
The gmdoc bundle—a new tool for documenting (LA)TEX sources

Grzegorz Murzynowski
Sulejówek
natror at o2 dot pl

Abstract

There is a new package and a document class written by myself for document-
ing (LA)TEX packages and classes. ‘Documenting’ means that the comments are
typeset as ordinary text and the code verbatim. All the control sequences are
automatically indexed.

I think that the gmdoc package is superior to the doc package in two respects.
First, the index entries, the table of contents and cross-references are made hy-
perlinks by default (with use of the hyperref package). Second, the gmdoc package
allows you to typeset plain .sty and .cls files with the comments marked only with
% (no special environments required).

The gmdoc bundle allows you to typeset the ‘traditional’ .dtx files, including
LATEX 2ε Source and doc.dtx. The gmdoc bundle is available on CTAN.

gmdoc breaks free from macrocode

After I had written a couple of LATEX packages and
even a class, I realised it would be nice to docu-
ment them and make them available for everybody
by putting them on CTAN. So I asked my TEX
Guru, how can I document the code? I had al-
ready heard of the ideas of literate programming
and self-documenting files. That idea is to write the
code and the commentary on it simultaneously and
mixed in one file, from which a respective program
would extract the pure working code and another
program would typeset a pretty narrated book or
article about the code in question. Even before ask-
ing my TEX Guru, I had always added much com-
mentary to my code, TEXnical or otherwise.

And my TEX Guru told me a fascinating tale
of the doc package, and the .dtx files that make pos-
sible literate programming of (LA)TEX sources. The
main idea, of changing the catcode of % depending
on the mode of reading a file, or, from another side,
of allowing the same file to be an executable (load-
able) package or document class or a comprehensive
documentation of that package or class depending
on the catcode of %, enlightened my mind. But the
rest of the tale, although equally fascinating, sug-
gested that I do something I wouldn’t like: mark up
every piece of code with

%␣␣␣␣\begin{macrocode}
...
%␣␣␣␣\end{macrocode}

where the Percent and Four Spaces at the end are
obligatory (see fig. 1). That would mean rewriting
all of my .sty and .cls files.

Instead of such half-mechanical editorial work
I chose to write my own documenting package such
that just the percents would be sufficient as the
markup, as in figure 2. Don’t you think that three
lines of commentary instead of seven do make a dif-
ference and are more readable?

So, the task was set: not to mark up the code.
The most natural1 solution to that was the active
line end which could check whether the next line
begins with a comment sign or not.

The fundamental idea of gmdoc is to consider
the input file as consisting of two threads: the com-
mentary, marked with the comment signs, and the
code, which is the rest of the file.

Therefore the first thing done by the main in-
put command is setting the catcode of the declared
comment sign (% by default) to ‘other’ (12) and the
catcode of ^^M (the line end char) to ‘active’ (13) and
define the newly-active line end to check whether the
next line begins with the comment sign.

To be precise, that active line end memorizes
the number of leading spaces of the next line and
then checks whether the first non-space character is
the comment sign. (Later, if we discover that it’s
code, those spaces will be typeset as a respective
indent.)

If the first non-space character of a line is not
the comment sign, then the active line end opens
a group for typesetting the code, within which the
typewriter font is set, the catcodes of special charac-
ters are changed to 12 (‘other’) or 13 (‘active’) and

1 I realize that what seems ‘most natural’ to me, may
seem ‘Against Nature’ to some others ;-) .

TUGboat, Volume 29, No. 1 — XVII European TEX Conference, 2007 201

Grzegorz Murzynowski

%␣␣␣␣\begin{macrocode}
\def\macrocode{\macro@code
%␣␣␣␣\end{macrocode}
%␣␣␣␣Then␣we␣take␣care␣that␣all␣spaces␣have␣the␣same␣width,␣and␣that
%␣␣␣␣they␣are␣not␣discarded.
%␣␣␣␣\begin{macrocode}
␣␣␣\frenchspacing␣\@vobeyspaces
%␣␣␣␣\end{macrocode}
%␣␣␣␣Before␣closing,␣we␣need␣to␣call␣|\xmacro@code|.␣␣It␣is␣this

Figure 1: An excerpt from a .dtx file

\def\macrocode{\macro@code
␣␣%␣Then␣we␣take␣care␣that␣all␣spaces␣have␣the␣same␣width,␣and␣that
␣␣%␣they␣are␣not␣discarded.
␣␣␣\frenchspacing␣\@vobeyspaces%␣maybe␣an␣inline␣comment:
␣␣␣%␣Before␣closing,␣we␣need␣to␣call␣|\xmacro@code|.␣␣It␣is␣this

Figure 2: An example of the desired markup

the characters redefined in the latter case. Then an
iterating macro is launched that eats the code char-
acter by character and typesets it until it finds the
comment sign.

In the last case, the macro checks whether it’s
a real beginning of a commentary and not just a con-
catenation of two lines of code, and if so (it’s a com-
mentary), it closes the verbatim group and lets the
commentary be typeset.

In the comment or ‘narration’ layer, the com-
ment char’s catcode is set to ‘ignored’ (9), as with
doc.

The solutions developed make gmdoc superior
to the doc package in one and a half respects:

1. The macrocode environment is not compulsory
anymore. It is available, however.

1.5. Inline comments are supported. That is, they
are not typeset verbatim, but in a roman font,
as the comments should be IMO.

By the way, don’t you find the gmdocish version
of a source (fig. 2) more readable (than in fig. 1)?

Usage

We haven’t yet seen how the package should be
used. The usage is very simple and analogous to
the usage of doc: you write a usual LATEX document
with some input commands specific to gmdoc, usu-
ally \DocInput{〈file.sty〉} or \DocInclude{〈file〉};
cf. fig. 3. That LATEX document file is called the
driver (as in doc).

The text typeset in a roman font belongs to
the narration layer, that is, it occurs after some %

sign. (As you might guess, the lines are numbered
automatically.)

gmdoc meets hyperref

Since I’ve been into TEX for only some three years,
.pdf is a most natural output IMO and pdfε-TEX is
the most natural TEX engine (though the marvellous
X ETEX may become so soon). So, an obligatory and
almost subconscious behaviour is to use the hyperref
package.

The sophisticated features of doc, such as auto-
matic indexing of the control sequences and mark-
ing them in the margin seemed to me so useful and
clever that I implemented them in gmdoc. And the
features that I consider as ‘naturally hyperlinking’
are indeed made hyperlinks: the index entries, the
cross-references, the footnotes, and the table of con-
tents entries.

That’s the other thing that makes gmdoc supe-
rior to doc IMO.

The TOC entries, the footnotes and the cross-
references are made hyperlinks by default whenever
you use the hyperref package. Therefore these fea-
tures of gmdoc needed no work of mine (except

\RequirePackage{hyperref}).

The fourth thing, hyperlinking of the index en-
tries, did need some care. By default, hyperref wants
to make a hyperindex and that’s very nice in most
cases. But the case of documenting a (LA)TEX source
is different: The index entries may be of three kinds,
two of which are specially formatted, and may be
preceded with a source file identifier (here I follow

202 TUGboat, Volume 29, No. 1 — XVII European TEX Conference, 2007

The gmdoc bundle — a new tool for documenting (LA)TEX sources

1 \documentclass[fleqn]{ltugproc}
2 \def\fileversion{\relax}
3 \hfuzz4pt
4 \PrelimDraftfalse
5 \tolerance990
6 \pretolerance1450
7 \input␣../lsetup.tex
8 \setcounter{page}{85}
9 \parskip0pt␣plus␣.4pt

10 \usepackage{gmdoc}

This is a comment written as a separate paragraph. (The code is an excerpt from the source of this
document.)

(. . .)

11 \begin{document}

(. . .)

:
:

:
:

:
:

:
:

:
:

:
:•

The output of fig. 2:

12 \def\macrocode{\macro@code

Then we take care that all spaces have the same width, and that they are not discarded.

13 \frenchspacing␣\@vobeyspaces% maybe an inline comment: Before closing, we need to call
\xmacro@code. It is this

(. . .)

14 \DocInput{gmdocEBT.tex}
15 And␣this␣is␣an␣example␣of␣a~very␣long␣code␣line.␣See␣how␣is␣it␣{broken␣{%

at␣{left␣{brace␣{with␣{a~\%␣sign␣as␣‘hyphen’␣and␣hang-indented.}}}}}}

(. . .)

Figure 3: An example of use and output at once

the rules set by doc and ltxdoc, which I consider to
be a (high) standard).

The need to use special encapsulation com-
mands is obvious and that conflicts with the de-
fault |hyperpage encapsulation inserted by hyper-
ref. So the appropriate encapsulations were written
and now I dare say the high standard of a three-
way2 indexing of the CSs set by doc, along with
the high standard of preceding the entries with the
source file identifier when the source consists of sev-
eral files set by ltxdoc, are wed to hyperref in gmdoc
and the marriage is consummated.

Finishing touches

The preceding sections describe the two main ideas
of gmdoc. The rest of the bundle I would call finish-
ing touches. And they are many; I’ll mention only
few of them.

The gmdoc package provides hooks for the be-
ginning and end of the input: \AtBegInput{〈initial

2 ;-) .

stuff to be added〉} and \AtEndInput{〈finishing stuff
to be added〉}. Both use the ‘adding to a macro’ trick
so multiple instances are allowed and accumulate.
Both act globally.

But I also needed a hook that would add some-
thing only once, to the next input file. Therefore
I wrote \AtBegInputOnce{〈the stuff 〉} hook that
defines a macro of a unique name, thanks to

\csname...\the\some@count\endcsname
and the first thing the meaning of that macro con-
sists of is \let\this@macro\relax, if you get what
I mean, and then 〈the stuff 〉, of course.

The \IndexInput command analogous to doc’s
homonym is crafted very simply: it consists mostly
of the basic \DocInput, only the comment char, the
code delimiter that is, is declared 〈char1 〉. Since
〈char1 〉 is declared ‘invalid’ in LATEX, we don’t ex-
pect one to be in a source file. Therefore the entire
contents of a source file is considered to be the code,
and typeset verbatim with its CSs automatically in-
dexed.

TUGboat, Volume 29, No. 1 — XVII European TEX Conference, 2007 203

Grzegorz Murzynowski

In this command there is clearly visible a detail
not that clear in ‘ordinary’ \DocInput: we have to
put our code delimiter at the end of the input to be
sure there are none in the file itself. But we do the
same in \DocInput since we don’t want to require
that a source file be ended with %.

There are a couple of commands for nicely type-
setting CSs and their arguments. They are inspired
by doc’s analogs, but defined in my own way. For
instance, my \cs{cs} typesets \cs as expected, but
also allows an optional argument, \ by default, that
is typeset before its mandatory argument. Thus,
you may get !macro by writing \cs[!]{macro}.
Why not just \verb or a ‘short verb’? Remember,
that neither \verb nor ‘short verb’ can be used in
an argument of a macro, nor can they be written to
a file properly. And \cs is robust.

To get 〈a meta-symbol〉 I took the \<...> macro
from The TEXbook (and mixed it with (ltx)doc’s
\meta). I mean, to get 〈a meta-symbol〉 you write
\<a~meta-symbol>.

Moreover, for typesetting {〈arguments like this〉},
I defined the \arg command my way such that

code typesets
$\arg␣x=\pi$ arg x = π
\arg{arg1} {〈arg1 〉}

\arg[optional] [〈optional〉]
\arg(pictorial) (〈pictorial〉)
I also repeat a handful of logos provided in doc

and add my ‘drei Groschen’:
\AmSTeX AMS-TEX
\BibTeX BibTEX
\SliTeX SLiTEX

\PlainTeX Plain TEX
\Web Web

\TeXbook The TEXbook
\eTeX ε-TEX

\pdfeTeX pdfε-TEX
\pdfTeX pdfTEX
\XeTeX X ETEX

\LaTeXpar (LA)TEX
\ds DocStrip

The first E in X ETEX is reversed if the graphics pack-
age is loaded. The (LA)TEX logo is defined in gmutils
and therefore available independent of gmdoc).

I allow for a given source file to be typeset both
standalone and as part of a multi-file document (The
Great Anthology of My Œuvres for instance ;-) and
therefore I provide ‘relative’ sectioning commands:
\division and \subdivision are \let to \section
and \subsection respectively but may be assigned
another way in The Anthology.

Since my goal is for gmdoc to support both the
standard classes and my favourite mwcls, in gmutils
I cheat a bit about the sectioning commands to deal
with their optional arguments in both the standard
classes and mwcls.

Since I often use the Quasi-Fonts (now renamed
and updated in TEX Gyre) in the QX encoding,3

which doesn’t have the ␣ sign and that sign is needed
when I wish the spaces in a verbatim environment4

to be ‘visible’, I added a hook to be executed (ex-
panded) in every verbatim, after setting the cat-
codes and font. The contents of this hook, if you
declare \VerbT1, is

\fontencoding{T1}\selectfont

so a visible space is typeset despite the general font
encoding.

As in doc, you may declare some character(s)
as ‘short verbatim’ and then write e.g. |\verb␣| in-
stead of \verb*+\verb␣+. In fact, it’s not gmdoc.sty
which makes it possible but gmverb.sty, so you may
use that feature independent of gmdoc.

I prefer shorter markup to longer so to display
single lines of code,

such␣\as␣\THIS␣one,

I redefined \[to make it properly typeset a short
verbatim and spaces. So, you may type

\[|such␣\as␣\THIS␣one,|\]

to get the above.

I also wrote a document class to typeset the
code in a pretty way, gmdocc.cls. This class is
strongly inspired by the ltxdoc class but, again, it’s
not a mere transcription.

In this article there’s not room to discuss all
the features of this class so let’s look at a sample
of output (see next page). Please notice the Latin
Modern Typewriter Condensed on the margin (hope
you like it as I do).

I could write many more words about what
I consider the finishing touches. There are many
options, declarations and commands to make docu-
menting of sources as much comfortable as a princess
could expect.

Approximately 87.31% of those touches were
written to make the gmdoc bundle compatible with
doc and ltxdoc, that is, to make gmdoc typeset the
LATEX canon of scriptures. And that leads us to the
last part of this article.

3 Why do I use QX? I don’t remember, to be honest.
4 I mean all the verbatim-like commands: not only

verbatim, but also the ‘shortverbs’ and the groups for the
TEX code in gmdoc.

204 TUGboat, Volume 29, No. 1 — XVII European TEX Conference, 2007

The \code@delim should be 12 so a space is not allowed as a code delimiter. I don’t
think it really to be a limitation.

And let’s assume you do as we all do:
46 \CodeDelim\%

We’ll play with \everypar, a bit, and if you use such things as the {itemize} en-
vironment, an error would occur if we didn’t store the previous value of \everypar and
didn’t restore it at return to the narration. So let’s assign a \toks list to store the
original \everypar.

47 \newtoks\gmd@preverypar

48 \newcommand*\settexcodehangi{%
49 \hangindent=\verbatimhangindent \hangafter=\@ne}% we’ll use it in the inline

comment case. \verbatimhangindent is provided by the gmverb package
and = 3 em by default.

50 \@ifdefinable\@@settexcodehangi{\let\@@settexcodehangi=%
\settexcodehangi}

We’ll play a bit with \leftskip, so let the user have a parameter instead. For normal
text (i.e. the comment):

51 \newlength\TextIndent\TextIndent

I assume it’s originally equal to \leftskip, i.e. \z@. And for the TEX code:
52 \newlength\CodeIndent
53 \CodeIndent=1,5em\relax\CodeIndent

And the vertical space to be inserted where there are blank lines in the source code:
54 \@ifundefined{stanzaskip}{\newlength\stanzaskip}{}

I use \stanzaskip in gmverse package and derivatives for typesetting poetry. A com-
puter program code is poetry.

55 \stanzaskip=\medskipamount\stanzaskip
56 \advance\stanzaskip by-.25\medskipamount% to preserve the stretch- and shrink-

ability.
A vertical space between the commentary and the code seems to enhance readability

so declare
57 \newskip\CodeTopsep
58 \newskip\MacroTopsep

And let’s set them. For æsthetic minimality7 let’s unify them and the other most im-
portant vertical spaces used in gmdoc. I think a macro that gathers all these assignments
may be handy.

59 \def\UniformSkips{%\UniformSkips
60 \CodeTopsep=\stanzaskip\CodeTopsep
61 \MacroTopsep=\stanzaskip\MacroTopsep
62 \abovedisplayskip=\stanzaskip
%\abovedisplayshortskip remains untouched as it is 0.0 pt plus 3.0 pt by default.

63 \belowdisplayskip=\stanzaskip
7 The terms ‘minimal’ and ‘minimalist’ used in gmdoc are among others inspired by the South

Park cartoon’s episode Mr. Hankey The Christmas (…) in which ‘Philip Glass, a Minimalist New York
composer’ appears in a ‘non-denominational non-offensive Christmas play’ ;-) . (Philip Glass composed
the music to the Qatsi trilogy among others)

File a: gmdoc.sty Date: 2007/03/30 Version v0.99c 23

The gmdoc bundle — a new tool for documenting (LA)TEX sources

Figure 4: A sample of gmdocc output

TUGboat, Volume 29, No. 1 — XVII European TEX Conference, 2007 205

Grzegorz Murzynowski

Testing or Missa papae Marcelli

In the 16th century there was a controversy in the
Roman Catholic Church about polyphony. There is
a legend that Pope Marcellus II considered banning
it since many composers were making the texture
of their works so complex that the words were not
recognizable. Then Giovanni Pierluigi da Palestrina
wrote a beautiful and ingenious polyphonic Missa
whose texture is extremely dense but the words are
very clearly recognizable. That missa, dedicated to
the pope, convinced him to allow polyphony in the
church music.

Why do I write about this? Because I hope
the gmdoc bundle at least generates a controversy
whether to use the doc package and the ltxdoc class
or itself. To be honest, my hope is the gmdoc bundle
could replace doc and ltxdoc. In a sense, gmdoc is
compatible with them: it typesets ‘traditional’ .dtx
files including The LATEX 2ε Source.

One has just to use \OldDocInput instead
of \DocInput or declare \olddocIncludes before
\DocInclude of a docish file.

The (working!) driver files for The Source and
some other canonical files are my Missa papae Mar-
celli.

First, an homage to doc and ltxdoc, from which
I took most of the ideas (although, as a rule, I didn’t
copy the macros but rather made mine do what they
do): doc gmdoc.tex.

My esteem for those packages and classes is so
deep that I didn’t report either of the two typos
noticed during my typesetting nor did I change the
original text, but wrote some ‘diving hooks’ to fix
them.

Then, for their close relative, docstrip.dtx:
docstrip gmdoc.tex.

And, last and most thrilling, The LATEX 2ε
Source: source2e gmdoc.tex.

Those drivers are available on CTAN as a part
of the gmdoc bundle.

I hope this humble bundle will be useful for
someone else and not only for me.

Brave new version 0.99g

While preparing this article for TUGboat, I revised
the gmdoc bundle and made it work with X ETEX
and automatically detect a couple of definitions.

‘Works with X ETEX’ means that you can specify
the sysfonts option of the gmdocc document class;

the basic three X ETEX-related packages (fontspec,
xunicode and xltxtra) will be loaded, and then you
can specify the system fonts with the fontspec pack-
age declarations.

‘Automatically detects a couple of definitions’
means that if you use gmdoc with its default set-
tings, any occurrence (in the code layer) of the
defining commands listed below causes marking of
their argument (the thing being defined) as defined
at that point: the control sequence, environment,
counter or option being defined appears in a margin
note and is indexed as a ‘definition’ entry.

The detected commands are:

• the (LA)TEX standard definitions: \def,
\newcount, \newdimen, \newskip,
\newif, \newtoks, \newbox, \newread,
\newwrite, \newlength, \newcommand(*),
\renewcommand(*), \providecommand(*),
\DeclareRobustCommand(*),
\DeclareTextCommand(*),
\DeclareTextCommandDefault(*),
\newenvironment(*),
\renewenvironment(*), \DeclareOption(*),
\newcounter;

• the definitions of the xkeyval package:
\define@key, \define@boolkey,
\define@choicekey, \DeclareOptionX;

• and the option definitions of the
kvoptions package by Heiko Oberdiek:
\DeclareStringOption,
\DeclareBoolOption,
\DeclareComplementaryOption,
\DeclareVoidOption.

Moreover, if you have your own defining commands,
they can now be detected with \DeclareDefining
〈command〉. On the other hand, you can turn off
the detection with \HideDefining〈command〉 for
the 〈command〉 only or \HideAllDefining for all
the definitions.

There are further commands that allow resum-
ing detection after ‘hiding’ it and particular decla-
rations for \def since it does not always define an
important macro.

And you still have the \Define declaration and
the macro(*) environment if the automatic detec-
tion doesn’t fit your needs.

Concluding, the gmdoc bundle now makes pos-
sible typesetting of (LA)TEX sources with almost no
markup and with the advantages of hyperref and
X ETEX.

206 TUGboat, Volume 29, No. 1 — XVII European TEX Conference, 2007

	gmdoc breaks free from []macrocode
	Usage
	gmdoc meets hyperref
	Finishing touches
	Testing or Missa papae Marcelli
	Brave new version 0.99g

