
MetaPost developments: MPlib project report

Taco Hoekwater
Elvenkind BV
Dordrecht, The Netherlands
http://tug.org/metapost

Abstract

The initial stage of the MPlib project has resulted in a library that can be em-
bedded in external programs such as LuaTEX, and that is also the core of the
mpost program. This paper presents the current state of affairs, the conversion
process of the MetaPost source code, and the application interface to the library.

1 MPlib project goals

The MPlib project is a logical consequence of the
transfer of MetaPost development from its author
John Hobby to the MetaPost development team. It
originates from a desire to update MetaPost for use
in the 21st century. The first thing that needed to
be done to make that happen was updating the pro-
gram source code and infrastructure to be closer to
today’s programming standards.

These days, programs are often written in the
form of shared libraries, with a small frontend appli-
cation. When written in this way, a program can not
only be used as a standalone program, but can also
easily and efficiently be (re)used as a plugin inside
other programs, or turned into a multi-user system
service.

With current MetaPost, such alternate uses are
impossible because of the internals of the code. For
example, MetaPost uses many internal global vari-
ables. This is a problem because when two users
would be accessing a ‘MetaPost’ library at the same
time, they would alter each other’s variables. For
another example, MetaPost has static memory allo-
cation: it requests all the computer memory it will
ever use right at startup. It never bothers to free
that memory, because it counts on the operating
system to clean up automatically after it exits. And
one file example: MetaPost not only opens files at
will, but it also writes to and, even more problem-
atically, reads from the terminal directly.

A large part of updating MetaPost is therefore
fixing all these issues. But while doing this, there
are other weirdnesses to take care of at the same
time.

The present subsystem for typesetting labels
(btex . . . etex) is pretty complicated, requiring an
array of external programs to be installed on top
of the normal mpost executable. And from a sys-
tem viewpoint, the error handling of MetaPost is
not very good: it often needs user interaction, and

in most other cases it simply aborts. Finally, the
whole process of installing the program is compli-
cated: a fair bit of the TEX Live development tree
is needed to compile the executable at all.

2 Solutions

Many of the problems mentioned above are a side-
effect of the age of the source code: the source is
largely based on METAFONT, and therefore written
in Pascal WEB. And the bits that are not in Pascal
WEB are an amalgam of C code borrowed from other
projects, most notably pdfTEX.

Not wanting to lose the literate programming
documentation, we had only one practical way to
proceed: using the CWEB system. CWEB has the
same functionality that Pascal WEB has, except that
it uses C as the programming language instead of
Pascal, and it has some extensions so that it does
not get in the way of the ‘normal’ C build system.

Using CWEB, a single programming language
now replaces all of the old Pascal and C code. The
code has been restructured into a C library, the label
generator makempx has been integrated, and compi-
lation now depends only on the ctangle program
and the normal system C compiler, so that a simple
Autoconf script can be used for configuration of the
build process.

3 Code restructuring

Whereas converting the C code of the font inclu-
sion and label processing subsystems to CWEB was
a fairly straightforward process, converting the Pas-
cal WEB core of MetaPost was a more elaborate
undertaking.

In the first stage, the Pascal code within the
WEB underwent an automatic rough conversion into
C code. Afterwards, the generated C code was man-
ually cleaned up so that it compiled properly using
ctangle. This part took roughly one month, and
the end result was an executable that was ‘just like’

380 TUGboat, Volume 29 (2008), No. 3 — Proceedings of the 2008 Annual Meeting

MetaPost developments: MPlib project report

Pascal MetaPost, but using CWEB as source lan-
guage instead of Pascal WEB.

After that was done, the real work started:
• All of the global variables were collected into

a C structure that represents an ‘instance’ of
MetaPost.

• The Pascal string pool was stripped away so
that it is now used only for run-time generated
strings. Most internal functions now use normal
C strings.

• The PostScript backend was isolated from the
core of the program so that other backends can
be added much more easily.

• All of the exported functions now use a C name-
space.

• Where it was feasible to do so, MPlib uses dy-
namic memory allocation. There are a few ex-
ceptions that will be mentioned later.

• All input and output now uses function pointers
that can be configured through the program-
ming interface.

• The MPlib library never calls exit() itself but
instead returns to the calling program with a
status indicator.

4 Using the library from source code

Using the MPlib library from other program code is
pretty straightforward: first you set up the MPlib
options, then you create an MPlib instance with
those options, then you run MetaPost code from a
file or buffer, and finally finish up.

The options that can be controlled are:
• various command-line options that are familiar

from mpost, such as whether MetaPost starts in
INI mode, the mem_name and job_name, ‘troff’
mode, and the non-option part of the command
line,

• the size of the few remaining statically allocated
memory arrays,

• various function pointers like those for input
and output, file searching, the generator func-
tion for typeset labels, and the ‘editor escape’
function,

• the start value of the internal randomizer,
• and finally a ‘userdata’ pointer that is never

used by MPlib itself but can be retrieved by the
controlling program at any time.
The application programming interface at the

moment is very high-level and simplistic. It supports
two modes of operation:
• emulation of the command-line mpost program,

with traditional I/O and interactive error han-
dling,

• an interpreter that can repeatedly execute in-
dividual string chunks, with redirected I/O and
all errors treated as if nonstopmode is in effect.
For the string-based interpreter, there are a few

extra functions:
• the runtime data can be fetched; this comprises

the logging information and the internal data
structure representation of any generated fig-
ures,

• the instance’s error state can be queried,
• the userdata pointer can be retrieved,
• some statistics can be gathered,
• PostScript can be generated from the image

output,
• and some glyph information can be retrieved;

this is useful if you want to create a backend
yourself.

4.1 Examples

Here is a minimalistic but complete example that
uses the mpost emulation method in C code:
#include <stdlib.h>

#include "mplib.h"

int main (int argc, char **argv) {

MP mp;

MP_options *opt = mp_options();

opt->command_line = argv[1];

mp = mp_initialize(opt);

if (mp) {

int history = mp_run(mp);

mp_finish(mp);

exit (history);

} else {

exit (EXIT_FAILURE);

}

}

Given the basic library functionality now avail-
able, it is reasonably straightforward to create bind-
ings for other languages. We have done this for Lua,
and here is a second example that uses these Lua
language bindings. The Lua bindings are always
based on string execution, and the option setting
and instance creation are merged into a single new
function:
local mplib, mp, l, chunk

mplib = require(’mplib’)

mp = mplib.new ({ini_version = false,

mem_name = ’plain’})

chunk = [[

beginfig(1);

fill fullcircle scaled 20;

endfig;

]]

if mp then

TUGboat, Volume 29 (2008), No. 3 — Proceedings of the 2008 Annual Meeting 381

Taco Hoekwater

l = mp:execute(chunk)

if l and l.fig then

print (l.fig[1]:postscript())

end

mp:finish()

end

5 Using the command-line program

On the command line very little has changed. The
executable mpost still exists. Now it is merely a
thin wrapper that is much like the C code example
shown earlier, except with a few hundred more lines
because it has to set up the command-line properly.

As mentioned already, the makempx functional-
ity has also been converted into a small library that
is used by mpost to emulate the old label creation
system. The programs makempx, dvitomp, mpto,
and dmp have been merged into this library and no
longer exist as separate programs. For backward
compatibility, a user-supplied external label gener-
ation program will be called if the mpxcommand
environment variable is set, but normally mpost sets
up the MPlib library to use the new embedded code.

In the normal case, the only external program
that will be run is the actual typesetter (TEX or
Troff). The command-line of mpost is extended to
allow the specification of which typesetter to use.

6 Planning and TODO

Most development took place at the beginning of
2008, after which we entered a period of extensive
testing. This way we were relatively confident that
the first version of the library was basically usable
from the start.

The first beta release (1.091) was presented at
the TUG 2008 conference. The distribution contains
the MPlib library source, the code for the ‘mpost’
frontend, code for the Lua bindings, and the C and
Lua API documentation.

The final MPlib 1.100 release will be released
later in 2008, and the MPlib-based distribution will
replace the Pascal MetaPost distribution from that
point forward.

After this release, work on the TODO list will
continue. Items already on the wishlist:

• Start using dynamic memory allocation for the
remaining statically allocated items: the main
memory, the number of hash entries, the num-
ber of simultaneously active macro parameters,
and the maximum allowed input nesting levels.

• An extension is being planned under the work-
ing name ‘MegaPost’ that will extend the range
and precision of the internal data types.

• In the future, we want to use MPlib to gener-
ate (OpenType) fonts. This requires support
from the core engine like overlap detection and
calculation of pen envelopes.

• Error strategies are planned so that the be-
haviour of the string-chunk based interface can
be configured properly.

• There are desires to expand the API. For in-
stance, it would be nice if applications were able
to use the equation solver directly.

7 Acknowledgements and contact

The MPlib project could not have been done without
funding by the worldwide TEX user groups, in par-
ticular: DANTE, TUG India, TUG, NTG, CSTUG,
and GUST. A big thank you goes to all of you for
giving us the opportunity to work on this project.

The general contact information for MetaPost
and MPlib has not changed:

• Web site and portal:
http://tug.org/metapost

• User mailing list:
http://lists.tug.org/metapost

• Source code and bug tracker:
http://foundry.supelec.fr/projects/metapost

382 TUGboat, Volume 29 (2008), No. 3 — Proceedings of the 2008 Annual Meeting

