
58 TUGboat, Volume 30 (2009), No. 1

Graphics

Asymptote: Lifting TEX to three dimensions

John C. Bowman and Orest Shardt

Abstract

Asymptote, a modern successor to the METAPOST

vector graphics language that features robust floating-
point numerics, high-order functions, and deferred
drawing, has recently been enhanced to generate
fully interactive three-dimensional output. This
data can either be viewed with Asymptote’s native
OpenGL-based renderer or internally converted to
Adobe’s highly compressed PRC format for embed-
ding within a PDF file. Asymptote thus provides
the scientific community with a self-contained and
powerful TEX-aware facility for generating portable
interactive three-dimensional PDF files.

1 Introduction

The descriptive vector graphics language Asymptote1

was developed to provide a standard for drawing
mathematical figures, just as TEX and LATEX have
become the standard for typesetting equations in the
mathematics, physics, and computer science commu-
nities [1]. For professional quality and portability,
Asymptote natively generates PostScript, PDF, and
PRC vector graphics output. The latter is a highly
compressed 3D format that is typically embedded
within a PDF file and viewed with Adobe Reader.

In both two and three dimensions, consistent
fonts and equations should be used in the graphics
and text portions of a document. This implies that
labels must be typeset directly by TEX. This article
provides an overview of the major advances in the
current version (1.82) of Asymptote that allow it to
extract and lift Bézier font descriptions generated by
TEX and Dvips into 3D, using efficient algorithms
for partitioning planar regions into nondegenerate
Coons patches [3]. Together with 3D generalizations
of the METAFONT path operators and a method for
computing twist-free tubes and arrowheads, these
algorithms provide the 3D foundation of Asymptote.

2 Bézier surfaces

A major recent advance in Asymptote is the ability
to embed Bézier surfaces as interactive PRC content

1 Andy Hammerlindl, John Bowman, and Tom Prince,
available under the GNU Lesser General Public License from
http://asymptote.sourceforge.net/.

Figure 1: An interactive 3D PDF of a Bézier surface
representation of the Utah Teapot.

within a PDF file, as illustrated in Fig. 1.2 In contrast,
the version of U3D supported by Adobe can only
render surfaces described by polygons and hence is
not a suitable vector graphics format.

3 Three-dimensional TEX

TEX produces output in a special device independent
format (DVI). While this output can be easily turned
into PostScript, one needs a way of extracting Bézier
curves that describe properly kerned font characters.
Asymptote does this by overloading the PostScript
/show operator, as described in Appendix A. Special
care was required to handle the filled rectangles that
TEX uses to draw square root symbols and fraction
bars. The resulting exact 2D vector representation
of the original TEX input is treated by Asymptote
as an array of paths to be filled with the PostScript
nonzero winding number fill rule.

The routine bezulate described in Figs. 2 and 3,
along with the nondegenerate patch splitting algo-
rithms described in [3], is used to convert the result-
ing Bézier paths to Bézier surfaces. These surfaces
are then output in the PRC format, along with a
rendered preview image for noninteractive viewing
and printing. Using these techniques, Asymptote is
then able to typeset the Gaussian integral in Fig. 4
as an interactive 3D diagram.

4 Thick lines in 3D

Figure 5 depicts capped thick lines and Asymptote’s
five (METAPOST-inspired) path connectors [2]:

-- .. & --- ::

for the following path, when lifted to the x–y plane:

2 An interactive PDF version of this article may be found
at http://asymptote.sourceforge.net/articles/.

John C. Bowman and Orest Shardt

http://asymptote.sourceforge.net/
http://asymptote.sourceforge.net/articles/

TUGboat, Volume 30 (2009), No. 1 59

(a) (b) (c) (d) (e)

Figure 2: The bezulate algorithm. Starting with
the original curve (a), several possible connections
between nodes separated by 3 or 2 segments are
tested. Connections are rejected if they do not lie
entirely inside the original curve. This occurs when
the midpoint is not inside the curve (b), or when the
connecting line segment intersects the curve more
than twice (c). If a connecting line passes both tests,
the shaded section is separated (d) and the algorithm
continues with the remaining path (e).

A
B

C

(a) (b) (c) (d) (e) (f)

Figure 3: Splitting of non-simply connected regions
into simply connected regions. Starting with a
non-simply connected region (a), the intersections
between each curve and an arbitrary line segment
from a point on an inner curve to the outer curve
are found (b). Consecutive intersections of this line
segment, at points A and B, on the inner and outer
curves, respectively, identify a bounded region. Such
a region can be found by searching along the outer
curve for a point C such that the line segment AC
intersects the outer curve no more than once, intersects
an inner curve only at A, and determines a region
ABC between the inner and outer curves that does
not contain an inner curve. Once such a region is
found (c), it is extracted (d). This extraction merges
the inner curve with the outer curve. The process is
repeated until all inner curves have been merged with
the outer curve, leaving a simply connected region (e)
that can be split into Bézier surface patches. The
resulting patches and extracted regions are shaded
in (f).

Figure 4: The Gaussian integral lifted to 3D.

Figure 5: Interactive 3D diagram illustrating thick
capped lines, opacity, and the five Asymptote path
connectors.

Figure 6: Comparison of arc length adjusted (green)
and unadjusted (red) 3D dashed lines.

(0,10)..(5,0)---(18,0)::{(0,1)}(20,10)

&(20,10)..(25,0)--(38,0)::{(0,1)}(40,10)

&(40,10)::(45,0)---(58,0)..{(0,1)}(60,10).

Hemispheres are aligned at discontinuous junc-
tions of Bézier segments. Disks, hemispheres, or
closed cylinders can be used to cap the ends of a
Bézier curve, according to the specified PostScript
line cap.

Just as in 2D, the on-off duty cycle pattern
for generating dashed lines can be automatically
adjusted slightly to fit the path arc length evenly, as
illustrated in Fig. 6.

A modification of Asymptote’s adaptive thick
line routine, contributed by Philippe Ivaldi and based
on the rotation minimizing frame algorithm described
by Wang [4], can be used to construct a tube of
arbitrary (noncircular) cross section. For example,
Fig. 7 was created by rotating the Greek letter π
along a curve describing a trefoil knot.

Jens Schwaiger used similar methods to design
a 3D version of Asymptote’s labelpath function
for typesetting text along curves and surfaces, as
illustrated in Fig. 8.

5 Arrowheads in 3D

Arrows are frequently used in illustrations to draw
attention to important features. We designed curved

Asymptote: Lifting TEX to three dimensions

60 TUGboat, Volume 30 (2009), No. 1

Figure 7: A trefoil knot drawn with Asymptote’s
arbitrary cross section tube module.

3D arrowheads that can be viewed from a wide range
of angles. For example, the default 3D arrowhead
was formed by bending a cone around the tip of a
Bézier curve using the same algorithm as is used for
constructing thick lines. Planar arrowheads derived
from 2D arrowhead styles are also implemented; they
are oriented by default on a plane perpendicular
to the initial viewing direction. Examples of these
arrows are displayed in Figs. 9 and 10. An engineer-
ing drawing that uses planar arrows is displayed in
Fig. 11.

6 Double deferred drawing

Journal size constraints typically dictate the final
width and height, in PostScript coordinates, of a 2D

or projected 3D figure. However, it is often conve-
nient for users to work in more physically meaningful
coordinates. This requires deferred drawing: a graph-
ical object cannot be drawn until the actual scaling
of the user coordinates (in terms of PostScript coor-
dinates) is known [1]. One queues a function to do
the drawing only once the overall scaling is known.
Asymptote’s high-order functions provide a flexible
automatic sizing mechanism: either or both of the
3D model dimensions and the final projected 2D size
may be specified. This requires two levels of deferred
drawing, a first pass to size the 3D model and a
second pass to scale the resulting picture to fit the
2D size specification.

Deferred drawing allows one to draw a fixed-
sized object at a scaled coordinate. The following

Figure 8: Illustration of curved labels drawn with the
labelpath3 module.

Figure 9: Predefined 3D revolved arrowheads: (blue)
TeXHead3; (green) HookHead3; (red) DefaultHead3.

code shows how to draw circles with 5mm radii at
each vertex of a unit cube, independent of the overall
picture scaling (cf. Fig. 12):

import three;

size(4cm);

currentprojection=orthographic(5,4,2);

void Circle(triple c, pen p) {

picture pic;

draw(pic,scale3(5mm)*unitcircle3,p);

add(pic,c);

}

path3[] g=unitbox;

draw(g);

for(path3 p : g)

for(int i=0; i < length(p); ++i)

Circle(point(p,i),red);

John C. Bowman and Orest Shardt

TUGboat, Volume 30 (2009), No. 1 61

Figure 10: Predefined planar curved arrowheads:
(blue) TeXHead2; (green) HookHead2; (red)
DefaultHead2.

Figure 11: Temperature distribution in a cross
section of a heat fin.

7 Interactive 3D Graphs

An important application of 3D TEX is in scientific
graphing. The following code generates the interac-
tive 3D surface in Fig. 13.

import graph3;

import grid3;

import palette;

currentprojection=orthographic(0.8,0.7,1.5);

size(225pt,0,IgnoreAspect);

real f(pair z) {

return cos(2pi*z.x)*sin(2pi*z.y);

}

surface s=surface(f,(-1/2,-1/2),(1/2,1/2),20,

Spline);

draw(s,mean(palette(s.map(zpart),Rainbow())),

black);

xaxis3(Label("x",0.5),Bounds,InTicks);

yaxis3(Label("y",0.5),Bounds,InTicks);

zaxis3(Label("z",0.5),Bounds,-1,1,

InTicks(trailingzero));

grid3(XYZgrid);

In Fig. 14, a 3D interactive plot of the surface
of the function Γ(z) =

∫∞
0+
e−ttz−1 dt, extended ana-

lytically to the complex plane, emphasizes its poles

Figure 12: Example of double deferred drawing.

Figure 13: An interactive surface plot with elevation
coloring.

at the origin and at negative integers. This was
produced with the Asymptote code:

import graph3;

import palette;

size(225pt,0,IgnoreAspect);

currentprojection=orthographic(1,-1.8,1);

real X=4.5; real M=abs(gamma((X,0)));

pair Gamma(pair z) {

return (z.x > 0 || z != floor(z.x)) ?

gamma(z) : M;

}

real f(pair z) {return min(abs(Gamma(z)),M);}

surface s=surface(f,(-2.1,-2),(X,2),60,Spline);

real Arg(triple v) {

return degrees(Gamma((v.x,v.y)),warn=false);

}

s.colors(palette(s.map(Arg),Wheel()));

draw(s);

Asymptote: Lifting TEX to three dimensions

62 TUGboat, Volume 30 (2009), No. 1

Figure 14: Surface plot of Γ(z) in the complex plane,
using an RGB color wheel to represent the phase. Red
indicates real positive values.

xaxis3("$\mathop{\rm Re} z$",Bounds,InTicks);

yaxis3(Label("$\mathop{\rm Im} z$",align=Y-3Z),

Bounds,InTicks);

zaxis3(rotate(90)*"$|\Gamma(z)|$",

Bounds,InTicks);

8 Inline 3D PDF animations

Inline 3D PDF movies like the one below can be
embedded with the help of the LATEX animate.sty

package. Unlike 2D inline PDF movies, each frame of
a 3D movie is currently pre-rendered by Asymptote
to a specified resolution, in order to resolve hidden
surfaces correctly.

9 Future directions

There are still a number of applications (including
the above animation) where vector PostScript or
non-interactive PDF output of 3D scenes would be
desirable. For example, Adobe Reader currently
cannot generate and print high-resolution renderings
of 3D objects.

PostScript is a 2D language that supports only
Bézier splines and surfaces, which are shape invari-
ant under affine (orthographic) projection but not

perspective projection. In contrast, nonuniform ra-
tional B-splines are invariant even in the presence of
perspective distortion since they are Bézier curves in
a projective space described by homogeneous coor-
dinates. Although PostScript is only a 2D language,
vector graphics projections of Bézier surfaces are nev-
ertheless possible using tensor product patch shading
and hidden-surface splitting along approximations
to the visible surface horizon.

We plan to implement partial prerendering of 3D

manifolds to allow 3D scenes to be described within
a 2D language like PostScript, without giving up on
a vector (scalable) description. The idea is to extend
Asymptote’s 3D picture structure to segment and sort
Bézier surfaces to resolve hidden surfaces correctly
in the projected PostScript output. This will require
the development of new algorithms for approximating
intersections of Bézier surfaces and curves with each
other. In collaboration with Troy Henderson and
L. G. Nobre, we also plan to investigate techniques
for optimally approximating nonuniform rational B-
splines by Bézier curves through the addition of new
control points. This will allow 2D projections of
Bézier curves and surfaces to be well described as
vector graphics objects in PostScript.

In the near future, we plan to provide JavaScript
support for stationary billboards that always face
the camera, as well as PRC animations.

As an aside, let us return to the issue regard-
ing implicit equation solving raised in [1]. Unlike
METAFONT and METAPOST, Asymptote does not
currently have the notion of a whatever unknown. It
was pointed out in [1] that the most common uses of
whatever in METAPOST are probably more clearly
written using explicit functions like extension. One
METAPOST user recently asked us whether there is
an elegant way to construct the circumscribed circle
of a triangle, centered at the intersection point of
two perpendicular bisectors. Indeed, the METAPOST

code:

beginfig(1)

path tri;

u := 1in;

tri := (origin--(1,0)--(2,1)--cycle) scaled u;

z0 = (point 0.5 of tri) + whatever *

(direction 0.5 of tri rotated 90);

z0 = (point 1.5 of tri) + whatever *

(direction 1.5 of tri rotated 90);

dotlabel(btex etex, z0);

draw fullcircle scaled

(2*abs(z0-point 0 of tri)) shifted z0;

draw tri withcolor red;

endfig;

end

can be written elegantly in Asymptote:

unitsize(1inch);

John C. Bowman and Orest Shardt

TUGboat, Volume 30 (2009), No. 1 63

path tri=(0,0)--(1,0)--(2,1)--cycle;

pair z1=point(tri,0.5);

pair z2=point(tri,1.5);

pair z0=extension(z1,z1+I*dir(tri,0.5),

z2,z2+I*dir(tri,1.5));

dot(z0);

draw(circle(z0,abs(z0-point(tri,0))));

draw(tri,red);

Perhaps this example will help motivate hesitant
METAPOST users to migrate to Asymptote, allowing
them to take full advantage of the powerful interac-
tive 3D functionality described in this article.

10 Conclusions

We believe that Asymptote is the first software pack-
age to lift TEX into 3D. It also provides a self-
contained open source tool for producing portable
3D PDF files that support Bézier surfaces. As illus-
trated in the examples we have provided, these are
important features for publication-quality scientific
graphing. Interactivity is critical for visualization
and mental reconstruction of 3D data, as it helps the
human brain resolve the degeneracy inherent in 2D

projection.

11 Credits

We thank Philippe Ivaldi, Radoslav Marinov, Mal-
colm Roberts, Jens Schwaiger, and Olivier Guibé for
discussions related to this work. Special thanks goes
to Andy Hammerlindl, who designed much of the
underlying Asymptote language. Financial support
for this work was provided by the Natural Sciences
and Engineering Research Council of Canada.

A Extracting Bézier curves from TEX

We now describe the PostScript code used to ex-
tract smooth font descriptions from Dvips output.
First, a PostScript procedure is defined to output a
coordinate:

/ASYo {() print 12 string cvs print} bind def

The PostScript /show operator can then be over-
loaded, using the pathforall operator to obtain the
coordinates of the Bézier control points:

/show {currentpoint newpath moveto false charpath

{(moveto) print ASYo ASYo}

{(lineto) print ASYo ASYo}

{(curveto) print ASYo ASYo ASYo ASYo ASYo ASYo}

{(closepath) print}

pathforall} bind def

The filled rectangles that TEX and Dvips use
to draw square root symbols and fraction bars are
extracted by overloading the /v procedure:

/v {neg exch 4 copy 4 2 roll 2 copy 6 2 roll

2 copy

(moveto) print ASYo ASYo

(lineto) print ASYo add ASYo

(lineto) print add ASYo add ASYo

(lineto) print add ASYo ASYo

(closepath) print} bind def

This technique was used to form the TEX char-
acters in the 3D Asymptote logo in Fig. 15.

Figure 15: The Asymptote logo in three dimensions.

References

[1] John C. Bowman and Andy Hammerlindl.
Asymptote: A vector graphics language.
TUGboat: The Communications of the TEX
Users Group, 29(2):288–294, 2008.

[2] Donald E. Knuth. The METAFONTbook.
Addison-Wesley, Reading, Massachusetts, 1986.

[3] Orest Shardt and John C. Bowman.
Three-dimensional vector representations
of nonsimply connected planar surfaces.
Submitted to ACM Trans. Graph., 2009.

[4] Wenping Wang, Bert Jüttler, Dayue Zheng,
and Yang Liu. Computation of rotation
minimizing frames. ACM Trans. Graph.,
27(1):1–18, 2008.

� John C. Bowman
Dept. of Mathematical and Statistical Sciences
University of Alberta
Edmonton, Alberta
Canada T6G 2G1
bowman (at) math dot ualberta dot ca

http://www.math.ualberta.ca/~bowman/

� Orest Shardt
Dept. of Chemical and Materials Engineering
University of Alberta
Edmonton, Alberta
Canada T6G 2V4
shardt (at) ualberta dot ca

Asymptote: Lifting TEX to three dimensions

	Introduction
	Bézier surfaces
	Three-dimensional TeX
	Thick lines in 3D
	Arrowheads in 3D
	Double deferred drawing
	Interactive 3D Graphs
	Inline 3D PDF animations
	Future directions
	Conclusions
	Credits
	Extracting Bézier curves from TeX

	0.0:
	0.1:
	0.2:
	0.3:
	0.4:
	0.5:
	0.6:
	0.7:
	0.8:
	0.9:
	0.10:
	0.11:
	0.12:
	0.13:
	0.14:
	0.15:
	0.16:
	0.17:
	0.18:
	0.19:
	0.20:
	0.21:
	0.22:
	0.23:
	0.24:
	anm0:

