
Meta-designing parameterized Arabic fonts for AlQalam

Ameer M. Sherif, Hossam A.H. Fahmy
Electronics and Communications Department
Faculty of Engineering, Cairo University, Egypt
ameer dot sherif (at) gmail dot com, hfahmy (at) arith dot stanford dot edu

http://arith.stanford.edu/~hfahmy

Abstract

In this paper we discuss how parameterized Arabic letters are meta-designed
using METAFONT and then used to form words. Parameterized Arabic fonts
enable greater flexibility in joining glyphs together and rendering words with
imperceptible junctions and smoother letter extensions. This work aims to produce
written Arabic with quality close to that of calligraphers. Words produced using
our parameterized font are compared to other widely used fonts in a subjective
test and results are presented.

1 Introduction

The Arabic script is used for a multitude of languages
and is the second most widely used script in the world.
However, due to the inherent complexity [3, 6] of
producing high quality fonts and typesetting engines,
the support for Arabic digital typography has been
very weak.

OpenType is currently the de facto standard font
technology. It has many features to support a wide
variety of scripts, yet has its limitations for Arabic [7].
The most significant limitations are probably the
following two.

1. The concept of letter boxes connecting together
via other boxes of elongation strokes is not
suitable for highest quality Arabic typesetting.
When connecting glyphs to one another, the
junctions rarely fit perfectly because adjacent
letter glyphs usually have different stroke direc-
tions at the starting and ending points.

2. The use of pre-stored glyphs for different liga-
tures is limiting. The number of possible lig-
atures is far greater than what can be made
available.

In order to achieve an output quality close to
that of Arabic calligraphers, we modeled [7] the pen
nib and its movement to draw curves using META-
FONT. In this paper, we use the pen stroke macros
that we have defined to meta-design the primitive
glyphs needed for a good quality Arabic font. So
far, we are working with the Naskh writing style
and we provide a fully dynamic and flexible design
leading to smooth junctions between letters. We also
developed a simple algorithm to perform kerning
in the case of letters that do not connect to what

follows them. According to a survey we conducted,
our design surpasses the widely used fonts.

Our work is not yet finished. In the future, we
need to provide for the automatic placement of dots
and diacritic marks and complete the rest of the
required shapes.

2 Strokes in Arabic glyphs

The Arabic alphabet, although consisting of 28 dif-
ferent letters, depends on only 17 different skeletons.
The dots added above or below some of these skele-
tons are the means of differentiating one letter from
another. For example the letters ǧ̄ım () and

˘
hā’

() have the same shape as the letter h. ā’ (), but
ǧ̄ım has a dot below, and

˘
hā’ has a dot above. When

we discuss a primitive we mention its use in the group
of letters having the same skeleton, not individual
letters, and this further simplifies our designs.

2.1 The Arabic measurement unit

Over a thousand years ago, Ibn-Muqlah, one of the
early theorists of Arabic calligraphy, was probably
the first to make the choice of the nuq

˙
tā (Arabic for

dot) as a measurement unit for letter forms [3]. He
chose it in order to have some fixed measurements
between different letter forms. For example, in the
Naskh writing style, the height of ’alif is 4 nuq

˙
tās,

and the width of an isolated nūn is 3 nuq
˙
tās. The

nuq
˙
tā or dot we refer to is that made by the pen used

to write the letter, i.e., it is not a constant like the pt.
The horizontal width of the nuq

˙
tā in Naskh (where

the pen is held at an inclination of 70 degrees to the
horizontal) is approximately equal to the diagonal of
a dot drawn by the pen as shown in Fig. 1. Since the
dot is a square then the nuq

˙
tā width is slightly less

TUGboat, Volume 29 (2008), No. 3 — Proceedings of the 2008 Annual Meeting 435

Ameer M. Sherif, Hossam A. H. Fahmy

than the pen width multiplied by the square root
of 2. In our work we take it as 1.4×pen width and in
our METAFONT programs it is simply abbreviated
as n.

Figure 1: The nuqta as a measurement unit.

2.2 Stroke point selection

We define a calligrapher’s pen stroke as a continu-
ous movement of the pen. The location where the
calligrapher pauses defines the end of a stroke and
the start of a new one. Thus, a circular path may be
considered as only one stroke because the start and
end points are defined by the movement of the hand
and not by the appearance.

The first step in the process of meta-designing
any primitive or letter is to select the points through
which the pen strokes pass. This is not an easy
choice. When designing outline fonts, the solution is
usually to scan a handwritten letterform, digitize its
outline, then make the necessary modifications. We
did not adopt this approach because Arabic letters
do not have fixed forms but rather depend on the
calligrapher’s style. Since we are meta-designing, we
are more concerned with how the letter is drawn and
not just a single resulting shape. Hence, instead of
capturing the fine details of a specific instance of the
letter by one calligrapher, we wanted to capture the
general features of the letter. To help us accomplish
this, we based our design on the works of multiple
calligraphers.

The letter ’alif is shown in Fig. 2 with three
different possibilities of point selection. The leftmost
glyph requires the explicit specification of the tan-
gential angles at points 1 and 2. In the middle glyph,
just connecting the points 1–3–4–2 with a Bézier
curve can produce the same curve without explicitly
specifying any angles: z1..z3..z4..z2.

Theoretically, we can specify the path using an
infinite number of points, but the fewer the points,
the better the design and the easier to parameterize
it. Adding more points that also lie on the same path
can be done as in the rightmost glyph, but point 5 is
redundant because the stroke is symmetric, and can
be produced without explicitly specifying any angles
or tension.

Figure 2: Selecting points to define the path of the
letter ’alif .

This’alif example shows that the minimum num-
ber of points to choose for any stroke is two, and
their locations are at the endpoints of the stroke.
These are the easiest points to select. Intermediate
points are then chosen when curve parameters such
as starting and ending directions and tensions are
not enough to define the curve as needed for captur-
ing important letter features. Hence more points are
usually needed in stroke segments with sharp bends
or in asymmetric strokes.

2.3 Stroke point dependencies

In our design, we model the direction of the stroke as
it is drawn by the calligrapher, i.e., the stroke of the
letter ’alif is drawn from top to bottom. The points
in our designs are numbered in order according to
the pen direction. So for the letter ’alif , the stroke
begins at point 1 and ends at point 2.

However, a calligrapher chooses the starting
point of the ’alif stroke depending on the location
of the base line. This means that point 1 is cho-
sen relative to point 2, so we define 1 based on 2.
Since METAFONT is a declarative language, not an
imperative one, the two statements: z1 = z2 + 3;
and z2 = z1 - 3; evaluate exactly the same. Yet
we try to make the dependencies propagate in the
natural logical order, which then makes editing the
METAFONT glyph code an easier job; hence, the first
expression is the better choice.

3 Meta-designing Arabic letters

Several characteristics of the letter shapes discovered
during our design process were not mentioned explic-
itly in most calligraphy books. Calligraphers do not
measure their strokes with precise rulers and their
descriptions are only approximate. Detailed features
of the letters are embedded implicitly in their curves
as they learned them by practice. However, in our
design, we represent the stroke mathematically and
require accurate descriptions. The following sections
show a couple of examples.

We start by studying the letter shapes and not-
ing the fine variations that might exist between ‘sim-
ilar’ shapes. Then we select the stroke points, decide

436 TUGboat, Volume 29 (2008), No. 3 — Proceedings of the 2008 Annual Meeting

Meta-designing parameterized Arabic fonts for AlQalam

on the pen direction at each point based on the let-
ter shape and stroke thickness, and finally draw the
strokes using our qstroke macro [7].

3.1 The concept of primitives

Meta-design enables us to break the forms of glyphs
into smaller parts, which are refered to as primitives.
These primitives may be whole letters or just parts
of letters that exist exactly as they are or with small
modifications in other letters. We can save design
time and increase meta-ness by reusing primitives.

In Knuth’s work on his Computer Modern (CM)
fonts [4], primitives were not explicitly defined as
black boxes and then reused. The use of primitives
requires more parameterization than what CM deals
with. There, the use of primitives was worthy only
in small and limited flexibility shapes such as serifs
and arcs, for which Knuth wrote subroutines. The
difference between his work and ours is that he pa-
rameterized letters to get a large variety of fonts,
while we parameterize primitives to make the letters
more flexible and better connected, not to produce
different fonts. Indeed, as mentioned earlier, our
current focus is the Naskh writing style only.

Our classification of Arabic primitives consists
of three categories:
• Type-1 primitives are used in many letters

without any modifications.
• Type-2 primitives are dynamic and change

shape slightly in different letters.
• Type-3 primitives are also dynamic but much

more flexible.

3.2 Type-1 primitives

This category includes diacritics and pen strokes
common in many letters. The nuq

˙
tā, kāf ’s shāra,

and the hamza are Type-1 primitives. Fig. 3 shows
the shāra of the letter kāf and the hamza. These
glyphs are drawn using a pen with half the width
of the regular pen. Other diacritics like the short
vowels fath. a and kasra are dynamic, and do change
length and inclination angle.

Figure 3: The shāra of kāf and the hamza.

The ‘tail’ primitive is another example of a Type-
1 primitive. It is used as the ending tail in letters
like wāw , rā’ , and zāy in both their isolated and
ending forms. Fig. 4 shows the tail designed using
METAFONT on the left and its use in wāw and rā’
on the right.

Figure 4: The tail primitive.

Even in cases with kerning where the tail may
collide with deep letters that follow it, many calligra-
phers raise the letter as a whole without modifying
the tail’s shape. Fig. 5 shows an example of kerning
applied to letters with tails. We follow the same
approach in our design and the tail requires no flexi-
bility parameters.

Figure 5: Four consecutive tails in a word as written
in the Qur’an [1], [26:148]. Notice the identical tails
despite the different vertical positioning.

Listing 1 shows the code for the tail. The natural
direction of drawing is from point 3 to 4 to 5. But in
fact, the stroke is only between 3 and 4; the last part
of the tail is called a shāz.ya and calligraphers usually
outline it using the tip of the pen nib then fill it
in. We use the METAFONT filldraw macro for that
purpose. We use filldraw instead of fill in order
to give thickness to the shāz.ya edge at point 5. Also
note the coordinate points dependencies: z4 depends
on z3 and z5 depends on z4 not z3. This makes
modification of the glyph much easier by separating
the definition of the stroke segment and that of the
shāz.ya, i.e., if we modify the stroke, the shāz.ya is
not affected, unlike if z5 was a function of z3.

z4 = z3 + (−1.7n, −2n);
z5 = z4 + (−2n, .36n);
path raa body ;
raa body = z3{dir −95} . . tension 1.3 . .

z4{dir −160};
qstroke(raa body , 85, 100, 0, 0);
path shathya;
shathya = (x4, top y4){dir −160} . .

{dir 160}z5{dir −38} . . tension 1.3 . .
(rt bot z4){dir 15} - - cycle;

pickup pencircle scaled 1.2;
filldraw shathya;

Listing 1: METAFONT code for the tail primitive.

The code first defines the points in relation to
each other using the nuq

˙
tā (n) as the unit of measure-

TUGboat, Volume 29 (2008), No. 3 — Proceedings of the 2008 Annual Meeting 437

Ameer M. Sherif, Hossam A. H. Fahmy

ment. Then a path variable is created which holds
the path definition of the stroked part of the tail.
The qstroke macro [7] is used to draw the stroke.
The second path defines the shāz.ya outline.

3.3 Type-2 primitives

This class of primitives has few parameters that
enable only slight variations in the primitive’s shape
to facilitate its use in different letters. We will discuss
two primitives of this type: the ‘wāw head’ and the
‘’alif stem’.

3.3.1 The wāw head primitive

This primitive is a circular glyph used in the starting
and isolated forms of the letters wāw , fā’ , and qāf .
It consists of two parts: the head and the neck. In
most calligraphy books, the head is described as
being exactly the same in all three letters. However
small differences exist between the heads due to the
connections with different letter skeletons. Fig. 6
shows the letters fā’ and qāf as drawn in three
books. Note how the circular head does in fact look
slightly different in both letters, yet none of these
books mention that there are variations in the head.

Figure 6: The letters fā’ and qāf as drawn by
three calligraphers, from top to bottom: Afify [2],
Mahmoud [5], and Zayed [8].

Fig. 7 shows that the wāw head primitive con-
sists of 2 strokes, one between points 1–2, the other
between points 2–3–4. We approximate the differ-
ences between the wāw , fā’ , and qāf by altering
the 3–4 segment. Thus the same primitive may be
used for the three letters in their isolated form. This
same primitive is used in their ending forms by mov-
ing point 1 down and to the right, to connect to a
preceding letter or kash̄ıda.

3.3.2 The ’alif stem primitive

The stem of the ’alif (Fig. 2) is used in many letters:
lām (all forms), kāf (isolated and final forms), mı̄m

Figure 7: The wāw head primitive.

(final form), and
˙
tā’ (all forms). Most calligraphers

describe the straight stroke in the lām, kāf , and

˙
tā’ as being identical to the ’alif . Fig. 8 shows a
calligrapher’s description [5] stating that the form of
the vertical stroke in the different letters is exactly
the same as the ’alif . This is a crude approximation
because there are differences in the thickness, cur-
vature, inclination, and height (in case of the

˙
tā’)

between the isolated’alif and the modified form used
in other letters.

Figure 8: Approximate directions in calligraphy books.

Fig. 9 shows our design: on the far right the
isolated ’alif and to its left the modified ’alif that
is used in lām and kāf . The modified ’alif is thin-
ner with less curvature near the middle, or in other
words more tension, together with more overall in-
clination. Listing 2 shows that they both have the
same height and the thickness of the stem is achieved
by increasing the pen nib angle.

Figure 9: The ’alif primitve.

438 TUGboat, Volume 29 (2008), No. 3 — Proceedings of the 2008 Annual Meeting

Meta-designing parameterized Arabic fonts for AlQalam

% Description for isolated ’alif
curve := −100; incline := 70; height := 4.5n;
z2 = z1 + (0, −height);
path saaq ;
saaq = z1{dir curve} . . tension 1.4 . .

z2{dir curve};
qstroke(saaq , incline, incline, 0, 0);

% Description for ’alif used in lam and kaaf
curve := −95; incline := 79; height := 4.5n;
z2 = z1 + (0.3n, −height);
path saaq ;
saaq = z1{dir curve} . . tension 1.4 . .

z2{dir curve};
qstroke(saaq , incline, incline − 3, 0, 0);

Listing 2: METAFONT code for the ’alif primitive.

3.4 Type-3 primitives

Type-3 primitives are glyphs that have a wider dy-
namic range, and greater flexibility. In this section,
we discuss the skeleton of the letter nūn, called the
kasa (Arabic for cup) and the kash̄ıda. Calligraphers
often use the great flexibility of these primitives to
justify lines.

3.4.1 Kasa primitive

The body of the letter nūn is used in the isolated
and ending forms of s̄ın, š̄ın, s. ād , d. ād , lām, qāf ,
and yā’ . Fig. 10 shows the kasa in five letters. The
kasa has two forms, short and extended. The short
form is almost 3 nuq

˙
tās in width in the case of nūn,

one nuq
˙
tā longer in yā’ , and slightly shorter in lām.

This difference between the kasa of the lām and the
nūn is not well documented in calligraphy books,
where most calligraphers mention that both are the
same and only few state that in the lām it is slightly
smaller.

An important property of the kasa is that it can
be extended to much larger widths. In its extended
form, it can range from 9–13 nuq

˙
tās. Fig. 11 shows

the short form together with three instances of the
longer form generated from the same METAFONT

code. Note that its width can take any value be-
tween 9 and 13, not just integer values, depending
on line justification requirements. Also note how
the starting senn (vertical stroke to the right) of the
letter is shorter in extended forms.

3.4.2 Kashida primitive

Another very important primitive for justification,
the kash̄ıda is used in almost all connected letters. As
an illustrative example, Fig. 12 shows the letter h. ā’
in its initial form with two different kash̄ıda lengths,

Figure 10: The kasa primitive.

Figure 11: The letter nūn shown with kasa widths of
3, 9, 10 and 13 nuq

˙
tās.

differing by 3 nuq
˙
tās. The parameter tatwil con-

trols this length by varying the distance between
points 3 and 4, both the horizontal and vertical com-
ponents, as shown in this line of code:

z3 = z4+(1.74n, 0.116n)+(0.5tatwil , 0.025tatwil)∗n;

As tatwil increases, point 3 moves further from
point 4 both to the right and upward. This vertical
change helps maintain the curvature in the kash̄ıda.
If no vertical adjustment is made, longer kash̄ıdas
look like separate straight lines with a sharp corner
at their intersection with the surrounding letters.
Calligraphers, on the other hand, draw curved lines
rather than straight ones producing aesthetically
better shapes. For these reasons, in our definition of
the stroke, the tangential direction at point 3 is left
free depending on the distance between 3 and 4. We
will see in the next section how kash̄ıdas are adjusted
to join letters together smoothly.

Figure 12: The initial form of the letter h. ā’ with two
different kash̄ıda lengths.

TUGboat, Volume 29 (2008), No. 3 — Proceedings of the 2008 Annual Meeting 439

Ameer M. Sherif, Hossam A. H. Fahmy

4 Forming words

The combination of primitives to form larger entities
is the final step towards producing Arabic script that
is as cursively connected and flexible as calligraphers’
writings. The parameterization of the glyphs allows
us to piece them together perfectly as if they were
drawn with just one continuous stroke.

4.1 Joining glyphs with kash̄ıdas

The most widely used glyph to connect other letters
is the kash̄ıda. In this section we will explain the
mechanism we use in order to make the junction
between letters as smooth as possible. In current
font standards, such as OpenType and TrueType,
kash̄ıdas are made into fixed glyphs with pre-defined
lengths, and are substituted when needed between
letters to give the feeling of extending the letter. But
because that design for the kash̄ıda is static, as are
the rest of the surrounding letters, they rarely join
well. It is evident that the word produced is made
of different segments joined by merely placing them
close to each other.

In our work, the kash̄ıda is dynamic and can
take continuous values, not just predefined or discrete
values. We believe that when a kash̄ıda is extended
between any two letters, it does not belong to just
one of them; instead, it is a connection between them
both. This belief is the result of experimenting with
different joining methods.

Let us take the problem of joining the two letters
h. ā’ and dāl as an example to illustrate the kash̄ıda
joining mechanism we have developed. The solution
we propose is to pass the tatwil parameter to the
macros producing the two glyphs, and the kash̄ıda
length is distributed between both glyphs. This
enables us to fix the ends of the glyphs to be joined
at one angle, which is along the x-axis in the Naskh
style, since any kash̄ıda in that style must at one
point move in this direction before going up again.
To accommodate long kash̄ıdas, each glyph ending
point is moved further from its letter and slightly
downwards. Long kash̄ıdas need more vertical space
in order to curve smoothly, sometimes pushing the
letters of a word upwards.

Other than affecting the ending points, the pa-
rameter also affects the curve definition on both sides
by varying the tensions, while keeping the direction
of the curves at the intersection along the negative
x-axis (since the stroke is going from right to left).
The resulting word at many different kash̄ıda lengths
is shown in Fig. 13.

Figure 13: Placing a kash̄ıda between the letters h. ā’
and dāl with different lengths: 2, 3, 5 and 7 nuqtas.

Figure 14: The word Mohammed as an example of
vertical placement (Thuluth writing style).

4.2 Vertical placement of glyphs

In written Arabic, the existence of some letter com-
binations may force the starting letter of a word to
be shifted upwards in order to accommodate for the
ending letters to lay on the baseline of the writing.
A very simple example of that property is the name
Mohammed when written with ligatures, where the
initial letter mı̄m is written well above the baseline,
as shown in Fig. 14.

It is hence obvious that the starting letter’s
vertical position is dependent on the word as a whole.
It might then be thought that it is easier to draw the
words starting from the left at the baseline and then
move upwards while proceeding to the right. But
this has two problems: one is that the horizontal
positioning of the last letter depends on the position
of the first letter on the right and on the length of the
word, and the second is that a left to right drawing
would be against the natural direction of writing and
may result in an unnatural appearance.

The solution is then to walk through the word
till its end and analyze each letter to know where to
position the beginning letter vertically, and then start
the actual writing at the right from that point going
left. This process is what a calligrapher actually does
before starting to write a word. So, for a combination
of letters, we benefit from the declarative nature of
METAFONT. The following rules are applied:

• The horizontal positioning starts from the right,
• the vertical positioning starts from the left at

the baseline, and
• writing starts from the right.

To illustrate this better, see Fig. 15. The lig-
ature containing the letters s̄ın, ǧ̄ım, and wāw is
traced from left-to-right as shown, going through
points 1–2–3, the starting points of each glyph, until

440 TUGboat, Volume 29 (2008), No. 3 — Proceedings of the 2008 Annual Meeting

Meta-designing parameterized Arabic fonts for AlQalam

Figure 15: Tracing a word from left-to-right to know
the starting vertical position.

Figure 16: Kerning: letters with ‘tails’ need special
attention. The first line shows our output to the right
and the current font technologies to the left. The last
two lines show our output.

the vertical position of point 1 is known. The next
step is to start writing the word starting from point 1.
Isolated letters like dāl are not taken into considera-
tion, because they do not affect the preceding letters
vertically.

4.3 Dealing with kerning

To imitate what calligraphers do as in Fig. 5, we
had to invent a special kerning algorithm. Fig. 16
shows our output. We raise the level of any ‘deep
letter’ following a ‘tail letter’ to kern correctly. Any
non-deep letter holds the level steady. The end of
the word restores the baseline.

4.4 Word lengths

In reality, word lengths are not selected by the cal-
ligraphers word by word, but instead, are chosen
based on the justification requirements of a whole
line. When a word length is decided according to the
line it exists in, this length should be passed to a main
macro that calls the glyph macros in order to form
the word. This main macro should decide the length
of kash̄ıdas to be added depending on the minimum
length of each letter. For example, that the word
under consideration is the one shown in Fig. 13, and
that the desired total length of the word is 10 nuq

˙
tās .

In order to calculate the extension or the tatwil
parameter between the letters, it subtracts all the
minimum lengths of the individual letters. In our
example, the head of the h. ā’ is 4 nuq

˙
tās wide, and

the base of the dāl is 3 nuq
˙
tās, hence the word has a

minimum length of only 7 nuq
˙
tās. In order to stretch

it to 10, the added kash̄ıda is 3 nuq
˙
tās wide.

4.5 A final example

This section describes a more illustrative example
shown in Fig. 17. This example, showing four in-
stances of the word sujud, demonstrates the many
properties and benefits of our parameterized font.
First, it shows flexibility in stretching and compress-
ing words for line justification purposes. This flexi-
bility is due to two capabilities of the font: dynamic
length kash̄ıdas and glyph substitution. For a very
small line spacing, the s̄ın is written on top of the
h. ā’ , and the kash̄ıda after the h. ā’ is almost zero.

When more space is available, the kash̄ıda after
the h. ā’ is stretched and the senn connecting the s̄ın
and the h. ā’ is also made slightly longer. Further
elongation is made possible by breaking the ligature
between s̄ın and h. ā’ . And finally, the maximum
length is obtained by elongating the kash̄ıda between
the two letters. Theoretically, we could get more
stretching of this kash̄ıda and even add another one
after the h. ā’ , but calligraphic rules ultimately limit
the stretching.

Figure 17: The word sujud written with different
lengths ranging from 10.5 to 16.5 nuqtas.

5 Testing the output

5.1 A GUI to simplify tests

To facilitate the task of testing our ideas, we made a
simple graphical user interface (GUI) to write words
using our METAFONT programs. This allows us to
make changes to parameters and draw words faster
than having to edit the code manually. Fig. 18 shows
the block diagram describing the operation of the GUI

and Fig. 19 shows the different window components
of the GUI.

First, the user types in a word or sequence of
words in the input word text box, then presses the
start button. This parses the input word(s) into a
string of letters, removing any space characters. Each
character can be selected from a list and its shape
determined from the letterform list at the bottom of
the screen. Also a length extension can be input in
the length text box (default is zero).

TUGboat, Volume 29 (2008), No. 3 — Proceedings of the 2008 Annual Meeting 441

Ameer M. Sherif, Hossam A. H. Fahmy

Figure 18: Block diagram describing the operations
of the graphical user interface.

Figure 19: Screenshot of our simple GUI.

When the write button is pressed, the letter-
forms selected and their extra lengths are written in
files, then METAFONT executes the glyph programs.
Finally, a DVI previewer opens the resulting output
as seen in Fig. 20.

Figure 20: Screenshot of the DVI previewer
displaying the output word.

5.2 The survey

In order to test if readers are comfortable with the
way our parameterized font looks as compared to
other Naskh fonts, we made a list of 16 words, each
written in four different Naskh fonts:
• Simplified Arabic,
• Traditional Arabic,
• DecoType Naskh, and
• AlQalam parameterized font.

For a more reliable and unbiased test, the order of
fonts used is varied in consecutive rows and all words
are set to approximately the same sizes although
nominal point sizes of the different fonts are not

exactly equivalent. We selected the 16 words to test
three main features:

• connections between letters,
• extension/tatwil of letters, and
• kerning.

Fig. 21 shows the first page of the test.

Figure 21: First page of the test where we ask the
readers to rate their comfort.

We then surveyed 29 Arabic readers (14 males
and 15 females) with ages ranging from 10 to 70 years.
In the survey, readers were asked to evaluate and
rate words in terms of their written quality and how
comfortable they feel reading the words. A rating
of 1 is given to low quality and uncomfortable words,
and a rating of 5 is given to words of high written
quality and most comfort to the reader.

This test methodology is known as the Mean
Opinion Score (MOS), a subjective test often used to
evaluate the perceived quality of digital media after
compression or transmission in the field of digital
signal processing. The MOS is expressed as a single
number in the range of 1 to 5, where 1 is lowest
quality and 5 is highest quality. In our case, the MOS

is a numerical indication of the perceived quality of
a written word. Finally, the total MOS is calculated
as the arithmetic mean of all the individual scores.

442 TUGboat, Volume 29 (2008), No. 3 — Proceedings of the 2008 Annual Meeting

Meta-designing parameterized Arabic fonts for AlQalam

Table 1 shows the MOS scores for individual words
of each font and the total average.

Table 1: MOS results for each font.

The results clearly show an increased comfort
with the parameterized font with respect to the other
popularly used fonts. One feature clearly distinguish-
ing the different fonts is kerning. This is very evident
in words 1, 3, 5, 6, 9, 11, 13, and 14 which had kern-
ing applied. The addition of smooth kash̄ıdas for
extension also results in a large difference in scores
as with words 7, 10, and especially 12 which contains
a long kash̄ıda. The results of word 15 show that the
use of complex ligatures is also an important feature
for the comfort of readers. We believe that more
work and collaboration with calligraphers can yield
even better results.

6 Conclusion

The work covered in this paper is just a small step
towards the realization of a system to produce output
comparable to that created by Arabic calligraphers,
and much more work is still needed. We need to com-
plete our design and finish all the required shapes.

There is a strong need for non-engineering re-
search on the readability and legibility of the different
kinds of Arabic fonts comparable to the many stud-
ies conducted on Latin letters. It is important to
categorize the different calligraphers’ writing styles
as well as the regular computer typefaces: are they
easy and fast to read in long texts, or not? Which
are better to use in titles or other ‘isolated’ materials,
and which are better for the running text?

By presenting our effort, we hope to open the
door for future exciting work from many researchers.

References

[1] The Holy Qur’an. King Fahd Complex for
Printing the Holy Qur’an, Madinah, KSA,
1986.

[2] Fawzy Salem Afify. ta‘leem al-khatt al-‘arabi
[Teaching Arabic calligraphy]. Dar Ussama,
Tanta, Egypt, 1998.

[3] Mohamed Jamal Eddine Benatia, Mohamed
Elyaakoubi, and Azzeddine Lazrek. Arabic text
justification. TUGboat, 27(2), January 2007.

[4] Donald E. Knuth. Computer Modern Typefaces,
volume E of Computers and Typesetting.
Addison-Wesley, Reading, MA, USA, 1986.

[5] Mahdy Elsayyed Mahmoud. al-khatt al-‘arabi,
dirasah tafsiliya muwassa‘a [Arabic calligraphy,
a broad detailed study]. Maktabat al-Qur’an,
Cairo, Egypt, 1995.

[6] Thomas Milo. Arabic script and typography:
A brief historical overview. In John D. Berry,
editor, Language Culture Type: International
Type Design in the Age of Unicode, pages
112–127. Graphis, November 2002.

[7] Ameer M. Sherif and Hossam A. H. Fahmy.
Parameterized Arabic font development for
AlQalam. TUGboat, 29(1), January 2008.

[8] Ahmad Sabry Zayed. ahdath al-turuq leta‘leem
al-khotot al-‘arabiya [New methods for learning
Arabic calligraphy]. Maktabat ibn-Sina, Cairo,
Egypt, 1990.

TUGboat, Volume 29 (2008), No. 3 — Proceedings of the 2008 Annual Meeting 443

