320

Hints & Tricks

Interesting loops and iterations —
second helping

Pawel Jackowski

Abstract

Where on earth does a programmer have to imple-
ment a loop construct himself? In TEX! TEX as
a programming language is akin only to itself. Its
interesting feature, rarely to be found among pro-
gramming languages, is the lack of a built-in loop
construct. However, thanks to TEX dealing per-
fectly well with recursive definitions and its ability
to check conditions there are no obstacles to defin-
ing DIY loops. It has been done by Donald Knuth
in plain TEX, extended by Alois Kabelschacht, Kees
van der Laan, Marcin Woliriski and many others and
used by every practicing TgXie. This article sums
up what every TEXie should know about loops. We
will not shy away from dirty tricks which users need
not know about.

Taking on \loop

Let’s yet again review the traditional plain-ish loop
definition ([1], p. 352):

\def\loop#1\repeat{%
\def\body{#1}\iterate}
\def\iterate{%

\body \let\next\iterate

\else \let\next\relax\fi \next}
\let\repeat=\fi

The definition is pretty readable and understand-
able thanks to the supporting macros suggestively
named \next and \body. However, an unnecessary
assignment is performed at every iteration. This
assignment gives a meaning to the \next instruc-
tion as well as the \body instruction which, in
principle, should not be used anywhere else. As
the instructions are hidden from the user a name
conflict can easily arise.

There are several well-known enhancements of
this traditional definition which use \expandafter

This is a translation of the article “Ciekawe pe¢tle
i iteracje na druga néze”, which first appeared in
Biuletyn GUST nr 22 (2005), 3-6. Reprinted by
permission. Translation by Jerzy Ludwichowski.

TUGDboat, Volume 29 (2008), No. 2

instead of the scratch \next macro. For example,

from [2]:
\def\loop#1\repeat{%
\def\body{#1}\iterate}
\def\iterate{%
\body\expandafter\iterate\fi}

or even simpler, from [6]:
\def\loop#1\repeat{%
\def\iterate{%

#1\expandafter\iterate\fi}},

\iterate}

In the first case we are getting rid of the superfluous
definition of \next and in the second also of the
definition of \body. In yet another construction (for
an extended description see [3]) the whole contents
of the loop is executed outside of a conditional block
\if...\fi:

\def\loop#1\repeat{%
\def\body{#1}\iterate}

\def\iterate{%
\body\else\etareti\filiterate}

\def\etareti\filiterate{\fi}

A summary of these and other solutions may be
found in [4].

A loop in a loop

The above constructs, though correct and elegant,
do not allow loop nesting. In each of them the first
operation remembers the content of the loop in an
instruction. Embedding it would cause a conflict
for the inner and outer loops.

Is there a way out? Yes. At the cost of slightly
slowing the loop one may use a macro parameter
instead of a definition. For example, instead of
repeating the \body at every \iterate, we can set
the repeated code fragment as an argument of the
\iterate instruction. For convenience the \long
prefix is used, to enable the use of \par within the
loop. We also define the \gobbleone macro, which
is called just before processing leaves the loop and
gobbles the superfluous argument just after the \fi
ending the conditional.

\long\def\loop#1i\repeat{’
\iterate\gobbleone{#1}}

\long\def\iterate\gobbleone#1{},
#1\expandafter\iterate\fi
\gobbleone{#1}}

\long\def\gobbleone#1{}

The \gobbleone definition plays a second role—
it delimits the \iterate macro (i.e., is a macro
delimiter). When the \iterate instruction is being

TUGDboat, Volume 29 (2008), No. 2

executed, the immediately following \gobbleone is
swallowed as an unused fragment of the parameter.
At the end of the loop \iterate is skipped, but
\gobbleone swallows the loop content argument.

This loop might be used like the traditional
form, the difference being that it can be nested, as
shown in the following example:

\count100=9

\loop{\count101=65 % ASCII ‘A’
\advance\count100 by-1
\ifnum\count100>0
\leavevmode\loop
\char\count101 \the\count100
\advance\count101 byl
\ifnum\count101<73 \space

\repeat\par

Hrepeat

The code produces something akin to a chess
field. The row elements are typeset by the inner
loop and the rows are produced by the outer loop.

A8 B8 C8 D8 E8 F8 G8 HS8

A7 B7 C7 D7 E7 F7 G7 H7

A6 B6 C6 D6 E6 F6 G6 H6

A5 B5 C5 D5 E5 F5 G5 Hb5

A4 B4 C4 D4 E4 F4 G4 H4

A3 B3 C3 D3 E3 F3 G3 H3

A2 B2 C2 D2 E2 F2 G2 H2

A1 B1 C1 D1 E1 F1 G1 H1
One should note the use of grouping in the outer
loop block:

\loop{...\loop...\repeat...}\repeat

This group affects only the scope of the ar-
gument reading. The content of the outer loop is
not executed within the group. Thanks to this,
the outer loop can use the assignments done in the
inner loop. Grouping is necessary — without it TEX
would cease reading the outer loop just after seeing
the first \repeat.

Let it resolve

The capabilities of TEX do not end in incrementing
and checking the counter value. Moreover, TEX
iterations are not restricted to \loop...\repeat
constructions. Often there is a need to execute
some procedure for each token of a group, in a
context where assignments cannot be used (e.g.,
when creating definitions with \edef, \xdef, inside
\write-s, \special-s and \mark-s). Here it is
worth citing the beautiful-in-its-simplicity macro
\fifo, described in more detail in [3]:

321

\def\fifo#t1{\ifx\ofif#1\ofif\fi
\process#1\fifo}
\def\ofif#1\fifo{\fi}

In the example below \fifo is used to create a
crib sheet of codes of some diacritics:

\def\process#1{(#1 -> \number ‘#1)}
\immediate\message
{\fifo aéé6\ofif}

Counting of iterations is replaced here by
executing the \process instruction for consecutive
arguments. At the start of each iteration \ifx
checks if the just-found argument is the \ofif
token. The latter both delimits the token list and
is a macro ending the condition executed after the
last iteration.

Number games

No one needs convincing that expandable macros
(without assignments) are more convenient. But
how can assignments be avoided in loops operat-
ing on numbers? The most typical use of loops
is repeating code some defined number of times.
The previously shown \loop...\repeat constructs
achieve this by iteratively incrementing or decre-
menting a counter, but this requires assignments.

The task is not hopeless, however. As the
preceding example shows, the \number instruction
expands “on the fly” any TEX representation of a
number into its decimal form. In the basic version
of TEX every arithmetic operation requires an as-
signment. To the rescue comes e-TEX, which offers
several convenient operations that allow dodging
inconvenient assignments. The \numexpr instruc-
tion will serve as an example. It executes, in an
expandable way, the basic operations on numbers
(addition, subtraction, multiplication and division).

Let us use \numexpr to build a \replicate
macro which repeats an arbitrary piece of code a
given number of times. The first parameter is the
number of repetitions, the second is the content of
the loop.

\long\def\replicate#1#2{/
\ifnum\numexpr#1>0
#2\replicate{#1-1}{#2}\fi}

The loop starts with the check for the counter being
positive, i.e., if the repetition should be executed.
If so, then the contents of the loop, given as the
second parameter, is executed and then a recursive
call is being made to the \replicate procedure
with the counter subtracted by 1 and the second
parameter unchanged.

322

This construct suffers from two serious draw-
backs. First, each repetition is executed within
accumulating \ifnum...\fi blocks, which threat-
ens catastrophe if a large number of iterations is
required. Second, the length of the first parameter
of the macro is increased by two at each turn of
the loop, hence during the check of the counter
value TEX must each time evaluate an ever longer
expression of the form \numexpr100-1-1-1....

Therefore let us try to modify the \replicate
macro so as to execute each repetition outside of
the \ifnum. ..\fi condition and give the parameter
representing the counter a more elegant form.

\long\def\replicate#1#2{}
\ifnum\numexpr#1>0
#2\expandafter\replicate\expandafter
{\number\numexpr#1-1\expandafter}y,
\else
\expandafter\gobbleone
\fi{#2}}

Again we start by checking if the loop counter is
positive, i.e., if the repetition should be executed. If
so0, the content of the loop (the second parameter) is
processed, after which \expandafter in connection
with \number\numexpr decrements the counter by
one and enters the \replicate procedure with the
new value of the counter. The second parameter to
the \replicate procedure is passed on unchanged
and immediately follows the \fi instruction ending
the conditional. When the counter reaches 0 (or if
we mischievously start the loop with the parameter
being not greater than 0), \expandafter kills the
remaining \fi after which the already described
\gobbleone procedure swallows the superfluous
parameter.

We use here the previously mentioned beneficial
feature of the \number instruction which causes the
macros following it to be expanded completely,
i.e., until the decimal representation of the number
is produced. During the expansion of \numexpr,
\expandafter is executed which as if in passing
(during the number expansion!) causes the loop
condition block to disappear. TEX then “notices”
that the expression cannot be expanded further and
returns to the \replicate instruction. The latter
is executed with the numerical argument in decimal
representation and the second argument being the
immutable loop content. This happens outside of
the conditional block.

Here is an example of \replicate in a context
in which the traditional TEX loop with assignment
would fail. The \replicate macro is expandable
and can be nested.

TUGDboat, Volume 29 (2008), No. 2

\immediate\message

{\replicate{100+1}
{I will be using eTeX)
\replicate{3}{!} }}

Let’s move on to a more complicated example. We
will try to define a \fixed macro which puts the
digit 0 in front of all other digits in such a way
as to complement the number to a set length. For
example,

\fixed{4}{12}

should expand to 0012. We begin by defining a
helper macro to “measure” the length of a sequence.

\long\def\abacus#1{\addabacus#10}
\long\def\addabacus#1#2#3{/,
\ifx#3#1#2\else
\expandafter\addabacus
\expandafter#1\expandafter
{\number\numexpr#2+1\expandafter}y
\fi}
The \abacus macro (from Latin: a calculating tool)
counts tokens appearing between a pair of two other
tokens.

\count100=\abacus|Llanfairpwllgwyngyll%
gogerychwyrndrobwllllantysiliogogogoch|
\edef\numofletters{y
\abacus\relax Antidisestablish,
mentarianism\relax}

At each turn of the loop the macro tests if the
upcoming token is the delimiting token of the
measured sequence. If not, the macro in the already
described manner increments the counter by 1 and
moves on to the next iteration. If yes, it simply
returns its counter which is the number of tokens
between the freely chosen delimiters.

Now, we can use \replicate and \abacus to
define a macro to pad the sequence with a chosen
character to a given length.

\def\fixedprefix#1#2#3{/
\expandafter\replicate\expandafter
{\number

\numexpr#l-\abacus\relax#2\relax}
{#3}#2}

If we now write
\edef\test{\fixedprefix{4}{ab}{*}}

the \test instruction will be assigned the value of
*xab. [t remains to construct a specialized version
of the \fixedprefix macro which will format
numbers in such a way that they will have the
specified number of digits by prepending with zeros
if needed. Because the \fixed macro should operate
on numbers, the first operation to be performed is

TUGDboat, Volume 29 (2008), No. 2

to expand the argument to a sequence of digits only.
We know this trick already.

\def\fixed#1#2{J,
\expandafter\fixedzero\expandafter
{\number\numexpr#1\expandafterl}y,
\expandafter{\number\numexpr#2}}
\def\fixedzero#1#2{J
\fixedprefix{#1+{#2}{0}}

We also know that TEX expands numbers tirelessly
until the end. We also know that it has no prob-
lems with long sequences of tokens swallowed as
arguments. The \rnum (read number) macro pre-
sented below exploits both TEXniques of iteration
to read numbers in different notations, from binary
to hexadecimal.

\def\rnum#1#2{\dornum{#1}{0}#2\relax}
\def\dornum#1#2#3{\ifx#3\relax#2\else
\expandafter\dornum\expandafter
{\number
\numexpr#1\expandafter}\expandafter
{\number
\numexpr#1*#2+"#3\expandafterl},
\fi}
We thus taught TEX to understand what, e.g.,
1000000000000 means in binary notation:

\count100=\rnum{2}{1000000000000}

The reader may have noticed the character ‘"’ which
was used in the second-to-last line of the \dornum
macro. As is known, for TEX this means: “read the
digits as hexadecimal”. Without it, TEX would not
properly understand the digits A through F.

For dessert we propose the \xnum macro, which
does the opposite of \rnum. It rewrites deci-
mal numbers into other notations, from binary to
hexadecimal and, of course does this in a fully
expandable way. If the reader made it to this point,
he should have no problems in understanding the
following code. However, those who do not use
e-TEX deserve two explanations.

1. If during calculating \numexpr e-TEX encoun-
ters the \relax token, it immediately stops
reading the expression and \relax disappears
without a trace.

2. If \numexpr contains non-integer division, the
result will be rounded, unlike in TEX, where it
will be truncated to the integer part.

More about e-TEX constructions is in [5].

\def\hexdigit#1{%
\expandafter\hexdigits
\number\numexpr#1i\relax\relax}

\def\hexdigits#1\relax

{\ifcase#1

323

O\or1\or2\or3\or4\or5\or
6\or7\or8\or9\or A\or
B\or C\or D\or E\or F\fi}

\def\xnum#1#2{%
\expandafter\doxnum\expandafter
{\number

\numexpr#1\expandafter}\expandafter

{\number\numexpr#21}}

\def\doxnum#1#2{7,

\ifcase
\ifnum#2<\numexpr#2/#1*#1\relax

0 \elsel \fi

\expandafter\doxnumdown\or

\expandafter\doxnumup\fi

{#13{#2}}

\def\doxnumdown#1#2{%

\ifnum#1>#2 \else
\expandafter\doxnum\expandafter
{\number#1\expandafter}\expandafter
{\number\numexpr#2/#1-1\expandafter}\fi

\hexdigit{#2- (#2/#1-1)*#1}}

\def\doxnumup#1#2{%

\ifnum#1>#2 \else
\expandafter\doxnum\expandafter
{\number#1\expandafter}\expandafter
{\number\numexpr#2/#1\expandafter}\fi

\hexdigit{#2-#2/#1%#1}}

% test

\count100=\rnum{2}{1000000000}

\immediate\message
{\xnum{16}{\count100}}

Bibliography

[1] Donald E. Knuth: The TEX book (1990),
Addison-Wesley.

[2] Alois Kabelschacht: \expandafter vs. \let
and \def in conditionals and a generalization
of plain’s \loop. TUGboat, Volume 8 (1987),
No. 2, 184-185.

[3] Kees van der Laan: FIFO and LIFO sing the
BLUes. Biuletyn GUST, nr 4 (1992), 20-26.

[4] Marcin Wolinski: O pewnych konstrukcjach
warunkowych i iteracyjnych [On some condi-
tional and iterative constructs]. Biuletyn GUST,
nr 7 (1996), 5-9.

[5] Peter Breitenlohner: The e-TEX Manual, Ver-
sion 2, February 1998, 9.

[6] Victor Eijkhout: The bag of tricks. TUGboat,
Volume 21 (2000), No. 1, 91.

¢ Pawel Jackowski
GUST
P dot Jackowski (at) gust dot org dot pl

