailing lists, is probably PSTricks, which
is widely used for special drawing and graphic effects.
anks to recent work by Miyata Shigeru, the xdvipdfmx
driver used with X ETEX has been extended to support
most PSTricks features (with a few exceptions), and there-
fore standard PSTricks pictures, plots, etc., can be used in
X ETEX. is is achieved by extracting the PostScript code
and running Ghostscript (or another process, according to

x

y

z

b

(x, y, z)

ϕ

θ

r

Figure 3: Example of a PSTricks plot embedded in a X ELATEX
document (from http://tug.org/PSTricks/main.cgi?file=
pst-plot/3D/examples)

the driver’s .cfg file) to convert this to PDF which can then
be embedded in the document, as illustrated in figure 3.
While this technique is currently quite slow, it does at least
permit the use of such graphics. However, users may find
that other graphics packages such as the PGF-based TikZ
provide better performance in many cases.

2.2 Unicode math extensions

New in X ETEX 0.996, and more complete in 0.997, is sup-
port for use of the full range of Unicode math characters,
including the styled math alphabets in Plane 1 as well as the
large number of mathematical symbols. TEX’s \mathcode,
\delcode and related tables have been enlarged, and the
number of math families is increased from 16 to 256. A
small example of the use of Unicode characters in math
mode is shown in figure 4; work is in progress to design
and implement a LATEX package to provide extensive and
well-integrated support, building on the primitive facilities
now available in the engine.

TEX’s math codes contain three distinct components,
representing the character class (ordinary character, large
operator, binary operator, relation, etc.), the math family
to be used, and the actual character code. TEX compresses
this information into a single 16-bit value, with 3 bits for
the class, 4 for the family, and 8 for the character code, nor-
mally expressed as 4 hex digits (see e TEXbook, p. 154).
X ETEX packs a 3-bit class, 8-bit family, and 21-bit Uni-
code value into a single 32-bit code, but as the example
in figure 4 shows, it allows the components to be specified
separately for clarity as they no longer map neatly onto in-
dividual hex digits.

148 TUGboat, Volume 29, No. 1—XVII European TEX Conference, 2007

X ETEX Live

% set up Cambria Math for roman, symbol and extension families
\font\1="Cambria Math:script=math" at 10pt
\font\2="Cambria Math:script=math;+ssty=0" at 7pt
\font\3="Cambria Math:script=math;+ssty=1" at 5pt
\textfont0=\1 \scriptfont0=\2 \scriptscriptfont0=\3
\textfont2=\1 \scriptfont2=\2 \scriptscriptfont2=\3
\textfont3=\1 \scriptfont3=\2 \scriptscriptfont3=\3

% use Cambria Math with italic mapping for family 1
\font\1="Cambria Math:script=math;mapping=math-italic" at 10pt
\font\2="Cambria Math:script=math;mapping=math-italic;+ssty=0" at 7pt
\font\3="Cambria Math:script=math;mapping=math-italic;+ssty=1" at 5pt
\textfont1=\1 \scriptfont1=\2 \scriptscriptfont1=\3

% set mathcodes (many are predefined in xetex.fmt)
\XeTeXmathcode`\-="2 "2 "2212 % minus sign
\XeTeXmathcode`\∑="1 "2 `∑ % summation

% some control sequences...
\XeTeXmathchardef\sum="1 "2 `∑ \XeTeXmathchardef\prod="1 "2 `∏
\XeTeXmathchardef\intop="1 "2 `∫ \XeTeXmathchardef\infty="1 "2 `∞
\XeTeXmathchardef\geq="3 "2 `≥ \XeTeXmathchardef\leq="3 "2 `≤
\XeTeXmathchardef\pi="7 "1 `π

% using Unicode characters in math
$$ f(x) = a_0 + ∑^∞_{n=1} \left(a_n\cos{nπx\over L} + b_n\sin{nπx\over L} \right) $$

Result, using an OpenType math font:

𝑓(𝑥) = 𝑎଴ +
ஶ

෍
௡ୀଵ

൬𝑎௡ cos
𝑛𝜋𝑥
𝐿 + 𝑏௡ sin

𝑛𝜋𝑥
𝐿 ൰

Figure 4: Defining and using Unicode math characters

When using a complete OpenType math font such as
Cambria Math, it may be necessary to load the font several
times with different character mappings andOpenType fea-
tures.

2.3 Inter-character token insertion

A new feature in X ETEX version 0.997 is the ability to in-
sert arbitrary token lists in between normal text characters,
without complex macro programming. is is designed
primarily to support requirements of Japanese and Chi-
nese typography, where special spacing controls are needed
in certain cases such as between ideographs and adjacent
punctuation characters.

To support this feature, each character has a “class”
known as \XeTeXcharclass, a bit like an extra \catcode,
but ignored by normal TEX operations. But whenever two
printable text characters occur next to each other, X ETEX
will check their class values, and if a token list has been
defined for this class pair it will be inserted between the
characters. Such a token list may contain arbitrary TEX
material, although the most useful possibilities are proba-
bly various forms of \skip and \penalty (to control spac-
ing and breaking), and font changes (making it possible to

automatically switch fonts for different scripts within Uni-
code text, without requiring embedded markup).

For example, the default xetex and xelatex formats
initialize most \XeTeXcharclass values to zero, but assign
all the CJK ideographs to class 1. We can take advantage
of this to allow Chinese characters to be included in run-
ning text without additional markup, even though the de-
fault body font does not support them; a simple example
is shown in figure 5. While this technique is not a univer-
sal substitute for proper language and font markup in the
source document, it can greatly simplify the author’s task
in some mixed-script situations.

2.4 Graphite font support

e initial version of X ETEX, on MacOSX only, supported
special font features such as contextual swashes, ligatures,
alternate glyphs, etc., by means of Apple’s AAT font tech-
nology. Later, support for OpenType font features was
added, based on the ICU layout library; this enabled X ETEX
to provide complex font support across multiple platforms.

A third font layout technology, designed to sup-
port the requirements of non-Latin scripts, minority lan-
guages, and scripts not yet in Unicode, is SIL’s Graphite
system (http://scripts.sil.org/RenderingGraphite).

TUGboat, Volume 29, No. 1—XVII European TEX Conference, 2007 149

Jonathan Kew

\newfontfamily\zhfam{STKaiti}
% define a font for Chinese

% xelatex has CJK ideographs assigned to class 1
% and Latin (etc) in class 0 by default
\XeTeXinterchartoks 0 1 = {\begingroup\zhfam}

% switch to \zhfam when we find a Chinese char
\XeTeXinterchartoks 1 0 = {\endgroup}

% and revert at the end of a Chinese run

% class 255 is a special "end of string" marker,
% so we need to switch here as well
\XeTeXinterchartoks 255 1 = {\begingroup\zhfam}
\XeTeXinterchartoks 1 255 = {\endgroup}

The Chinese word 你好 means ‘hello’.

Result: e Chinese word你好 means ‘hello’.

Figure 5: Using inter-character token insertion to mix scripts and
fonts without in-line markup

\font\myfnt="Padauk/GR" at 7.5pt
\XeTeXlinebreaklocale "G"
\XeTeXlinebreakskip=0pt plus 1pt
\XeTeXlinebreakpenalty=10
\baselineskip=14pt

\myfnt ကျွနှ်ပ်တို့၏ ပျော်ရွှင်မှု၊ သာယာ ၀ ပြောမှုနှင့် အောင်မြင်မှုတို့သည...

Result: ကှ်ပ်တိ ့၏ ေပျာ်င်မ၊ သာယာ ၀ ေြပာမှင့် ေအာင်ြမင်မတိ ့သည် က ်ပ်

တိ ့၏ ကျန်းမာြခင်းအေပတွင် အများကီး မီှခိ ေနပါသည်။ ပညာတတ်ရန်၊ ကယ်၀ချမ်း

သာရန်ှင့် ကိးပမ်း လ ပ်ေဆာင်မအားလံ း ေအာင်ြမင်ေစရန်အတွက် ကျန်းမာေရးသည်

အထ းပင် အေရးကီးပါသည်။ ကျန်းမာေရးမြပည့်စံလင် က ်ပ်တိ ့၏ ပညာေရး၊ စီးပွား

ေရး ြမ င့် တင်မလ ပ်ငန်းများ လ ပ်ိ င်လိမ့်မည် မဟ တ်ပါ။ သိ ့ြဖစ်၍ အစဥ်သြဖင့် ကျန်း

မာေနရန် က ်ပ်တိ ့ ကိးစားကရပါမည်။

Figure 6: Burmese script rendered using a Graphite font (com-
pare the source text, rendered without Graphite technology, to
the resulting output)

Graphite provides a level of glyph layout control within the
font that goes beyond either AAT or OpenType, making it
possible for font developers to provide more flexible and ac-
curate rendering of multiple diacritics and other characters
that interact with their neighbors in complex ways.

A small example of Graphite text rendering is shown
in figure 6, where a Graphite font is used to provide correct
rendering of Burmese script. e font also includes custom
line-breaking rules, which X ETEX uses to find valid breaks
within the text, even where no spaces are present.

Another script being typeset using Graphite is N’Ko,
a writing system fromWest Africa. is is a cursive writing
system, written from right to left, but unrelated to Arabic
script. It has recently been standardized in Unicode (ver-
sion 5.0), but is not yet widely implemented; I have not
yet seen a working OpenType implementation, for exam-
ple. But because Graphite allows the font developer full

\font\x="N'ko Kankan/GR:rtl" at 8.5pt
\noindent\beginR

\x ߫ߍߗ߲ߋߘ ߫ߌߦߊߕߌߡߊߴߘ ߫ߊߡߎߞ ߫ߊߟߊ ߫ߊߛ߲ߊߡ ߲߫ߊߘߊߓߤ ߸߫ߐߘ ߫ߏߘ ߲ߏߟ ߸߬ߊߓ߬ߒ ﴾߁﴿
.߫ߍߢ ߫ߊߛߎߣߦ : ߫ߏߞ ߲߫ߊߞ ߬ߊ ﴾߂﴿ .߫ߐߘߞ ߌ ߊߣ߬ߌߡ ߬ߊߟ߬ߌߛ ߫ߋߦ ߌ« ߫ߊߥ ߫ߋߦ ߌ
߬ߎߟ ߮ߐߡ ߲߬ߋߦ ߬ߊߞ ߫ߐߣߞ ߊߓߏߛ ߫ߋߓߌߣߌߣ % ...etc...

Result:
{Þw[߫ U�ZqT¤Y߫ߴߘ �_�S߫ U�S߫ �Û�S߫ �kTzÚ߫ {d߫߸ {a߫ �é i߬kS߬߸ ﴾߁﴿

¢S߫ ¥V߫ ߌ �zd߫. ߌ �Z߬�S �Z߬�S߬ ¥V߫ ߌ« : �a߫ �Ú߫ ߊ߬ ﴾߂﴿ �[߫. ¥�_�S߫
¥V߫ U߬�^߬ lS �[߫. ߬^�U߬ߴߝ �Ú u}T߬�Y߬ �^߬ �d߮ ¥Ý߬ �S߬ ��d߫ �bkS �Z�ZkV߫
�ì߬ �S߫ ¥�_�S߫ �e߬�à߬ ﴾߃﴿ �ì߫.« �^߬ ߏ߬ߵߞ �V �S߫߸ �[߫ �^߬ �ã �bt^߮
�TqS߯ ߊ߬ߴߦ ߊ߬ �a߫ ¢S߫ �S߬ �Z߬�S߬ �Z߬�S߬ rT}Z�Y߫ �S߬ ߊ߬ �Z�ZkV߫. ¢S߫ �S߬

¢S߫ �S߬ ��d �a uT�S߬ {S߫ �V߫ ߊ߬ �T�zd߫. ߊ߬ߴߓ �S߬ �S߫ �Û�S߫ �kTzÚ߫ �S߫
ߊ߬ rT}Z�Y߫. ¢Tqd߫ �ã ¥Ý߬߸ rz[߬ {a߫ �_�çkS �S߬ ߊ߬ ¥Ý߫. �S߫ �e߬tZ߬zS
�d߮ ��d߫ �_�æ߫ �Y ߊ߬ ��d߫. �_�çkS {é߬ �S߬ ld߫߸ �}S r[߰ �_�çkS �S߬
ߊ߬ߵߞ �[߬ ߊ߬ߴߦ ¥�_�S߫ rT}Z�Y߫. �S߫ ¢S߫ ¥V߫ U߬�^߬ �a߫ �Ú߬ �e߰tY {S߫ ¢S߫ �^߬

�T�zd߫. ߊ߬ߴߓ �S �S �Û�S߫ �kTzÚ߫ �TqS

Figure 7: e N’Ko script rendered using a Graphite font

control of the rendering behavior, without a script-specific
“shaping engine” (as OpenType requires), N’Ko users al-
ready have a full-featured typesetting solution that handles
the script. Figure 7 shows a short sample of N’Ko input (us-
ing default glyphs, without contextual rendering) and the
corresponding properly-rendered text.

2.5 Implementation details: pool file and formats

A couple of recent changes to the internal implementation
of X ETEX may be of interest, and could be considered by
other TEX systems as well. One (following METAPOST’s
lead) is that there is no longer a separate .pool file used to
initialize the program’s strings; instead, the strings are com-
piled into the program file itself. is simplifies installation
and maintenance, and removes the possibility of a version
mismatch. It is particularly relevant in the multi-platform
environment of TEX Live, as it means that a new X ETEX
binary could be provided for some platforms ahead of oth-
ers, without the problem of deciding which version of the
.pool file should be included in the texmf tree.

With more complete Unicode math support, various
per-character code tables have been extended to support the
full Unicode range of around one million possible charac-
ter codes. (Formerly, only the 64K characters of the Ba-
sic Multilingual Plane had individual \catcode, \lccode,
\mathcode, etc. values.) As the default formats initialize
these tables based on theUnicode standard, which currently
defines about 100,000 characters, the resulting .fmt files
became considerably larger. To alleviate this, the format
file reading and writing routines now use the well-known
zlib compression library; as .fmt files are typically quite
compressible, this leads to large space savings, and the re-
duction in disk I/O compensates for much of the overhead
of decompressing the format during startup.

150 TUGboat, Volume 29, No. 1—XVII European TEX Conference, 2007

