
TUGboat, Volume 29 (2008), No. 3 — TUG 2008 Conference Proceedings 383

The TEX–Lua mix

Hans Hagen
Pragma ADE
http://pragma-ade.com

Abstract

An introduction to the combination of TEX and the scripting language Lua.

1 Introduction
The idea of embedding Lua into TEX originates in
some experiments with Lua embedded in the SciTE
editor. You can add functionality to this editor by
loading Lua scripts. This is accomplished by a li-
brary that gives access to the internals of the editing
component.

The first integration of Lua in pdfTEX was rel-
atively simple: from TEX one could call out to Lua
and from Lua one could print to TEX. My first ap-
plication was converting math written in a calcula-
tor syntax to TEX. Following experiments dealt with
MetaPost. At this point integration meant as lit-
tle as: having some scripting language as an ad-
dition to the macro language. But, even in this
early stage further possibilities were explored, for
instance in manipulating the final output (i.e. the
PDF code). The first versions of what by then was
already called LuaTEX provided access to some in-
ternals, like counter and dimension registers and the
dimensions of boxes.

Boosted by the Oriental TEX project, the team
started exploring more fundamental possibilities:
hooks in the input/output, tokenization, fonts and
nodelists. This was followed by opening up hyphen-
ation, breaking lines into paragraphs and building
ligatures. At that point we not only had access to
some internals but also could influence the way TEX
operates.

After that, an excursion was made to MPlib,
which fulfilled a long standing wish for a more nat-
ural integration of MetaPost into TEX. At that point
we ended up with mixtures of TEX, Lua and Meta-
Post code.

As of mid-2008 we still need to open up more
of TEX, like page building, math, alignments and
the backend. Eventually LuaTEX will be nicely split
up in components, rewritten in C, and we may even
end up with Lua gluing together the components
that make up the TEX engine. At that point the
interoperation between TEX and Lua may be even
richer than it is now.

In the next sections I will discuss some of the

ideas behind LuaTEX and the relationship between
Lua and TEX and how it presents itself to users. I
will not discuss the interface itself, which consists of
quite a number of functions (organized in pseudo-
libraries) and the mechanisms used to access and
replace internals (we call them callbacks).

2 TEX vs. Lua
TEX is a macro language. Everything boils down
to either allowing stepwise expansion or explicitly
preventing it. There are no real control features,
like loops; tail recursion is a key concept. There
are only a few accessible data structures, such as
numbers, dimensions, glue, token lists and boxes.
What happens inside TEX is controlled by variables,
mostly hidden from view, and optimized within the
constraints of 30 years ago.

The original idea behind TEX was that an au-
thor would write a specific collection of macros for
each publication, but increasing popularity among
non-programmers quickly resulted in distributed col-
lections of macros, called macro packages. They
started small but grew and grew and by now have
become pretty large. In these packages there are
macros dealing with fonts, structure, page layout,
graphic inclusion, etc. There is also code dealing
with user interfaces, process control, conversion and
much of that code looks out of place: the lack of
control features and string manipulation is solved
by mimicking other languages, the unavailability of
a float datatype is compensated by misusing dimen-
sion registers, and you can find provisions to force
or inhibit expansion all over the place.

TEX is a powerful typographical programming
language but lacks some of the handy features of
scripting languages. Handy in the sense that you will
need them when you want to go beyond the original
purpose of the system. Lua is a powerful script-
ing language, but knows nothing of typesetting. To
some extent it resembles the language that TEX was
written in: Pascal. And, since Lua is meant for em-
bedding and extending existing systems, it makes
sense to bring Lua into TEX. How do they compare?
Let’s give some examples.

Hans Hagen

384 TUGboat, Volume 29 (2008), No. 3 — TUG 2008 Conference Proceedings

About the simplest example of using Lua in TEX
is the following:
\directlua { tex.print(math.sqrt(10)) }

This kind of application is probably what most
users will want and use, if they use Lua at all. How-
ever, we can go further than that.

3 Loops
In TEX a loop can be implemented as in the plain
format (editorial line breaks, but with original com-
ment):
\def\loop#1\repeat{\def\body{#1}\iterate}
\def\iterate{\body\let\next\iterate

\else\let\next\relax\fi\next}
\let\repeat=\fi % this makes \loop..\if..\repeat

% skippable

This is then used as:
\newcount \mycounter \mycounter=1
\loop

...
\advance\mycounter 1
\ifnum\mycounter < 11

\repeat

The definition shows a bit how TEX program-
ming works. Of course such definitions can be
wrapped in macros, like:
\forloop{1}{10}{1}{some action}

and this is what often happens in more complex
macro packages. In order to use such control loops
without side effects, the macro writer needs to take
measures to permit, for instance, nested usage and
avoid clashes between local variables (counters or
macros) and user-defined ones. Above we used a
counter in the condition, but in practice expressions
will be more complex and this is not that trivial to
implement.

The original definition of the iterator can be
written a bit more efficiently:
\def\iterate{\body \expandafter\iterate \fi}

And indeed, in macro packages you will find
many such expansion control primitives being used,
which does not make reading macros easier.

Now, get me right, this does not make TEX less
powerful, it’s just that the language is focused on
typesetting and not on general purpose program-
ming, and in principle users can do without that:
documents can be preprocessed using another lan-
guage, and document specific styles can be used.

We have to keep in mind that TEX was writ-
ten in a time when resources in terms of memory
and CPU cycles were far less abundant than they are
now. The 255 registers per class and (about) 3000

hash slots in original TEX were more than enough for
typesetting a book, but in huge collections of macros
they are not all that much. For that reason many
macro packages use obscure names to hide their pri-
vate registers from users and instead of allocating
new ones with meaningful names, existing ones are
shared. It is therefore not completely fair to compare
TEX code with Lua code: in Lua we have plenty of
memory and the only limitations are those imposed
by modern computers.

In Lua, a loop looks like this:
for i=1,10 do

...
end

But while in the TEX example, the content di-
rectly ends up in the input stream, in Lua we need
to do that explicitly, so in fact we will have:
for i=1,10 do

tex.print("...")
end

And, in order to execute this code snippet, in
LuaTEX we will do:
\directlua 0 {

for i=1,10 do
tex.print("...")

end
}

So, eventually we will end up with more code
than just Lua code, but still the loop itself looks
quite readable and more complex loops are possible:
\directlua 0 {

local t, n = { }, 0
while true do

local r = math.random(1,10)
if not t[r] then

t[r], n = true, n+1
tex.print(r)
if n == 10 then break end

end
end

}

This will typeset the numbers 1 to 10 in ran-
domized order. Implementing a random number
generator in pure TEX takes a fair amount of code
and keeping track of already defined numbers in
macros can be done with macros, but neither of these
is very efficient.

4 Basic typesetting
I already stressed that TEX is a typographical pro-
gramming language and as such some things in TEX
are easier than in Lua, given some access to inter-
nals:

The TEX–Lua mix

TUGboat, Volume 29 (2008), No. 3 — TUG 2008 Conference Proceedings 385

\setbox0=\hbox{x}\the\wd0

In Lua we can do this as follows:
\directlua 0 {

local n = node.new(’glyph’)
n.font = font.current()
n.char = string.byte(’x’)
tex.box[0] = node.hpack(n)
tex.print(tex.wd[0]/65536 .. "pt")

}

One pitfall here is that TEX rounds the number
differently than Lua. Both implementations can be
wrapped in a macro resp. function:
\def\measured#1{\setbox0=\hbox{#1}\the\wd0\relax}

Now we get:
\measured{x}

The same macro using Lua looks as follows:
\directlua 0 {

function measure(chr)
local n = node.new(’glyph’)
n.font = font.current()
n.char = string.byte(chr)
tex.box[0] = node.hpack(n)
tex.print(tex.wd[0]/65536 .. "pt")

end
}
\def\measured#1{\directlua0{measure("#1")}}

In both cases, special tricks are needed if you
want to pass for instance a # character to the TEX
implementation, or a " to Lua; namely, using \# in
the first case, and Lua’s “long strings” marked with
double square brackets in the second.

This example is somewhat misleading. Imagine
that we want to pass more than one character. The
TEX variant is already suited for that, but the Lua
function will now look like:
\directlua 0 {

function measure(str)
if str == "" then

tex.print("0pt")
else

local head, tail = nil, nil
for chr in str:gmatch(".") do

local n = node.new(’glyph’)
n.font = font.current()
n.char = string.byte(chr)
if not head then

head = n
else

tail.next = n
end
tail = n

end
tex.box[0] = node.hpack(head)
tex.print(tex.wd[0]/65536 .. "pt")

end
end

}

And still it’s not okay, since TEX inserts kerns
between characters (depending on the font) and glue
between words, and doing that all in Lua takes more
code. So, it will be clear that although we will use
Lua to implement advanced features, TEX itself still
has quite a lot of work to do.

5 Typesetting stylistic variations
In the following examples we show code, but it is
not of production quality. It just demonstrates a
new way of dealing with text in TEX.

Occasionally a design demands that at some
place the first character of each word should be up-
percase, or that the first word of a paragraph should
be in small caps, or that each first line of a paragraph
has to be in dark blue. When using traditional TEX
the user then has to fall back on parsing the data
stream, and preferably you should then start such
a sentence with a command that can pick up the
text. For accentless languages like English this is
quite doable but as soon as commands (for instance
dealing with accents) enter the stream this process
becomes quite hairy.

The next code shows how ConTEXt MkII defines
the \Word and \Words macros that capitalize the
first characters of a word or words. The spaces are
really important here because they signal the end of
a word.
\def\doWord#1%

{\bgroup\the\everyuppercase\uppercase{#1}%
\egroup}

\def\Word#1%
{\doWord#1}

\def\doprocesswords#1 #2\od
{\doifsomething{#1}{\processword{#1} % space!
\doprocesswords#2 \od}}

\def\processwords#1%
{\doprocesswords#1 \od\unskip}

\let\processword\relax

\def\Words
{\let\processword\Word \processwords}

The code here is not that complex. We split off
each word and feed it to a macro that picks up the
first token (hopefully a character) which is then fed
into the \uppercase primitive. This assumes that
for each character a corresponding uppercase vari-
ant is defined using the \uccode primitive. Excep-

Hans Hagen

386 TUGboat, Volume 29 (2008), No. 3 — TUG 2008 Conference Proceedings

tions can be dealt with by assigning relevant code to
the token register \everyuppercase. However, such
macros are far from robust. What happens if the
text is generated and not input as is? What hap-
pens with commands in the stream that do some-
thing with the following tokens?

A Lua-based solution could look as follows:
\def\Words#1{\directlua 0
for s in unicode.utf8.gmatch("#1", "([^])") do

tex.sprint(string.upper(
s:sub(1,1)) .. s:sub(2))

end
}

But there is no real advantage here, apart from
the fact that less code is needed. We still operate on
the input and therefore we need to look to a different
kind of solution: operating on the node list.
function CapitalizeWords(head)

local done = false
local glyph = node.id("glyph")
for start in node.traverse_id(glyph,head) do

local prev, next = start.prev, start.next
if prev and prev.id == kern

and prev.subtype == 0 then
prev = prev.prev

end
if next and next.id == kern

and next.subtype == 0 then
next = next.next

end
if (not prev or prev.id ~= glyph)

and next and next.id == glyph then
done = upper(start)

end
end
return head, done

end

A node list is a forward-linked list. With a
helper function in the node library we can loop over
such lists. Instead of traversing we can use a regu-
lar while loop, but it is probably less efficient in this
case. But how to apply this function to the relevant
part of the input? In LuaTEX there are several call-
backs that operate on the horizontal lists and we can
use one of them to plug in this function. However,
in that case the function is applied to probably more
text than we want.

The solution for this is to assign attributes to
the range of text which a function is intended to
take care of. These attributes (there can be many)
travel with the nodes. This is also a reason why
such code normally is not written by end users, but
by macro package writers: they need to provide the
frameworks where you can plug in code. In Con-
TEXt we have several such mechanisms and therefore

in MkIV this function looks (slightly simplified) as
follows:
function cases.process(namespace,attribute,head)

local done, actions = false, cases.actions
for start in node.traverse_id(glyph,head) do

local attr = has_attribute(start,attribute)
if attr and attr > 0 then

unset_attribute(start,attribute)
local action = actions[attr]
if action then

local _, ok = action(start)
done = done and ok

end
end

end
return head, done

end

Here we check attributes (these are set on the
TEX side) and we have all kind of actions that can
be applied, depending on the value of the attribute.
Here the function that does the actual uppercasing
is defined somewhere else. The cases table provides
us a namespace; such namespaces need to be coor-
dinated by macro package writers.

This approach means that the macro code looks
completely different; in pseudo code:
\def\Words#1{{<setattribute><cases>

<somevalue>#1}}

Or alternatively:
\def\StartWords{\begingroup<setattribute><cases>

<somevalue>}
\def\StopWords {\endgroup}

Because starting a paragraph with a group can
have unwanted side effects (such as \everypar being
expanded inside a group) a variant is:
\def\StartWords{<setattribute><cases><somevalue>}
\def\StopWords {<resetattribute><cases>}

So, what happens here is that the user sets an
attribute using some high level command, and at
some point during the transformation of the input
into node lists, some action takes place. At that
point commands, expansion and the like no longer
can interfere.

In addition to some infrastructure, macro pack-
ages need to carry some knowledge, just as with the
\uccode used in \uppercase. The upper function
in the first example looks as follows:
local function upper(start)

local data, char = characters.data, start.char
if data[char] then

local uc = data[char].uccode
if uc and

fonts.tfm.id[start.font].characters[uc]
then

The TEX–Lua mix

TUGboat, Volume 29 (2008), No. 3 — TUG 2008 Conference Proceedings 387

start.char = uc
return true

end
end
return false

end

Such code is really macro package dependent:
LuaTEX provides only the means, not the solutions.
In ConTEXt we have collected information about
characters in a data table in the characters name-
space. There we have stored the uppercase codes
(uccode). The fonts table, again ConTEXt specific,
keeps track of all defined fonts and before we change
the case, we make sure that this character is present
in the font. Here id is the number by which Lua-
TEX keeps track of the used fonts. Each glyph node
carries such a reference.

In this example, eventually we end up with more
code than in TEX, but the solution is much more
robust. Just imagine what would happen when in
the TEX solution we would have:
\Words{\framed[offset=3pt]{hello world}}

It simply does not work. On the other hand, the
Lua code never sees TEX commands, it only sees the
two words represented by glyph nodes and separated
by glue.

Of course, there is a danger when we start open-
ing TEX’s core features. Currently macro packages
know what to expect, they know what TEX can and
cannot do, and macro writers have exploited every
corner of TEX, even the darkest ones. while the dirty
tricks in The TEXbook had an educational purpose,
those of users sometimes have obscene traits. If we
just stick to the trickery introduced for parsing in-
put, converting this into that, doing some calcula-
tions, and the like, it will be clear that Lua is more
than welcome. It may hurt to throw away thou-
sands of lines of impressive code and replace it by a
few lines of Lua but that’s the price the user pays
for abusing TEX. Eventually ConTEXt MkIV will be
a decent mix of Lua and TEX code, and hopefully
the solutions programmed in those languages are as
clean as possible.

Of course we can discuss until eternity whether
Lua is the best choice. Taco, Hartmut and I are
pretty confident that it is, and in the couple of years
that we have been working on LuaTEX nothing has
proved us wrong yet. We can fantasize about con-
cepts, only to find out that they are impossible to
implement or hard to agree on; we just go ahead us-
ing trial and error. We can talk over and over how
opening up should be done, which is what the team
does in a nicely closed and efficient loop, but at some

points decisions have to be made. Nothing is perfect,
neither is LuaTEX, but most users won’t notice it as
long as it extends TEX’s life and makes usage more
convenient.

6 Groups
Users of TEX and MetaPost will have noticed that
both languages have their own grouping (scope)
model. In TEX grouping is focused on content: by
grouping the macro writer (or author) can limit the
scope to a specific part of the text or have certain
macros live within their own world.
.1. \bgroup .2. \egroup .1.

Everything done at 2 is local unless explicitly
told otherwise. This means that users can write
(and share) macros with a small chance of clashes.
In MetaPost grouping is available too, but variables
explicitly need to be saved.
.1. begingroup; save p; path p; .2. endgroup .1.

After using MetaPost for a while this feels quite
natural because an enforced local scope demands
multiple return values which is not part of the macro
language. Actually, this is another fundamental dif-
ference between the languages: MetaPost has (a
kind of) functions, which TEX lacks. In MetaPost
you can write
draw origin for i=1 upto 10: ..(i,sin(i)) endfor;

but also:
draw some(0) for i=1 upto 10: ..some(i) endfor;

with
vardef some (expr i) =

if i > 4 : i = i - 4 fi ;
(i,sin(i))

enddef ;

The condition and assignment in no way inter-
fere with the loop where this function is called, as
long as some value is returned (a pair in this case).

In TEX things work differently. Take this:
\count0=1
\message{\advance\count0 by 1 \the\count0}
\the\count0

The terminal wil show:
\advance \count 0 by 1 1

At the end the counter still has the value 1.
There are quite a few situations like this, for in-
stance when data such as a table of contents has
to be written to a file. You cannot write macros
where such calculations are done, hidden away, and
only the result is seen.

The nice thing about the way Lua is presented
to the user is that it permits the following:

Hans Hagen

388 TUGboat, Volume 29 (2008), No. 3 — TUG 2008 Conference Proceedings

\count0=1
\message{\directlua0{%

tex.count[0] = tex.count[0] + 1}%
\the\count0}

\the\count0

This will report 2 to the terminal and typeset
a 2 in the document. Of course this does not solve
everything, but it is a step forward. Also, compared
to TEX and MetaPost, grouping is done differently:
there is a local prefix that makes variables (and
functions are variables too) local in modules, func-
tions, conditions, loops, etc. The Lua code in this
article contains such locals.

7 An example: XML
In practice most users will use a macro package and
so, if a user sees TEX, he or she sees a user interface,
not the code behind it. As such, they will also not
encounter the code written in Lua that handles, for
instance, fonts or node list manipulations. If a user
sees Lua, it will most probably be in processing ac-
tual data. Therefore, in this section I will give an ex-
ample of two ways to deal with XML: one more suit-
able for traditional TEX, and one inspired by Lua. It
demonstrates how the availability of Lua can result
in different solutions for the same problem.

7.1 MkII: stream-based processing
In ConTEXt MkII, the version that deals with pdf-
TEX and X ETEX, we use a stream-based XML parser,
written in TEX. Each < and & triggers a macro that
then parses the tag and/or entity. This method is
quite efficient in terms of memory but the associ-
ated code is not simple because it has to deal with
attributes, namespaces and nesting.

The user interface is not that complex, but in-
volves quite a few commands. Take for instance the
following XML snippet:
<document>

<section>
<title>Whatever</title>
<p>some text</p>
<p>some more</p>

</section>
</document>

When using ConTEXt commands, we can imag-
ine the following definitions:
\defineXMLenvironment[document]

{\starttext} {\stoptext}
\defineXMLargument [title]

{\section}
\defineXMLenvironment[p]

{\ignorespaces}{\par}

When attributes have to be dealt with, for in-

stance a reference to this section, things quickly start
looking more complex. Also, users need to know
what definitions to use in situations like this:
<table>

<tr><td>first</td> ... <td>last</td></tr>
<tr><td>left</td> ... <td>right</td></tr>

</table>

Here we cannot be sure that a cell does not con-
tain a nested table, which is why we need to define
the mapping as follows:
\defineXMLnested[table]{\bTABLE} {\eTABLE}
\defineXMLnested[tr] {\bTR} {\eTR}
\defineXMLnested[td] {\bTD} {\eTD}

The \defineXMLnested macro is rather messy
because it has to collect snippets and keep track of
the nesting level, but users don’t see that code, they
just need to know when to use what macro. Once it
works, it keeps working.

Unfortunately mappings from source to style
are never that simple in real life. We usually need
to collect, filter and relocate data. Of course this
can be done before feeding the source to TEX, but
MkII provides a few mechanisms for that too. For
instance, to reverse the order you can do this:
<article>

<title>Whatever</title>
<author>Someone</author>
<p>some text</p>

</article>

\defineXMLenvironment[article]
{\defineXMLsave[author]}
{\blank author: \XMLflush{author}}

This will save the content of the author element and
flush it when the end tag article is seen. So, given
previous definitions, we will get the title, some text
and then the author. You may argue that instead
we should use for instance XSLT but even then a
mapping is needed from the XML to TEX, and it’s a
matter of taste where the burden is put.

Because ConTEXt also wants to support stan-
dards like MathML, there are some more mechanisms
but these are hidden from the user. And although
these do a good job in most cases, the code associ-
ated with the solutions has never been satisfying.

Supporting XML this way is doable, and Con-
TEXt has used this method for many years in fairly
complex situations. However, now that we have Lua
available, it is possible to see if some things can be
done more simply (or differently).

7.2 MkIV: tree-based processing
After some experimenting I decided to write a full
blown XML parser in Lua, but contrary to the

The TEX–Lua mix

TUGboat, Volume 29 (2008), No. 3 — TUG 2008 Conference Proceedings 389

stream-based approach, this time the whole tree is
loaded in memory. Although this uses more mem-
ory than a streaming solution, in practice the differ-
ence is not significant because often in MkII we also
needed to store whole chunks.

Loading XML files in memory is very fast and
once it is done we can have access to the elements
in a way similar to XPath. We can selectively pipe
data to TEX and manipulate content using TEX or
Lua. In most cases this is faster than the stream-
based method. An interesting fact is that we can do
this without linking to existing XML libraries, and
as a result we are pretty independent.

So how does this look from the perspective of
the user? Say that we have the simple article defin-
ition stored in demo.xml.
<?xml version =’1.0’?>
<article>

<title>Whatever</title>
<author>Someone</author>
<p>some text</p>

</article>

This time we associate so-called setups with the
elements. Each element can have its own setup, and
we can use expressions to assign them. Here we have
just one such setup:
\startxmlsetups xml:document

\xmlsetsetup{main}{article}{xml:article}
\stopxmlsetups

When loading the document it will automatically be
associated with the tag main. The previous rule as-
sociates the setup xml:article with the article
element in tree main. We register this setup so that
it will be applied to the document after loading:
\xmlregistersetup{xml:document}

and the document itself is processed with (the empty
braces are an optional setup argument):
\xmlprocessfile{main}{demo.xml}{}

The setup xml:article can look as follows:
\startxmlsetups xml:article

\section{\xmltext{#1}{/title}}
\xmlall{#1}{!(title|author)}
\blank author: \xmltext{#1}{/author}

\stopxmlsetups

Here #1 refers to the current node in the XML
tree, in this case the root element, article. The sec-
ond argument of \xmltext and \xmlall is a path ex-
pression, comparable to XPath: /title means: the
title element anchored to the current root (#1),
and !(title|author) is the negation of (comple-
ment to) title or author. Such expressions can be
more complex than the one above, for instance:

\xmlfirst{#1}{/one/(alpha|beta)/two/text()}

which returns the content of the first element that
satisfies one of the paths (nested tree):
/one/alpha/two
/one/beta/two

There is a whole bunch of commands like \xml-
text that filter content and pipe it into TEX. These
are calling Lua functions. This is no manual, so we
will not discuss them here. However, it is important
to realize that we have to associate setups (consider
them free formatted macros) with at least one ele-
ment in order to get started. Also, XML inclusions
have to be dealt with before assigning the setups.
These are simple one-line commands. You can also
assign defaults to elements, which saves some work.

Because we can use Lua to access the tree and
manipulate content, we can now implement parts of
XML handling in Lua. An example of this is dealing
with so-called Cals tables. This is done in approxi-
mately 150 lines of Lua code, loaded at runtime in
a module. This time the association uses functions
instead of setups and those functions will pipe data
back to TEX. In the module you will find:
\startxmlsetups xml:cals:process

\xmlsetfunction {\xmldocument} {cals:table}
{lxml.cals.table}

\stopxmlsetups

\xmlregistersetup{xml:cals:process}
\xmlregisterns{cals}{cals}

These commands tell MkIV that elements with
a namespace specification that contains cals will be
remapped to the internal namespace cals and the
setup associates a function with this internal name-
space.

By now it will be clear that from the perspec-
tive of the user Lua is hardly visible. Sure, he or
she can deduce that deep down some magic takes
place, especially when you run into more complex
expressions like this (the @ denotes an attribute):
\xmlsetsetup
{main} {item[@type=’mpctext’ or @type=’mrtext’]}
{questions:multiple:text}

Such expressions resemble XPath, but can go
much further, just by adding more functions to the
library.
item[position() > 2 and position() < 5

and text() == ’ok’]
item[position() > 2 and position() < 5

and text() == upper(’ok’)]
item[@n==’03’ or @n==’08’]
item[number(@n)>2 and number(@n)<6]
item[find(text(),’ALSO’)]

Hans Hagen

390 TUGboat, Volume 29 (2008), No. 3 — TUG 2008 Conference Proceedings

Just to give you an idea, in the module that
implements the parser you will find definitions that
match the function calls in the above expressions.
xml.functions.find = string.find
xml.functions.upper = string.upper
xml.functions.number = tonumber

So much for the different approaches. It’s up to
the user what method to use: stream-based MkII,
tree-based MkIV, or a mixture.

8 TEX–Lua in conversation
The main reason for taking XML as an example of
mixing TEX and Lua is in that it can be a bit mind-
boggling if you start thinking of what happens be-
hind the scenes. Say that we have
<?xml version =’1.0’?>
<article>

<title>Whatever</title>
<author>Someone</author>
<p>some bold text</p>

</article>

and we use the setup shown before with article.
At some point, we are done with defining setups

and load the document. The first thing that happens
is that the list of manipulations is applied: file in-
clusions are processed first, setups and functions are
assigned next, maybe some elements are deleted or
added, etc. When that is done we serialize the tree
to TEX, starting with the root element. When pip-
ing data to TEX we use the current catcode regime;
linebreaks and spaces are honored as usual.

Each element can have a function (command)
associated and when this is the case, control is given
to that function. In our case the root element has
such a command, one that will trigger a setup. And
so, instead of piping content to TEX, a function is
called that lets TEX expand the macro that deals
with this setup.

However, that setup itself calls Lua code that
filters the title and feeds it into the \section com-
mand, next it flushes everything except the title and
author, which again involves calling Lua. Last it
flushes the author. The nested sequence of events is
as follows:

lua: Load the document and apply setups and
the like.

lua: Serialize the article element, but since
there is an associated setup, tell TEX to
expand that one instead.
tex: Execute the setup, first expand the

\section macro, but its argument is a
call to Lua.
lua: Filter title from the subtree un-

der article, print the content to
TEX and return control to TEX.

tex: Tell Lua to filter the paragraphs i.e.
skip title and author; since the b
element has no associated setup (or
whatever) it is just serialized.
lua: Filter the requested elements and

return control to TEX.
tex: Ask Lua to filter author.

lua: Pipe author’s content to TEX.
tex: We’re done.

lua: We’re done.
This is a very simple case. In my daily work I am
dealing with rather extensive and complex educa-
tional documents where in one source there is text,
math, graphics, all kind of fancy stuff, questions and
answers in several categories and of different kinds,
to be reshuffled or not, omitted or combined. So
there we are talking about many more levels of TEX
calling Lua and Lua piping to TEX, etc. To stay
in TEX speak: we’re dealing with one big ongoing
nested expansion (because Lua calls expand), and
you can imagine that this somewhat stresses TEX’s
input stack, but so far I have not encountered any
problems.

9 Final remarks
Here I discuss several possible applications of Lua
in TEX. I didn’t mention yet that because LuaTEX
contains a scripting engine plus some extra libraries,
it can also be used purely for that. This means that
support programs can now be written in Lua and
that we need no longer depend on other scripting
engines being present on the system. Consider this
a bonus.

Usage in TEX can be categorized in four ways:
1. Users can use Lua for generating data, do all

kind of data manipulations, maybe read data
from file, etc. The only link with TEX is the
print function.

2. Users can use information provided by TEX
and use this when making decisions. An ex-
ample is collecting data in boxes and use Lua
to do calculations with the dimensions. An-
other example is a converter from MetaPost
output to PDF literals. No real knowledge of
TEX’s internals is needed. The MkIV XML
functionality discussed before demonstrates
this: it’s mostly data processing and piping to
TEX. Other examples are dealing with buffers,
defining character mappings, and handling er-
ror messages, verbatim . . . the list is long.

3. Users can extend TEX’s core functionality. An

The TEX–Lua mix

TUGboat, Volume 29 (2008), No. 3 — TUG 2008 Conference Proceedings 391

example is support for OpenType fonts: Lua-
TEX itself does not support this format di-
rectly, but provides ways to feed TEX with the
relevant information. Support for OpenType
features demands manipulating node lists.
Knowledge of internals is a requirement. Ad-
vanced spacing and language specific features
are made possible by node list manipulations
and attributes. The alternative \Words macro
is an example of this.

4. Users can replace existing TEX functional-
ity. In MkIV there are numerous examples of
this, for instance all file I/O is written in Lua,
including reading from zip files and remote
locations. Loading and defining fonts is also
under Lua control. At some point MkIV will
provide dedicated splitters for multicolumn
typesetting and probably also better display

spacing and display math splitting.
The boundaries between these categories are not set
in stone. For instance, support for image inclu-
sion and MPlib in ConTEXt MkIV sits between cat-
egories 3 and 4. Categories 3 and 4, and probably
also 2, are normally the domain of macro package
writers and more advanced users who contribute to
macro packages. Because a macro package has to
provide some stability it is not a good idea to let
users mess around with all those internals, due to
potential interference. On the other hand, normally
users operate on top of a kernel using some kind of
API, and history has proved that macro packages are
stable enough for this.

Sometime around 2010 the team expects Lua-
TEX to be feature complete and stable. By that time
I can probably provide a more detailed categoriza-
tion.

