
Xindy revisited: Multi-lingual index creation for the UTF-8 age

Joachim Schrod
Net & Publication Consultance GmbH
Kranichweg 1
63322 Rödermark, Germany
jschrod (at) acm dot org

http://www.xindy.org/

Abstract

Xindy is a flexible index processor for multi-lingual index creation. It handles 44
languages with several variants out of the box. In addition, some indexes demand
special sort orders for names, locations or different target audiences; xindy can
handle them as well. Raw index files may have several encodings beyond ASCII. In
particular, LATEX’s standard output encoding is supported directly, as is X ETEX’s
UTF-8 output. With the new xindy TUG30 release, support for Windows is added;
previously xindy was available only for GNU/Linux, Mac OS X, and other Unix-like
systems.

1 What is xindy?

Xindy is an index processor. Just like MakeIndex,
it transforms raw index information into a sorted
index, made available as document text with markup
that may be processed by TEX to produce typeset
book indexes. Unlike MakeIndex, it is multi-lingual
and supports UTF-8 encoding, both in the raw index
input and in the tagged document output.

Overall, xindy has five key features:

1. Internationalization is the most important fea-
ture at all and was originally xindy’s raison
d’être: the standard distribution knows how to
handle many languages and dialects correctly
out of the box.

2. Markup normalization and encoding support is
the ability to handle markup in the index keys
in a transparent and consistent way, as well as
different encodings.

3. Modular configuration enables the reusability
of index configurations. For standard indexing
tasks, LATEX users do not have to do much except
use available modules.

4. Location references go beyond page numbers.
Locations may also be book names, section num-
bers or names, URLs, etc.

5. Highly configurable markup is another corner-
stone. While this is usually not as important
for LATEX users, it comes in handy if one works
with other author systems.

The focus of this paper is the current state of
multi-lingual and encoding support that’s available
for xindy. The paper’s scope does not include other
features which I’ll mention just in passing:

Locations are more than page numbers: Most
index processors can work only with numbers, or
maybe sequences of numbers such as “2.12”. Going
further, xindy features a generalized notion of struc-
tured location references that can be book names,
music piece names, law paragraphs, URLs and other
references. You can index “Genesis 3:16” and “Ex-
odus 3:16” and Genesis will be in front of Exodus
since they are not alphabetically sorted names any
more, but terms in an enumeration.

Such location references may be combined into
a range, such as 6, 7, 8, and 9 becoming “6–9”. Also
well-known are range specifications in the humani-
ties, such as 6f or 6ff. With xindy, location ranges
can also be formed over structured references, but
some knowledge about the domain of the reference
components must be available.

xindy is configured with a declarative style lan-
guage, where declarations look like

(some-clause argument1 argument2 ...)

A file with such declarations is called an xindy mod-
ule, and an xindy run may use several of these mod-
ules. This allows making available predefined mod-
ules for common indexing tasks, e.g., the f- and
ff-range designation illustrated above. Xindy decla-
rations are also used to configure output markup.

Last, but not least, xindy is the practical result
in research about a theoretical model of index cre-
ation. Even if one does not use xindy the program,
the model itself can provide valuable input for the
creation of future index creation programs.

2 Multi-lingual sorting

Sorting is a multi-layered process where characters
are first determined, placed into categories that are

372 TUGboat, Volume 29 (2008), No. 3 — Proceedings of the 2008 Annual Meeting

Xindy revisited: Multi-lingual index creation for the UTF-8 age

albanian greek norwegian
belarusian gypsy polish
bulgarian hausa portuguese
croatian hebrew romanian
czech hungarian russian
danish icelandic serbian
dutch italian slovak
english klingon slovenian
esperanto kurdish spanish
estonian latin swedish
finnish latvian turkish
french lithuanian ukrainian
general lower-sorbian upper-sorbian
georgian macedonian vietnamese
german mongolian

Table 1: Predefined languages in xindy

sorted the same for now (collation classes), and sorted
either left-to-right or right-to-left. If this results in
index entries that are sorted the same but are not
identical, characters are reclassified with different
rules and sorted again to resolve the ambiguities.
Words from most languages can be sorted with this
process. It is standardized as ISO/IEC 14651 (Inter-
national String Ordering).

2.1 Predefined languages

Xindy provides the ability to sort indexes in different
languages; 44 of them are already prepackaged in the
distribution and are listed in Table 1. For some of
these languages there are multiple sorting definitions:
e.g., German has two different kind of sort orders,
colloquially called DIN and Duden sorting (more on
that later).

While the sorting of all predefined languages
may be expressed in terms of the ISO standard 14651
named above, xindy’s abilities go beyond that. The
standard language modules are usable for indexes
where index entries all belong to one language or
where foreign terms are sorted as if they would be
local. But if one mixes several languages in one
index, e.g., in an author index, one is able to define
the sort rules that should be used individually, just
for this text. While this is some work, of course,
xindy at least makes it possible to create indexes for
such real international works that go beyond mere
multi-lingualism.

2.2 Complexity of index sorting

One might ask if this paper doesn’t make a mountain
out of a molehill, and what’s the big deal with all this
supposed complexity of index sorting and creation

To address that valid question, I’d like to present a
few peculiarities that show why index sorting is more
complex than just sorting a few strings and why an
ISO standard on string ordering is a good start but
not the end of ordering index entries.

Cultural peculiarities For some languages, in-
dex sort order depends on context, or the term’s
semantics. German is a good example for this com-
plexity: there are two sort orders in wide usage and
they differ in the sorting the “umlauts”. These are
the vowels with two dots above: ä, ö, and ü.

One sort order sorts them as if there were a
following ‘e’, i.e., ‘ä’ is sorted as ‘ae’, ‘ö’ is sorted as
‘oe’, and ‘ü’ is sorted as ‘ue’. That is the official sort
order, and is defined in an official German standard,
DIN 5007. This sort order is used for indexes in
publications for the domestic market, for an audience
that knows German and is thus expected to know
that these characters are true letters on their own
and not just vowels with accents. Such a domestic
audience is also expected to have learned the sort
order of umlauts in their first school year and will
be able to cope with that cultural peculiarity.

A second way of index sorting drops that idio-
syncratic German feature and sorts umlauts as if
they were vowels with accents, i.e., ‘ä’ is sorted just
like ‘a’, and so on. This sort order is used in indexes
of publications for an international market, or where
an international audience is expected to read this
publication regularly. Especially dictionaries and
phone books use this non-standard way of sorting;
we want to give our foreign visitors a chance to look
up the phone number of any Mr. or Ms. Müller they
want to visit. This sort order has no official name,
but is colloquially known as phone book sorting or
“Duden sorting”, after the most important dictionary
of the German language that uses this sort order.

Legacy rules Some special and non-obvious sort
orders are so old that the reason behind them is
not known (at least, not to me). An interesting
example is French, where additional complexity has
been introduced in some previous time when it comes
to sorting names with accented characters: when two
words have the same letters but differ in accents, the
existence of accents decides the final sort order — but
backwards, from right to left!

The most prominent example is the four words
cote côte coté côté

In the first pass of sorting a French index, these
four words are sorted the same. In the second
pass, they are still sorted the same — the second
pass sorts uppercase letters before lowercase letters.
The third pass then sorts from right to left and puts

TUGboat, Volume 29 (2008), No. 3 — Proceedings of the 2008 Annual Meeting 373

Joachim Schrod

non-accented letters before accented letters:
−−→
cote
←−−
côte
coté
côté

This finally results in the sort order shown in the
table above.

Character recognition Sometimes legacy repre-
sentations in files on computers introduce complex-
ities: In Spanish, ‘ch’ and ‘ll’ are one letter and
sorted accordingly, whereas in all other European
languages they are two letters. Traditionally, these
Spanish letters are represented by two characters in
a file; an index sort processor has to recognize them
as such.

There is also the problem of what to do when a
character appears in an index that does not exist in
that language, e.g., there is no ‘w’ in Latin. Should
one be pragmatic and sort it like modern languages
of the Roman family, between ‘v’ and ‘x’? Or should
one place it somewhere in the non-letter group? The
order might very well depend on the target audience
and intent of the respective index.

In the TEX world, character recognition is ar-
guably less an issue for non-Latin scripts — TEX au-
thors are used to specifying their characters with
exact encodings or transliteration. Especially the
rise of Unicode text editors and their enhanced in-
put support for non-Latin scripts make identification
of characters easier than the supposedly ASCII-like
representation in traditional encodings.

Beyond Europe The examples so far were “just”
about European languages. (Admittedly, because I
know most about them . . .) Some languages use pho-
netic sorting where one needs additional information
about words that are used in the sort algorithm. This
does not change the algorithm itself, but available
authoring systems often do not support that aspect
at all. (xindy does not support it out-of-the-box
either, but it has the functionality to describe such
sorting in its language modules.)

Other languages use aspects of glyphs such as
strokes or number of strokes for sorting. Diacritics
may or may not influence sorting; sometimes they are
vowels, sometimes they just denote special emphasis
and can be ignored.

3 One sort order is not enough

For multi-lingual index creation it is not sufficient
to define sort orders for languages. Having defined
a language module with the default sort order of

German, French, or any other language is a good
and necessary start, and many index processors stop
at that. But it is not sufficient for production of
actual indexes where sorting rules appear that are
not covered by standards.

For example, in author indexes some languages
handle parts of nobility names differently, depending
on whether they are part of the name or a true
peerage title. In registers of places, city names might
be sorted differently than spelled. Transliteration
must be taken into account, just like combination of
alphabets within one index.

This boils down to the requirement that project-
or document-specific sort rules are needed. While one
book might sort ‘St.’ as it is written, Gault Millau
will need a different sort order for its register — they
sort it as ‘Saint’. MakeIndex introduced a way to
do that by specifying print and sort keys explicitly,
as in \index{Saint Malo@St. Malo}: It demands
from the author that this explicit specification must
be used every time that term appears.

Xindy goes a step further and allows the user
to specify sort orders in a separate style file that
may be used just for one document or reused for
all documents in a project. It still allows using an
explicit sort and print key in your TEX document —
but experience has shown that it is much less error-
prone to declare it once in an external file for a whole
group of index terms than to write it explicitly in
each occurrence of that group.

4 Examples for xindy style declarations

Let’s have a look at how such document-specific
declarations are done. We demonstrate their use for
two purposes: index entry normalization and entry
sorting.

Markup normalization is the process to decide
if two raw index entries denote the same term and
should be combined into one processed index entry,
i.e., if they should be merged.

Especially with TEX, it might be that the same
term appears differently in the raw index. This is
caused by macro expansions, especially when one
produces part of the index entries automatically. De-
pending on the state of TEX’s processing, macros in
the raw index are sometimes expanded and some-
times not expanded.

Here comes into play a point where xindy dif-
fers from MakeIndex: it ignores TEX or LATEX tags
(macro names and braces) by default. With xindy,
you can write \index{\textbf{term}} and this will
be the index entry “term”, \textbf and the braces
will be ignored. (Such index entries are usually not

374 TUGboat, Volume 29 (2008), No. 3 — Proceedings of the 2008 Annual Meeting

Xindy revisited: Multi-lingual index creation for the UTF-8 age

input manually, but are generated by other macros.)
So, how would one index METAFONT, written

in the Metafont logo font? The MakeIndex way
would be to use \index{METAFONT@\MF} for every
to-be-indexed occurrence of METAFONT, and that
way still works with xindy. But in addition, one can
use an xindy style file with the declaration

(merge-rule "\MF" "METAFONT")

and just use \index{\MF} in the document. No
risk to add typos to one’s index entries; these index
entries will be sorted as ‘METAFONT’ but output as
METAFONT.

Merge rules may influence whole index terms
or just parts of them. One can also use regular
expressions to normalize large classes of raw terms.

Sort specifications Sort orders are specified with
very similar declarations:

(sort-rule "ä" "a~e")

tells xindy to place ‘ä’ between ‘a’ and ‘b’. (The
special notion ‘~e’ means “at the end”; there is also
‘~b’ for “at beginning”.)

This is the low-level way to specify sort orders,
and it is used to create special document- or project-
specific sort orders as mentioned above. It is possible
to create whole language sort-order modules with
that method as well — we did so at the start of the
xindy project.

But then Thomas Henlich wrote make-rules, a
preprocessor to create xindy language modules for
languages where sort order can be expressed with
the ISO 14651 concept. For that preprocessor, one
describes alphabets and sort orders over collation
classes with multiple passes, and xindy modules with
sort rules as shown above are created as a result.

5 Encoding of raw index files —
LICR and UTF-8

At the moment, the most often used encoding for raw
index files is the LATEX output of \index commands.
That encodes non-ASCII characters as macros; the
representation is called LATEX Internal Character
Representation or LICR, as described in section 7.11
of The LATEX Companion, 2nd ed. Xindy knows
about LICR: xindy modules exist with merge rules to
recognize these character representations. A special
invocation command for LATEX, texindy, picks them
up automatically, so authors have no need to think
about them.

At the moment, LICR is mapped to an ISO-8859
encoding that’s appropriate for the given language,
and that encoding is then the base for xindy’s sort
rules. Please note that this is completely unrelated
to the encoding used in the author’s LATEX document.

You can use UTF-8 there with the inputenc package,
but that encoding doesn’t matter for index sorting.
When the raw index arrives at xindy, that original
encoding is not visible any more; we see only LICR.
And we just need ISO-8859 encodings for sorting
languages that are supported by LATEX’s standard
setup, which mostly use European scripts.

While this is appropriate and useful for Euro-
pean languages, it won’t help authors with docu-
ments in Arabic, Hebrew, Asian, or African lan-
guages. But they also won’t use LICR much any-
how and will probably be better served by new pro-
grams like X ETEX or Omega/Aleph. For these users,
all language modules are supplied in a variant that
knows about UTF-8 encodings as output by X ETEX
or Omega’s low-level output of (Unicode) characters.
If one has a raw index file that was produced by
these systems, one can use xindy; it will “just work”.

Looking beyond UTF-8 is still not necessary in
the TEX world; we have no TEX engine that will
output UTF-16 or even wider characters to a raw
index file or expect such encodings in a processed
index file. That’s good, because xindy can’t handle
UTF-16 input — yet. This will probably be an en-
hancement of one the next major releases and shall
help to open up xindy’s appeal beyond TEX-based
authoring environments.

6 Availability

Through release 2.3, xindy was available only for
GNU/Linux and other Unix-like systems. At the
time of writing, release 2.4 has been prepared which
is nicknamed the TUG30 release, to honor TUG’s 30th

birthday. This release adds support for Windows
(2000, XP, and Vista), thus widening the potential
user base considerably. For now, installation of a
Perl system is needed to use xindy; this should not
be a big obstacle.

The TUG30 release is available for download at
xindy’s Web site www.xindy.org. Currently, it is
there in source form; binary distributions for several
operating systems will be added as time permits.

While release 2.3 is included in TEX Live 2008,
with executables for nearly all the platforms except
Windows, including Mac OS X, we were not able to
finish the new release 2.4 in time to make it to the
DVD. Hopefully, it will become available via the
new on-line update mechanism soon. Eventually, full
support for xindy will be available in TEX Live 2009.

The best place to look for user documentation
about xindy is The LATEX Companion, 2nd ed., sec-
tion 11.3. Documentation on the Web site is techni-
cally more complete, but improvements of its organi-
zation and accessibility are high on our to-do list.

TUGboat, Volume 29 (2008), No. 3 — Proceedings of the 2008 Annual Meeting 375

