
446 TUGboat, Volume 29 (2008), No. 3 — TUG 2008 Conference Proceedings

The MetaPost library and LuaTEX

Hans Hagen
Pragma ADE
http://pragma-ade.com

Abstract

An introduction to the MetaPost library and its use in LuaTEX.

1 Introduction
If MetaPost support had not been as tightly inte-
grated into ConTEXt as it is, at least half of the
projects Pragma ADE has been doing in the last
decade could not have been done at all. Take for in-
stance backgrounds behind text or graphic markers
alongside text (as seen here). These are probably the
most complex mechanisms in ConTEXt: positions
are stored, and positional information is passed on
to MetaPost, where intersections between the text
areas and the running text are converted into graph-
ics that are then positioned in the background of the
text. Underlining of text (sometimes used in the edu-
cational documents that we typeset) and change bars
(in the margins) are implemented using the same
mechanism because those are basically a background
with only one of the frame sides drawn.

You can probably imagine that a 300 page doc-
ument with several such graphics per page takes a
while to process. A nice example of such integrated
graphics is the LuaTEX reference manual, that has
an unique graphic at each page: a stylized image of
a revolving moon.

Most of the running time integrating such
graphics seemed to be caused by the mechanics of the
process: starting the separate MetaPost interpreter
and having to deal with a number of temporary files.
Therefore our expectations were high with regards to
integrating MetaPost more tightly into LuaTEX. Be-
sides the speed gain, it also true that the simpler the
process of using such use of graphics becomes, the
more modern a TEX runs looks and the less prob-
lems new users will have with understanding how all
the processes cooperate.

This article will not discuss the application in-
terface of the MPlib library in detail; for that there is
the manual. In short, using the embedded MetaPost
interpreter in LuaTEX boils down to the following:
• Open an instance using mplib.new, either to

process images with a format to be loaded, or
to create such a format. This function returns
a library object.
• Execute sequences of MetaPost commands,

using the object’s execute method. This re-
turns a result.
• Check if the result is valid and (if it is okay)

request the list of objects. Do whatever you
want with them, most probably convert them
to some output format. You can also request
a string representation of a graphic in Post-
Script format.

There is no need to close the library object. As long
as there were no fatal errors, the library recovers well
and can stay alive during the entire LuaTEX run.

Support for MPlib depends on a few compo-
nents: integration, conversion and extensions. This
article shows some of the code involved in supporting
the library. Let’s start with the conversion.

2 Conversion
The result of a MetaPost run traditionally is a
PostScript language description of the generated
graphic(s). When PDF is needed, that PostScript
code has to be converted to the target format. This
includes embedded text as well as penshapes used
for drawing. Here is an example graphic:

Figure 1

draw fullcircle
scaled 2cm
withpen pencircle xscaled 1mm yscaled .5mm

rotated 30 withcolor .75red ;

Notice how the pen is not a circle but a rotated
ellipse. Later on it will become clear what the con-
sequences of that are for the conversion.

How does this output look in PostScript? In

The MetaPost library and LuaTEX

TUGboat, Volume 29 (2008), No. 3 — TUG 2008 Conference Proceedings 447

abridged form, it looks like this:
%!PS-Adobe-3.0 EPSF-3.0
%%BoundingBox: -30 -30 30 30
%%HiResBoundingBox: -29.62 -29.283 29.62 29.283
%%Creator: MetaPost 1.090
%%CreationDate: 2008.09.23:0939
%%Pages: 1
% [preamble omitted]
%%Page: 1 1
0.75 0 0 R 2.55513 hlw rd 1 lj 10 ml
q n 28.34645 0 m
28.34645 7.51828 25.35938

14.72774 20.04356 20.04356 c
14.72774 25.35938 7.51828

28.34645 0 28.34645 c
[...]
[0.96077 0.5547 -0.27734 0.4804 0 0] t S Q
P
%%EOF

The most prominent code here concerns the
path. The numbers in brackets define the transfor-
mation matrix for the pen we used. The PDF variant
looks as follows:
q
0.750 0.000 0.000 rg 0.750 0.000 0.000 RG
10.000000 M
1 j
1 J
2.555120 w
q

0.960769 0.554701 -0.277351
0.480387 0.000000 0.000000 cm
22.127960 -25.551051 m

25.516390 -13.813203 26.433849
0.135002 24.679994 13.225878 c

22.926120 26.316745 18.644486
37.478783 12.775526 44.255644 c
[...]
h S
Q0
g 0 G
Q

The operators don’t look much different from
the PostScript, which is mostly due to the fact that
in the PostScript code, the preamble defines short-
cuts like c for curveto. Again, most code involves
the path. However, this time the numbers are differ-
ent and the transformation comes before the path.

In the case of PDF output, we could use TEX
itself to do the conversion: a generic converter is im-
plemented in supp-pdf.tex, while a converter opti-
mized for ConTEXt MkII is defined in the files whose
names start with meta-pdf. But in ConTEXt MkIV
we use Lua code for the conversion instead. Thanks
to Lua’s powerful Lpeg parsing library, this gives
cleaner code and is also faster. This converter cur-

rently lives in mlib-pdf.lua.
Now, with the embedded MetaPost library, con-

version goes still differently because now it is possi-
ble to request the drawn result and associated infor-
mation in the form of Lua tables.
figure={
["boundingbox"]={

["llx"]=-29.623992919922,
["lly"]=-29.283935546875,
["urx"]=29.623992919922,
["ury"]=29.283935546875,

},
["objects"]={
{
["color"]={ 0.75, 0, 0 },
["linecap"]=1,
["linejoin"]=1,
["miterlimit"]=10,
["path"]={
{
["left_x"]=28.346450805664,
["left_y"]=-7.5182800292969,
["right_x"]=28.346450805664,
["right_y"]=7.5182800292969,
["x_coord"]=28.346450805664,
["y_coord"]=0,

},
...

},
["pen"]={
{
["left_x"]=2.4548797607422,
["left_y"]=1.4173278808594,
["right_x"]=-0.70866394042969,
["right_y"]=1.2274475097656,
["x_coord"]=0,
["y_coord"]=0,

},
["type"]="elliptical",

},
["type"]="outline",

},
},

}

This means that instead of parsing PostScript
output, we can operate on a proper datastructure
and get code like the following:
function convertgraphic(result)
if result then
local figures = result.fig
if figures then
for fig in ipairs(figures) do
local llx, lly, urx, ury

= unpack(fig:boundingbox())
if urx > llx then
startgraphic(llx, lly, urx, ury)
for object in ipairs(fig:objects()) do

Hans Hagen

448 TUGboat, Volume 29 (2008), No. 3 — TUG 2008 Conference Proceedings

if object.type == "..." then
...
flushgraphic(...)
...

else
...

end
end
finishgraphic()

end
end

end
end

end

Here result is what the library returns when
one or more graphics are processed. As you can de-
duce from this snippet, a result can contain multiple
figures. Each figure corresponds with a beginfig
... endfig. The graphic operators that the con-
verter generates (so-called PDF literals) have to be
encapsulated in a proper box so this is why we have:
• startgraphic: start packaging the graphic
• flushgraphic: pipe literals to TEX
• finishgraphic: finish packaging the graphic

It does not matter what number beginfig was
passed, the graphics come out in the natural order.

A bit more than half a dozen different object
types are supported. The example MetaPost draw
command above results in an outline object. This
object contains not only path information but also
carries rendering data, like the color and the pen.
So, in the end we will flush code like 1 M which sets
the miterlimit to 1, or .5 g which sets the color
to 50% gray, in addition to a path.

Because objects are returned in a way that
closely resembles MetaPost’s internals, some extra
work needs to be done in order to calculate paths
with elliptical pens. An example of a helper func-
tion in somewhat simplified form is shown next:
function pen_characteristics(object)

local p = object.pen[1]
local wx, wy, width
if p.right_x == p.x_coord

and p.left_y == p.y_coord then
wx = abs(p.left_x - p.x_coord)
wy = abs(p.right_y - p.y_coord)

else -- pyth: sqrt(a^2 + b^2)
wx = pyth(p.left_x - p.x_coord,

p.right_x - p.x_coord)
wy = pyth(p.left_y - p.y_coord,

p.right_y - p.y_coord)
end
if wy/coord_range_x(object.path, wx)

>= wx/coord_range_y(object.path, wy) then
width = wy

else
width = wx

end
local sx, sy = p.left_x, p.right_y
local rx, ry = p.left_y, p.right_x
local tx, ty = p.x_coord, p.y_coord
if width ~= 1 then

if width == 0 then
sx, sy = 1, 1

else
rx, ry, sx, sy = rx/width, ry/width,

sx/width, sy/width
end

end
if abs(sx) < eps then sx = eps end
if abs(sy) < eps then sy = eps end
return sx, rx, ry, sy, tx, ty, width

end

If sx and sy are 1, there is no need to transform
the path, otherwise a suitable transformation ma-
trix is calculated and returned. The function itself
uses a few helpers that make the calculations even
more obscure. This kind of code is far from triv-
ial and as already mentioned, these basic algorithms
were derived from the MetaPost sources. Even so,
these snippets demonstrate that interfacing using
Lua does not look that bad.

In the actual MkIV code things look a bit dif-
ferent because it does a bit more and uses optimized
code. There you will also find the code dealing with
the actual transformation, of which these helpers are
just a portion.

If you compare the PostScript and the PDF code
you will notice that the paths looks different. This is
because the use and application of a transformation
matrix in PDF is different from how it is handled
in PostScript. In PDF more work is assumed to be
done by the PDF generating application. This is
why in both the TEX and the Lua based converters
you will find transformation code and the library
follows the same pattern. In that respect PDF differs
fundamentally from PostScript.

In the TEX based converter there was the prob-
lem of keeping the needed calculations within TEX’s
accuracy, which fortunately permits larger values
than MetaPost can produce. This plus the parsing
code resulted in a lot of TEX code which is not that
easy to follow. The Lua based parser is more read-
able, but since it also operates on PostScript code it
too is kind of unnatural, but at least there are fewer
problems with keeping the calculations sane. The
MPlib based converter is definitely the cleanest and
least sensitive to future changes in the PostScript
output. Does this mean that there is no ugly code
left? Alas, as we will see in the next section, dealing

The MetaPost library and LuaTEX

TUGboat, Volume 29 (2008), No. 3 — TUG 2008 Conference Proceedings 449

with extensions is still somewhat messy. In practice
users will not be bothered with such issues, because
writing a converter is a one time job by macro pack-
age writers.

3 Extensions
In Metafun, which is the MetaPost format used with
ConTEXt, a few extensions are provided, such as:
• cmyk, spot and multitone colors
• including external graphics
• linear and circular shades
• texts converted to outlines
• inserting arbitrary texts

Until now, most of these extensions have been im-
plemented by using specially coded colors and by
injecting so-called specials (think of them as com-
ments) into the output. On one of our trips to a
TEX conference, we discussed ways to pass informa-
tion along with paths and eventually we arrived at
associating text strings with paths as a simple and
efficient solution. As a result, recently MetaPost was
extended by withprescript and withpostscript
directives. For those who are unfamiliar with these
new features, they are used as follows:
draw fullcircle withprescript "hello"

withpostscript "world" ;

In the PostScript output these scripts end up
before and after the path, but in the PDF converter
they can be overloaded to implement extensions, and
that works reasonably well. However, at the moment
there cannot be multiple pre- and postscripts asso-
ciated with a single path inside the MetaPost inter-
nals. This means that for the moment, the scripts
mechanism is only used for a few of the extensions.
Future versions of MPlib may provide more sophis-
ticated methods for carrying information around.

The MkIV conversion mechanism uses scripts
for graphic inclusion, shading and text processing
but unfortunately cannot use them for more ad-
vanced color support.

A nasty complication is that the color spaces in
MetaPost don’t cast, which means that one cannot
assign any color to a color variable: each colorspace
has its own type of variable.
color one ; one := (1,1,0) ; % correct
cmykcolor two ; two := (1,0,0,1) ; % correct
one := two ; % error
fill fullcircle scaled 1cm

withcolor .5[one,two] ; % error

In ConTEXt we use constructs like this:
\startreusableMPgraphic{test}

fill fullcircle scaled 1cm
withcolor \MPcolor{mycolor} ;

\stopreusableMPgraphic
\reuseMPgraphic{test}

Because withcolor is clever enough to under-
stand what color type it receives, this is ok, but how
about:
\startreusableMPgraphic{test}

color c ;
c := \MPcolor{mycolor} ;
fill fullcircle scaled 1cm withcolor c ;

\stopreusableMPgraphic

Here the color variable only accepts an RGB
color and because in ConTEXt there is mixed color
space support combined with automatic colorspace
conversions, it doesn’t know in advance what type it
is going to get. By implementing color spaces other
than RGB using special colors (as before) such type
mismatches can be avoided.

The two techniques (coding specials in colors
and pre/postscripts) cannot be combined because a
script is associated with a path and cannot be bound
to a variable like c. So this again is an argument for
using special colors that remap onto CMYK spot or
multi-tone colors.

Another area of extensions is text. In previous
versions of ConTEXt the text processing was already
isolated: text ended up in a separate file and was
processed in a separate run. More recent versions of
ConTEXt use a more abstract model of boxes that
are preprocessed before a run, which avoids the ex-
ternal run(s). In the new approach everything can
be kept internal. The conversion even permits con-
structs like:
for i=1 upto 100 :

draw btex oeps etex rotated i ;
endfor ;

but since this construct is kind of obsolete (at least
in the library version of MetaPost) it is better to use:
for i=1 upto 100 :

draw textext("cycle " & decimal i) rotated i ;
endfor ;

Internally a trial pass is done so that indeed
100 different texts will be drawn. The throughput
of texts is so high that in practice one will not even
notice that this happens.

Dealing with text is another example of using
Lpeg. The following snippet of code sheds some light
on how text in graphics is dealt with. Actually this is
a variation on a previous implementation. That one
was slightly faster but looked more complex. It was
also not robust for complex texts defined in macros
in a format.
local P, S, V, Cs = lpeg.P, lpeg.S, lpeg.V,

lpeg.Cs

Hans Hagen

450 TUGboat, Volume 29 (2008), No. 3 — TUG 2008 Conference Proceedings

local btex = P("btex")
local etex = P(" etex")
local vtex = P("verbatimtex")
local ttex = P("textext")
local gtex = P("graphictext")
local spacing = S(" \n\r\t\v")^0
local dquote = P(’"’)

local found = false

local function convert(str)
found = true
return "textext(\"" .. str .. "\")"

end
local function ditto(str)

return "\" & ditto & \""
end
local function register()

found = true
end

local parser = P {
[1] = Cs((V(2)/register

+ V(3)/convert + 1)^0),
[2] = ttex + gtex,
[3] = (btex + vtex) * spacing

* Cs((dquote/ditto + (1-etex))^0)
* etex,

}

function metapost.check_texts(str)
found = false
return parser:match(str), found

end

If you are unfamiliar with Lpeg it may take
a while to see what happens here: we replace the
text between btex and etex by a call to textext,
a macro. Special care is given to embedded double
quotes.

When text is found, the graphic is processed
two times. The definition of textext is different for
each run. For the first run we have:
vardef textext(expr str) =

image (
draw unitsquare

withprescript "tf"
withpostscript str ;

)
enddef ;

After the first run the result is not really con-
verted, just the outlines with the tf prescript are
filtered. In the loop over the object there is code
like:
local prescript = object.prescript
if prescript then

local special = metapost.specials[prescript]

if special then
special(object.postscript,object)

end
end

Here, metapost is just the namespace used by
the converter. The prescript tag tf triggers a func-
tion:
function metapost.specials.tf(specification,

object)
tex.sprint(tex.ctxcatcodes,

format("\\MPLIBsettext{%s}{%s}",
metapost.textext_current,specification))

if metapost.textext_current
< metapost.textext_last then

metapost.textext_current
= metapost.textext_current + 1

end
...

end

Again, you can forget about the details of this
function. What’s important is that there is a call
out to TEX that will process the text. Each snippet
gets the number of the box that holds the content.
The macro that is called just puts stuff in a box:
\def\MPLIBsettext#1#2%

{\global\setbox#1\hbox{#2}}

In the next processing cycle of the MetaPost
code, the textext macro does something different :
vardef textext(expr str) =

image (
_tt_n_ := _tt_n_ + 1 ;
draw unitsquare

xscaled _tt_w_[_tt_n_]
yscaled (_tt_h_[_tt_n_] + _tt_d_[_tt_n_])
withprescript "ts"
withpostscript decimal _tt_n_ ;

)
enddef ;

This time the (by then known) dimensions of
the box storing the snippet are used. These are
stored in the _tt_w_, _tt_h_ and _tt_d_ arrays.
The arrays are defined by Lua using information
about the boxes, and passed to the library before
the second run. The result from the second Meta-
Post run is converted, and again the prescript is used
as trigger:
function metapost.specials.ts(specification,

object,result)
local op = object.path
local first, second, fourth

= op[1], op[2], op[4]
local tx, ty

= first.x_coord, first.y_coord
local sx, sy

= second.x_coord - tx, fourth.y_coord - ty

The MetaPost library and LuaTEX

TUGboat, Volume 29 (2008), No. 3 — TUG 2008 Conference Proceedings 451

local rx, ry
= second.y_coord - ty, fourth.x_coord - tx

if sx == 0 then sx = 0.00001 end
if sy == 0 then sy = 0.00001 end
metapost.flushfigure(result)
tex.sprint(tex.ctxcatcodes,format(

"\\MPLIBgettext{%f}{%f}{%f}{%f}{%f}{%f}{%s}",
sx,rx,ry,sy,tx,ty,
metapost.textext_current))

...
end

At this point the converter is actually convert-
ing the graphic and passing PDF literals to TEX. As
soon as it encounters a text, it flushes the PDF code
collected so far and injects some TEX code. The TEX
macro looks like:
\def\MPLIBgettext#1#2#3#4#5#6#7%

{\ctxlua{metapost.sxsy(\number\wd#7,
\number\ht#7,\number\dp#7)}%

\pdfliteral{q #1 #2 #3 #4 #5 #6 cm}%
\vbox to \zeropoint{\vss\hbox to \zeropoint

{\scale[sx=\sx,sy=\sy]{\raise\dp#7\box#7}%
\hss}}%

\pdfliteral{Q}}

Because text can be transformed, it needs to be
scaled back to the right dimensions, using both the
original box dimensions and the transformation of
the unitsquare associated with the text.
local factor = 65536*(7200/7227)
-- helper for text
function metapost.sxsy(wd,ht,dp)

commands.edef("sx",(wd ~= 0 and
1/(wd /(factor))) or 0)

commands.edef("sy",(wd ~= 0 and
1/((ht+dp)/(factor))) or 0)

end

So, in fact there are the following two processing
alternatives:
• tex: call a Lua function that processes the

graphic
• lua: parse the MetaPost code for texts and

decide if two runs are needed
Now, if there was no text to be found, the continu-
ation is:
• lua: process the code using the library
• lua: convert the resulting graphic (if needed)

and check if texts are used
Otherwise, the next steps are:
• lua: process the code using the library
• lua: parse the resulting graphic for texts (in

the postscripts) and signal TEX to process
these texts afterwards
• tex: process the collected text and put the

result in boxes
• lua: process the code again using the library

but this time let the unitsquare be trans-
formed according to the text dimensions
• lua: convert the resulting graphic and replace

the transformed unitsquare by the boxes with
text

The processor itself is used in the MkIV graphic func-
tion that takes care of the multiple passes mentioned
before. To give you an idea of how it works, here is
how the main graphic processing function roughly
looks.
local current_format, current_graphic

function metapost.graphic_base_pass(mpsformat,str,
preamble)

local prepared, done
= metapost.check_texts(str)

metapost.textext_current
= metapost.first_box

if done then
current_format, current_graphic

= mpsformat, prepared
metapost.process(mpsformat, {

preamble or "",
"beginfig(1); ",
"_trial_run_ := true ;",
prepared,
"endfig ;"
}, true) -- true means: trialrun

tex.sprint(tex.ctxcatcodes,
"\\ctxlua{metapost.graphic_extra_pass()}")

else
metapost.process(mpsformat, {

preamble or "",
"beginfig(1); ",
"_trial_run_ := false ;",
str,
"endfig ;"
})

end
end

function metapost.graphic_extra_pass()
metapost.textext_current = metapost.first_box
metapost.process(current_format, {

"beginfig(0); ",
"_trial_run_ := false ;",
table.concat(metapost.text_texts_data(),

" ;\n"),
current_graphic,
"endfig ;"

})
end

The box information is generated as follows:
function metapost.text_texts_data()

Hans Hagen

452 TUGboat, Volume 29 (2008), No. 3 — TUG 2008 Conference Proceedings

local t, n = { }, 0
for i = metapost.first_box, metapost.last_box
do

n = n + 1
if tex.box[i] then

t[#t+1] = format(
"_tt_w_[%i]:=%f;_tt_h_[%i]:=%f;_tt_d_[%i]:=%f;",

n,tex.wd[i]/factor,
n,tex.ht[i]/factor,
n,tex.dp[i]/factor

)
else

break
end

end
return t

end

This is a typical example of accessing informa-
tion available inside TEX from Lua, in this case in-
formation about boxes.

The trial_run flag is used at the MetaPost
end; in fact the textext macro looks as follows:
vardef textext(expr str) =

if _trial_run_ :
% see first variant above

else :
% see second variant above

fi
enddef ;

This trickery is not new. We have used it al-
ready in ConTEXt for some time, but until now the
multiple runs took way more time and from the per-
spective of the user this all looked much more com-
plex.

It may not be that obvious, but in the case of
a trial run (for instance when texts are found), after
the first processing stage, and during the parsing of
the result, the commands that typeset the content
will be printed to TEX. After processing, the com-
mand to do an extra pass is printed to TEX also. So,
once control is passed back to TEX, at some point
TEX itself will pass control back to Lua and do the
extra pass.

The base function is called in:
function metapost.graphic(mpsformat,str,

preamble)
local mpx = metapost.format(mpsformat

or "metafun")
metapost.graphic_base_pass(mpx,str,preamble)

end

The metapost.format function is part of the
mlib-run module. It loads the metafun format, pos-
sibly after (re)generating it.

Now, admittedly all this looks a bit messy, but
in pure TEX macros it would be even more so. Some-

time in the future, the postponed calls to \ctxlua
and the explicit \pdfliterals can and will be re-
placed by using direct node generation, but that re-
quires a rewrite of the internal LuaTEX support for
PDF literals.

The snippets are part of the mlib-* files of
MkIV. These files are tagged as experimental and
will stay that way for a while yet. This is shown
by the fact that by now we use a slightly different
approach.

Summarizing the impact of MPlib on exten-
sions, we can conclude that some are done better
and some more or less the same. There are some
conceptual problems that prohibit using pre- and
postscripts for everything (at least currently).

4 Integrating
The largest impact of MPlib is processing graphics
at runtime. In MkII there are two methods: real
runtime processing (each graphic triggered a call to
MetaPost) and collective processing (between TEX
runs). The first method slows down the TEX run, the
second method generates a whole lot of intermediate
PostScript files. In both cases there is a lot of file
I/O involved.

In MkIV, the integrated library is capable of
processing thousands of graphics per second, includ-
ing conversion. The preliminary tests (which in-
volved no extensions) involved graphics with 10 ran-
dom circles drawn with penshapes in random colors,
and the throughput was around 2000 such graphics
per second on a 2.3 MHz Core Duo:

In practice there will be more overhead involved
than in the tests. For instance, in ConTEXt informa-
tion about the current state of TEX has to be passed
on also: page dimensions, font information, typeset-
ting related parameters, preamble code, etc.

The whole TEX interface is written around one
process function:
metapost.graphic(metapost.format("metafun"),

"mp code")

Optionally a preamble can be passed as the
third argument. This one function is used in sev-
eral other macros, like:
\startMPcode ... \stopMPcode
\startMPpage ... \stopMPpage
\startuseMPgraphic{name} ...
\stopuseMPgraphic

The MetaPost library and LuaTEX

TUGboat, Volume 29 (2008), No. 3 — TUG 2008 Conference Proceedings 453

\startreusableMPgraphic{name}...
\stopreusableMPgraphic

\startuniqueMPgraphic {name}...
\stopuniqueMPgraphic

\useMPgraphic{name}
\reuseMPgraphic{name}
\uniqueMPgraphic{name}

The user interface is downward compatible: in
MkIV the same top-level commands are provided as
in MkII. However, the (previously required) config-
uration macros and flags are obsolete.

This time, the conclusion is that the impact
on ConTEXt is immense: The code for embedding
graphics is very clean, and the running time for
graphics inclusion is now negligible. Support for text
in graphics is more natural now, and takes no run-
time either (in MkII some parsing in TEX takes place,
and if needed long lines are split; all this takes time).

In the styles that Pragma ADE uses internally,
there is support for the generation of placeholders for
missing graphics. These placeholders are MetaPost
graphics that have some 60 randomly scaled circles
with randomized colors. The time involved in gen-
erating 50 such graphics is (on my machine) some
14 seconds, while in LuaTEX only half a second is
needed.

Because LuaTEX needs more startup time and
deals with larger fonts resources, pdfTEX is gener-
ally faster, but now that we have MPlib, LuaTEX
suddenly is the winner.

