
270 TUGboat, Volume 29 (2008), No. 2

Character encoding

Victor Eijkhout

Have you ever wondered what goes on between the
‘A’ you hit on your keyboard, the ‘A’ stored in your
file, and the ‘A’ that comes out of your printer?
Why does that letter still come out of the printer
if the file is printed by your friend in Egypt who
doesn’t use the letter ‘A’? Maybe you know that ‘A’
is character 65 (decimal) in ASCII; if you put it on
a web page, and it’s visited by someone in Japan,
why don’t they get character number 65 in the Kanji
alphabet? Do you remember the DOS days when
your Mac owning colleague would send you a file
and what were supposed to be accented characters
would turn into smiley faces? Have you ever pasted
text from MS-Word into Emacs, and Emacs wanted
to save the document as UTF-8? Just what is that
about?

All this, and more, will be explained in this
article.

1 History in one byte

Somewhere in the depths of prehistory, people in the
Western world agreed on a standard for character
codes under 127, ASCII, the American Standard
Code for Information Interchange. This standard
declares that the letter ‘A’ is character number 65
decimal (41 in hexadecimal), so if your file contains
the bit pattern for 65 (which is 01000001), it will
produce an ‘A’ when sent to the printer.

ASCII has some nice properties, some of which
were lacking in another encoding scheme, EBCDIC

(which was used almost exclusively by IBM):

• All letters are consecutive, making a test ‘is this
a letter’ easy to perform.

• Uppercase and lowercase letters are at a distance
of 32; this means that the Shift key on your
keyboard simply toggles the sixth bit in the
pattern of whatever key you are holding down.

• The first 32 codes, everything below the space
character, as well as position 127, are ‘unprint-
able’, and can be used for such purposes as
terminal cursor control.

The ISO 646 standard codified 7-bit ASCII, but it
left certain character positions (or ‘code points’) open
for national variation. For instance, British usage
put a pound sign (£) in the position of the dollar.
The ASCII character set was originally accepted as
ANSI X3.4 in 1968. ANSI is displayed in table 1.

Since a computer organizes its bits in 8-bit bytes,
and ASCII only codified the codes under 128, this left
the codes with the high bit set (‘extended ASCII’)
undefined, and different manufacturers of computer
equipment came up with their own way of filling
them in. These standards were called ‘code pages’,
and IBM gave a standard numbering to them. For in-
stance, code page 437 is the MS-DOS code page with
accented characters for most European languages,
862 is DOS in Israel, and 737 is DOS for Greek.

Here is cp437:

MacRoman:

and Microsoft cp-1252:

More code pages are displayed in [5].

TUGboat, Volume 29 (2008), No. 2 271

ASCII CONTROL CODES

dec

CHAR
hex oct

b7
b6

b5

0
0

0

0
0

1

0
1

0

0
1

1

1
0

0

1
0

1

1
1

0

1
1

1

BITS

b4 b3 b2 b1
CONTROL

SYMBOLS
NUMBERS

UPPERCASE LOWERCASE

0 0 0 0
0

NUL
0 0

16

DLE
10 20

32

SP
20 40

48

0
30 60

64

@
40 100

80

P
50 120

96

‘
60 140

112

p
70 160

0 0 0 1
1

SOH
1 1

17

DC1
11 21

33

!
21 41

49

1
31 61

65

A
41 101

81

Q
51 121

97

a
61 141

113

q
71 161

0 0 1 0
2

STX
2 2

18

DC2
12 22

34

”
22 42

50

2
32 62

66

B
42 102

82

R
52 122

98

b
62 142

114

r
72 162

0 0 1 1
3

ETX
3 3

19

DC3
13 23

35

#
23 43

51

3
33 63

67

C
43 103

83

S
53 123

99

c
63 143

115

s
73 163

0 1 0 0
4

EOT
4 4

20

DC4
14 24

36

$
24 44

52

4
34 64

68

D
44 104

84

T
54 124

100

d
64 144

116

t
74 164

0 1 0 1
5

ENQ
5 5

21

NAK
15 25

37

%
25 45

53

5
35 65

69

E
45 105

85

U
55 125

101

e
65 145

117

u
75 165

0 1 1 0
6

ACK
6 6

22

SYN
16 26

38

&
26 46

54

6
36 66

70

F
46 106

86

V
56 126

102

f
66 146

118

v
76 166

0 1 1 1
7

BEL
7 7

23

ETB
17 27

39

’
27 47

55

7
37 67

71

G
47 107

87

W
57 127

103

g
67 147

119

w
77 167

1 0 0 0
8

BS
8 10

24

CAN
18 30

40

(
28 50

56

8
38 70

72

H
48 110

88

X
58 130

104

h
68 150

120

x
78 170

1 0 0 1
9

HT
9 11

25

EM
19 31

41

)
29 51

57

9
39 71

73

I
49 111

89

Y
59 131

105

i
69 151

121

y
79 171

1 0 1 0
10

LF
A 12

26

SUB
1A 32

42

*
2A 52

58

:
3A 72

74

J
4A 112

90

Z
5A 132

106

j
6A 152

122

z
7A 172

1 0 1 1
11

VT
B 13

27

ESC
1B 33

43

+
2B 53

59

;
3B 73

75

K
4B 113

91

[
5B 133

107

k
6B 153

123

{
7B 173

1 1 0 0
12

FF
C 14

28

FS
1C 34

44

,
2C 54

60

<
3C 74

76

L
4C 114

92

\
5C 134

108

l
6C 154

124

|
7C 174

1 1 0 1
13

CR
D 15

29

GS
1D 35

45

−
2D 55

61

=
3D 75

77

M
4D 115

93

]
5D 135

109

m
6D 155

125

}
7D 175

1 1 1 0
14

SO
E 16

30

RS
1E 36

46

.
2E 56

62

>
3E 76

78

N
4E 116

94

ˆ
5E 136

110

n
6E 156

126

˜
7E 176

1 1 1 1
15

SI
F 17

31

US
1F 37

47

/
2F 57

63

?
3F 77

79

O
4F 117

95

˙
5F 137

111

o
6F 157

127

DEL
7F 177

Table 1: The ASCII table

The international variants were standardized as
ISO 646-DE (German), 646-DK (Danish), et cetera.
Originally, the dollar sign could still be replaced by
the currency symbol, but after a 1991 revision the
dollar is now the only possibility.

The different code pages were ultimately stan-
dardized as ISO 8859, with such popular code pages
as 8859-1 (‘Latin 1’) for western European:

272 TUGboat, Volume 29 (2008), No. 2

8859-2 for eastern European, and 8859-5 for Cyrillic:

These ISO standards explicitly left the first 32
extended positions undefined.

Reading material: The history of ASCII out of
telegraph codes [1]; a history, paying attention to mul-
tilingual use [4]; Bob Bemer, the ‘father of ASCII’ [2];
a detailed discussion of ISO 8859, Latin-1 [11].

2 Character sets and encodings

As you can tell from the introduction, there is quite
a bit of confusion possible between characters and
representations or encodings. Let us clear up the
concepts a little.

Informally, the term ‘character set’ (also ‘char-
acter code’ or ‘code’) used to mean something like
‘a table of bytes, each with a character shape’. With
only the English alphabet to deal with that is a good
enough definition. These days, much more general
cases are handled, mapping one octet into several
characters, or several octets into one character. The
definition has changed accordingly:

A charset is a method of converting a se-
quence of octets into a sequence of characters.
This conversion may also optionally produce
additional control information such as direc-
tionality indicators.

(From RFC 2978) A conversion the other way may not
exist, since different octet combinations may map
to the same character. Another complicating fac-
tor is the possibility of switching between character
sets; for instance, ISO2022-JP is the standard ASCII

character set, but the character sequence ESC $ @
switches to JIS X 0208-1978.

To disentangle the concepts behind encoding,
we need to introduce a couple of levels:
ACR Abstract Character Repertoire: the set of

characters to be encoded; for example, some
alphabet or symbol set. This is an unordered set
of characters, which can be fixed (the contents of
ISO 8859-1), or open (the contents of Unicode).

CCS Coded Character Set: a mapping from an
abstract character repertoire to a set of non-
negative integers. This is what is meant by
‘encoding’, ‘character set definition’, or ‘code
page’; the integer assigned to a character is its
‘code point’.

There used to be a drive towards unambiguous
abstract character names across repertoires and
encodings, but Unicode ended this, as it provides
(or aims to provide) more or less a complete list
of every character on earth.

CEF Character Encoding Form: a mapping from a
set of non-negative integers that are elements of
a CCS to a set of sequences of particular code
units. A ‘code unit’ is an integer of a specific
binary width, for instance 8 or 16 bits. A CEF

then maps the code points of a coded character
set into sequences of code points, and these
sequences can be of different lengths inside one
code page. For instance ASCII uses a single 7-bit
unit; UTF-8 uses one to four 8-bit units. We
will discuss the UTF encodings below.

CES Character Encoding Scheme: a reversible trans-
formation from a set of sequences of code units
(from one or more CEFs to a serialized sequence
of bytes. In single-byte cases such as ASCII and
UTF-8 this mapping is trivial. With the two-
byte scheme UCS-2 there is a single ‘byte order
mark’, after which the code units are trivially
mapped to bytes. On the other hand, ISO 2022,
which uses escape sequences to switch between
different encodings, is a complicated CES.

Additionally, there are the concepts of

CM Character Map: a mapping from sequences of
members of an abstract character repertoire to
serialized sequences of bytes bridging all four
levels in a single operation. These maps are
what gets assigned MIBenum values by IANA;
see section 4.1.

TES Transfer Encoding Syntax: a reversible trans-
formation of encoded data. This data may or
may not contain textual data. Examples of a
TES are base64, uuencode, and quoted-printable,
which all transform a byte stream to avoid cer-
tain values.

3 Unicode and UTF encodings

The systems above functioned quite well as long
as you stuck to one language or writing system.
Poor dictionary makers. More or less simultane-
ously two efforts started that aimed to incorporate
all the world’s character sets in one standard: the
Unicode standard (originally 2-byte), and ISO 10646
(originally 4-byte). Unicode was extended further,
so that it has all code points up to 10FFFFF, which
is slightly over a million.

Two international standards organizations, the
Unicode Consortium and ISO/IEC JTC1/SC2, started

TUGboat, Volume 29 (2008), No. 2 273

designing a universal standard that was to be a su-
perset of all existing character sets. These standards
are now synchronized. Unicode has elements that
are not in 10646, but they are compatible where it
concerns straight character encoding.

ISO 10646 defines UCS, the ‘Universal Character
Set’. This is in essence a table of official names and
code numbers for characters. Unicode adds to this
rules for hyphenation, bi-directional writing, and
more.

The full Unicode list of code points can be found
online, broken down by blocks [14], and download-
able [17].

3.1 BMP and other Unicode subplanes

Characters in Unicode are mostly denoted hexadeci-
mally as U+wxyz; for instance, U+0041 is ‘Latin Cap-
ital Letter A’. The range U+0000–U+007F (0–127) is
identical to US-ASCII (ISO 646 IRV), and U+0000–
U+00FF (0–255) is identical to Latin 1 (ISO 8859-1).

The original 2-byte subset is now called the
‘BMP’ for Basic Multilingual Plane, or plane 0. These
are the Unicode code points that are nonzero in the
last two bytes. Other ‘planes’ have been defined that
have one or more bits set outside the last two bytes.

BMP (Basic Multilingual Plane) The first plane
defined in Unicode/ISO10646, designed to in-
clude all scripts in active modern use. The BMP

currently includes the Latin, Greek, Cyrillic,
Devangari, hiragana, katakana, and Cherokee
scripts, among others, and a large body of math-
ematical, APL-related, and other miscellaneous
characters. Most of the Han ideographs in cur-
rent use are present in the BMP, but due to the
large number of ideographs, many were placed
in the Supplementary Ideographic Plane.

SMP (Supplementary Multilingual Plane; plane 1)
This contains mostly ancient writing systems.
Some of these you’ll have likely heard of, such as
Linear B, cuneiform, Aztec, and Mayan; others
are fairly obscure, such as Tangut, a language
used in Central China between 1000 and 1500.

SIP (Supplementary Ideographic Plane) The third
plane (plane 2) defined in Unicode/ISO 10646,
designed to hold all the ideographs descended
from Chinese writing (mainly found in Viet-
namese, Korean, Japanese and Chinese) that
aren’t found in the Basic Multilingual Plane.
The BMP was supposed to hold all ideographs
in modern use; unfortunately, many Chinese di-
alects (like Cantonese and Hong Kong Chinese)
were overlooked; to write these, characters from
the SIP are necessary. This is one reason even

non-academic software must support characters
outside the BMP.

3.2 Unicode encodings

Unicode is basically a numbered list of characters.
When they are used in a file, their numbers can be
encoded in a number of ways. To name the obvious
example: if only the first 128 positions are used, the
long Unicode code point can be truncated to just
one byte. Here are a few encodings:

UTF-32 Little used: this is a four-byte encoding.
(UTF stands for ‘UCS Transformation Format’.)

UTF-16 A two-byte encoding. Its precursor, UCS-2,
encoded the BMP; UTF-16 has a way of going
beyond that to encode planes 1–16 by using
‘surrogate pairs’ of two-byte units.

UTF-8 A one-byte scheme; details below.
UTF-7 Another one-byte scheme, but now the high

bit is always off. Certain byte values act as an
‘escape’, so that higher values can be encoded.
Like UTF-1 and SCSU, this encoding is only of
historical interest.

There is an important practical reason for a one-
byte encoding such as UTF-8. Multi-byte encodings
such as UCS-2 are wasteful of space, if only tradi-
tional ASCII is needed. Furthermore, they would
break software that is expecting to walk through a
file with s++ and such. Also, they would introduce
many zero bytes in a file, which would play havoc
with Unix software that uses null-termination for
strings.

Then there would be the problem of whether two
bytes are stored in low-endian or high-endian order.
For this reason it was suggested to store FE FF or FF
FE at the beginning of each file as the ‘Unicode Byte
Order Mark’. Formally, FEFF is the Unicode ‘zero
width nobreak space’ character, which can innocently
be inserted anywhere. Conversely FFEF is defined to
be illegal, so encountering this is a sign that bytes
should be interpreted little-endian. Of course this
plays havoc with files such as shell scripts which
expect to find #! at the beginning of the file.

3.3 UTF-8

UTF-8, standardized as RFC 3629, is an encoding
where the positions up to 127 are encoded ‘as such’;
higher numbers are encoded in groups of 2 to 6
bytes. (Tim Bray describes this as ‘kind of racist’ [3]:
the further east a language comes from, the more
overhead is involved in its encoding.) In a multi-
byte group, the first byte is in the range 0xC0–0xFD
(192–252). The next up to 5 bytes are in the range
0x80–0xBF (128–191, bit pattern starting with 10).

274 TUGboat, Volume 29 (2008), No. 2

U-00000000 - U-0000007F 7 bits 0xxxxxxx
U-00000080 - U-000007FF 11 = 5 + 6 110xxxxx 10xxxxxx
U-00000800 - U-0000FFFF 16 = 4 + 2× 6 1110xxxx 10xxxxxx 10xxxxxx
U-00010000 - U-001FFFFF 21 = 3 + 3× 6 11110xxx 10xxxxxx (3 times)
U-00200000 - U-03FFFFFF 26 = 2 + 4× 6 111110xx 10xxxxxx (4 times)
U-04000000 - U-7FFFFFFF 31 = 1 + 5× 6 1111110x 10xxxxxx (5 times)

Table 2: UTF-8 encoding blocks

Note that 8 = 1000 and B = 1011, so the highest
two bits are always 10, leaving six bits for encoding).
All bytes in a multi-byte sequence have their high
bit set. See table 2.

IETF documents such as RFC 2277 require sup-
port for this encoding in internet software. Readable
introductions can be found all over the Internet [19];
see also the history of UTF-8 in [20].

3.4 Unicode tidbits

3.4.1 Line breaking

The Unicode standard describes line breaking: it
has a mechanism for specifying tables of character
pairs between which line breaks are allowed or for-
bidden [15, 18].

3.4.2 Bi-directional writing

Most scripts are left-to-right, but Arabic and Hebrew
run right-to-left. Characters in a file are stored in
‘logical order’, and usually it is clear in which direc-
tion to render them, even if they are used mixed.
Letters have a ‘strong’ directionality: unless overrid-
den, they will be displayed in their natural direction.
The first letter of a paragraph with strong direction
determines the main direction of that paragraph [16].
See figure 1.

However, when differently directional texts are
embedded, some explicit help is needed. The problem
arises with letters that have only weak directionality.
The following is a sketch of a problematic case:

Memory: he said “I NEED WATER!”, and expired.
Display: he said “RETAW DEEN I!”, and expired.

If the exclamation mark is to be part of the Ara-
bic quotation, then the user can select the text ‘I
NEED WATER!’ and explicitly mark it as embedded
Arabic (<RLE> is Right-Left Embedding; <PDF> Pop
Directional Format), which produces the following
result:

Memory: he said “<RLE>I NEED WATER!<PDF>”,
and expired.
Display: he said “!RETAW DEEN I”, and ex-
pired.

A simpler method of doing this is to place a Right-To-
Left Mark <RLM> after the exclamation mark. Since
the exclamation mark is now not on a directional
boundary, this produces the correct result.

Memory: he said “I NEED WATER!<RLM>”,
and expired.
Display: he said “!RETAW DEEN I”, and ex-
pired.

3.5 Unicode and oriental languages

‘Han unification’ is the Unicode strategy of saving
space in the oriental languages (traditional Chinese,
simplified Chinese, Japanese, Korean: ‘CJK’) by
recognizing common characters. This idea is not
uncontroversial [6].

4 Further tidbits

4.1 A bootstrapping problem

In order to know how to interpret a file, you need to
know what character set it uses. This problem also
occurs in MIME mail encoding (section 4.5), which
can use many character sets. Names and numbers

Figure 1: Right-to-left Arabic text containing left-to-right numerals

TUGboat, Volume 29 (2008), No. 2 275

for character sets are standardized by IANA: the
Internet Assigned Numbers Authority [9]. However,
in what character set do you write this name down?

Fortunately, everyone agrees on (7-bit) ASCII,
so that is what is used. A name can be up to 40
characters from US-ASCII.

As an example, here is the IANA definition of
ASCII:

name ANSI_X3.4-1968
reference RFC 1345, KXS2

MIBenum 3
source ECMA registry
aliases iso-ir-6, ANSI_X3.4-1986,

ISO_646.irv:1991, ASCII,
ISO646-US, US-ASCII
(preferred MIME name), us,
IBM367, cp367, csASCII

The MIBenum (Management Information Base) is a
number assigned by IANA.1 The full list of character
sets can be found online [8], and RFC 3808 is a memo
that describes the IANA Charset MIB.

4.2 Unicode in programming languages

Before Unicode, a system called the ‘Double Byte
Character Set’ was invented to accommodate Asian
languages, where some characters were stored in one,
others in two bytes. This is very messy, since you
can not simply write s++ or s-- to traverse a string.
Instead you have to use functions from some library
that understands these encodings. While this system
is now only of historical interest, the string handling
problem is back in force with UTF-8.

Many modern languages (Python, C99) have
support for Unicode. In C99 (which is the new
standard for C) this is done through so-called ‘wide
characters’. For instance, L’x’ is a wide character
and L"xyz" is a string of wide characters. Such
strings can be manipulated through equivalents of
the normal string library. For instance, wcscpy acts
like strcpy but on wide strings. General Unicode
characters can be represented as \u0000 for 4-byte
and \U00000000 for up to 8-byte characters.

The two-byte UTF-16 encoding is popular with
programmers, since it can handle almost any prac-
tically encountered character without extensions to
longer byte sequences.

4.3 Character codes in HTML

HTML can access unusual characters in several ways:

• With a decimal numerical code: is a space
token. (HTML 4 supports hexadecimal codes.)

1 Apparently these numbers derive from the Printer MIB,
RFC 1759.

• With a vaguely symbolic name [12, 7]: © is
the copyright symbol, is a non-breaking
space, etc.
• The more interesting way is to use an encoding

such as UTF-8 (section 3.2) for the file. For this
it would be nice if the server could state that
the file is

Content-type: text/html;charset=utf-8

but it is also all right if the file starts with (end
with /> for XHTML):
<meta http-equiv="Content-Type"

content="text/html;charset=utf-8">

It is a requirement of user agents that they can
at least parse the charset parameter, which means
they have to understand US-ASCII.

Open this link in your browser, and addition-
ally view the source: http://www.unicode.org/
unicode/iuc10/x-utf8.html. How well does your
software deal with it?

4.4 Keyboards and control characters

Unprintable ASCII codes are accessible through the
control modifier key; for this reason they are also
called ‘control codes’ or control characters. The
control key, combined with a regular key, zeros bits
2 and 3 of the ASCII code of that key. For instance,
you can hit Ctrl-[to get Esc.

The way key presses generate characters is typ-
ically controlled in software. This mapping from
keyboard scan codes to 7 or 8-bit characters is called
a ‘keyboard’, and can be changed dynamically in
most operating systems.

Using the modifier keys, one can generate more
keystrokes than can be described in 8 bits, so key-
boards can send an ‘escape sequence’: one escape
character followed by one or more regular charac-
ters. The escape character is mostly ASCII NUL or
ESC [10].

4.5 Characters in email

The protocols for Internet mail are based on ‘7-bit
ASCII’, that is, the high bit in every byte transmitted
is supposed to be off. This is a problem for any
message that has text outside of ASCII, such as
when accented characters from the various ISO 8859
character sets are used. It also makes transmitting
binary data such as images impossible. For this
reason the ‘Multipurpose Internet Mail Extensions’
(MIME) were designed. MIME uses several encoding
schemes, such as base64 or quoted-printable, to turn
arbitrary data into 7-bit ASCII.

The email standard RFC 822 states that any-
thing outside 7-bit ASCII has to be encoded with

http://www.unicode.org/unicode/iuc10/x-utf8.html
http://www.unicode.org/unicode/iuc10/x-utf8.html

276 TUGboat, Volume 29 (2008), No. 2

uuencode. This means that the sender and recipient
need decoding program; it is decidedly overkill if a
message is plain ASCII apart from a few accented
characters.

The MIME protocol (RFC 2045 and 2046) inserts
headers in a mail message, stating for each message
section the content type and the encoding that is
used for that section of the message. These encodings
are also used for attachments, in which case the con-
tent type should give an indication what application
can handle the attachment after its decoding. ‘Help-
ful’ mail programs that automatically invoke such
applications have been a source of Trojans (malicious
software) in the past.

4.6 FTP

FTP is a very old ARPA protocol for transferring
files from one computer to another. It knows ‘binary’
and ‘text’ mode: in binary mode bytes are trans-
ferred without further interpretation, but the text
mode is concerned with files that contain lines of
text. Unfortunately, line ends are different between
operating systems, and their transfer in text mode
is not well defined. Some FTP programs adjust line
ends; others, such as Fetch on the Mac, actually do
code page translation.

5 Character issues in (LA)TEX

5.1 Diacritics

Before 1990, TEX was a 7-bit system: only characters
0–127 in the input could be recognized, and fonts
were also limited to 127 positions. This meant that
there was not enough space in fonts for letters with
accents, so accents (diacritics) were implemented as
things to put on top of characters, even when, as
with the cedilla, they are under the letter. This leads
to the problem that TEX could not hyphenate a word
with accents, since the accent introduces a space in
the word (technically: an explicit kern).

Both problems were remedied to a large extent
with the ‘Cork font encoding’, which contains most
common accented letters as single characters. This
means that accents are correctly placed by design,
and also that the word can be hyphenated, since the
kern has disappeared.

These fonts with accented characters became
possible when TEX version 3 came out around 1990.
This introduced full 8-bit compatibility, both on the
input side and in the font addressing.

5.2 LATEX input file access to fonts

If an input file for LATEX is allowed to contain all
8-bit octets, we get all the problems of compatibility

that plague regular text files. This is solved by the
package inputenc:

\usepackage[code]{inputenc}

where code is applemac, ansinew, utf8, or various
other code pages.

This package makes all unprintable ASCII char-
acters, plus the codes over 127, into active characters.
The definitions are then dynamically set depending
on the code page that is loaded.

5.3 LATEX output encoding

The inputenc package does not solve the whole prob-
lem of producing a certain font character from certain
keyboard input. It only maps a byte value to the
TEX command for producing a character. To map
such commands to an actual code point in a font file,
the TEX and LATEX formats contain lines such as

\chardef\i="10

declaring that the dotless-i is at position 16. However,
this position is a convention, and other people — type
manufacturers — may put it somewhere else.

This is handled by the ‘font encoding’ mech-
anism. The various people working on the LATEX
font schemes have devised a number of standard
font encodings. For instance, the OT1 encoding cor-
responds to the original 128-character set. The T1
encoding is a 256-character extension thereof, which
includes most accented characters for Latin alphabet
languages.

A font encoding is selected with

\usepackage[T1]{fontenc}

A font encoding definition contains lines such as

\DeclareTextSymbol{\AE}{OT1}{29}
\DeclareTextSymbol{\OE}{OT1}{30}
\DeclareTextSymbol{\O}{OT1}{31}
\DeclareTextSymbol{\ae}{OT1}{26}
\DeclareTextSymbol{\i}{OT1}{16}

5.4 TEX beyond 8 bits

The above LATEX packages allow flexible handling
of (8-bit) code pages, essentially the ISO 8859 stan-
dard. For handling of other alphabets, a number
of styles have been written over the years. How-
ever, their continued support is often uncertain. The
first project that aimed at use of Unicode throughout
TEX’s code base was Omega [13]; the modern TEX ex-
tensions X ETEX (http://scripts.sil.org/xetex)
and LuaTEX (http://luatex.org) also do so.

http://scripts.sil.org/xetex
http://luatex.org

TUGboat, Volume 29 (2008), No. 2 277

References

[1] Annotated history of ASCII. http://www.wps.
com/projects/codes/index.html.

[2] Bob Bemer homepage. http://www.
trailing-edge.com/~bobbemer/.

[3] Tim Bray. Characters vs. bytes. http:
//www.tbray.org/ongoing/When/200x/2003/
04/26/UTF.

[4] Brief history of character codes in
North America, Europe, and East Asia.
http://tronweb.super-nova.co.jp/
characcodehist.html.

[5] Codepage & co. http://aspell.net/
charsets/codepages.html.

[6] Han unification. http://en.wikipedia.org/
wiki/Han_unification.

[7] Character entity references in HTML4.
http://www.w3.org/TR/html401/sgml/
entities.html.

[8] IANA character set names. http://www.iana.
org/assignments/character-sets.

[9] Internet Assigned Numbers Authority.
http://www.iana.org/.

[10] IBM PC keyboard scan codes. http:
//jimprice.com/jim-asc.shtml#keycodes.

[11] The ISO Latin 1 character repertoire.
http://www.cs.tut.fi/~jkorpela/latin1/
index.html.

[12] Character entities for ISO Latin 1. http:
//www.cs.tut.fi/~jkorpela/HTML3.2/
latin1.html.

[13] Omega project home page. http://omega.
enstb.org/.

[14] Unicode. http://www.fileformat.info/
info/unicode/index.htm.

[15] Unicode standard annex 14, line breaking
properties. http://www.unicode.org/
reports/tr14/.

[16] Unicode standard annex 9, the bidirectional
algorithm. http://www.unicode.org/
reports/tr9/.

[17] Unicode code chart and scripts. http:
//www.unicode.org/charts/.

[18] Unicode line breaking rules: explanations
and criticism. http://www.cs.tut.fi/

~jkorpela/unicode/linebr.html.
[19] UTF-8 and Unicode FAQ for Unix/Linux.

http://www.cl.cam.ac.uk/~mgk25/unicode.
html.

[20] UTF-8 history. http://www.cl.cam.ac.uk/

~mgk25/ucs/utf-8-history.txt.

� Victor Eijkhout
University of Texas at Austin
victor (at) eijkhout dot net

http://www.wps.com/projects/codes/index.html
http://www.wps.com/projects/codes/index.html
http://www.trailing-edge.com/~bobbemer/
http://www.trailing-edge.com/~bobbemer/
http://www.tbray.org/ongoing/When/200x/2003/04/26/UTF
http://www.tbray.org/ongoing/When/200x/2003/04/26/UTF
http://www.tbray.org/ongoing/When/200x/2003/04/26/UTF
http://tronweb.super-nova.co.jp/characcodehist.html
http://tronweb.super-nova.co.jp/characcodehist.html
http://aspell.net/charsets/codepages.html
http://aspell.net/charsets/codepages.html
http://en.wikipedia.org/wiki/Han_unification
http://en.wikipedia.org/wiki/Han_unification
http://www.w3.org/TR/html401/sgml/entities.html
http://www.w3.org/TR/html401/sgml/entities.html
http://www.iana.org/assignments/character-sets
http://www.iana.org/assignments/character-sets
http://www.iana.org/
http://jimprice.com/jim-asc.shtml#keycodes
http://jimprice.com/jim-asc.shtml#keycodes
http://www.cs.tut.fi/~jkorpela/latin1/index.html
http://www.cs.tut.fi/~jkorpela/latin1/index.html
http://www.cs.tut.fi/~jkorpela/HTML3.2/latin1.html
http://www.cs.tut.fi/~jkorpela/HTML3.2/latin1.html
http://www.cs.tut.fi/~jkorpela/HTML3.2/latin1.html
http://omega.enstb.org/
http://omega.enstb.org/
http://www.fileformat.info/info/unicode/index.htm
http://www.fileformat.info/info/unicode/index.htm
http://www.unicode.org/reports/tr14/
http://www.unicode.org/reports/tr14/
http://www.unicode.org/reports/tr9/
http://www.unicode.org/reports/tr9/
http://www.unicode.org/charts/
http://www.unicode.org/charts/
http://www.cs.tut.fi/~jkorpela/unicode/linebr.html
http://www.cs.tut.fi/~jkorpela/unicode/linebr.html
http://www.cl.cam.ac.uk/~mgk25/unicode.html
http://www.cl.cam.ac.uk/~mgk25/unicode.html
http://www.cl.cam.ac.uk/~mgk25/ucs/utf-8-history.txt
http://www.cl.cam.ac.uk/~mgk25/ucs/utf-8-history.txt

	History in one byte
	Character sets and encodings
	Unicode and UTF encodings
	BMP and other Unicode subplanes
	Unicode encodings
	UTF-8
	Unicode tidbits
	Unicode and oriental languages

	Further tidbits
	A bootstrapping problem
	Unicode in programming languages
	Character codes in HTML
	Keyboards and control characters
	Characters in email
	FTP

	Character issues in (La)TeX
	Diacritics
	LaTeX input file access to fonts
	LaTeX output encoding
	TeX beyond 8 bits

