General Delivery

Software & Tools

Typography

Fonts

Bibliographies

Graphics

IATEX

Macros

Letters

Hints & Tricks
Abstracts

TUG Business

News

Advertisements

12
18

20

22
32
35

36
49

o8
64
69
74
80
88

105
107

110

123

125
126

127

131
133
134
133
136
138
139
140

144
145
148
149
151

152

TUGBoAT
Volume 30, Number 1 / 2009

From the president / Karl Berry
Editorial comments / Barbara Beeton

Helmut Kopka, 1932-2009; Eitan Gurari, 1947-2009; A short history of type
Helmut Kopka, 1932-2009 / Patrick Daly

DVI specials for PDF generation / Jin-Hwan Cho
Ancient TEX: Using XHTEX to support classical and medieval studies / David Perry
TeEXonWeb / Jan Prichystal

Typographers’ Inn / Peter Flynn

OpenType math illuminated / Ulrik Vieth

A closer look at TrueType fonts and pdfTEX / Han Thé Thanh

The Open Font Library / Dave Crossland

Managing bibliographies with IATEX / Lapo Mori

Managing languages within MIBIBTEX / Jean-Michel Hufflen

Asymptote: Lifting TEX to three dimensions / John Bowman and Orest Shardt

Supporting layout routines in MetaPost / Wentao Zheng

Glisterings: Reprise; MetaPost and pdfI4TEX; Spidrons / Peter Wilson

MetaPost macros for drawing Chinese and Japanese abaci / Denis Roegel

Spheres, great circles and parallels / Denis Roegel

An introduction to nomography: Garrigues’ nomogram for the computation of Easter
/ Denis Roegel

IATEX3 news, issues 1-2 / IATEX Project Team

IATEX3 programming: External perspectives / Joseph Wright

Implementing key—value input: An introduction / Joseph Wright
and Christian Feuersanger

Current typesetting position in pdfTEX / Vit Zyka

In response to “mathematical formulse” / Kaihsu Tai

In response to Kaihsu Tai / Massimo Guiggiani and Lapo Mori

The treasure chest / Karl Berry

ArsTgXnica: Contents of issues 57 (2008-2009)
Baskerville: Contents of issue 10.1 (2009)

Die TpXnische Komddie: Contents of issues 2008/2-2009/2
Eutypon: Contents of issue 21 (2008)

MAPS: Contents of issue 36-37 (2008)

The PracTEX Journal: Contents of issues 2008-2-2008-3
TeXemplares: Contents of issue 8 (2006)

Zpravodaj: Contents of issues 16(2)-18(4) (2006-2008)

TUG institutional members

TUG 2009 election report / Barbara Beeton

TEX Development Fund 2009 report / TEX Development Fund committee
TUG financial statements for 2009 / David Walden

Calendar

TEX consulting and production services

TEX Users Group

TUGboat (ISSN 0896-3207) is published by the TEX
Users Group.

Memberships and Subscriptions
2008 dues for individual members are as follows:

= Ordinary members: $85.

= Students/Seniors: $45.
The discounted rate of $45 is also available to
citizens of countries with modest economies, as
detailed on our web site.

Membership in the TEX Users Group is for the
calendar year, and includes all issues of TUGboat
for the year in which membership begins or is
renewed, as well as software distributions and other
benefits. Individual membership is open only to
named individuals, and carries with it such rights
and responsibilities as voting in TUG elections. For
membership information, visit the TUG web site.

Also, (non-voting) TUGboat subscriptions are
available to organizations and others wishing to
receive TUGboat in a name other than that of an
individual. The subscription rate is $95 per year,
including air mail delivery.

Institutional Membership

Institutional membership is a means of showing con-
tinuing interest in and support for both TEX and
the TEX Users Group, as well as providing a dis-
counted group rate and other benefits. For further
information, see http://tug.org/instmem.html or
contact the TUG office.

TEX is a trademark of the American Mathematical
Society.

Copyright © 2009 TEX Users Group.

Copyright to individual articles within this publication
remains with their authors, so the articles may not be
reproduced, distributed or translated without the authors’
permission.

For the editorial and other material not ascribed to
a particular author, permission is granted to make and
distribute verbatim copies without royalty, in any medium,
provided the copyright notice and this permission notice are
preserved.

Permission is also granted to make, copy and distribute
translations of such editorial material into another language,
except that the TEX Users Group must approve translations
of this permission notice itself. Lacking such approval, the
original English permission notice must be included.

Board of Directors

Donald Knuth, Grand Wizard of TEX-arcana’

Karl Berry, President*

Kaja Christiansen®, Vice President

David Walden*, Treasurer
Susan DeMeritt*, Secretary
Barbara Beeton

Jon Breitenbucher

Steve Grathwohl

Jim Hefferon

Klaus Hoppner

Dick Koch

Martha Kummerer

Ross Moore

Arthur Ogawa

Steve Peter

Cheryl Ponchin

Philip Taylor

Raymond Goucher, Founding Ezxecutive Director?
Hermann Zapf, Wizard of Fonts?

*member of executive committee

fhonorary

See http://tug.org/board.html for a roster of
all past (and present) board members, and other

official positions.

Addresses

TEX Users Group

P.O. Box 2311

Portland, OR 97208-2311
U.S.A.

Telephone
+1 503 223-9994

Fax
+1 206 203-3960

Web
http://tug.org/
http://tug.org/TUGboat/

Electronic Mail
(Internet)
General correspondence,

membership, subscriptions:
office@tug.org

Submissions to TUGboat,
letters to the Editor:
TUGboat@tug.org

Technical support for

TEX users:
support@tug.org

Contact the Board
of Directors:
board@tug.org

Have a suggestion? Problems not resolved?
The TUG Board wants to hear from you:

Please email board@tug.org.

[printing date: July 2009]

Printed in U.S.A.

TUGBOAT

The Communications of the TEX Users Group

Volume 30, Number 1, 2009

T3

]

! y H

=7
N O

TEX Users Group

TUGboat (ISSN 0896-3207) is published by the TEX
Users Group.

Memberships and Subscriptions
2008 dues for individual members are as follows:

= Ordinary members: $85.

= Students/Seniors: $45.
The discounted rate of $45 is also available to
citizens of countries with modest economies, as
detailed on our web site.

Membership in the TEX Users Group is for the
calendar year, and includes all issues of TUGboat
for the year in which membership begins or is
renewed, as well as software distributions and other
benefits. Individual membership is open only to
named individuals, and carries with it such rights
and responsibilities as voting in TUG elections. For
membership information, visit the TUG web site.

Also, (non-voting) TUGboat subscriptions are
available to organizations and others wishing to
receive TUGboat in a name other than that of an
individual. The subscription rate is $95 per year,
including air mail delivery.

Institutional Membership

Institutional membership is a means of showing con-
tinuing interest in and support for both TEX and
the TEX Users Group, as well as providing a dis-
counted group rate and other benefits. For further
information, see http://tug.org/instmem.html or
contact the TUG office.

TEX is a trademark of the American Mathematical
Society.

Copyright © 2009 TEX Users Group.

Copyright to individual articles within this publication
remains with their authors, so the articles may not be
reproduced, distributed or translated without the authors’
permission.

For the editorial and other material not ascribed to
a particular author, permission is granted to make and
distribute verbatim copies without royalty, in any medium,
provided the copyright notice and this permission notice are
preserved.

Permission is also granted to make, copy and distribute
translations of such editorial material into another language,
except that the TEX Users Group must approve translations
of this permission notice itself. Lacking such approval, the
original English permission notice must be included.

Board of Directors

Donald Knuth, Grand Wizard of TEX-arcana’

Karl Berry, President®

Kaja Christiansen®, Vice President

David Walden*, Treasurer
Susan DeMeritt*, Secretary
Barbara Beeton

Jon Breitenbucher

Steve Grathwohl

Jim Hefferon

Klaus Hoppner

Dick Koch

Martha Kummerer

Ross Moore

Arthur Ogawa

Steve Peter

Cheryl Ponchin

Philip Taylor

Raymond Goucher, Founding Ezecutive Director?
Hermann Zapf, Wizard of Fonts?

*member of executive committee
fhonorary

See http://tug.org/board.html for a roster of
all past (and present) board members, and other

official positions.

Addresses

TEX Users Group

P.O. Box 2311

Portland, OR 97208-2311
U.S.A.

Telephone
+1 503 223-9994

Fax
+1 206 203-3960

Web
http://tug.org/
http://tug.org/TUGboat/

Electronic Mail
(Internet)
General correspondence,

membership, subscriptions:
office@tug.org

Submissions to TUGboat,
letters to the Editor:
TUGboat@tug.org

Technical support for

TEX users:
support@tug.org

Contact the Board
of Directors:
board@tug.org

Have a suggestion? Problems not resolved?
The TUG Board wants to hear from you:

Please email board@tug.org.

[printing date: July 2009]

Printed in U.S.A.

The development of mathematical notation ... was
nothing short of revolutionary. ... [T]he notation was
universal; it could be understood no matter what your
national language was.

Arika Orent
In the Land of Invented Languages
(2009)

UGBOAT

COMMUNICATIONS OF THE TgX USERS GROUP
Epitor BARBARA BEETON

VoruMme 30, NUMBER 1 . 2009
PORTLAND . OREGON . U.S.A.

TUGDboat

This regular issue (Vol. 30, No. 1) is the first issue
of the 2009 volume year. No. 2 will contain the TUG
2009 (Notre Dame) proceedings and No. 3 will be
a joint publication of the EuroTEX 2009 conference
in The Hague.

TUGDboat is distributed as a benefit of member-
ship to all current TUG members. It is also available
to non-members in printed form through the TUG
store (http://tug.org/store), and online at the
TUGboat web site, http://tug.org/TUGboat. On-
line publication to non-members is delayed up to
one year after an issue’s print publication, to give
members the benefit of early access.

Submissions to TUGboat are reviewed by vol-
unteers and checked by the Editor before publica-
tion. However, the authors are still assumed to be
the experts. Questions regarding content or accu-
racy should therefore be directed to the authors,
with an information copy to the Editor.

Submitting Items for Publication

The deadline for receipt of final papers for the
upcoming proceedings issue is August 19, 2009.
More information about this and all conferences are
available at http://tug.org/meetings.html.

The next regular issue will probably be in
spring 2010. As always, suggestions and proposals
for TUGboat articles are gratefully accepted and
processed as received. Please submit contributions
by electronic mail to TUGboat®@tug.org.

The TUGboat style files, for use with plain
TEX and IATEX, are available from CTAN and the
TUGboat web site. We also accept submissions
using ConTEXt. More details and tips for authors
are at http://tug.org/TUGboat/location.html.

Effective with the 2005 volume year, submission
of a new manuscript implies permission to publish
the article, if accepted, on the TUGboat web site,
as well as in print. Thus, the physical address
you provide in the manuscript will also be available
online. If you have any reservations about posting
online, please notify the editors at the time of
submission and we will be happy to make special
arrangements.

TUGDboat Editorial Board

Barbara Beeton, Editor-in-Chief

Karl Berry, Production Manager

Christina Thiele, Associate Editor,
Topics in the Humanities

Production Team

William Adams, Barbara Beeton, Karl Berry,
Kaja Christiansen, Robin Fairbairns,

Robin Laakso, Steve Peter, Yuri Robbers,
Michael Sofka, Christina Thiele

Other TUG Publications

TUG is interested in considering additional manu-
scripts for publication, such as manuals, instruc-
tional materials, documentation, or works on any
other topic that might be useful to the TEX com-
munity in general.

If you have any such items or know of any
that you would like considered for publication, send
the information to the attention of the Publications
Committee at tug-pub@tug.org.

TUGDboat Advertising

For information about advertising rates and options,
including consultant listings, write or call the TUG
office, or see our web pages:
http://tug.org/TUGboat/advertising.html
http://tug.org/consultants.html

Trademarks

Many trademarked names appear in the pages of
TUGboat. If there is any question about whether
a name is or is not a trademark, prudence dictates
that it should be treated as if it is. The following
list of trademarks which appear in this issue should
not be considered complete.

METAFONT is a trademark of Addison-Wesley Inc.

PostScript is a trademark of Adobe Systems, Inc.

TEX and ApS-TEX are trademarks of the American
Mathematical Society.

TUGDboat, Volume 30 (2009), No. 1

General Delivery

From the President
Karl Berry

In memoriam

The TEX community has lost two important con-
tributors in 2009. Helmut Kopka, co-author of the
renowned book A Guide to K TEX, passed away in
January. A memorial by his fellow author Patrick
Daly appears in this issue. Eitan Gurari, creator of
the TEX4ht software package and frequent partici-
pant at TUG conferences, unexpectedly passed away
in June; he was going to be a featured speaker at the
TUG 2009 conference. A profile of Eitan will appear
in the proceedings issue.

We will greatly miss our friends and colleagues.

TEX Collection 2009

Work on TEX Live 2009 continues, and anyone willing
to try the pretest releases is welcome; details at
http://tug.org/texlive. Thomas Feuerstack has
also prepared a new version of proTEXt for 2009,
which can be found at http://tug.org/protext.

Among many other changes, this year’s release
will include a new version of the Computer Modern
Type 1 fonts, painstakingly prepared by the AMS to
incorporate all of Knuth’s glyph shape changes, the
hinting previously released by Y&Y, and other fixes.

TEX Live 2009 will also include the new front
end TEXworks, written by Jonathan Kew (http:
//tug.org/texworks), a project supported by TUG
and other user groups. We expect executables for
Windows and Mac OSX to be included in the distri-
bution, while (for painful technical reasons) binaries
for other platforms will be downloadable from the
TEXworks web site. TEXworks can also be tested
now.

The Asymptote graphics program will also be
included on at least the major platforms. More about
Asymptote is in two articles by John Bowman and his
colleagues: one in this issue about its 3D support and
a more introductory article in TUGboat 29:2 (http:
//tug.org/TUGboat/Contents/listauthor.html#
Bowman, John).

Book of TUG interviews

We have finished production of the book of interviews
done over the past several years (http://tug.org/
interviews). It will be publicly available through

Amazon and other online (and perhaps physical)
stores, and we will also be making it available to
TUG members at a large discount. By the time you
are reading this, the web site should have the details.

And now that the book is done, regular inter-
views will resume. Perhaps there will be a volume 2
in the future.

Server hardware

The machine that is currently tug.org has served
us well for several years, but it has become time
to upgrade the hardware. The transition is under-
way and should be complete—more or less invisi-
bly, we hope—Dby the fall. It will continue to run
GNU/Linux. We will be re-using the current machine
for other purposes.

I’d like to take this opportunity to express my
appreciation to DAIMI, the computer science de-
partment at the University of Aarhus, for hosting
tug.org for so many years, and more personally to
DAIMI senior staff member Michael Glad for much
advice and help over the years, and of course to my
fellow system administrator, vice-president, and good
friend Kaja Christiansen, who made (and makes) the
hosting possible.

Conferences

TUG 2009 (http://tug.org/tug2009) will be tak-
ing place as the issue of TUGboat is printed. Its
proceedings will be the second issue for 2009.

EuroTEX 2009 (http://ntg.nl/EuroTeX2009)
will take place at The Hague in The Netherlands;
that proceedings will be the third issue.

Looking ahead to 2010, it is probable that the
TUG conference will be held in San Francisco around
the end of June, while EuroTEX will be in Italy
towards the end of the summer. The web page http:
//tug.org/meetings will be updated as plans are
finalized.

Joint memberships

We are very pleased that the Italian TEX user group,
GulT, is now offering joint memberships with TUG.
The other groups with which we have joint mem-
bership agreements are DANTE (German), DK-TUG
(Danish), NTG (Dutch), and UK-TUG (United King-
dom). It is great to see such widespread collaboration
in our common cause.

¢ Karl Berry
http://tug.org/TUGboat/Pres/

Editorial comments

Barbara Beeton

Helmut Kopka, 1932—2009

Helmut Kopka’s TEX — Eine Einfiihrung was one
of the first non-English books for IXTEX; it rapidly
became a standard reference. Joining forces with
Patrick Daly, he revised the book (as Guide to ITEX)
for an English audience, where it has gained an even
larger following.

Helmut passed away early this year after a short
illness. His clear exposition should be a goal for
all aspiring technical writers. A remembrance by
Patrick Daly appears elsewhere in this issue.

Eitan Gurari, 1947-2009

We recently learned of the sudden and unexpected
death of Eitan Gurari, on June 22. Eitan was the
creator of TEX4ht, a system used widely for pub-
lishing research papers on the Internet. His recent
research interests included hypertext processing and
Braille production; he was scheduled to give a talk
on his Braille work at the upcoming TUG meeting.

Eitan’s quiet presence and his contributions to
the TEX toolkit will be sorely missed.

A short history of type

Earlier this spring, I attended a lecture at the Mu-
seum of Printing in Andover, Massachusetts, enti-
tled “A Short History of Type”. The speaker was
Frank Romano, Professor Emeritus, Rochester Insti-
tute of Technology; Frank occupied the same chair
(Melbert B. Cary Distinguished Professor) held pre-
viously by Hermann Zapf and currently by Chuck
Bigelow.

Over a span of two hours, Frank held the full
attention of a small audience describing the winding
road from moveable type (Gutenberg and associates,
Garamond, Baskerville, and others) through ma-
chine typesetting (Mergenthaler, Samuel Clemens
(Mark Twain), et al.), film-based phototype (Photon,
Compugraphic, Alphatype, ...), and into the digital
PostScript era. (He failed to cover the pre-PostScript
digital machines, with some of which fortunate early
TEXxies spent many hours—an omission to which I
called his attention afterwards.)

The lecture was videorecorded by students from
a local tech college; I've asked for a copy of the
recording, and if it’s available in time, I hope to take
it with me to the TUG meeting, to share with other
attendees.

Frank is scheduled to present a related lecture,
“A Short History of Printing”, at the Museum on

TUGDboat, Volume 30 (2009), No. 1

September 25. That’s listed in this issue’s calendar,
with a web link. If you’re likely to be in the Andover
area at the end of September, by all means sign
up! Frank is a delightful speaker, full of fascinating
information, and tolerant of off-the-wall questions.
And the Museum itself is chock full of amazing
machines and artifacts of the printing industry, in-
cluding the entire Mergenthaler font library — the
original drawings for all the fonts ever produced for
Linotype machines. A ongoing development project
for the Museum’s library will ultimately provide

web-based public access to electronic records
of the Museum’s books and ephemera.
Our goal is that eventually researchers will
be able to research and find records for all
items in the library and archives. We also
aim to provide similar access to records for
our collections of artifacts.

For lots more information, go to the Museum’s web
page, www.museumofprinting.org. And visit the
Museum; like TUG it’s a 501(c)(3) organization, run
entirely by volunteers, and needs (and deserves) all
the support it can get.

¢ Barbara Beeton
American Mathematical Society
201 Charles Street
Providence, RI 02904 USA
tugboat (at) tug dot org

Helmut Kopka, 1932-2009
Patrick W. Daly

In the English-speaking ITEX world, the name Hel-
mut Kopka is most widely associated with my own,
as the authors of the Guide to FTEX. In Germany,
he is known as the single author of a three-volume
set of IMTEX manuals: Einfihrung (Introduction),
Erginzungen (Additions), Erweiterungen (Exten-
sions).

TUGboat, Volume 30 (2009), No. 1

Helmut’s interest in first TEX, and then KTEX,
started while he was on an extended stay in the
United States, in preparation for a major scientific
project on which he was working. This was in the
late 80s, when word processing programs were pro-
liferating; Helmut even started working on his own
until he was introduced to TEX; recognizing a vastly
superior product, he quickly embraced it. He did
make his own initial contribution with the DVI driver
dvi2pcl for the LaserJet printers.

Back at his home institute in Germany, he in-
troduced IATEX as the standard text system for the
secretarial work there, at a time when computers
were invading the non-scientific offices. He comple-
mented this by writing a series of notes, or lectures,
explaining to the secretaries how this system was to
be used. These notes later became the basis for his
first ATEX textbook, the Finfihrung.

The success of this book in Germany was so
great (he once told me that it sold more copies in
Germany than Lamport in the world, but I can-
not confirm this) that the publisher Addison-Wesley
Deutschland considered an English translation. This
was where I came into the picture.

Helmut was nothing if not direct. He knew that
I was a major user of ITEX, that I was writing style
files, as packages were called back in the 2.09 days,
and as a Canadian was a native English speaker.
It was the middle of an Open-House Day in the
Institute, we were besieged with thousands of visitors,
many from across the recently opened Iron Curtain
a mere 20 km away. In the midst of all this, Helmut
comes to me and asks if I would be interested in
translating his M TEX manual into English, as though
this could be done in a day or two. I answered that
I would think it over. The rest is INTEX history.

The first edition of A Guide to ITEX was very
much a translation. While working on it, I was
impressed by Helmut’s skill at explaining complex
ideas very simply, and by the examples he used to
illustrate the points. When I was half-way through
the translation (it took a year) I realized I could start
using it myself as my own reference manual. He was
an enthusiastic teacher; a visit to his office with a
simple question could result in a fascinating lecture
on how METAFONT works. I very much appreciated
the material that he had given me to work with.

With the second edition, A Guide to ITEX 2¢, 1
began the rewriting needed to explain the new ETEX
version that was about to come out. I consulted
Helmut all the time and he incorporated many of my
changes into the German equivalent. When I wanted
to add an additional appendix, he was hesitant: the

original book had 9 chapters and 6 appendices (A-F)
and the 7" appendix H would destroy the nice hex-
adecimal nature of the layout. He did acquiesce in
the end.
IMTEX was of course only part of Helmut’s life.
He was born in Dortmund, studied physics in Got-
tingen with a degree in fluid dynamics, joined the
Max-Planck-Institut fiir Aeronomie in Lindau (am
Harz) in 1963, where he started applying advanced
computer techniques when high level computer lan-
guages were in their infancy. His specialty was now
ionospheric physics. In 1974 he became part of a
new project called Heating, a very powerful short-
wave transmitter designed to perturb and heat elec-
trons in the ionosphere. These active experiments
in ionospheric and plasma physics were carried out
near Tromsg, in northern Norway, where the sister
project, the EISCAT incoherent scatter radar facility,
was also located. He was to become a co-leader of
this project, financed by the Max Planck Society, the
Max-Planck-Institut fiir Aeronomie, and the German
Research Foundation. It was his task to design an
antenna and transmission line system which could be
realized within the modest budget available. He man-
aged this magnificently through the imaginative use
of his physics, mathematics, and computing skills.
Helmut was also very politically engaged. He
served as mayor for a few years in his village and
even considered going into state politics. He was
instrumental in getting a workers’ council established
in the Institute against the wishes of the director.
When the then Ministerpresident of Lower Saxony,
Gerhard Schroder, visited the Institute as part of
his campaign to become Chancellor of Germany, he
insisted on meeting his “old friend Helmut”.
Helmut retired from his duties at the Institute
in 1997 at which time he began a long battle against
cancer, which he ultimately won. He was still a
regular visitor to the Institute, coming for lunch
every Tuesday with the others from his old group.
He enjoyed telling stories about his grandchildren.
And he continued to work on his KTEX manuals,
being very proud that they now appeared as eBooks.
Helmut Kopka passed away on January 7, 2009,
after a short illness; we now mourn a talented, dedi-
cated, affectionate colleague and friend.

o Patrick W. Daly
Max-Planck-Institut fir
Sonnensystemforschung
37191 Katlenburg-Lindau
Germany
daly (at) mps dot mpg dot de

Software & Tools

DVI specials for PDF generation
Jin-Hwan Cho

Abstract

DVIPDFM(z) manages various PDF effects by means
of DVI specials. Appropriate documentation of DVI
specials, however, is not easy to find, and exact
functionality is not simple to catch without reading
the source code of DVI drivers. This paper deals
with the DVI specials defined in DVIPDFM(z) that
are mainly used for PDF generation. We discuss the
features of those specials with some examples, many
of which are not documented elsewhere.

1 Introduction

DVI, the output file format of D. E. Knuth’s TEX,
is not widely used at present compared with PDF,
the output format of pdf TRX. It is rather old! and
obsolete, but it has powerful aspects nonetheless:
simplicity and compactness.

These aspects make it possible to manipulate
DVI files in an easy and fast way. Many DVI utilities
were developed to convert the DVI format to other
file formats including PostScript and PDF. It is
also possible to edit DVI files directly by the use of
DVlasm [5, 6, 7].

Twenty years ago, at the time PostScript dom-
inated the printing world, nobody expected a new
format would replace PostScript. PDF is not eternal
either. In future, when a new format surpassing PDF
appears, DVI will be the first format in the TEX world
that can be converted to the new format. Notice
that LuaTgX, considered to be the next generation
of pdf TEX, still supports the DVI format.

There are two popular ways to convert DVI to
PDF. The first one is a two-way conversion, from
DVI to PostScript with DVIPS, and then from Post-
Script to PDF with a distiller. Adobe Acrobat Dis-
tiller is the oldest commercial program, and Ghost-
script is the most popular distiller in the TEX world.
Mac OSX also has its own distiller.

Adobe designed the pdfmark operator [2] for
its distiller to support PDF features that are not
expressible using the standard PostScript operators.
The pdfmark operator is given in the TEX source by
means of a DVI special command. Note that it is
not DVIPS but a distiller that processes the pdfmark
operator.

1 DVI was designed by David R. Fuchs in 1979.

Jin-Hwan Cho

TUGDboat, Volume 30 (2009), No. 1

Mark A. Wicks’ DVIPDFM [11] introduced the
other way of converting DVI directly to PDF. He
also designed new DVI specials based on the pdfmark
operator to support various PDF features. The new
specials, however, lacked some functionality in prac-
tical use so that not many PDF features could be
obtained compared with pdfTEX.

One of the main goal of DVIPDFMz, an ex-
tension of DVIPDFM that grew out of the CJK?
support, was to provide as many PDF features as
pdfTEX [3]. DVIPDFMz extended the functional-
ity of some special commands of DVIPDFM, and
designed new special commands having a similar
functionality of pdf TEX’s own primitives. Further-
more, DVIPDFMzx has several powerful features not
available in DVIPDFM.

e Support 16-bit character sets (CJK encodings
and Unicode) with CID-keyed font technology.

e Support various font formats including Open-
Type, TrueType, etc.

e Use CFF font format for embedded Typel Post-
Script fonts so that the size of the PDF output
is quite small compared with pdf TEX’s output.

e Support extended TEX engines, e.g., Omega,
Japanese pTEX, X4TEX (via XDVIPDFMX).?

The TODO list of DVIPDFMz had contained
one outstanding item for a long time: supporting
Till Tantau’s beamer package [9], that is widely used
for PDF presentation. In fact, this package does not
handle DVI specials in a direct way. Instead, the
graphics part comes from the same author’s PGF
package [10], and the other PDF effects come from
the hyperref package [8].

DVIPDFMz has supported full functionality of
the PGF package since June 2008.* Nonetheless,
the navigation buttons usually shown in the lower
right corner of the presentation still did not work,
although they were displayed correctly. The source
code® implementing the buttons was
\def\beamer@linkspace#1{\vbox to7.5pt{}\kern#1}

The code above generates an empty box that
will be surrounded by the two special commands,
‘pdf :bann’ (before) and ‘pdf :eann’ (after). Unfortu-
nately, neither DVIPDFM nor DVIPDFMz construct
any annotation in the case of an empty box. Another
special command ‘pdf :ann’ must be used instead for

2 Chinese, Japanese, and Korean.

3 Upcoming version of DVIPDFMz will support the DVI
output generated by LuaTgX.

4 The DVIPDFMz driver that works with the PGF package
included in TEX Live 2008 can be downloaded from http:
//project.ktug.or.kr/dvipdfmx/contrib/generic/.

5 http://mirror.ctan.org/macros/latex/contrib/
beamer/base/beamerbasenavigation.sty

TUGDboat, Volume 30 (2009), No. 1

this purpose. That was the exact reason why the
navigation buttons did not work.

Why did the author of the beamer package make
such a mistake? As a matter of fact, it was not his
fault because no statement could be found about
that functionality in the manual of DVIPDFM [11].
This unhappy story led to this paper.

The author gave a presentation [4] at TUG 2005,
in which the different behaviors of DVI specials of
DVIPS, DVIPDFM, and DVIPDFMz were discussed.
DVI specials for PDF generation, however, were not
fully discussed at that time. The main objective of
this paper is to bridge this gap.

We will discuss in the following sections the
features of DVI specials defined in DVIPDFM for
PDF generation, and the extended features given by
DVIPDFMz. The author hopes this paper would be
useful for package writers who are finding appropriate
information on DVI specials.

2 Named PDF objects

There are two kinds of named objects, built-in and
user-defined PDF objects.

2.1 Built-in named objects

Built-in objects defined in DVIPDFM(z) are listed
in Table 1. We refer to [2, p. 12] and [11, p. 5] for
pdfmark and DVIPDFM built-in objects, respectively.
Notice that it is not allowed to modify the contents
of the last five built-in objects in Table 1.

@catalog catalog dictionary [1, p. 139]

@docinfo (DVIPDFMz only) document
information dictionary [1, p. 844]

Onames name dictionary [1, p. 150]

@pages root page tree node [1, p. 143]

@resources | resource dictionary of current
page [1, p. 154]

O@thispage current page object [1, p. 145]

@prevpage | reference only

@nextpage | reference only

@pagen reference only

@xpos reference only

Q@ypos reference only

Table 1: Built-in objects defined in DVIPDFM(x)

2.2 User-defined named objects

Two special commands are provided by DVIPDFM(x)
for user-defined objects. One is to define a named ob-
ject, and the other is to add content to the previously
defined object.

°]pdf:obj @name PDFobject‘ creates a named
object that can be referenced later by ‘@name’.

All possible object types for ‘PDFobject’ are listed
in Table 2. In the case of indirect objects, the object
number must be given explicitly, so that this feature
is rarely used, especially to specify the objects in a
different PDF file.

boolean true, false

numeric 123, 34.5, -.002

string (This is a string), <901FA3>

name /Namel, /.notdef

array [3.14 false (Ralph) /Namel]

dictionary | <</Keyl (Value) /Key2 3.14>>
null null

indirect 12 0 R

stream stream ... endstream

Table 2: PDF object types [1, p. 51]

It is not simple to construct a stream object with
the special command ‘pdf : obj’ because the length of
the stream object must be specified explicitly, which
is quite bothersome. Imagine that you are trying
to construct a stream object whose source comes
from a file. Is it possible with this special command?
Moreover, any stream object requires the keyword
‘stream’ followed by an end-of-line marker.®

DVIPDFMz, therefore, provides new special com-
mands for stream objects.

° ’pdf:stream @name (string) <<dict>>‘

constructs a stream object the source of which
comes from the string object ‘(string)’. The
stream dictionary ‘<<dict>>’ is optional, and
the dictionary entry ‘/Length’ is created auto-
matically.

The following two special commands, for instance,

construct the same stream object. The stream data

of the second object is represented in the ASCII base-

85 encoding. [1, p. 70]

\special{pdf:stream @name (xxxxxxxXx)}

\special{pdf:stream @name (G~+IXG +IX)
<</Filter/ASCII85Decode>>}

. ’pdf:fstream Oname (filename) <<dict>>‘

constructs a stream object in the same way as
‘pdf :stream’, but the source of stream data
comes from a file ‘filename’.

The following example shows how to include a source
TEX file inside the output PDF file. (See [1, p. 637]
for more details on the file attachment annotation.)

\special{pdf:fstream @myfile (mytest.tex)}
\special{pdf:ann bbox 0 0 10 10 <<

6 An end-of-line marker consists of either a carriage return
(0x0d) and a line feed (0x0a) or just a line feed, and not by a
carriage return alone [1, pp. 60-61].

DVI specials for PDF generation

/Subtype /FileAttachment /FS <<
/Type /Filespec /F (mytest.tex)
/EF << /F @myfile >> >>
/Name /PushPin >>}

2.3 Adding content to named objects

We describe the special command for adding content
to named objects. The type of the named object
must be either array or dictionary.

e [pdf:put @arrayobj object; ... object,|

appends the n objects at the end of the array
object ‘@arrayobj’.

e [pdf:put @dictobj <<dict>>| merges the dic-
tionary object ‘<<dict>>’ into ‘@dictobj’. If
both the dictionaries have a common key, the
old value in ‘@dictobj’ will be replaced by the
new value in ‘<<dict>>’.

In the following example, the value of the key /X’
in the dictionary object ‘@name’ is ‘@Moon2’. (See |2,
p. 15] for corresponding pdfmark operators.)
\special{pdf :put @Moonl

[(Earth to Moon) 238855 /mies]}
\special{pdf:obj @Moon2 []}
\special{pdf:put @Moon2 (Moon to Earth)}
\special{pdf:put @Moon2 238855}
\special{pdf:put @Moon2 /miles}
\special{pdf:obj @name <<>>}
\special{pdf:put @Gname << /X @Moonl >>}
\special{pdf:put @name << /X @Moon2 >>}

Note that DVIPDFM does not allow adding con-
tent to a stream dictionary object, but DVIPDFMx
does.

e [pdf:put @streamobj <<dict>>| merges the
dictionary object ‘<<dict>>’ into the stream
dictionary of ‘@streamobj’. The dictionary en-
tries, ‘/Length’ and ‘/Filter’, in the object
‘<<dict>>’ will be ignored.

Finally, DVIPDFM(z) provides the special com-
mand [pdf:close @name|to prevent further modify-
ing the content of ‘Gname’. After closing the named
object, it can only be referenced.

3 Annotations

An annotation is considered as an object with a
location on a page. The type of the object is given
by the value of the key ‘/Subtype’, for instance,
‘/Text’, ‘/Link’, ‘/Sound’, ‘/Movie’, etc. (See [1,
p. 615] for the list of all annotation types.) The
location is given by an array object associated to
the key ‘/Rect’. DVIPDFM(z) provides the following
special command for annotations.

pdf:ann Oname width [length] height
[length] depth [length] <<dict>>

Jin-Hwan Cho

TUGDboat, Volume 30 (2009), No. 1

The annotation dictionary is given by ‘<<dict>>’

and the location relative to the current posi-

tion is given by the three dimension parameters,

‘width’, ‘height’, and ‘depth’.
It is not possible to specify the location in an absolute
way. Any value of the key ‘/Rect’ in the annotation
dictionary ‘<<dict>>’ will be ignored if found. It
is not allowed to modify the annotation dictionary
with ‘pdf :put’ command, so ‘@name’ must be used
as a reference.

Note that DVIPDFMz allows the ‘bp’ unit in
the dimension parameters, but DVIPDFM does not.
Moreover, DVIPDFMz supports the following form.

pdf:ann @name bbox [ulx] [uly] [1rx]

°
[1ry] <<dict>>

The relative location is given by the bounding
box consisting of four numbers in ‘bp’ units.

The following example shows a movie annotation
that enables us to run the movie file ‘mymovie.avi’
inside a PDF viewer program.

\special{pdf:ann bbox 0 0 360 180 <<
/Subtype /Movie /Border [1 0 0]
/T (My Movie) /Movie <<
/F (mymovie.avi) /Aspect [720 360]
/Poster true >>
/A << /ShowControls false >> >>}

DVIPDFM(z) provides other special commands
for breakable annotations, e.g., an annotation broken
over several lines or several pages.

e [pdf:bann <<dict>>| begins a breakable an-
notation. Object name is not allowed for this
command.

. terminates the previous breakable

annotation.

These specials are mainly used for ‘/Link’ annotation
as the following example shows.
\special{pdf:bann << /Subtype /Link

/BS << /Type /Border /W 0.5 /S /S >>

/A << /S /URI

/URI (http://www.tug.org) >> >>}
http://www.tug.orgh
\special{pdf:eann}

Warning: No annotation will be constructed if the
content between ‘pdf:bann’ and ‘pdf:eann’ is an
empty box. For example:

\special{pdf:bann << /Subtype /Link ... >>}
\vbox to 7.5pt{}\kern 10pt

\sepcial{pdf:eann}

Annotations constructed by DVIPDFM(z) may
happen to be slightly bigger than the expected size.
This occurs when the annotation grow size is positive;
this value is specified in the configuration file. To

TUGboat, Volume 30 (2009), No. 1

avoid this effect, either modify the configuration file
or give ‘-g 0’ on the command line when running
DVIPDFM(z).

4 Outlines (or bookmarks)

The document outline consists of a tree-structured
hierarchy of outline items (sometimes called book-
marks) for which DVIPDFM(x) provides the following
special command.

e [pdf:out n <<dict>>| adds an outline item to
the document. The integer parameter n repre-
sents the level of the outline entry (beginning
with 1), and ‘<<dict>>’ represents the outline
item dictionary [1, p. 585].

Note that all the outline items generated by
DVIPDFM are closed.” The ‘bookmarksopen=true’
option of the hyperref package does not work if the
PDF output is generated by DVIPDFM.

\usepackage [
dvipdfm,bookmarks=true,bookmarksopen=true
J{hyperref}

DVIPDFMz provides two solutions for this prob-
lem. The first one is to specify the option ‘-0 n’
when running DVIPDFMz. Up to level n, the out-
line entries will be open. The second, and complete,
solution is to use this extended special command:

) ’pdf:out [-1 n <<dict>>‘ The symbol ‘[-]1’
indicates that the outline item will be closed.
On the other hand, ‘[1’ without the minus sign
indicates that the outline item will be open.

The hyperref package provides a new option
‘dvipdfmx-outline-open’ that uses the extended
command above. This option enables us to control
the open level given by ‘bookmarksopenlevel’.
\usepackage [/

dvipdfmx,bookmarks=true,

bookmarksopen=true,

bookmarksopenlevel=1,

dvipdfmx-outline-open
J{hyperref}

5 External objects (or XObjects)

DVIPDFM(x) supports two types of external objects,®
an image XObject and a form XObject.

pdf :image Oname width [length] height

¢ [length] depth [length] (imagefile)

7 The sign of the value of the key ‘/Count’ in the out-
line item dictionary determines whether the item is open or
closed. [1, p. 586]

8 “A graphics object whose contents are defined by a self-
contained content stream, separate from the content stream
in which it is used.” [1, p. 332]

defines an image XObject the source of which
comes from the file ‘imagefile’. See [5, p. 216]
for complete syntax provided by DVIPDFMz.

pdf :bxobj @name width [length] height
[length] depth [length]

begins the definition of a form XObject. As
with the command ‘pdf:add’, DVIPDFMzx al-
lows bounding box ‘bbox [ulx] [uly] [1lrx]
[1ry]’ for dimension parameters.

e |pdf:exobj| ends the previous form XObject

definition.

e [pdf:uxobj @name]| displays the image XObject
or the form XObject previously defined and as-
sociated with ‘@Gname’. DVIPDFMz allows di-
mension parameters (same as ‘pdf : image’) after
‘Oname’.

Typical examples showing how to use image XObjects
and form XObjects can be found in [4, pp. 15-16].

X X

Figure 1: Two form XObjects with opacity 0.5; the
right one is a group XObject.

DVIPDFMz extended the command ‘pdf :eann’
to support a group XObject.” Figure 1 shows the
difference between a normal XObject and a group
XODbject.

e [pdf:exobj <<dict>>] merges the dictionary
object ‘<<dict>>’ into the typel form dictio-
nary [1, p. 358] of the previous form XObject
and then close the XObject.

The following code draws the right image in Figure 1.

\special{pdf:bxobj @group bbox 0 0 50 50}
\special{pdf:code
15w 00mb50501S500mO501 Sk

\special{pdf:exobj << /Group

<< /8 /Tramsparency >> >>}
\special{pdf:obj @extgstate

<< /CA0.5 <</CA 0.5>> /ca0.5 <</ca 0.5>> >>}
\special{pdf:put @resources

<< /ExtGState @extgstate >>}
\special{pdf:code /CA0.5 gs /ca0.5 gs}
\special{pdf:uxobj @group}

We get the left image if \special{pdf:exobj} is
used instead of the 4th and the 5th line.

9 “A special type of form XObject that can be used to
group graphical elements together as a unit for various pur-
poses.” [1, p. 360]

DVI specials for PDF generation

10

6 Raw PDF Operators

This final section deals with writing raw PDF oper-
ators in the output. DVIPDFM provides a special
command for this feature.

e [pdf:content Operators| adds the list of op-

erators “Operators” to the current page at the
current location. The operator ‘q’, saving the
current graphics state, followed by a transforma-
tion matrix moving to the current location will
be attached to the beginning of the list, and the
operator ‘Q’ restoring the saved graphics state
at the end of the list.

For instance, the special command
\special{pdf:content 10 w O O m 50 50 1 S}

inserts the following list of operators in the output.

...@1001a:ycm10w00m505015@...

We sometimes need to insert PDF operators
without additional graphics state operators. The
author of the PGF package devised a trick:

\special{pdf:content Q ... Operators ... g}

The first operator ‘Q’ and the last operator ‘q’ nul-
lify the effects of graphics state operators that are
attached.

DVIPDFMzx provides a new special command
instead of the trick above.

e [pdf:1literal direct Operato:fs‘10 or simply

[pdf:code Operators| plays the same role as

‘pdf :content, but no graphics state operator
and no transformation matrix will be added.

23

Figure 2: The location of ‘23’ in the left image varies
according to the location of 1 in the current page.

Consider the following code, labelled Listing 1.
Which image in Figure 2 does this code generate?

\def\bpic{\special{pdf:content q}}
\def\epic{\special{pdf:content Q}}
\def\myop#1{\special{pdf:content Q #1 q}}
1\bpic2\myop{.5 G 10 w 0 O m 100 100 1 S}3\epic4d

Listing 1: Which image in Figure 2 is the result of
this code, produced by DVIPDFM(z)?

The macro \bpic in Listing 1 nullifies the effect
of the operator ‘Q’ that will be attached after ‘q’,

10 The idea of ‘pdf:literal direct’ came from the primi-
tive ‘\pdfliteral direct’ of pdfTEX.

Jin-Hwan Cho

TUGDboat, Volume 30 (2009), No. 1

and the macro \epic nullifies the effect of the list ‘q
1001 x y cm that will be attached before ‘Q’.

Most people may choose the right-hand image
in Figure 2 as the result of Listing 1, if they remem-
ber the fact that special commands are considered
nothing by TEX. However, the answer is the left-
hand image. The reason is that the transformation
matrix in the macro \bpic still has an effect on the
characters ‘2’ and ‘3’. The effect will be nullified by
the macro \epic.

To produce the right-hand image, DVIPDFMz
provides the following new special commands.

e |pdf:bcontent| starts a block that works in the

same way as ‘pdf:content’ except that all text
between this command and ‘pdf:econtent’ will
be placed in the right position.

. ends the current block.

Moreover, ‘pdf :bcontent’ and ‘pdf:econtent’ can
be nested.

Finally, we can get the right-hand image in Fig-
ure 2 as the result of Listing 2 following, produced
by DVIPDFMz.

\def\bpic{\special{pdf:bcontent}}
\def\epic{\special{pdf:econtent}}
\def\myop#1{\special{pdf:code #1}}
1\bpic2\myop{.5 G 10 w 0 0 m 100 100 1 S}3\epic4d

Listing 2: The right-hand image in Figure 2 is the
result of this example produced by DVIPDFMz.

References

[1] Adobe Systems, Inc., PDF Reference, 6%
edition (Version 1.7, November 2006).
http://www.adobe.com/devnet/acrobat/
pdfs/pdf _reference_1-7.pdf.

[2] Adobe Systems, Inc., pdfmark Reference
(Version 8.0, November 2006). http:
//www.adobe.com/devnet/acrobat/pdfs/
pdfmark_reference.pdf.

[3] Jin-Hwan Cho, DVIPDFMzx, an extension of
DVIPDFM, TUG 2003. Hawaii, United States.
http://project.ktug.or.kr/dvipdfmx/doc/
tug2003.pdf.

[4] Jin-Hwan Cho, Practical Use of Special
Commands in DVIPDFMx, TUG 2005,
International Typesetting Conference. Wuhan,
China. http://project.ktug.or.kr/
dvipdfmx/doc/tug2005.pdf.

[5] Jin-Hwan Cho, Hacking DVI files: Birth
of DVIasm, The PracTEX Journal (2007),
no. 1, and TUGboat 28:2, 2007, 210-217.
http://tug.org/TUGboat/Articles/tb28-2/
tb89cho.pdf.

TUGDboat, Volume 30 (2009), No. 1

(6]

Jin-Hwan Cho, Handling Two-Byte
Characters with DVIasm, The Asian Journal
of TEX 2 (2008), no. 1, 63—68. http://ajt.
ktug.kr/assets/2008/5/1/0201cho. pdf.
Jin-Hwan Cho, The DVIasm Python script.
http://mirror.ctan.org/dviware/dviasm/.
Heiko Oberdiek, The hyperref package
(Version 6.78f, August 2008). http:
//mirror.ctan.org/macros/latex/contrib/
hyperref/

Till Tantau, The beamer package (Version
3.07, March 2007). http://mirror.ctan.
org/macros/latex/contrib/beamer/.

11

[10] Till Tantau, PGF, A Portable Graphics

Format for TEX (Version 2.00, February 2008).
http://mirror.ctan.org/graphics/pgf/.

[11] Mark A. Wicks, DVIPDFM User’s Manual

(Version 0.12.4, September 1999). http:
//gaspra.kettering.edu/dvipdfm/
dvipdfm-0.12.4.pdf.

¢ Jin-Hwan Cho
Department of Mathematics
The University of Suwon
Republic of Korea
chofchof (at) ktug dot or dot kr

DVI specials for PDF generation

12

Ancient TEX: Using XHdTEX to support
classical and medieval studies

David J. Perry

Abstract

This article provides a brief background on Unicode
and OpenType and then explains how they have
become important to scholars in classics and medieval
studies. XHTEX, with its support for Unicode and
OpenType, now makes TEX a good choice for scholars
working in these fields— particularly on Windows
and Linux, where OpenType support is not readily
available otherwise.

1 The movement toward Unicode

(If you already have a good understanding of Unicode,
you can skip ahead to section 2, or to 2.2 if you don’t
need an introduction to OpenType.)

Unicode is a project designed to make it possible
to use all the living languages of the world, and
many historical ones, in an efficient and standardized
way. It is developed by the Unicode Consortium, a
group that includes software companies, institutions
such as universities and governmental agencies, and
individuals. The Unicode Standard is developed in
coordination with the international standard ISO-
10646, known as the Universal Character Set; all
characters added to one are also added to the other.
(These two projects were begun separately in the
late 1990s, but soon were merged since it was not
beneficial to have two competing standards.)

ISO-10646 is essentially a list of characters. The
Unicode Standard provides additional help to those
who need to write software using various scripts; for
instance, Unicode provides a bidirectional algorithm
to integrate left-to-right and right-to-left scripts as
well as guidance about how to work with scripts such
as Arabic and the various Indic scripts that have
complex shaping requirements. For more informa-
tion, see the web site of the Unicode Consortium:
http://www.unicode.org.

During the last 15 years or so, Unicode has
become more and more important. All the major
computer operating systems (Microsoft Windows,
Linux, and Apple’s Mac OSX) have been Unicode-
based for some time, and much software has been
written that takes advantage of Unicode.

Unicode is based on the character/glyph model.
Under this system, Unicode encodes characters, basic
phonemic or semantic units. It does not concern itself
with the fact that these characters may appear in
different forms on a page; the exact shape that a
character assumes in a given context is referred to as

David J. Perry

TUGDboat, Volume 30 (2009), No. 1

a glyph. Two examples will clarify this distinction.

1. The character LATIN SMALL LETTER A may ap-
pear as a, a, a, a or as many other shapes, de-
pending on the typeface and style (italic, bold,
small capitals, etc.) chosen by the author or
designer.

2. In Arabic, letters take on different shapes de-
pending on whether they are the first letter in a
word, appear in the middle of a word, or come
as the last letter of a word. Unicode encodes one
general set of Arabic letters, corresponding to
the forms used in isolation (as when a reference
book shows “the Arabic alphabet” in a table).
In order to display Arabic properly, software
must take a string of these basic Arabic letters
and apply the correct forms as called for by the
context.

The character /glyph model enables Unicode text
to be stored in an efficient and permanently valid
form. In the case of the Latin script, it would ob-
viously be impossible and undesirable to attempt
to encode permanently every different letter shape.
For Arabic, the same text may be processed at the
present time on a Windows system using OpenType
or on a Mac using AAT, or new technologies may be
developed for other computer systems in the future;
but the underlying text remains valid.

For scholars in fields such as classics, biblical
studies, and medieval studies, Unicode provides two
important, related advantages:

e the ability to mix different scripts and languages
easily in one document

e a standardized, internationally recognized, and
permanent set of characters

A biblical scholar, for instance, might need to
use ancient Greek, Hebrew, and Latin, along with
one or more modern languages. While it has been
possible for some time to mix languages on most com-
puter systems, this was not always easy, particularly
if one wanted to mix right-to-left and left-to-right
scripts.

The case of ancient Greek provides a good exam-
ple. It requires three accents, two breathing marks,
a special form of the letter iota written below other
vowels, and a few additional signs. Neither Apple
nor Microsoft ever created any standard for ancient
Greek, so each font maker set up his own system of
matching Greek letters to various positions in the
Latin alphabet and their corresponding keystrokes.
(Prior to Unicode, users could access no more than
256 characters at one time, so a single font could
not support, e.g., Latin and Greek.) By the time
it became practical to use Unicode Greek (about

TUGboat, Volume 30 (2009), No. 1

1996), there were several Greek fonts in use by classi-
cists, each different from the others. Exchanging text
with colleagues was difficult unless they happened
to be using the same font. Without the appropriate
font (or at least a table stating what Greek letters
were mapped to what Latin ones), the meaning of a
given text could be entirely lost. The situation with
biblical Hebrew was similar.

This is very different from the situation in math-
ematics; the development of TEX and its adoption as
a standard early in the personal computer era meant
that mathematicians did not feel the same urgency
as classicists did to move to Unicode.

Unicode changed the multilingual landscape.
Classicists and biblical scholars eagerly adopted Uni-
code Greek and Hebrew, for they recognized the
advantages of a standardized format that was in-
ternationally recognized and not dependent on the
use of a particular font. Unicode fonts can contain
more than 64,000 characters, although most contain
far fewer. Therefore one can potentially use a font
that contains Greek or Cyrillic letters designed to
harmonize with the Latin forms; the text looks good
and one need not worry about switching fonts.

2 The importance of OpenType

All is not perfect in the marriage of scholarship and
Unicode, however. Classicists and medievalists have
embraced Unicode because we appreciate its many
benefits and because we do not want to be left out as
the computing world becomes more Unicode-centric,
but the character/glyph model is not a perfect fit for
our needs. There are three important issues for which
Unicode by itself does not provide a good solution:
glyph variants, unusual combinations of diacritical
marks and base letters, and non-standard ligatures.
OpenType provides a solution for all these issues.
Before discussing how scholars can use OT to address
their specific needs, we give some background about
OT in general.

2.1 OpenType basics

The OpenType specification was created jointly by
Microsoft and Adobe. It provides many different
tools that enable a string of Unicode characters to be
displayed in ways are linguistically appropriate and
typographically attractive. These tools are referred
to as features.

Some features are used to render a string of
Unicode characters in ways that are required for text
to be considered correct by users. For Arabic, OT
provides features to replace the basic letters with
the forms needed if a letter is the first or last in a
word, as explained above. An Arabic-capable word

13

processor applies these features automatically as the
user types, so the user does not have to worry about
them; the resulting text displays in normal Arabic
fashion. The font developer must do what is required
to ensure that the features operate correctly. In the
case of Arabic, this means putting additional glyphs
into the font for initial, medial and final forms and
setting up tables so that when, for instance, the
application calls for the word-initial form of a letter,
it can locate the proper glyph to use.

Another example: the Serbian language may
be written in either the Latin or the Cyrillic script.
When using the latter, Serbians employ a few letter
shapes that are slightly different from those used in
Russia. OT fonts can contain a feature that specifies
which shapes to use for which language. There is no
question that the same alphabet — Cyrillic—is used
for both languages, and it would be very undesirable
to encode the Serbian shapes separately. OT makes
it possible to have standard Unicode text displayed
appropriately for Serbian or Russian readers.

Other OT features are used to provide high-
quality typography in scripts such as Latin, Greek,
and Cyrillic that, unlike Arabic or Indic scripts, do
not require complex processing. An OT font can con-
tain true small capitals, various varieties of numbers
(lining numerals, oldstyle [lowercase”] numerals, and
both proportionally spaced and monospaced versions
of either style), ligatures (fi, ff, etc.), and many other
typographic refinements. These features, unlike those
required for correct display of Arabic, usually do not
display unless specifically requested by the user. An
application that supports high quality typography
via OT must provide an interface for this purpose.

In short, OT is a two-headed beast. Microsoft
originally adopted it as a means to get Unicode text
to display properly in languages that have complex
script requirements. Adobe has been more interested
in the typographic possibilities of OT in standard
scripts and has promoted its use by releasing OT
versions of Adobe fonts and by providing access to OT
features in programs such as the advanced InDesign
page layout program.

We should note that Mac OSX includes a tech-
nology called AAT (Apple Advanced Typography)
that does many of the same things as OT, both to im-
plement complex scripts and to provide high-quality
typography in standard scripts. AAT has not met
with great success, partly because it is more difficult
for font developers to create AAT than OT fonts. In
response, Apple has enhanced OS X (beginning with
version 10.4) so that it now processes and displays
many features found in OT fonts.

OT font files are cross-platform (Mac, Windows,

Ancient TEX: Using XHIEX to support classical and medieval studies

14

O>7273332Z 74

Figure 1: Shapes of the centurial sign.

Unix); the basic text will always display properly,
but implementation of advanced OT typographical
features is up to the application.

2.2 OpenType and scholars

As mentioned above, there are three areas in which
Unicode does not adequately meet the needs of clas-
sicists and medievalists. Let’s look at each in turn.

Some characters appear in shapes that vary con-
siderably, depending on when and where the text
was created. For instance, Roman inscriptions often
contain a symbol that represents the word centurio
(centurion, the Roman equivalent of a sergeant) or
centuria (century, a military unit of 100 men). This
centurial sign may take the shapes shown in Figure 1,
which are referred to as glyph variants.

The centurial sign was recently accepted into
Unicode. This is good because the character can
now be stored in electronic texts in such a way that
its identity will always be understood. But what if
the editor wants to display the same shape as found
on the original stone, when that is not the same as
the Unicode reference glyph? Recall that under the
character/glyph model, Unicode does not normally
encode variant shapes for characters. An OT font can
contain a number of alternate glyphs for a character,
using the Stylistic Alternates feature. After entering
the standard Unicode value for the centurial sign,
the user can apply the Stylistic Alternates feature
and select the desired glyph shape. This is a neat
solution to a difficult problem. If a character from
the Private Use Area were used to print the variant,
its value might be lost if the proper font was not
available in the future or if the text was copied and
pasted into another application. (The Private Use
Area is a range of codepoints that will never be
defined by Unicode, i.e., they will always be officially
left empty. Users can create customized fonts and
put non-Unicode characters in the PUA for their
own purposes. While the PUA can be useful, it is
inherently unstable and characters in it should never
be used in texts intended to have a long life, such as
electronic editions of literary works.)

Medieval manuscripts contain dozens of combi-
nations of letter plus diacritical mark(s) that are not
used in any modern language and therefore are not
directly supported by any operating system; see a
few examples in Figure 2. (These examples are taken
from the Character Recommendation of the Medieval

David J. Perry

TUGDboat, Volume 30 (2009), No. 1

Figure 2: Some medieval combinations of diacritics.

Unicode Font Initiative, http://www.mufi.info/.)
A few such combinations are also needed for an-
cient Roman inscriptions. Unicode provides all the
needed diacritics in the Combining Diacritical Marks
and Combining Diacritical Marks Supplement ranges.
However, if a user simply types a base letter followed
by a diacritic, there is no guarantee that the diacritic
will be centered or otherwise placed appropriately
over the base. Furthermore, good typographic prac-
tice is to replace the normal dotted i with the dotless
‘1’ before applying an accent above the i. Open-
Type fonts can be set up to handle proper place-
ment of diacritics and the substitution of dotless i as
needed. (The original design of Unicode envisioned
that operating systems would be able to place any
combining diacritic appropriately and automatically.
This vision is taking a very long time to be realized.
Mac OS X was the first to attempt it, by looking at
the widths of the characters in the font. The results
are frequently acceptable, though some combinations
need manual adjustment. Windows Vista has now
taken some very limited steps to implement com-
bining diacritics. But for now, and probably for
some time to come, we need to rely on information
built into each font in order to get diacritics working
properly.)

Finally there is the matter of ligatures. These
are found in ancient Greek and Roman inscriptions
and even more frequently in medieval manuscripts.
They were used to save space on stones and to save
time for scribes. OpenType supports the standard f
ligatures used in modern printing (fi, fl, ff, ffi, and
fil) through its Standard Ligatures feature. It also
provides a feature called Historical Ligatures. An OT
font designed to support epigraphy could include an
entry in the Historical Ligatures feature to replace
the letters NT with the ligature commonly found in
Roman inscriptions, if the user applied this feature
to a run of text.

It should be emphasized that even if an alternate
glyph or an historical ligature is presented to the
reader via OT features, the underlying Unicode text
is not changed. This is important in regard to search-
ing and reusing text. A user, for instance, might not
know about all the varying shapes of the Roman
centurial sign; even if he or she did know them all,
it is not desirable to require multiple searches in
order to cover all possibilities. If the user enters
the standard Unicode value for the centurial sign

TUGboat, Volume 30 (2009), No. 1

when searching, the proper results will be returned,
regardless of which glyph is shown in the document.

Likewise, a user can copy some text that is
displayed with unusual ligatures and paste it into
an application that cannot handle OT features. The
underlying letters will be shown, not some random
characters, so that the text is still meaningful, even
if not displayed in its historical form.

2.3 Software support for OT features

So it seems that classicists and medievalists now have
a good solution to many of their needs, using OT
features for display on top of Unicode text. The
problem is that support for OT has been slow in
coming. Mac users are best off. The word processor
Mellel was developed around OT (rather than AAT)
and provides good support. Some of Apple’s own
applications, such as the word processor Pages, in-
clude a Typography palette that provides access to
AAT or OT features, whichever a specific font offers.
Both Mellel and Pages are reasonably priced. The
high-end page layout programs Adobe InDesign and
Quark Express (v7 or later) offer outstanding Uni-
code and OT support, but are prohibitively expensive
for many users.

On Windows, support for high-end typography
is provided only by InDesign and Quark Express.
Windows Vista includes some APIs that make it
easier for software developers to access OT features,
but so far developers have not taken advantage of
them — including those responsible for Microsoft’s
own Office suite. The situation is equally bleak in
the Linux world. Neither OpenOffice nor Scribus yet
supports OT features on any platform.

This situation is very frustrating to scholars. We
need to use Unicode, for the reasons explained above,
and we understand that the character/glyph model
just does not allow for glyph variants or unusual lig-
atures or diacritic combinations to be encoded. OT
does provide a solution that works, but software sup-
port is extremely limited, particularly for Windows
and Linux users.

What does the TEX world offer for our needs?

3 XHTEX brings it all together

3.1 XATEX basics

Released in 1994 by Jonathan Kew, X{TEX was orig-
inally available for Mac OS X and then was ported to
Unix and Windows. It extends the functionality of
TEX and KTEX in three important ways.

o XHTEX provides direct Unicode support. Users
can mix scripts, use large fonts, and access any
Unicode character, as explained above. They
can also use the standard methods to which they

15

are accustomed when entering text. For exam-
ple, if a Windows system is set up to handle
polytonic Greek or Hebrew as well as English,
the user can employ the icon in the system tray
or the normal ALT-LEFT SHIFT combination to
switch easily between languages and their asso-
ciated keyboard layouts.

o XHIEX allows users to take advantage of OT and
AAT features that may be present in a font.

e XHTEX enables users to access all fonts installed
on the system without the need to create special
configuration files for each font.

3.2 Encouraging new users to try XHTEX

Until the creation of XqITEX, TEX was not an ideal
choice for classicists and medievalists. Their world
is becoming more Unicode-centric, and they are hop-
ing that OT will solve many of the problems that
Unicode presents for their work. Furthermore, they
very often need special fonts — after all, support for
ancient epigraphy or medieval manuscripts is not a
concern to most font makers—and such fonts are
nowadays all Unicode-based. Being able to use in-
stalled Unicode system fonts without the complicated
configuration process previously required by TEX re-
moves an important barrier for new users. Since
support for advanced OT typography in standard
scripts is available only in a very small number of
expensive applications under Windows and not at
all in Linux except for X{IEX, those who have a real
need for OT features should seriously consider using
XATEX.

New TEX users, and old hands who advise them,
should be aware of the following:

e XHTEX is now included in most TEX distribu-
tions, so users will already have it.

e To take full advantage of X{IEX, a Unicode-
based text editor or integrated environment is
necessary; some of those still in use in the TEX
world can handle only ASCII, such as WinEdt
and TEXnicCenter (the latter will be Unicode-
capable in v.2, according to its web site); Tex-
maker handles Unicode but knows nothing about

XHTEX yet.

e Jonathan Kew and others are now developing
TEXworks, an easy-to-use integrated environ-
ment for document creation that fully supports
XATEX. While it has not yet been officially re-
leased, working versions can be obtained from
the project’s web site: http://www.tug.org/
texworks/. Alain Delmotte has written an
introductory manual for TEXworks and also
provides up-to-date binaries for those who do

Ancient TEX: Using XHIEX to support classical and medieval studies

16

not wish to compile the software themselves;
see http://www.leliseron.org/texworks/. |
used TEXworks to prepare this article, so it is cer-
tainly functional, albeit with a few rough edges.
I regard it as the best choice for beginners with
XATEX at the present time.

e For those who are willing to work with a plain
text editor, Notepad (bundled with Windows)
and BabelPad (at http://www.babelstone.co.
uk/Software/BabelPad.html) will do the job;
the latter is particularly Unicode-friendly.

e [have written an article intended for scholars
in classics and medieval studies who want to
begin using X{TEX; it is available from http:
//scholarsfonts.net. Experienced TEX users,
especially those who have read this article, will
not find much new there, but they might want to
pass it along to colleagues who seek aid in using
TEX. It does contain more information about
the fontspec package and OT, including a table
that sorts out the names of features. (fontspec
uses names that do not exactly match the stan-
dard OT names, which can be confusing.)

3.3 Using XgTEX

Using XATEX is not difficult. You need to add a
few packages to your preamble: fontspec, xunicode,
xltxtra, and perhaps polyglossia. The first, fontspec,
is very important because it helps XqITEX select fonts
and is the only practical way to apply OT or AAT
features. Documentation for it is included and will be
accessible to those experienced with TEX; newcomers
will find it a bit tricky. The second, xunicode, enables
users to employ traditional TEX shortcuts such as
--- for an em-dash; neither it nor xltxtra requires any
action on the user’s part once added to the preamble.

To add support for language-specific hyphen-
ation and punctuation, use the polyglossia package;
see its documentation for the various options, which
should be understandable by anyone with a basic
knowledge of TEX. It is a replacement for the babel
package, which should not be used with XH{TEX.

If you are using TEXworks, you can start a new
file by using File / New from Template ... and
choosing one of the XgKTEX templates. This will
get you fontspec and other packages you need.

3.4 Some samples

To conclude this article, we will provide some samples
of what can be done with X{TEX and OT features.
The following is by no means a complete illustra-
tion of what OT can do, but it will, we hope, whet
the appetites of readers to explore OT further. All
samples make use of Junicode, a font for medieval-

David J. Perry

TUGDboat, Volume 30 (2009), No. 1

ists described in section 4 below. OT features are
called through the fontspec package. In these exam-
ples I used fontspec’s \addfontfeature{} command,
which provides an easy way to apply features to short
runs of text. There are other ways, such as setting
defaults in the preamble if you want a feature to be
used throughout a document.

Keep in mind that even though some of these
samples look unusual, the underlying text consists
of regular letters and numbers, and (for instance) a
PDF file containing such text can be easily searched
without inputting any special characters. The first
three samples illustrate OT features that are helpful
for setting high-quality text in any Latin-script lan-
guage, while the rest are specific to medieval studies.

3.4.1 Oldstyle numerals

The following code produces the result shown in
Figure 3.

default numbers: \quad 1234567890 \\
{\addfontfeature{Numbers=01dStyle}
with Oldstyle on: \quad 1234567890 }

1234567890
1234567890

default lining numbers:
with Oldstyle feature on:

Figure 3: Lining versus oldstyle figures.

3.4.2 Fractions

The following code produces the result shown in
Figure 4.

Without fractioms:

\quad 1/2 \quad 2/5 \quad 2/3 \quad 7/8 \\
{\addfontfeature{Fractions=0n}

With fractions on:

\quad 1/2 \quad 2/5 \quad 2/3 \quad 7/8 }

Without fractions: 1/2 2/5 2/3 7/8
With fractionson: ¥ % %

Figure 4: Creation of true typographical fractions.

3.4.3 Small capitals

Many OT fonts contains properly designed small
capitals. (This is not the same as the “small capitals”
found in programs like Microsoft Word, which are
scaled-down capitals that do not follow traditional
design principles for small caps.) OT provides a
feature to invoke small capitals and another that
changes only uppercase letters to small caps. The
latter is useful for abbreviations that are typed in
caps but look better as small caps when mixed in
running text. The following code produces the result
shown in Figure 5.

TUGboat, Volume 30 (2009), No. 1

quick brown fox

{\quad \addfontfeature{Letters=SmallCaps}
quick brown fox}\\

the NATO alliance
{\addfontfeature{Letters=UppercaseSmallCaps}
\quad the NATO alliance }

quick brown fox
the NATO alliance

Figure 5: True small capitals.

QUICK BROWN FOX
the NATO alliance

3.4.4 Historical forms and historical
ligatures

OT’s Historical Forms feature allows the user to turn
on shapes that are appropriate only in historical
contexts, such as the long s and its ligatures, which
were used in English through the 18th century. Juni-
code uses the Historical Ligatures feature to access
ligatures found in medieval manuscripts. Note that
one can turn on more than one feature at a time in
fontspec by separating the features with a comma.
The following code produces the result shown in
Figure 6.
same silly distant \quad AA aa AY ay ag al}
{\addfontfeature{Style=Historic,
Ligatures=Historical}
same silly distant \quad AA aa AY ay ag al}

same silly distant ~ AA aa AY ay ag al
fame filly diftmt M a A yagd

Figure 6: Historical forms and historical ligatures
applied to text.

3.4.5 Language-specific features

The letters thorn and eth were used in Old English
and are still employed in modern Icelandic. Juni-
code’s default is to use the Old English shapes. Those
who prefer the Icelandic forms can access them as
shown here. The following code produces the result
shown in Figure 7.

Default 01d English shapes: \\

\quad {\Large Pp B3} \\
\addfontfeature{Language=Icelandic}

Icelandic shapes now used:

\quad {\Large Pp Dd}

Default Old English shapes:

Icelandic shapes now used:

pp DB
pp D3

Figure 7: Use of language-specific forms.

4 Resources

To learn more about Unicode, OpenType, and XHTEX,
an excellent place to start is Michel Goossens’s The

17

XATEX Companion: TEX Meets OpenType and Uni-
code, currently available at http://xml.web.cern.
ch/XML/1gc2/xetexmain.pdf. Written with an eye
toward those who already have some familiarity with
TEX, it provides more in-depth information than
what is found in this article.

The web site of the Unicode Consortium, http:
//www.unicode.org, offers a great deal of informa-
tion, including the entire text of The Unicode Stan-
dard in downloadable PDF form.

Here are some options if you want to experi-
ment with the advanced typographical features of
OpenType:

e The Junicode font by Peter Baker, freely avail-
able from http://junicode.sf.net/. The zip
download includes some documentation that was
created with XHTEX.

e Linux Libertine by Philipp Poll (freely available
from http://linuxlibertine.sf.net/) is an-
other nice font family with many OT features;
despite its name, it also works on Windows and
Mac OS X.

e TEX Gyre is a project to update and extend the
fonts distributed with the open-source Ghost-
script page description language. It includes a
number of fonts, each in OpenType and Type 1
formats. The OT versions contain many features
for advanced typography, all of which are iden-
tified in the documentation. Latin Modern does
the same for TEX’s Computer Modern fonts.
See http://www.gust.org.pl/tex-gyre and
http://www.gust.org.pl/1lm, respectively.

e If you have access to any of Adobe’s Pro fonts
(Warnock Pro, Minion Pro, etc.), these also
contain OT features. Adobe’s online font catalog
at http://www.adobe.com/type/ shows what
features are included in the various fonts they
sell (not all fonts have all features).

If you are curious about how characters, par-
ticularly scholarly ones, get added to Unicode, you
can look at the proposals for medieval characters
prepared by the Medieval Unicode Font Initiative
at http://www.mufi.info/ or at my proposals for
classical Latin characters at http://scholarsfonts.
net/latnprop.html.

¢ David J. Perry
Rye High School
Rye, New York
USA
hospes02 (at) scholarsfonts dot net
http://www.scholarsfonts.net

Ancient TEX: Using XHIEX to support classical and medieval studies

18

TEXonWeb
Jan Prichystal

Abstract

This article describes a web application TEXonWeb
which allows using the (I&)TEX typesetting system
without needing installation on a local computer.
TEXonWeb is simple, with a text area where the user
can write the source code of his document and then
click the button to get resulting PDF or PostScript
output. This article briefly summarizes the features
and capabilities of TEXonWeb.

1 Introduction

One of the main aims of the TEXonWeb application is
to provide a simple interface for document processing
using the typographic system (IA)TEX. Many users
would like to produce high-quality documents but are
not familiar with the non-trivial (I4)TEX installation
and configuration. Also, sometimes users are in a
situation where they cannot use their own computer
and have to work for example in an Internet café.
This is a time when they can use TEXonWeb. The
only thing needed is a web browser.

2 First steps

TEXonWeb can be used with any web browser sup-
porting JavaScript and cascading style sheets. We
recommend Mozilla Firefox or Internet Explorer.
Upon visiting the web address http://tex.mendelu.
cz/en, the user sees a simple page with a text area in
which the template of a INTEX document is entered.
He can immediately start to work and write text and
TEX or BTEX commands. There are no limitations
on length or complexity of documents, or on the TEX
commands available.

TEXonWeb can be used in two modes — anony-
mous and authenticated. Anonymous access is desig-
nated for very simple and short documents with no
other included parts. Here the user just types a doc-
ument and presses a button to get PDF or PostScript.
No special features or tools are available.

More users create their own accounts and work
in authenticated mode. To do this, a user follows
the ‘Create account’ link and provides a login name
and password. If the login name is not yet used
by another user, a new account is created and the
user can log in. This mode is designated for repeated
usage of TEXonWeb. Users can typeset more complex
documents, store them the on server, set up working
space and use supporting tools (spell-checker, table
wizard, etc.).

Jan Prichystal

TUGDboat, Volume 30 (2009), No. 1

3 User interface

The most important part of the application is the text
area which acts as an editor, where the user can type
the source code of his document. Under the editor
window, there are buttons ‘PDF’ and ‘PostScript’
which produce the document in the corresponding
format. Next to these there is a ‘Log file’ button
for viewing the log file created by processing the
document. See Fig. 1.

Below these buttons are option menus to set
how the document should be processed. The first
item determines whether the plain or KTEX format
is used. The second item defines if the document is
processed one, two or three times (e.g., if generating
a table of contents). The last item, if checked, re-
turns the document in .zip format (for slow Internet
connections).

If the user is logged in, a user menu and toolbar
are above the editor window. The user menu consists
of these items:

e File—options to open and save files stored on
the server, upload and download files from the
local computer and process documents into PDF
or PostScript formats.

e Edit — options for the usual undo, redo, copy
and paste actions.

e Settings —options to toggle syntax highlighting,
toolbar and detailed setting of user interface.

e Styles — templates for standard documents such
as letters, wall calendars and business cards.

e Tools—spell checker, table wizard or inserting
non-breaking spaces.

e Help — Documentation of TEXonWeb.

The set of tools simplifies document editing. A
spell checker highlights misspelled words, while an-
other tool can insert non-breaking spaces in suitable
places. There are also wizards for inserting code of
more complex components such as tables or pictures.
The user can use these interactive tools to define
the properties of the object being inserted without
knowing the exact syntax of IXTEX commands.

There is also a toolbar for interactive insertion
of BTEX commands. The user just clicks an icon and
the code appears in the editor window. Commands
are divided into related sets—undo/redo, font set-
tings, headings, paragraph settings, lists, spacings,
math symbols, etc.

4 Implementation of TEXonWeb

The TEXonWeb application runs on a common IBM
PC compatible with dual-core processor and 4 GB
RAM. The server runs the Linux-based CentOS

TUGDboat, Volume 30 (2009), No. 1

@« v 8 @ | %,|http:/jtex. mendelu.cz/en

19

~ @v ‘-g_ﬁ'x

TeXonWeb is project helping to use typesetting system TeX/LaTeX via web browser. Textarea acts as source code editor where you can type your document. To get it simply press button PostScript
% or PDF for appropriate format. You can also select format, number of compiler passes. More information is available in Documentation.

Documentation | Settings | File management

File | Edit Settings Styles Tools Help

|PIE] EEE L E EEEEEEEE

| I EIERE | 5 more...

User: jprich

\documentclass{article}
\begin{document}

\end{document}

PostScript PDF | | | Logfile

Select format, number of passes, compressing:
latex ~ | |1 pass ~ Compress output?

jprich at pef mendelu.cz

Optimized for Firefox

Jan Prichystal

Figure 1: TEXonWeb main page

operating system with Apache web server. The ap-
plication is programmed in Perl and JavaScript. The
core of the application is a Perl module and the user
interface creates a few Perl scripts. The toolbar and
other parts of the user interface are implemented
in JavaScript. The TEX processor comes from the
tetex package provided in CentOS. Installation is
located in a special directory and runs under chroot.
This precaution makes attacking the system more
difficult. For example, including or viewing system
files are not allowed. We also enforce a limitation on
the size of uploaded documents.

How does TEXonWeb work? The user types the
source code of the document and clicks the button for
translation. A Perl function sends the source code to
the server, placing a \nonstopmode command at the
beginning. This provides non-interactive translation,
omitting prompting when an error occurs. Then
PDF or PostScript is generated depending on the
options set in the ‘Settings’ page or directly on the
main page. The resulting file is returned to the
web browser for the user to view. If an error makes
translation impossible, the user is notified to view
the log file.

5 Conclusion

TeXonWeb is not intended as a full substitution
of specialized (I#)TEX editors installed on a local
computer. A web page could not offer such comfort
in writing documents. But in some situations it could
be useful. For instance, TEX beginners who want to
try how TEX works may find it interesting.

TEXonWeb is still being developed and new func-
tions and options are being added. Currently we
are working on multilingual support, document tem-
plates, editor improvements and support of the Opera
web browser.

You can try TEXonWeb at the url http://tex.
mendelu.cz/en.

¢ Jan Prtichystal
Zemédeélska 1
Brno, 613 00
Czech Republic
jprich (at) pef dot mendelu dot cz
http://akela.mendelu.cz/"~ jprich/

TEXonWeb

20

Typography

Typographers’ Inn
Peter Flynn

1 The electronic book

For years (seems like centuries) we have seen forecasts
that the electronic book is just round the corner,
and soon we’ll be able to let the trees grow in peace
because there won’t be any more demand for printing
onto paper.

About 10 years ago I did a TV interview about
the launch of some new e-book products and an
impending software-only release from Microsoft. The
marketing droids were out in force, predicting the
immediate demise of the printed page, so my whines
about ‘it’s the file format, stupid’ went unheard.

A decade has come and gone, and we still keep
hearing that e-paper and e-ink are where it’s at. In
2001 (I think), at the TEX Users Group meeting at
the University of Delaware, we even had a presen-
tation from IBM about their research into e-paper,
which was fascinating. It seems to be tantalizingly
close each time, but never quite seems to make it.

The latest device is the Kindle, and it has gar-
nered a growing and eager following, with a wireless
connection that works, and a good number of titles
coming out from publishers who would previously
have dismissed the technology. But it suffers from
poor interface design, poor provision of typefaces,
and the proprietary tie-in to Amazon. Amazingly, it
accepts file formats other than its native AZW (a vari-
ant of HTML), including Word, PDF, and Mobi. . . but
not the one format that is designed for the job, the
Open Publication Structure (OPS, successor to the
Open eBook or OEB format of unhappy memory).

As T write this, publishers and manufacturers
are meeting at the Digital Book 2009 conference in
New York, run by the International Digital Pub-
lishing Forum, who manage OPS, trying to identify
the business case for e-books. It’s notable that the
sponsors are the manufacturers: the publishers are
nowhere to be seen. It’s all about workflow and
Digital Right Management (DRM)—not a whisper
about typefaces or formatting.

So where does this leave those of us who set
type? It’s easy to create nice PDFs with IXTEX,
and they can be done for the precise dimensions
of the device’s screen with great accuracy. But if
you want to read your e-book on several devices
(desktop, laptop, handheld, e-book reader, or even

Peter Flynn

TUGDboat, Volume 30 (2009), No. 1

your cellphone), you need a separately-optimized
version for each.

Enter reflowable PDF, which will let the text
content of a PDF document behave like HTML in
your browser: change the shape of the window, and
all the text reformats automatically to fit. After
the TEX Users Group meeting in Cork last year,
there was an impromptu session on this which hasn’t
progressed very far (details in the mailing list at
http://lists.ucc.ie/xml-tex-pdf.html).

This isn’t the perfect solution; it’s fine for novels
and other books consisting of continuous, uninter-
rupted text, but it isn’t easy to make it work for
mathematics or for books with chunks of code. TEX
systems, on the other hand, are nothing if not pro-
grammable, so I'm asking anyone working in this
area to consider joining the mailing list and sharing
their thoughts. Wouldn’t it be nice if the solution
came from the TEX field?

2 Breaking the mold

When did you last design a whole book, from end to
end?

At the TEX Users Group meeting in San Diego
two years ago I was generously presented with a copy
of Valerie Kirschenbaum’s wonderful book Goodbye
Gutenberg [1]. Tt’s 400 pages of rich color, with each
double-page spread separately designed and drawn
(or typeset). It’s fascinating, and you can have almost
as much fun with it as you can with the Trés Riches
Heures of the Duc de Berry (c. 1415).

The author’s aim is to rescue books from the
slough of black-and-white reproduction, where every
page is the same layout as the others, and to return
to the creativity of the era before printing, where
pages could differ. She asserts that print and layout
technology is now at a stage where this can be done
with little or no increase in cost.

In respect of a book designed to illustrate her
purpose, she succeeds admirably, although she shows
considerable naivety in her assumptions about type-
setting and presswork costs, and ignores completely
the need for consistency in reference books and
heavily-structured documents. She is right, of course,
that book ‘design’ has been in decline for decades
(with a few notable exceptions), and that technology
has indeed advanced to the point where what she
proposes is technically feasible —if not financially —
like Heyerdahl and Severin in the field of exploration,
she has actually done it.

So what do we do when faced with yet another
publisher’s Compositor’s Specification? I've had
three in the last year which have appeared to have

TUGDboat, Volume 30 (2009), No. 1

been written (or drawn) by a teenager with 15 min-
utes’ experience of Word. Inconsistent, inaccurate,
and inappropriate; and in one case accompanied by
an equally inaccurate PDF supposed to be an exam-
ple of the output. I’'m not sure where the publishers
get these from, but it’s clear that at least some ‘de-
signers’ have only the vaguest idea of how text gets
from the author’s fingertips onto the printed page.
In any event they appear not to have actually looked
through the book to see what kinds of things they
need to provide for, so you get specs with no infor-
mation about how they want figures to look; what to
do with second or third level lists; or how to format
the endnotes.

Perhaps we should after all start to think about
redesigning the book. After all, if the publishers
(with the occasional honorable exception) cannot
now be bothered to design even the whole of their
own books, perhaps they would give us free rein to
do the job for them. We surely can’t be any worse
at it than the authors.

3 RIOTING TYPOGRAPHERS
RAMPAGE ONLINE!

The TYPO-L mailing list, which I refer to from time
to time, is populated by well over 100 ladies and
gentlemen of the industry, who conduct themselves
with a decorum becoming to their profession, and
occasionally venture to submit or answer a question,
trusting that their colleagues will do the same for
them on another occasion. I happen to be the List
Owner of this happy band of typophiles, and I hardly
ever have cause to intervene, except to fix the occa-
sional glitch or to update a member’s email address.
Sometimes days or even a week can go past without
a message, and then there is a small burst of activity
over some common topic.

During April, however, over 13,000 lines of email
were exchanged, much of it to celebrate or disparage
‘50 Years of Stupid Grammar Advice’, as the topic
was named, after an article by Geoffrey Pullum [2],
in which he discusses the ‘limp platitudes [and] in-
consistent nonsense’ in Strunk & White’s [in|famous
The Elements of Style.

Something obviously touched a raw nerve some-
where, something only understandable by those who
have had to suffer the insistence of learned academics
stubbornly insisting on wholly inappropriate mat-
ters of style, or had to undo the depredations of
unlearned students whose heads had been stuffed
with outdated regulations. As I have mentioned be-
fore, we get called upon to exercise much more than
TEX, and often have to deal with orthographic and

21

syntactic errors when there is no-one else qualified
or experienced enough to correct them.

As many posters pointed out, S&W contains a
wealth of useful material as well as useless. It follows
a kind of 80/20 rule (or is it 90/10?7) which covers
most aspects of most things rather than all aspects of
everything, and is intended as a general guide rather
than the absolute prescription as which it is often
mistakenly presented. While I usually reserve my
own venom for the trifling foolishnesses of the MLA
in their placement of punctuation, I count myself
lucky to have been spared the worst of Messrs Strunk
& White by fortune of having been born outside their
ambit, so I kept schtumm for most of it.

If you're interested in what typesetters talk
about behind the authors’ and publishers’ backs,
you can join the list and read the discussion in the
archives at http://listserv.heanet.ie/typo-1.
html

4 Periodic table of typefaces

Thanks to Michael Brady for pointing this out in
the TYPO-L mailing list: http://www.behance.
net/Gallery/Periodic-Table-of-Typefaces/
193759

Periodic fTablc of

Gs| O Fr| s [me[ag] B]

wy|Fo|Prmt|ao| E [D

in|oi|st|th| R | T |Tr|Bal G| c IM| L |F1]0a] | 1f |Go| W

Lo|av| of [Sc|Bs|Ar|Le| sr|Sa|Be|) |Gr|Ge|ch|am]| B | N [Mal

e [Ne|Fe| Q| c1|Ro|To [sw]To | A | K [Pa]eb| sp [Polcc| Ta|ce!

They also do a nice 25.5” x 17" print.

References

[1] Valerie Kirschenbaum. Goodbye Gutenbery.
Global Renaissance Society, New York, 2005.

[2] Geoffrey K Pullum. 50 Years of Stupid
Grammar Advice. The Chronicle Review, Apr
2009.

¢ Peter Flynn
Textual Therapy Division, Silmaril
Consultants, Cork, Ireland
Phone: +353 86 824 5333
peter (at) silmaril dot ie
http://blogs.silmaril.ie/peter

Typographers’ Inn

22

Fonts

OpenType math illuminated*
Ulrik Vieth

Abstract

In recent years, we have seen the development of
new TEX engines, XHTEX and LuaTgX, adopting
OpenType font technology for providing Unicode
typesetting support. While there are already plenty
of OpenType text fonts available, both from the
TEX community and from commercial font suppli-
ers, there is little support for OpenType math fonts
so far. Ironically, it was left to Microsoft to develop a
de facto standard for OpenType math font informa-
tion and to provide the first reference implementation
of a full-featured OpenType math font.

In order to develop the much-needed math sup-
port for Latin Modern and TEX Gyre fonts, it will be
crucially important to develop a good understand-
ing of the internals of OpenType math tables, much
as it is necessary to develop a good understanding
of Appendix G and TEX’s \fontdimen parameters
to develop math support for traditional TEX fonts.
In this paper, we try to help improve the under-
standing of OpenType math internals, summarizing
the parameters of OpenType math fonts as well as
illustrating similarities and differences between tradi-
tional TEX math fonts and OpenType math fonts.

1 Background on OpenType math

In recent years, the TEX community has been going
through a phase of very significant developments.
Among the most important achievements, we have
seen the development of new TEX engines, XH{IEX
and LuaTgX, providing support for Unicode and
OpenType font technology. At about the same time
we have also seen the development of new font dis-
tributions, Latin Modern and TEX Gyre, provided
simultaneously in Type 1 format as a set of 8-bit
font encodings as well as in OpenType format.

Together these developments have enabled TEX
users to keep up with current trends in the publishing
industry, providing users of the new TEX engines
with a comprehensive set of free OpenType fonts
and enabling them to take advantage of the many
offerings by commercial font suppliers.

As far as text typesetting is concerned, support
for OpenType font technology in the new TEX en-

* First published in Biuletyn GUST 25 (2009), pp. 7-16,
proceedings of the BachoTEX XVII conference. Reprinted
with permission.

Ulrik Vieth

TUGDboat, Volume 30 (2009), No. 1

gines is already very advanced, supporting not only
traditional typographic features of Latin alphabets,
but also addressing the very complex and challenging
requirements of Arabic typography.

However, when it comes to math typesetting,
one of the traditional strongholds of TEX, support for
Unicode and OpenType math is only just beginning
to take shape.

Ironically, it was left to Microsoft to develop the
first system to offer support for Unicode math. When
Microsoft introduced support for math typesetting
in Office 2007 [1, 2], they extended the OpenType
font format and commissioned the design of Cambria
Math [3] as a reference implementation of a full-
featured OpenType math font.

Fortunately for us, Microsoft was smart enough
to borrow from the best examples of math typesetting
technology, thus many concepts of OpenType math
are not only derived from the model of TEX, but
also go beyond TEX and introduce extensions or
generalizations of familiar concepts.

While OpenType math is officially still consid-
ered experimental, it is quickly becoming a de facto
standard, as it has already been widely deployed to
millions of installations of Microsoft Office 2007 and
it is also being been adopted by other projects such
as the FontForge [4] font editor and independent font
designs such as Asana Math [5].

Most importantly, support for OpenType math
has already been implemented or is currently being
implemented in the new TEX engines, thus adopting
OpenType math for the development of the much-
needed Unicode math support for Latin Modern and
TEX Gyre obviously seems to be a most promising
choice of technology.

2 Design and quality of math fonts

When it comes to developing math fonts, designing
the glyph shapes is only part of the job. Another
part, which is equally important, is to adjust the
glyph metrics of individual glyphs and to set up the
global parameters affecting various aspects of glyph
positioning in math typesetting.

As we have discussed at previous conferences,
the quality of math typesetting crucially depends on
the fine-tuning of these parameters. Developing a
good understanding of these parameters will there-
fore become an important prerequisite to support
the development of new math fonts.

In the case of traditional TEX math fonts, we
have to deal with the many \fontdimen parameters
which have been analyzed in Bogustaw Jackowski’s
paper Appendiz G Illuminated and a follow-up paper
by the present author [6, 7).

TUGDboat, Volume 30 (2009), No. 1

In the case of OpenType math fonts, we need to
develop a similar understanding of the various tables
and parameters and how the concepts of OpenType
math relate to the concepts of TEX.

3 Overview of the OpenType font format

The OpenType font format [8] was developed jointly
by Adobe and Microsoft, based on elements of the
earlier PostScript and TrueType font formats by the
same vendors. The overall structure of OpenType
fonts consists of a number of tables, some of which
are required while others are optional [9].

In the case of OpenType math, the extension of
the font format essentially consists of adding another
optional table, the so-called MATH table, containing
all the information related to math typesetting. Since
it is an optional table, it would be interpreted only
by software which knows about it (such as the new
TEX engines or Microsoft Office 2007), while it would
be ignored by other software.

Unlike a database table, which has a very rigid
format, an OpenType font table can have a fairly
complex structure, combining a variety of different
kinds of information in the same table. In the case
of the OpenType MATH table, we have the following
kinds of information:

e a number of global parameters specific to math
typesetting (similar to TEX’s many \fontdimen
parameters of Appendix G)

e instructions for vertical and horizontal variants
and/or constructions (similar to TEX’s charlists
and extensible recipes)

e additional glyph metric information specific to
math mode (such as italic corrections, accent
placement, or kerning)

In the following sections, we will discuss some
of these parameters in more detail, illustrating the
similarities and differences between traditional TEX
math fonts and OpenType math fonts.

4 Parameters of OpenType math fonts

The parameters of the OpenType MATH table play
a similar role as TEX’s \fontdimen parameters, con-
trolling various aspects of math typesetting, such as
the placement of limits on big operators, the place-
ment of numerators and denominators in fractions,
or the placement of superscripts and subscripts.
While a number of parameters are specified in
TEX through the \fontdimen parameters of math
fonts, there are other parameters which are defined
by built-in rules of TEX’s math typesetting engine.
In many such cases, additional parameters have been
introduced in the OpenType MATH table, making it

23

possible to specify all the relevant parameters in the
math font without relying on built-in rules of any
particular typesetting engine.

In view of the conference motto, it is interest-
ing to note that the two new TEX engines, X{ITEX
and LuaTgX, have taken very different approaches
how to support the additional parameters of Open-
Type math fonts: While XqTEX has retained TEX'’s
original math typesetting engine and uses an inter-
nal mapping to set up \fontdimen parameters from
OpenType parameters [10], LuaTEX has introduced
an extension of TEX’s math typesetting engine [11],
which will allow it to take full advantage of most of
the additional OpenType parameters.!

For font designers developing OpenType math
fonts, it may be best to supply all of the additional
OpenType parameters in order to make their fonts
as widely usable as possible with any typesetting
engine, not necessarily limited to any specific one of
the new TEX engines.

In the following sections, we will take a closer
look at the various groups of OpenType parameters,
organized in a similar way as they are presented to
font designers in the FontForge font editor, but not
necessarily in the same order.

We will use the figures from [6, 7] as a visual
clue to illustrate how the various parameters are
defined in TEX, while summarizing the similarities
and differences between OpenType parameters and
TEX parameters in tabular form.

4.1 Limits on big operators

In TEX math fonts, there are five parameters con-
trolling the placement of limits on big operators (see
figure 1), which are denoted as & to &13 using the
notation of Appendix G.

Two of them control the default position of the
limits (€19 and &12), two of them control the inside
gap (£ and &;1), while the final one controls the
outside gap above and below the limits (£13).

In OpenType math fonts, the MATH table con-
tains only four parameters controlling the placement
of limits on big operators. Those four parameters
have a direct correspondence to TEX’s parameters
(as shown in table 1), while the remaining TEX pa-
rameter has no correspondence and is effectively set
to zero.?

1 More precisely, while XqTEX only provides access to the
OpenType parameters as additional \fontdimens, LuaTEX
uses an internal data structure based on the combined set of
OpenType and TEX parameters, making it possible to supply
missing values which are not supported in either OpenType
math fonts or traditional TEX math fonts.

2 Considering the approach taken in other circumstances,
it is very likely that if there were any such correspondence,

OpenType math illuminated

24

NG |
%Z{w

/2 iz
NG
*513 !

Figure 1: TEX font metric parameters affecting the
placement of limits above or below big operators.

OpenType parameter TEX parameter

UpperLimitBaselineRiseMin &1

UpperLimitGaplin &

LowerLimitGapMin &0
LowerLimitBaselineDropMin &2
(no correspondence) &3

Table 1: Correspondence of font metric parameters
between OpenType and TEX affecting the placement of
limits above or below big operators.

4.2 Stretch stacks

Stretch stacks are a new feature in OpenType math
fonts, which do not have a direct correspondence in
TEX. They can be understood in terms of material
stacked above or below stretchable elements such as
overbraces, underbraces or long arrows.

In TEX, such elements were typically handled at
the macro level and effectively treated in the same
way as limits on big operators.

In LuaTgX, such elements will be implemented
by new primitives using either the new OpenType
parameters for stretch stacks (as shown in table 2)
or the parameters for limits on big operators when
using traditional TEX math fonts.

4.3 Overbars and underbars

In TEX math fonts, there are no specific parameters

related to the placement of overlines and underlines.

there might actually be two parameters in OpenType instead

of only one, such as UpperLinitExtraAscender and LowerLimitExtraDescender.

In LuaTEX’s internal data structures, there are actually two
parameters for this purpose, which are either initialized from
TEX’s parameter €13 when using TEX math fonts or set to
zero when using OpenType math fonts.

Ulrik Vieth

TUGDboat, Volume 30 (2009), No. 1

OpenType parameter

TEX parameter

StretchStackTopShiftUp
StretchStackGapAbovelMin
StretchStackGapBelowMin

&1
&9
€10

StretchStackBottomShiftDown &1

Table 2: Correspondence of font metric parameters
between OpenType and TEX related to stretch stacks.

OpenType parameter TEX parameter

OverbarFxtraAscender (=&)
OverbarRuleThickness (= &)
OverbarVerticalGap (=3&)
UnderbarVerticalGap (=3&)
UnderbarRuleThickness (= &)
UnderbarExtraDescender (= &)

Table 3: Correspondence of font metric parameters
between OpenType and TEX affecting the placement of
overlines and underlines.

Instead, there is only one parameter controlling the
default rule thickness (£g), which is used in a number
of different situations where other parameters are
expressed in multiples of the rule thickness.

In OpenType math fonts, a different approach
was taken, introducing extra parameters for each
purpose, even supporting different sets of parameters
for overlines and underlines. Thus the MATH table
contains the following parameters related to overlines
and underlines (as shown in table 3), which have only
an indirect correspondence in TEX.

It is interesting to note that the introduction
of additional parameters in OpenType math fonts
provides for greater flexibility of the font designer to
adjust the values for best results.

While TEX’s built-in rules always use a fixed
multiplier of the rule thickness regardless of its size,
OpenType math fonts can compensate for a larger
rule thickness by using a smaller multiplier.

An example can be found when inspecting the
parameter values of Cambria Math: In relative terms
the inside gap is only about 2.5 times rather than
3 times the rule thickness, while the latter (at about
0.65 pt compared to 0.4 pt) is quite a bit larger than
in typical TEX fonts.

Obviously, making use of the individual Open-
Type parameters (as in LuaTEX) instead of relying
on TEX’s built-in rules (as in XgTEX) would more
closely reflect the intention of the font designer.

TUGDboat, Volume 30 (2009), No. 1

og styles D, D’
09 other styles

og styles D, D’
010 other styles

011 styles D, D’
012 other styles

o011 styles D, D’
012 other styles

Figure 2: TEX font metric parameters affecting the
placement of numerators and denominators in regular
and generalized fractions.

4.4 Fractions and stacks

In TEX math fonts, there are five parameters control-
ling the placement of numerators and denominators
(see figure 2), which are denoted as og to o012 using
the notation of Appendix G.

Four of them apply to regular fractions, either
in display style (os and o11) or in text style and
below (o9 and o12), while the remaining one applies
to the special case of generalized fractions when the
fraction bar is absent (o19).

Besides those specific parameters, there are also
a number of parameters which are based on built-in
rules of TEX’s math typesetting engine, expressed
in multiples of the rule thickness (£g), such as the
thickness of the fraction rule or the inside gap above
and below the fraction rule (see figure 3).

In OpenType math fonts, a different approach
was once again taken, introducing a considerable
number of additional parameters for each purpose.
Thus the MATH table contains 9 parameters related
to regular fractions and 6 more parameters related
to generalized fractions (also known as stacks).

As shown in table 4, there is a correspondence
for all TEX parameters, but this correspondence isn’t
necessarily unique, since the same TEX parameter is
used for multiple purposes in fractions and stacks.
Obviously, font designers of OpenType math fonts
should be careful about choosing the values of Open-
Type parameters in a consistent way.

Analyzing the font parameters of Cambria Math
once again shows how the introduction of additional
parameters increases the flexibility of the designer
to adjust the parameters for best results: In relative
terms, FractionDisplayStyleGapiin is only about 2 times
rather than 3 times the rule thickness. Similarly,
StackDisplayStyleGapMin is only about 4.5 times rather
than 7 times the rule thickness. In absolute terms,
however, both parameters are about the same order
of magnitude as in typical TEX fonts.

25

Y 3& styles D D'

© &g other styles

7€ styles D, D’
3¢&g other styles

Figure 3: TEX’s boundary conditions affecting the
placement of numerators and denominators in regular
and generalized fractions.

4.5 Superscripts and subscripts

In TEX math fonts, there are seven parameters con-
trolling the placement of superscripts and subscripts
(see figure 4), which are denoted as 013 to 019 using
the notation of Appendix G.

Three of them apply to superscripts, either in
display style (o13), in text style and below (o14), or
in cramped style (o15), while the other two apply to
the placement of subscripts, either with or without
a superscript (016 and oy7).

Finally, there are two more parameters which
apply to superscripts and subscripts on a boxed
subformula (015 and o19), which also apply to limits
attached to big operators with \nolimits.

Besides those specific parameters, there are also
a number of parameters which are based on TEX’s
built-in rules, expressed in multiples of the x-height
(05) or the rule thickness (£g), most of them related

OpenType parameter TEX parameter

FractionlumeratorDisplayStyleShiftUp os
FractionlumeratorShiftUp 09
FractionNumeratorDisplayStyleGapllin (=3¢&)
FractionNuneratorGapMin (= &)
FractionRuleThickness (= &)
FractionDenoninatorDisplayStyleGapMin (=3¢&)
FractionDenoninatorGapMin (= &)
FractionDenominatorDisplayStyleShiftDown o
FractionDenominatorShiftDown 012
StackTopDisplayStyleShiftUp og
StackTopShiftUp o010
StackDisplayStyleGapMin (=7&)
StackGapMin (=3¢&)
StackBottomDisplayStyleShiftDown 11
StackBottomShiftDown 019

Table 4: Correspondence of font metric parameters
between OpenType and TEX affecting the placement of

numerators and denominators.

OpenType math illuminated

26

****** D

Figure 4: TEX font metric parameters affecting the
placement of superscripts and subscripts on a simple
character or a boxed subformula.

to resolving collisions between superscripts and sub-
scripts or adjusting the position when a superscript
or subscript becomes too big (see figure 5).

In OpenType math fonts, we once again find
a number of additional parameters for each specific
purpose, as shown in table 5.

It is interesting to note that some of the usual
distinctions made in TEX were apparently omitted
in the OpenType MATH table, as there is no specific
value for the superscript position in display style, nor
are there any differences in subscript position in the
presence or absence of superscripts.

While it is not clear why there is no correspon-
dence for these parameters, it is quite possible that
there was a conscious design decision to omit them,
perhaps to avoid inconsistencies in alignment.

OpenType parameter TEX parameter

SuperscriptShiftlp 013, 014
SuperscriptShiftUpCramped 15
SubscriptShiftDown 016, 017
SuperscriptBaselineDropMax 018
SubscriptBaselineDropMin 019
SuperscriptBottontin (= 1o3)
SubscriptTopMax (= 305)
SubSuperscriptGapMin (=4¢&s)
SuperscriptBottonMaxiiithSubscript (= 2075)

Table 5: Correspondence of font metric parameters
between OpenType and TEX affecting the placement of
superscripts and subscripts.

Ulrik Vieth

TUGDboat, Volume 30 (2009), No. 1

Figure 5: TEX font metric parameters affecting the
placement of superscripts and subscripts in cases of
resolving collisions.

4.6 Radicals

In TEX math fonts, there are no specific parameters
related to typesetting radicals. Instead, the relevant
parameters are based on built-in rules of TEX’s math
typesetting engine, expressed in multiples of the rule
thickness (£g) or the x-height (o5).

To be precise, there are even more complica-
tions involved [6], as the height of the radical rule is
actually taken from the height of the radical glyph
rather than the default rule thickness to account for
effects of pixel rounding in bitmap fonts.

In OpenType math fonts, we once again find a
number of additional parameters for each purpose,
as shown in table 6.

While there is a correspondence for all of the
parameters built into TEX’s typesetting algorithms,
it is interesting to note that OpenType math has
also introduced some additional parameters related

OpenType parameter TEX parameter

RadicalExtraAscender (= &)
RadicalRuleThickness (= &)
RadicalDisplayStyleVerticalGap (= &g + iag))
RadicalVerticalGap (=& + 1&)

e.g. 5/ em
e.g. 19/1g em
e.g. 60%

RadicalKernBeforeDegree
RadicalKernAfterDegree
RadicalDegreeBottomRaisePercent

Table 6: Correspondence of font metric parameters
between OpenType and TEX affecting the placement of
radicals.

TUGDboat, Volume 30 (2009), No. 1

to the placement of the degree of an n th root (/x),
which is usually handled at the macro level in TEX’s
format files plain.tex or latex.ltx:

\newbox\rootbox

\def\root#1\of{%

\setbox\rootbox
\hbox{$\m@th\scriptscriptstyle{#1}$}/
\mathpalette\r@@t}

\def\root#1#2{%
\setbox\z@\hbox{$\m@th#1\sqrtsign{#2}$}%
\dimen®@=\ht\z@ \advance\dimen@-\dp\z@
\mkernbmu\raise.6\dimen@\copy\rootbox
\mkern-10mu\box\z@}

As shown in the listing, the definition of the \root
macro contains a number of hard-coded parameters,
such as a positive kern before the box containing
the degree and negative kern thereafter, expressed in
multiples of the font-specific math unit. In addition,
there is also a raise factor expressed relative to the
size of the box containing the radical sign.

Obviously, the extra OpenType parameters re-
lated to the degree of radicals correspond directly to
the parameters used internally in the \root macro,
making it possible to supply a set of font-specific
values instead of using hard-coded values expressed
in multiples of font-specific units.

In LuaTgX, this approach has been taken one
step further, introducing a new \Uroot primitive as
an extension of the \Uradical primitive, making it
possible to replace the processing at the macro level
by processing at the algorithmic level in LuaTEX’s
extended math typesetting engine [11].

4.7 General parameters

The final group of OpenType parameters combines a
mixed bag of parameters for various purposes. Some
of them have a straight-forward correspondence in
TEX (such as the math axis position), while others do
not have any correspondence at all. As shown in ta-
ble 7, there are some very noteworthy parameters in
this group, which deserve some further explanations
in the following paragraphs.

(Script)ScriptPercentScaleDown
These OpenType parameters represent the font sizes
of the first and second level script fonts relative to
the base font. In TEX math fonts, these parameters
do not have a correspondence in the font metrics.
Instead they are usually specified at the macro level
when a family of math fonts is loaded.

If a font family provides multiple design sizes
(as in Computer Modern), font loading of math fonts
in TEX might look like the following, using different
design sizes, each at their natural size:

27

OpenType parameter

TEX parameter

ScriptPercentScaleDown
ScriptScriptPercentScaleDown

e.g. 70-80%
e.g. 50-60 %

DisplayOperatorMinHeight
(no correspondence)
DelimitedSubFormulalinHeight

7?7 (e.g. 12-15pt)
020 (e.g. 2024 pt)
021 (e.g. 10-12pt)

(
(
099 (axis height)
(
(

AxisHeight
AccentBaseHeight 05 (x-height)
FlattenedAccentBaseHeight 7?7 (capital height)

Table 7: Correspondence of font metric parameters
between OpenType and TEX affecting some general
aspects of math typesetting.

\newfam\symbols
\textfont\symbols=cmsy10
\scriptfont\symbols=cmsy7
\scriptscriptfont\symbols=cmsy5

If a font family does not provide multiple design
sizes (as in Y&Y MathTime), font loading of math
fonts will use scaled-down versions of the base font:

\newfam\symbols

\textfont\symbols=mtsyl0 at 10pt

\scriptfont\symbols=mtsyl0 at 7.6pt

\scriptscriptfont\symbols=mtsyl0 at 6pt

The appropriate scaling factors depend on the font
design, but are usually defined in macro packages
or in format files using higher-level macros such as
\DeclareMathSizes in KTEX.

In OpenType math fonts, it will be possible to
package optical design variants for script sizes into a
single font by using OpenType feature selectors to
address the design variants and using scaling factors
as specified in the MATH table.3

The corresponding code for font loading of full-
featured OpenType math fonts in new TEX engines
might look like the following:

\newfam\symbols
\textfont\symbols="CambriaMath"
\scriptfont\symbols="CambriaMath:+ssty0"
scaled <ScriptPercentScaleDown>
\scriptscriptfont\symbols="CambriaMath:+sstyl"
scaled <ScriptScriptPercentScaleDown>

If the font provides optical design variants for some
letters and symbols, they will be substituted using
the +ssty0 or +sstyl feature selectors, but the scal-
ing factor of (Script)ScriptPercentScaleDown will be applied
in any case regardless of substitutions.

3 As discussed in [12], there are many issues to consider
regarding the development of OpenType math fonts besides
setting up the font parameters. One such issue is the question
of font organization regarding the inclusion of optical design
variants into the base font.

OpenType math illuminated

28

DisplayOperatorMinHeight

This OpenType parameter represents the minimum
size of big operators in display style. While TEX
supports only two sizes of operators, which are used
in text style and display style, OpenType can sup-
port multiple sizes of big operators and it needs an
additional parameter to determine the smallest size
to use in display style.

For font designers, it should be easy to set this
parameter based on the design size of big operators,
e.g. using 14 pt for display style operators combined
with 10 pt for text style operators.

DelimitedSubFormulaMinHeight
This OpenType parameter represents the minimum
size of delimited subformulas and it might also be
applied to the special case of delimited fractions.
To illustrate the significance, some explanations
may be necessary to point out the difference between
the usual case of fractions with delimiters and the
special case of delimited fractions.
If a generalized fraction with delimiters is coded
like the following

$ \left({n \atop k} \right) $

the contents will be treated as a standard case of a
generalized fraction, and the size of delimiters will
be determined by taking into account the effects
of \delimiterfactor and \delimitershortfall
as set up in the format file.

As a result, we will typically get 10 pt or 12 pt
delimiters in text style and 18 pt or 24 pt delimiters
in display style. For typical settings, the delimiters
have to cover only 90 % of the required size and they
may fall short by at most 5 pt.

If a generalized fraction with delimiters is coded
like the following

$ {n \atopwithdelims() k} $

the contents will be treated as a delimited fraction,
and in this case the size of delimiters will depend on
the \fontdimen parameters o5y and oo1 applicable
in either display style or text style.

As a result, regardless of the contents, we will
always get 10 pt delimiters in text style and 24 pt
delimiters in display style, even if 18 pt delimiters
would be big enough in the standard case.

While DelimitedSubFormulaMinfeight may be the best
choice of the OpenType parameters to supply a value
for TEX’s \fontdimen parameters related to delim-
ited fractions, it will be insufficient by itself to rep-
resent the distinction between display style and text
style values needed in TEX. (Unless we simply as-
sume a factor, such as o929 = 2091.)

In the absence of a better solution, it may be
best to simply avoid using \atopwithdelims with

Ulrik Vieth

TUGDboat, Volume 30 (2009), No. 1

OpenType math fonts in the new TEX engines and
to redefine user-level macros (such as \choose) in
terms of \left and \right delimiters.

(Flattened)AccentBaseHeight

These OpenType parameters affect the placement
of math accents and are closely related to design
parameters of the font design.

While TEX assumes that accents are designed
to fit on top of base glyphs which do not exceed
the x-height (05) and adjusts the vertical position of
accents accordingly, OpenType provides a separate
parameter for this purpose, which doesn’t have to
match the x-height of the font, but plays a similar
role with respect to accent placement.

In addition to that, OpenType has introduced
another mechanism to replace accents by flattened
accents if the size of the base glyph exceeds a certain
size, which is most likely related to the height of
capital letters. At the time of writing, support for
flattened accents has not yet been implemented in
the new TEX engines, but it is being considered for
LuaTgX version 0.40 [11].

In view of these developments, font designers
are well advised to supply a complete set of values
for all the OpenType math parameters since new
TEX engines working on implementing full support
for OpenType math may start using them sooner
rather than later.

So far, we have discussed only one aspect of the
information contained in the OpenType MATH table,
focusing on the global parameters which correspond
to TEX’s \fontdimen parameters or to built-in rules
of TEX’s math typesetting algorithms.

Besides those global parameters, there are other
data structures in the OpenType MATH table which
are also important to consider, as we will discuss in
the following sections.

5 Instructions for vertical and horizontal
variants and constructions

The concepts of vertical and horizontal variants and
constructions in OpenType math are obviously very
similar to TEX’s concepts of charlists and extensible
recipes. However, there are some subtle differences
regarding when and how these concepts are applied
in the math typesetting algorithms.

In TEX, charlists and extensible recipes are used
only in certain situations when typesetting elements
such as big operators, big delimiters, big radicals or
wide accents. In OpenType math fonts, these con-
cepts have been extended and generalized, allowing
them to be used also for other stretchable elements
such as long arrows or over- and underbraces.

TUGDboat, Volume 30 (2009), No. 1

5.1 Vertical variants and constructions

Big delimiters When typesetting big delimiters
or radicals TEX uses charlists to switch to the next-
larger vertical variants, optionally followed by exten-
sible recipes for vertical constructions. In OpenType
math, these concepts apply in the same way.

It is customary to provide at least four fixed-size
variants, using a progression of sizes such as 12 pt,
18 pt, 24 pt, 30 pt, before switching to an extensible
version, but there is no requirement for that other
than compatibility and user expectations.*

Font designers are free to provide any number
of additional or intermediate sizes, but in TEX they
used to be limited by constraints such as 256 glyphs
per 8-bit font table and no more than 16 different
heights and depths in TFM files. In OpenType math
fonts, they are no longer subject to such restrictions,
and in the example of Cambria Math big delimiters
are indeed provided in seven sizes.

Big operators When typesetting big operators
TEX uses the charlist mechanism to switch from text
style to display style operators, but only once. There
is no support for multiple sizes of display operators,
nor are there extensible versions.

In OpenType math, these concepts have been
extended, so it would be possible to have multiple
sizes of display style operators as well as extensible
versions of operators, if desired.

While LuaTEX has already implemented most
of the new features of OpenType math, it has not
yet addressed additional sizes of big operators, and
it is not clear how that would be done.

Most likely, this would require some changes to
the semantics of math markup at the user level, so
that operators would be defined to apply to a scope
of a subformula, which could then be measured to
determine the required size of operators.

In addition, such a change might also require
adding new parameters to decide when an operator
is big enough, similar to the role of the parame-
ters \delimiterfactor and \delimitershortfall
in the case of big delimiters.

5.2 Horizontal variants and constructions

Wide accents When typesetting wide math ac-
cents TEX uses charlists to switch to the next-larger
horizontal variants, but it doesn’t support extensible
recipes for horizontal constructions.

As a result, math accents in traditional TEX
fonts cannot grow beyond a certain maximum size,
and stretchable horizontal elements of arbitrary size

4 At the macro level these sizes can be accessed by using
\big (12pt), \Big (18 pt), \bigg (24 pt), \Bigg (30 pt).

29

have to be implemented using other mechanisms,
such as alignments at the macro level.

In OpenType math, these concepts have been
extended, making it possible to introduce extensible
versions of wide math accents (or similar elements),
if desired. In addition, new mechanisms for bottom
accents have also been added, complementing the
existing mechanisms for top accents.

Over- and underbraces When typesetting some
stretchable elements such as over- and underbraces,
TEX uses an alignment construction at the macro
level to get an extensible brace of the required size,
which is then typeset as a math operator with upper
or lower limits attached.

While it would be possible to define extensible
over- and underbraces in OpenType math fonts as
extensible versions of math accents, the semantics of
math accents aren’t well suited to handle upper or
lower limits attached to those elements.

In LuaTEX, new primitives \Uoverdelimiter
and \Uunderdelimiter have been added as a new
concept to represent stretchable horizontal elements
which may have upper or lower limits attached. The
placement of these limits is handled similar to limits
on big operators in terms of so-called ‘stretch stacks’
as discussed earlier in section 4.2.

Long arrows In TEX math fonts, long horizontal
arrows are constructed at the macro level by overlap-
ping the glyphs of short arrows and suitable extension
modules (such as — or =). Similarly, arrows with
hooks or tails are constructed by overlapping the
glyphs of regular arrows and suitable glyphs for the
hooks or tails.

In OpenType math fonts, all such constructions
can be defined at the font level in terms of horizontal
constructions rather than relying on the macro level.
However, in most cases such constructions will also
contain an extensible part, making the resulting long
arrows stretchable as well.

In LuaTgX, stretchable long arrows can also be
defined using the new primitives \Uoverdelimiter
as discussed in the case of over- and underbraces.
The placement of limits on such elements more or
less corresponds to using macros such as \stackrel
to stack text on top of a relation symbol.

5.3 Encoding of variants and constructions

In traditional TEX math fonts, glyphs are addressed
by a slot number in a font-specific output encoding.
Each variant glyph in a charlist and each building
block in an extensible recipe needs to have a slot of
its own in the font table. However, only the entry
points to the charlists need to be encoded at the

OpenType math illuminated

30

macro level and these entry points in a font-specific
input encoding do not even have to coincide with
the slot numbers in the output encoding.

In OpenType math fonts, the situation is some-
what different. The underlying input encoding is
assumed to consist of Unicode characters. However
these Unicode codes are internally mapped to font
programs using glyph names, which can be either
symbolic (such as summation or integral) or purely
technical (such as uni2345 or glyph3456).

With few exceptions, most of the variant glyphs
and building blocks cannot be allocated in standard
Unicode slots, so these glyphs have to be mapped to
the private use area with font-specific glyph names.
In Cambria Math, variant glyphs use suffix names
(such as glyph.vsize<n> or glyph.hsize<n>), while
other fonts such as Asana Math use different names
(such as glyphbig<n> or glyphwide<n>).

For font designers developing OpenType math
fonts, setting up vertical or horizontal variants is
pretty straight-forward, such as

summation : summation.vsizel summation.vsize2 ...
integral : integral.vsizel integral.vsize2

or
tildecomb : tildecomb.hsizel tildecomb.hsize2

provided that the variant glyphs use suffix names.

Setting up vertical or horizontal constructions
is slightly more complicated, as it also requires some
additional information which pieces are of fixed size
and which are extensible, such as

integral : integralbt:0 uni23AE:1 integraltp:0

or
arrowboth :
arrowleft.left:0 uni23AF:1 arrowright.right:0
It is interesting to note that some of the building
blocks (such as uni23AE or uni23AF) have Unicode
slots by themselves, while others have to be placed
in the private use area, using private glyph names
such as glyph.left, glyph.mid, or glyph.right.
Moreover, vertical or horizontal constructions
may also contain multiple extensible parts, such as
in the example of over- and underbraces, where the
left, middle, and right parts are of fixed size while
the extensible part appears twice on either side.

6 Additional glyph metric information

Besides the global parameters and the instructions
for vertical and horizontal variants and constructions,
there is yet another kind of information stored in the
OpenType MATH table, containing additions to the
font metrics of individual glyphs.

In traditional TEX math fonts, the file format of
TFM fonts provides only a limited number of fields

Ulrik Vieth

TUGDboat, Volume 30 (2009), No. 1

to store font metric information. As a workaround,
certain fields which are needed only in math mode are
stored in a rather non-intuitive way by overloading
fields for other purposes [13].

For example, the nominal width of a glyph is
used to store the subscript position, while the italic
correction is used to indicate the horizontal offset
between the subscript and superscript position.

As a result, the nominal width doesn’t represent
the actual width of the glyph and the accent position
may turn out incorrect. As a secondary correction,
fake kern pairs with a so-called skewchar are used to
store an offset to the accent position.

In OpenType math fonts, all such non-intuitive
ways of storing information can be avoided by using
additional data fields for glyph-specific font metric
information in the MATH table.

For example, the horizontal offset of the optical
center of a glyph is stored in a top_accent table, so
any adjustments to the placement of math accents
can be expressed in a straight-forward way instead
of relying on kern pairs with a skewchar.

Similarly, the italic correction is no longer used
for the offset between superscripts and subscripts.
Instead, the position of indices can be expressed
more specifically in a math_kern array, representing
cut-ins at each corner of the glyphs.

7 Summary and conclusions

In this paper, we have tried to help improve the
understanding of the internals of OpenType math
fonts. We have done this in order to contribute to
the much-needed development of math support for
Latin Modern and TEX Gyre fonts.

In the previous sections, we have discussed the
parameters of the OpenType MATH table in great
detail, illustrating the similarities and differences
between traditional TEX math fonts and OpenType
math fonts. However, we have covered other aspects
of OpenType math fonts only superficially.

For a more extensive overview of the features
and functionality of OpenType math fonts as well
as a discussion of the resulting challenges to font
developers, readers are also referred to [12].

In view of the conference motto, TEX: at a
turning point, or at the crossroads?, it is interesting
to note that recent versions of LuaTEX have started
to provide a full-featured implementation of Open-
Type math support in LuaTEX and ConTEX¢t [14, 15],
which differs significantly from the implementation
of OpenType math support in XHTEX [10].

In this paper, we have pointed out some of these
differences, but further discussions of this topic are
beyond the scope of this paper.

TUGDboat, Volume 30 (2009), No. 1

Acknowledgments

The author once again wishes to thank Bogustaw
Jackowski for permission to reproduce and adapt the
figures from his paper Appendiz G Illuminated [6].
In addition, the author also wishes to acknowledge
feedback and suggestions from Taco Hoekwater and
Hans Hagen regarding the state of OpenType math

support in LuaTgX.

References

[1]

2]

Murray Sargent III: Math in Office Blog.
http://blogs.msdn.com/murrays/default.aspx
Murray Sargent III: High-quality editing and
display of mathematical text in Office 2007.
http://blogs.msdn.com/murrays/archive/2006/
09/13/752206. aspx

John Hudson, Ross Mills: Mathematical Type-
setting: Mathematical and scientific typesetting
solutions from Microsoft. Promotional Booklet,
Microsoft, 2006.
http://www.tiro.com/projects/

George Williams: FontForge. Math typesetting
information.
http://fontforge.sourceforge.net/math.html
Apostolos Syropoulos: Asana Math.
http://mirror.ctan.org/fonts/Asana-Math/
Bogustaw Jackowski: Appendix G Illuminated.
TUGboat 27(1), 2006, pp. 83-90, Proceedings of
the 16th EuroTEX Conference 2006, Debrecen,
Hungary.
http://wuw.gust.org.pl/projects/e-foundry/
math-support/tb87jackowski.pdf

Ulrik Vieth: Understanding the sesthetics of
math typesetting. Biuletyn GUST, pp. 5-12,
2008. Proceedings of the 16th BachoTgX
Conference 2008, Bachotek, Poland.
http://wuw.gust.org.pl/projects/e-foundry/
math-support/vieth2008.pdf

(8]

[9]

[10]

[11]

[13]

[14]

[15]

31

Microsoft Typography: OpenType specification.
Version 1.5, May 2008.
http://www.microsoft.com/typography/otspec/
Yannis Haralambous: Fonts and Encodings.
O’Reilly Media, 2007. ISBN 0-596-10242-9
http://oreilly.com/catalog/9780596102425/

Will Robertson: The unicode-math package.
Version 0.3b, August 2008.
http://github.com/wspr/unicode-math/

Taco Hoekwater: LuaTgX Reference Manual.
Version 0.37, 31 March 2009.
http://www.luatex.org/svn/trunk/manual/
luatexref-t.pdf

Ulrik Vieth: Do we need a ‘Cork’ math font
encoding? TUGboat, 29(3), 426-434, 2008. Pro-
ceedings of the TUG 2008 Annual Meeting, Cork,
Ireland.
http://tug.org/TUGboat/tb29-3/tb93vieth.pdf

Ulrik Vieth: Math Typesetting: The Good,
The Bad, The Ugly. MAPS, 26, 207-216, 2001.
Proceedings of the 12" EuroTEX Conference
2001, Kerkrade, Netherlands.
http://www.ntg.nl/maps/26/27.pdf

Taco Hoekwater: Math extensions in LuaTEX.
MAPS 38, Voorjaar 2009, pp. 22-31 (as “Math
in LuaTEX 0.40”). First presented at BachoTEX
2009.

Hans Hagen: Unicode math in ConTEXt MKIV.
MAPS 38, Voorjaar 2009, pp. 32—46. First pre-
sented at BachoTEX 2009.

o Ulrik Vieth
Vaihinger Strafle 69
70567 Stuttgart
Germany
ulrik dot vieth (at) arcor dot de

OpenType math illuminated

32

A closer look at TrueType fonts and pdfTEX
Han Thé Thanh

Abstract

Explanations and examples of using TrueType fonts
directly with pdfTEX, especially the complications
regarding encodings and glyph names.

1 Glyph identity in Type 1 vs. TrueType

The most common outline font format for TEX is
Type 1. The TrueType format is rather different
from Type 1, and getting it right requires some extra
work. In particular, it is important to understand
how TrueType handles encoding and glyph names
(or more precisely, glyph identity).

We start with Type 1, since most TEX users are
more familiar with it. In the Type 1 format glyphs
are referred to by names (such as ‘/A’, ¢/comma’, and
so on). Each glyph is identified by its name; so,
given a glyph name, it is easy to tell whether or not
a Type 1 font contains that glyph. Encoding with
Type 1 is therefore simple: for each number n in the
range 0 to 255, an encoding tells us the name of the
glyph that should be used to render (or display) the
charcode n.

With TrueType the situation is not that sim-
ple. TrueType does not use names to refer to glyphs,
but rather so-called “indices”: each glyph is iden-
tified by an index, not a name. These indices are
simply numbers that differ from font to font. The
TrueType format handles encodings by a mechanism
called “cmap”, which (roughly) consists of tables
mapping from character codes to glyph indices. A
TrueType font can contain one or more such tables,
each corresponding to an encoding.

2 Glyph names vs. Unicode in TrueType

Because glyph names are not strictly necessary for
TrueType, they are not always available inside a
TrueType font. Given a TrueType font, one of the
following cases may arise.

e The font contains correct names for all glyphs.
This is the ideal situation and is indeed often
the case for high-quality Latin fonts.

e The font contains wrong names for all or most
of its glyphs. This is the worst situation that
often happens with poor-quality fonts, or fonts
converted from other formats.

e The font contains no glyph names at all. Newer
versions of Palatino fonts by Linotype (v1.40,
coming with Windows XP) are examples of this.

Han Thé Thanh

TUGDboat, Volume 30 (2009), No. 1

e the font contains correct names for most glyphs,
and no names or wrong names for a few glyphs.
This happens from time to time.

One may wonder how the situation can be so
complex with glyph names in TrueType and still
get anything typeset correctly. The reason is that
Type 1 fonts rely on correct names to work properly.
Thus, if a glyph has a wrong name, it gets noticed
immediately. In contrast, as mentioned before, True-
Type does not use names for encoding. So, if glyph
names in a TrueType font are wrong or missing, it is
usually not a big deal and can easily go unnoticed.

The potential problem with using TrueType in
pdfTEX is that we TEX users are accustomed to the
Type 1 encoding convention, which relies on correct
glyph names. Furthermore, most font tools rely on
this convention and all encoding files (. enc files) use
glyph names. But, as explained above, glyph names
in TrueType are not reliable. If we encounter a font
that does not have correct names for its glyphs, we
need to do some more work.

If glyph names are not correct, we need another
way to refer to a glyph in TrueType fonts. The
most reliable way seems to be via Unicode: usable
TrueType fonts must provide a correct mapping from
Unicode value to glyph index.

Since version 1.21a pdfTEX has supported the
naming convention ‘uniXXXX’ in encoding (.enc)
files. This makes sense only with TrueType fonts.
When pdfTEX sees for example ‘/uni12AB’, it

e reads the (unicode)— (glyph-index) table from
the font, and

e looks up the value ‘12AB’ in the table, and if
found then uses the relevant glyph index.

The ttf2afm utility does the same lookup when
it sees names like ‘unil2AB’.

3 Using TrueType in pdfTEX
Let’s review the minimal steps to get a TrueType
font working with pdfTEX:
e Generate an afm from the TrueType font using
ttf2afm. Example:
ttf2afm -e 8r.enc -o times.afm times.ttf
e Convert afm to tfm using any suitable tool —
afm2tfm, fontinst, afm2pl, etc. Example:
afm2tfm times.afm -T 8r.enc
e Define the needed map entry for the font. Ex-
ample:

\pdfmapline{%

+times TimesRoman <8r.enc <times.ttf}
\font\f=times
\f Hello this is Times.

TUGDboat, Volume 30 (2009), No. 1

(The font name ‘TimesRoman’ used in the map line
is declared inside the times.ttf file.)

The above deals with the easiest case: when
glyph names are correct.

Now let us consider a font where we cannot rely
on glyph names: Palatino version 1.40 from Linotype,
for example. Let us assume that we want to use the
T1 encoding with this font. So we put pala.ttf and
ec.enc in the current directory before proceeding
further.

First attempt:

ttf2afm -e ec.enc -o pala.afm pala.ttf

However, since the names in ec.enc are not
available in pala.ttf —in fact there are no names
inside this font — we get a bunch of warnings:
Warning: ttf2afm (file pala.ttf): no names

available in ‘post’ table ...
Warning: ttf2afm (file pala.ttf): glyph ‘grave’
not found

and the output pala.afm will contain no names at

all, but instead weird entries like ‘index123’. Fur-

thermore, glyphs are not encoded:

C -1 ; WX 832 ; N index10 ; B 24 -3 807 689 ;
We try again, this time without any encoding:

ttf2afm -o pala.afm pala.ttf

Since this time we did not ask ttf2afm to re-
encode the output afm, we get only the first warning:

Warning: ttf2afm (file pala.ttf): no names ...

but the afm output is the same as in the previous
attempt. This is not useful, since there is little we
can do with names like ‘index123’.

So we try to go with Unicode:
ttf2afm -u -o pala.afm pala.ttf

This time we get different warnings, such as:

Warning: ttf2afm (file pala.ttf): glyph 108 has
multiple encodings (the first one being used):
uni0162 uniO021A

At first sight it is hard to understand what
ttf2afm is telling us with this message. So let us
recap the connection between glyph name, glyph
index and Unicode value:

e TrueType glyphs are identified internally by an
index, not a name.

o (glyph-name)— (glyph-index) is optional, and the
information may be wrong, if present. Likewise
(glyph-index)— (glyph-name).

o (unicode)—(glyph-index), on the other hand, is
(almost) always present and reliable.

e (glyph-index)— (unicode) is not always reliable,
and need not even be a mapping, since there

33

can be more than one Unicode value mapping
to a given glyph index. That is, given a glyph
index, there may be no corresponding Unicode
value, or there may be more than one. If there
is none, the glyph index will be used (‘index123’,
for example). Now suppose that there are more
than one, as in the example above, where 0162
and 021A are both mapped to glyph index 108
In sum, we have asked ttf2afm to print glyphs
by Unicode, and ttf2afm cannot know for sure
which value to use. Hence it outputs the first
Unicode value and issues the warning.

If all we want to do is to use pala.ttf with the
T1 encoding, probably the easiest way is to create a
new enc file ec-uni.enc from ec.enc, with all glyph
names replaced by Unicode values. (This simple ap-
proach does not handle ligatures; see below.) This
can be done easily enough by a script that reads the
AGL (Adobe Glyph List, http://www.adobe.com/
devnet/opentype/archives/glyphlist.txt) and
converts all glyph names to Unicode.

Assuming that we have such a ec-uni.enc, the
steps needed to create the tfm are as follows:
ttf2afm -u -e ec-uni.enc -o pala-tl.afm pala.ttf
afm2pl pala-tl.afm pltotf pala-til.pl
pltotf pala-tl.pl

We could then use the font in pdfTEX as follows:
\pdfmapline{+pala-tl <ec-uni.enc <pala.ttf}
\font\f=pala-t1
\f This is Palatino in the T1 encoding.

4 General solutions for fontinst et al.

If we want to do more than just using pala.ttf
with T1 encoding, for example processing the afm
output with fontinst for a more complex font setup,
then we must proceed slightly differently. Having an
afm file where all glyph names are converted to the
‘uniXXXX’ form, as we have done above, is not very
useful for fontinst. Instead, we need an afm file with
AGL names, do our processing, and then convert
back to ‘uniXXXX’. We can do this as follows.

e Generate the afm with ‘uniXXXX’ glyph names:
ttf2afm -u -o pala.afm pala.ttf

e Convert that pala.afm to pala-agl.afm, so
that pala-agl.afm contains only AGL names.
A script similar to the one mentioned above can
do this.

e Process pala-agl.afm with fontinst or what-
ever else is desired.

e In the final stage, when we have the tfm’s from
fontinst (et al.), plus the map entries (from
fontinst or created manually), we need to re-
place the encoding by its counterpart with the

A closer look at TrueType fonts and pdfTEX

34

‘uniXXXX’ names, since that is what the actual
TrueType font requires. For example, if fontinst
tells us to add a line saying

pala-agl-8r <8r.enc <pala.ttf
to our map file, we need to change that line to
pala-agl-8r <8r-uni.enc <pala.ttf

where 8r-uni.enc is derived from 8r.enc by
converting all glyph names to the ‘uniXXXX’
form.

The encoding files distributed with the TEX
Gyre fonts cover just about everything a typical TEX
user needs. Those encodings have been converted to
the ‘uniXXXX’ form for your convenience and are
available at http://tug.org/fontname, with names
such as g-ec-uni.enc.

5 Disappearing glyphs and final tips

Another problem that happens from time to time is
being sure that a glyph exists inside a font but we
don’t get that glyph in the pdfTEX output.

The likely cause is the glyph being referenced
by different names at the various stages the process
of creating support for the font, e.g., the tfm, vf,
enc and map files. For example, the names ‘dcroat’,
‘dbar’, ‘dslash’ and ‘dmacron’ can all refer to the same
glyph in a TrueType font. In general, the origin of a

Han Thé Thanh

TUGDboat, Volume 30 (2009), No. 1

glyph name can come from several sources:

e the individual font itself;

e a predefined scheme called “the standard Mac-
intosh ordering of glyphs” (unfortunately the
TrueType specifications by various companies
(Apple, Microsoft and Adobe) are not consistent
in this scheme and there are small differences,
for example ‘dmacron’ vs. ‘dslash’);

e the result of the (unicode)— (glyph-name) con-
version, according to the AGL.

In such situations, probably the easiest and most
reliable way to get the glyph we want is to use a font
editor like FontForge (http://fontforge.sf.net),
look into the font to discover the specified Unicode
for the glyph and then use the ‘uniXXXX’ form to
instruct ttf2afm and pdfTEX to pick up that glyph.

Finally, another way to get a problematic True-
Type font to work with pdfTEX is to forget all of the
above and simply convert the font to Type 1 format
using FontForge. While it sounds like a quick hack,
there is nothing necessarily wrong with this; it can
be a simple and effective workaround.

o Han Thé Thanh
River Valley Technologies
thanh (at) river-valley dot org

TUGDboat, Volume 30 (2009), No. 1

The Open Font Library

Dave Crossland

& 0 i3v [Elhoperionibraryontyory < [C¥ s fontund Jo-

<t‘> Open Font Library

Typefaces we can all share

efghijotlb

A large number of redistributable and modifiable
fonts now exist and are useful for all computer users.
But most people are unaware of this, and have no way
to easily browse and use these fonts. The Open Font
Library, at http://www.openfontlibrary.org, is
a project that aims to enable this by visually show-
casing them on the web.
The project has three aims:

Q... O,

...

1. To be a website for graphic designers and every-
day users to browse and download free software
fonts, akin to proprietary font vendors’ websites.

2. To introduce type designers not deeply involved
in the free software community to it, and help
them to share their fonts with the community,
such as GNU/Linux distributions and TEX Live,
through a single, simple process.

3. To be a central place to link webfonts from, using
the upcoming CSS3 font linking technology. This
is already available in webkit-based browsers like
Midori, Safari, and on Android phones, and will
be in Opera 10 and Mozilla Firefox 3.5.

The imminent arrival of web fonts is an impor-
tant window of opportunity for free software fonts
because it is where they demonstrate immediate
usefulness. There will never be any question over
whether a free software font can be used on the web —
if it is hosted in the Open Font Library, it can simply
be linked to directly.

There was a campaign to apply DRM to web
fonts at http://www.fontembedding.com, but that
seems to not have been successful. The Open Font
Library is well positioned to offer advice to balance
that debate and showcase what web font linking can
do.

The project started in 2004 but had very little
development effort on a community basis, essentially
because font developers are not web developers. This
means that, despite already collecting nearly 150

35

fonts, it did not seem like a worthwhile cause to
ambitious type designers and graphic designers.

However, the long term viability of the project
has always been assured since its hosting is provided
by the Oregon State University’s Open Source Lab
(http://osuosl.org).

So in September 2008 I sought sponsorship to
relaunch the website by hiring British freelance web
developers, and brothers, Ben and James Weiner.
With Karl Berry’s help, TUG formed a “Free Font
Fund” to take care of the administrative overheads
of this effort, and make donations to the fund tax
deductible for patrons in the USA. By the end of
October, the fund totalled US$12,000 and patrons
included TUG, the TEX-based typesetting company
River Valley Technologies, Prince XML and Mozilla.

In order to raising the site’s profile, the Wein-
ers originated a totally new visual identity for the
site, so that it appeals to the international graphic
design community, yet without losing the inclusive
free software community attitude. They also wrote
compelling copy for graphic designers, explaining
what the site is about. This included documenting
how to contribute fonts, and the licensing issues that
typically vex type designers who contribute to the
free software community.

Ben Weiner customised the ccHost (http://
wiki.creativecommons.org/CcHost) content man-
agement system as part of this work, and integrated
MediaWiki to cover the site’s documentation needs.

Ed Trager is an expert in Asian writing systems,
and he worked hard to develop new programs that
signpost what is available in the library. His ‘Font
Playground’ is an interactive AJAX tool to generate
enticing previews of each font using an on-screen
keyboard that supports all major writing systems.
He also developed a Unicode coverage analysis tool,
Fontaine (http://fontaine.sf.net).

The site has been in public beta at http://
openfontlibrary.fontly.org for some time now,
and I hope that it will go live by the time this sees
print. Comments are very welcome.

I would like to thank again the generous patrons:
OSU-OSL, TUG, River Valley Technologies, Prince
XML and Mozilla.

¢ Dave Crossland
University of Reading, UK
dave (at) lab6 dot com
http://www.openfontlibrary.org

36

Bibliographies

Managing bibliographies with BTEX
Lapo F. Mori

Abstract

The bibliography is a fundamental part of most scien-
tific publications. This article presents and analyzes
the main tools that IATEX offers to create, manage,
and customize both the references in the text and
the list of references at the end of the document.

1 Introduction

Bibliographic references are an important, sometimes
fundamental, part of academic documents. In the
past, preparation of a bibliography was difficult and
tedious mainly because the entries were numbered
and ordered by hand. ITEX, which was developed
with this kind of document in mind, provides many
tools to automatically manage the bibliography and
make the authors’ work easier. How to create a
bibliography with KTEX is described in section 2,
starting from the basics and arriving at advanced
customization. Bibliographic styles for both the list
of references and in-text-citations are analyzed in
section 3. The last two sections (4 and 5) analyze
two of the most powerful packages available: natbib
and BIBIATEX.

2 Bibliography with B TEX

There are two main ways to compose a bibliography
with ITEX: automatically with the BIBTEX pro-
gram that uses external bibliographic databases (sec-
tion 2.2), or manually with the thebibliography en-
vironment that allows to include all the bibliographic
information in the source .tex file (section 2.3). Re-
gardless from the strategy chosen, citations can be
added to the text with the same commands, as shown
in section 2.1.

2.1 References in the text

Citations can be added to the text with the com-
mand \cite{key} (and its variants), where key cor-
responds to the citekey field in the .bib file (if using
BIBTEX, section 2.2) or the key of \bibitem (if us-
ing the thebibliography environment, section 2.3).
When compiling the source, \cite{key} is linked
to the respective \bibitem and substituted by the
appropriate reference (numbered, author-year, or
footnote depending on the style chosen).

Lapo F. Mori

TUGDboat, Volume 30 (2009), No. 1

Multiple citations can be added by separating
with a comma the bibliographic keys inside the same
\cite command; for example

\cite{Goossens1995,Kopkal995} ‘

gives

’ (Goossens et al., 1995; Kopka and Daly, 1995) ‘

Bibliographic entries that are not cited in the
text can be added to the bibliography with the
\nocite{key} command. The \nocite{*} com-
mand adds all entries to the bibliography.

2.2 Automatic creation with BIBTEX

BIBTEX is a separate program from IXTEX that allows
creating a bibliography from an external database
(.bib file). These databases can be conveniently
shared by different ATEX documents. BIBTEX, which
will be described in the following paragraphs, has
many advantages over the thebibliography envi-
ronment; in particular, automatic formatting and
ordering of the bibliographic entries.

2.2.1 How BIBTEX works

B1BTEX requires:
1. one or more bibliographic databases .bib;
2. a bibliographic style .bst;

3. that the .tex file contains: commands that spec-
ify what style .bst and database .bib to use,
and citations in the text with the \cite and
similar commands, as in:

\documentclass{...}

\begin{document}
See \citet{Kopkal995}.

\bibliographystyle{plainnat}
\bibliography{database}
\end{document}

4. that the document is compiled in the following
order (let’s assume that the principal file is called
document . tex):

latex document
bibtex document
latex document
latex document

The first time ITEX runs, the \bibliographystyle
command writes the name of the style .bst to be
used into the .aux file, each \cite command writes
a note into the .aux file, and the \bibliography
command writes into the .aux file the name of the
.bib database(s) to be used. At this stage PTEX
does not substitute the \cite in the text: the .dvi

TUGboat, Volume 30 (2009), No. 1

G

CORRC

Figure 1: Data flow between ETEX and BIBTEX to
create a .pdf or a .dvi (M) from the data files .tex
and .bib (/') and the style files .sty and .bst ().

@ @
<

shows question marks for every \cite and the .log
file reports warnings for unknown references.

BIBTEX will then read the .aux file, the bibli-
ographic style .bst and .bib database(s) specified.
For every \cite entry, it will read the information
contained in the .bib files and format it according
to the style .bst. At the end it will order the en-
tries according to the style .bst and will write the
result into the .bbl file. The .bbl contains the bib-
liographic entries organized in a thebibliography
environment; the entries follow the format specified
by the .bst style and have the information contained
in the .bib database. This file will be read every
time that the source .tex file is compiled.

When running KTEX again, it will produce a
warning due to the fact that the references are not de-
fined yet and will substitute the \bibliography com-
mand with the content of the .bbl file. It will also
write a note into the .aux file for every \bibitem.

At the next run, IATEX will find the definition
for every \cite in the .aux file and all the citations
in the text will be resolved. The .blg file is a log
file created by BIBTEX, similar to the .log file for
ATEX.

This flow, represented in Fig. 1, has to be re-
peated if the citations in the text, the .bib database
or the .bst style are modified.

2.2.2 Structure of a bibliography database

The .bib files are databases that store the informa-
tion for each bibliographic entry. Here is an example:

©@BOOK{Kopka1995,
title = {A Guide to {\LaTeX} -- Document
Preparation for Beginners and Advanced Users
},
publisher = {Addison-Wesley},
year = {1995},
author = {H. Kopka and P. W. Daly},
}

Each type of entry (BOOK, ARTICLE, PROCEEDINGS,
etc.) offers many fields in addition to those shown
in the example (title, publisher, year, author).
Further details can be found in Patashnik (1998).

37

2.2.3 Rules for using BIBTEX

The syntax of BIBTEX entries is very intuitive. The
following paragraphs will discuss the most common
rules, all the details can be found in Patashnik (1998).

Capital letters. The BIBTEX styles control cap-
ital and lower case letters, especially for the titles.
This behavior is very convenient because it ensures a
uniform format for the entries but could cause prob-
lems in some specific situations such as acronyms,
chemical formule, etc. In these cases the user needs
to enclose in braces the letters whose capitalizations
should not be changed by BIBTEX, as in the following
example for “CO™:

title = {{CO} pollution}, ‘

The .bst style can be used to automatically
change the capitalization behavior for titles (e.g. title
style or sentence style) instead of manually enclosing
all the titles in braces.

Commands. Since BIBTEX modifies the capital-
ization depending on the .bst style, some KTEX
commands inside titles may not work. For example,
if the sentence style is in use and one of the titles
contains the command \LaTeX, this will be converted
to \latex and will give the following error:

! Undefined control sequence.

This also can be avoided by enclosing such commands
in braces: {\LaTeX}.

Accents and special characters. A similar prob-
lem arises with the commands for accents and spe-
cial characters such as “6” (\"{0}), “¢” (\c{c}), “0”
(\"{n}), etc. Again, enclosing the command in
braces solves the issue:

’ title = {Writing the curriculum vit{\ael}}, ‘

Name lists. When more than one name is present
in the author or editor fields, they have to be sep-
arated by Land, (a space before and after):

author = {Authorl and Author2}, ‘

Each name has four parts: Name, von, Surname,
Jr. The surname is mandatory, all other parts are
optional. BIBTEX accepts two different syntaxes for
names:

e Name von Surname: for example “Pico della
Mirandola” has to be written as
Pico della Mirandola.

e von Surname, Jr, Name: for example “Pico
della Mirandola II” has to be written as
della Mirandola, II, Pico.

Managing bibliographies with TEX

38

The second form is more general because the first
one cannot be used when the Jr field is present or
when the surname contains more than one word and
the von part is not present. The .bst style takes
care of abbreviating (or not) names. If the author
wants to use abbreviated names, the .bib database
can also have abbreviated names. For example:

author = {Mori, L. F.}, ‘

If the list of authors or editors is too long, it can
be ended by and others that will then be formatted
by the style as “et al.”

author = {Conte, G. B. and Pianezzolla, E. and
Chiesa, P. and Rossi, G. and others},

URL. The standard BIBTEX styles do not provide
a field for web addresses. A solution with these styles
is to use the howpublished field:

eMIsc{...,

l;c;t;ll’)ublished = {\url{http://...}},
}

A better solution is to use styles that provide
the url field, such as plainnat and abbrevnat that
come with the natbib package (section 4) or those
that come with the babelbib package (section 2.7.3).
Moreover, the url field is also provided by the custom
styles created with makebst (section 3.2.2). In all
these cases, the syntax is:

@ARTICLE{...,
url = {nttp://...},
¥

Problems might arise when a web site address
is long and close to the write margin. When the
document is compiled with pdfIATEX, the driver can
break the links over several lines. On the other hand,
when the document is compiled with the dvips driver
(BTEX — .dvi — PostScript — .pdf), the breakurl!
package must be loaded to support breaking links
into several parts while retaining the hyperlink.

Months. BIBTEX provides macros to automati-
cally manage the month name specified with the
month field; these macros automatically manage the
full form (March) and abbreviated form (Mar.) and
the language (Marzo) depending on the .bst style in
use. In order to take advantage of these macros, the
month has to be written in the abbreviated English
form.2

1 The breakurl package was written by Vilar Camara Neto
and the last version was released in 2009.

2 The abbreviated English form consists in the first three
letters of the month: jan, feb, mar, apr, may, jun, jul, aug,
sep, oct, nov, dec.

Lapo F. Mori

TUGDboat, Volume 30 (2009), No. 1

2.2.4 Creating and managing bibliography
databases

As should be clear from the example in section 2.2,
the .bib file syntax is so intuitive that these files
can be easily written with any text editor. Several
programs, however, are dedicated to the creation
and management of .bib databases, such as Bib-
TeXMng?3 (shareware for Windows), BibDesk* (open-
source for Mac OSX), KBibTeX® (open-source for
Linux), Pybliographer®(open-source for Linux), bib-
liographer” (freeware for Linux), Bibwiki® (Internet
based), cb2Bib? (freeware for Windows and Linux),
Zotero'? (open-source multi-platform plugin for Fire-
fox), and JabRef!! (multi-platform open-source). The
last three programs are particularly interesting and
will be discussed in the next paragraphs.

cb2Bib. cb2bib (which stands for “clipboard to
BIBTEX") is a program for extracting bibliographic
information from unformatted sources such as .pdf
files, web sites, and email. cb2bib reads the content of
the clipboard and process it according to predefined
patterns.!? If no predefined format pattern is found,
cb2bib can still be used for manual data extraction.

Zotero. Zotero is an open-source multi-platform
(Windows, Linux, and Mac OS X) Firefox!® plugin
that allows to gather, manage, and analyze bibli-
ographic references. Being an extension of a web
browser, Zotero is particularly useful for extracting
bibliographic data from the Internet. The reference
database can be exported as a .pdf file,!* a text
file, a BIBTEX database, and several other formats.

3 http://www.latexsoft.com/bibtexmng.htm

4 http://bibdesk.sourceforge.net/

5 http://www.unix-ag.uni-k1.de/~fischer/kbibtex/
6 http://www.pybliographer.org/Welcome/

7 http://bibliographer.homelinux.net/

8 http://wolfgang.plaschg.net/bibwiki/

9 http://www.molspaces.com/d_cb2bib-overview.php

10 http://www.zotero.org/

M http://jabref.sourceforge.net/

12 ch2bib implements patterns to extract data from the
following formats: PNAS Table of Contents Alert (http:
//www.pnas.org/), ISI Web of Knowledge Table of Con-
tents Alert (http://isiknowledge.com/), Wiley InterScience
Journal Abstracts (http://www.interscience.wiley.com/),
American Chemical Society Publications (http://pubs.acs.
org/), ScienceDirect (http://www.sciencedirect.com/), Dig-
ital Bibliography & Library Project (http://dblp.uni-trier.
de/), Nature from First Paragraph (http://www.nature.com/
nature/), IOP Electronic Journals (http://www.iop.org/
EJ/), JSTOR (http://www.jstor.org/), ISI Reference For-
mat (http://scientific.thomson.com/isi/), RIS Reference
Format.

13 http://www.mozilla.com/firefox/

14 The list in the .pdf file is formatted according to prede-
fined styles that can be selected by the user.

TUGboat, Volume 30 (2009), No. 1

Zotero can be used together with WYSIWYG!® soft-
ware such as Microsoft Word!® and OpenOffice.!”
Zotero can also perform advanced searches in its li-
braries and import entries from several formats. A
unique feature of Zotero is the ability to create online
libraries that can be used from different computers
over the Internet.

JabRef. JabRef is an open-source multi-platform
(Windows, Linux, and Mac OSX) software written in
Java for creating and managing bibliographic data-
bases in the BIBTEX format. Entries can be created
by editor panels whose fields depend on the type of
entry (book, article, proceedings, etc.); these panels
can also be customized by adding or removing fields.

JabRef can be used to search articles on Med-
line'® and Citeseer!? and to import bibliographic en-
tries from several formats such as BIBTEXML, CSA,
Refer/Endnote, 1SI Web of Science, SilverPlatter,
Medline/Pubmed (XML), Scifinder, OVID, INSPEC,
Biblioscape, Sixpack, JSTOR and RIS. JabRef offers
advanced search and management based on keywords.
Databases can be printed or exported in HTML,
Refer /Endnote, Docbook, BIBTEXML, MODS, RTF,
and OpenOffice.

JabRef can automatically create the BIBTEX
keys (for example by taking the first author’s sur-
name and the publication year) and insert the cita-
tions into several text editors such as LyX, Kile, and
WinEdt. JabRef can associate a .pdf file to every
entry and open it with external software. It can also
associate a url or a DOL:?Y in both cases, JabRef can
open a web browser on the corresponding page.

Bibliography resources on the Internet. Sev-
eral web sites, both of journals and of bibliographic
databases, can be used to export entries directly in
the BIBTEX format. Some of the journals are ACM,?!
Science,?? PNAS,?? and The Journal of Chemical
Physics.?* Some of the databases are Lead2Amazon?®
(a web site that uses Amazon.com, .ca, .co.uk, .de,
fr, .co.jp to automatically generate BIBTEX entries),

15 Acronym for “What You See Is What You Get”.

16 http://office.microsoft.com/

17 http://www.openoffice.org/

18 nttp://www.ncbi.nlm.nih.gov/sites/entrez

19 http://citeseer.ist.psu.edu/

20 DOI is the acronym for Digital Object Identifier and
represents the future for references to electronic publications.
Unlike an url, a DOI is associated with an object (scientific
article) and not to the place where it is stored (web site). This
guarantees a longer longevity of the link. More information
can be found at http://www.doi.org/.

21 http://portal.acm.org/

22 http://www.sciencemag.org/

23 http://www.pnas.org/

24 http://jcp.aip.org/

25 http://keijisaito.info/lead2amazon/e/

39

Google Scholar?® (Google search engine dedicated to
scientific publications; select “BIBTEX” in “Scholar
Preferences”), BibSonomy?” (web site to share links
to publications), CiteSeer?® (search engine and digi-
tal library for scientific articles), CiteULike?? (web
site to share links to publications), The Collection of
Computer Science Bibliographies®® (computer sci-
ence bibliographic database with more than two
million entries), HubMed3! (alternative interface to
PubMed?? that can export entries in BIBTEX for-
mat), TEXMed3? (another alternative interface to
PubMed that can export entries in BIBTEX).

2.3 Manual composition: thebibliography

The thebibliography environment must be placed
in the source document where the author wants the
list of references to appear, typically just before
\end{document}.

\documentclass{...}
\begin{document}

\begin{thebibliography}{argument}

\end{thebibliography}
\end{document}

The argument of thebibliography defines the max-
imum length of the labels. If the labels are automat-
ically generated by IXTEX, usually the argument is
chosen as “9”, if the list contains less than ten entries,
“99” if less than one hundred, etc. When using cus-
tomized labels (e.g.: [Mori 06]) the argument must
be the widest label.

The thebibliography environment works in a
very similar way to the itemize environment. Each
entry of the list begins with the \bibitem command
and its argument, that works as reference identifier
(similarly to \label), followed by the information
about the entry (e.g. author, title, editor, year of
publication), with explicit formatting and punctua-
tion. The following example

\begin{thebibliography}{9}

\bibitem{Kopka1995} \textsc{Kopka}, H. and \textsc{
Daly}, P."W. (1995). \emph{A Guide to {\LaTeX
}---Document Preparation for Beginners and
Advanced Users}. Addison-Wesley.

\end{thebibliography}

produces Fig. 2.

26 nttp://scholar.google.com/

27 http://www.bibsonomy.org/

28 http://citeseer.ist.psu.edu/

29 http://wuw.citeulike.org/

30 http://liinwww.ira.uka.de/bibliography/

31 http://wuw.hubmed.org/

32 http://pubmed.gov/

33 http://wuw.sbg.bio.ic.ac.uk/ mueller/TeXMed/

Managing bibliographies with TEX

40

TUGDboat, Volume 30 (2009), No. 1

[1] Kopka, H. and DALy, P. W. (2003). A Guide to BTgX—Document Prepa-
ration for Beginners and Advanced Users, Fourth Edition. Addison-Wesley.

Figure 2: List of references obtained with a manual thebibliography environment.

2.4 From BIBTEX to thebibliography

Some journals require an explicit thebibliography.
Even in these cases it is possible to manage the bibli-
ography with an external .bib database and BIBTEX.
As a matter of fact, BIBTEX just extracts the use-
ful information from the .bib database, formats it
according to the .bst style, and write the output
with the thebibliography syntax into the .bbl file.
Hence, at the end of the work, it is possible to copy
the content of the .bbl file into the .tex file.

2.5 From thebibliography to BIBTEX

There is no automatic method to convert the content
of a thebibliography environment into BIBTEX for-
mat. Often it may be convenient to import entries
from online databases. Otherwise cb2Bib can be used
to try to import the content of a thebibliography
environment. For both methods refer to section 2.2.4.

2.6 What method to use

BIBTEX makes the bibliography management auto-
matic but also has some disadvantages:

e it increases the complexity of the TEX environ-
ment (adding one or more external programs);
e although it is flexible, BIBTEX does not allow
completely free composition of bibliography en-
tries.
However, the advantages are greater than these dis-
advantages:
e it automates tedious operations, especially or-
dering the bibliography entries;
e it automates bibliography formatting;
e several programs are available for creating and
managing BIBTEX databases.

2.7 Specialties
2.7.1 Renaming the references section

The name of the bibliography section depends on
the class and language selected. The report and
book classes use the variable \bibname to specify the
name; the babel package defines this variable as “Bib-
liography” in English, “Bibliografia” in Italian, and
so on. The article class uses the variable \refname,
which becomes “References” in English, “Riferimenti
bibliografici” in Italian, and so on.

The \renewcommand command can be used to
change the names that are assigned by default to the
bibliography, as in the following example:

Lapo F. Mori

\renewcommand\bibname{Useful references}

2.7.2 Multiple bibliographies

The chapterbib3* package can be used to create sepa-
rate bibliographies for each file added to the main
document with the \include command, and not
only for each chapter as suggested by its name. The
package is very easy to use since the different bibli-
ographies are created automatically by the \include
commands and do not require special commands for
the references in the text.

The bibunits®® package can be used to create
separate bibliographies for different parts of the
document such as chapters, sections, etc. In ad-
dition, a global bibliography can be added at the
end of the document. This package does not re-
quire ad hoc commands for the citations in the text,
only the \bibliographyunit{unit} command in
the preamble (where unit corresponds to the doc-
ument structure to be used for the bibliographies,
such as chapter, section, etc.).

The multibib3® package can be used to create
multiple bibliographies; unlike the bibunits and chap-
terbib packages, the bibliographies can be placed
anywhere in the document, not only at the end of
certain parts. Each bibliography can have a different
.bst style and .bib database. This package, how-
ever, requires special commands for the citations in
the text: for each bibliography a different type of
cite command has to be used.

The multibbl>” package works similarly to multi-
bib but does not allow the creation of a general
bibliography at the end of the document.

The bibtopic and splitbib give results similar to
multibib and multibbl but follow a different strategy:
instead of using special commands for the citations
in the text, they require a distinction between the
entries of each bibliography. The bibtopic3® pack-
age requires that each bibliography has a different

34 The chapterbib package was written by Donald Arseneau
and the last version was released in 2008.

35 The bibunits package was written by Thorsten Hansen
and the last version was released in 2004.

36 The multibib package was written by Thorsten Hansen
and the last version was released in 2004.

37 The multibbl package was written by Apostolos Syropou-
los and the last version was released in 2004.

38 The bibtopic package was written by Pierre Basso and
Stefan Ulrich and the last version was released in 2006.

TUGboat, Volume 30 (2009), No. 1

.bib database. This is particularly convenient when
working with database management software such
as JabRef that makes very easy to create several
small databases from a global one. The splitbib3’
package, on the contrary, requires that the different
categories and the respective entries are defined in
the preamble.

2.7.3 Multilingual bibliographies

The babelbib?® package, together with babel, can be
used to create multilingual bibliographies in which:

e each entry is in a specific language, or
e all the entries are in the same language.*!

The second case (all the entries are in the same
foreign language) can also be handled by creating a

style .bst with makebst, as described in section 3.2.2.

For the first case (entries in different languages),
babelbib is very convenient: the language field can
be used to specify the language for each entry as in
the following example:

@BOOK{Lucchesi1989,
title = {La cucina di Lucchesia e Versilia},
publisher = {Franco Muzzio Editore},
year = {1989},
author = {E. Lucchesil},
language = {italian},

3 Bibliography styles
‘Bibliographic style’ can have two meanings:

e the style of the bibliographic entries (usually at
the end of the document),

e the style of the references in the text.

The three main styles for the references in the text
(numbered, author-year, footnote) are discussed in
section 3.1. Even though the style for the references
in the text influences the style of the bibliography
entries, INTEX separates these two aspects: the style
of the bibliography can be controlled with the .bst
file, as discussed in section 3.2.

3.1 References in the text

There are three main style families for the references

in the text: numbered, author-year, and footnote.

Each discipline has its own standards that depend
on how the bibliography is used (Garcia, 2007).

39 The splitbib package was written by Nicolas Markey and
the last version was released in 2007.

40 The babelbib package was written by Harald Harders and
the last version was released in 2006.

41 At present the package only supports Afrikaans, Danish,
Dutch, English, Esperanto, Finnish, French, German, Italian,
Norwegian, Portuguese, Spanish, and Swedish.

41

3.1.1 Numbered

Numbered references usually appear in square brack-
ets and use arabic numerals (e.g.: [1]). The main
advantage of this type of references is that they can
be used both for direct references (e.g.: ‘see [1] as
a reference for the theory’) and for indirect ones
(e.g.: ‘this has already been shown [1]’). Another
advantage is that these references can appear close
to parentheses in sentences such as ‘(further details
can be found in [1].)’. In general, this form of the
reference in the text, as output by \cite in KTEX,
is independent from the type of sentence in which it
appears and this has made this style quite popular.

3.1.2 Author-year

When an article is cited for referring to a theorem or
a theory, it is not necessary that the reader knows
who wrote it and when. The interested reader can
get this information from the reference list at the end
of the document. For this reason, the numbered ref-
erence style is the most popular for sciences. In the
humanities, however, referring to one author rather
than another or to one historic period rather than
another has significance in and of itself, and it is im-
portant that the reader gets this information directly
from the text. For this reason, in the humanities the
so-called author-year style is preferred. This style
summarizes all the relevant information in the ref-
erence; usually it reports the first author’s surname
and the year of publication, e.g. (Mori et al., 2006).

Since parentheses have already a meaning, this
style may lead to misunderstandings. For example it
is possible to say ‘. .. this has already be proven (Mori,
2006)’, but not ‘(Mori, 2006) proved that ...’. For
these reasons, the author-year styles provide many
variants for the references to solve grammatical or
aesthetic problems. Some examples are:

e ‘This has already been proven (Mori, 2006).’
e ‘Further details can be found in Mori (2006).’
e ‘(see [Mori, 2006])’

The author can choose among these variants by using
different commands instead of the usual \cite.

Packages The most popular packages for author-
year citations are harvard, achicago, and natbib. They
offer more or less the same features, natbib being the
most versatile, but their commands follow different
logics. The harvard*? commands are based on the
logical function of the reference in the sentence. For

42 The harvard package was written by Peter Williams and
Thorsten Schnier and the last version was released in 1996.

Managing bibliographies with IXTEX

42

example \citenoun has to be used when the refer-
ence is a noun. With achicago®? the names depend
on the form of the reference. For example \citeA
can be used to have references that contain only the
author name (“A” stands for “author”). natbib** is
based on the same logic of harvard and is the most
flexible package for managing author-year citations.
It will be discussed in section 4.

3.1.3 Footnotes

Some disciplines, mostly in the humanities, use foot-
note references. This style is especially common in
journals that do not have a reference list at the end
of each article.

Packages. The footbib?® package defines the com-
mand \footcite which formats all references as su-
perscript numbers in square brackets (e.g. [1]). The
information of each entry is at the bottom of the page
and their number does not follow that of the foot-
notes. The \footcite command does not interfere
with \cite, it is possible to add a list of references
at the end of the document.

The opcit*® package creates entries that are true
footnotes and follow their number (e.g. !). The
package considers which references have already been
cited in order to avoid repetitions by automatically
using conventional forms such as “Idem” and “op. cit.”.
Besides the manual, the interested reader should also
read Garcia (2007).

The jurabib?” package, originally written for Ger-
man law documents, offers many tools to manage
footnote references. Similarly to opcit, it formats the
bibliographic references as regular footnotes.

The natbib package provides the super option
that, similarly to footbib, creates references that do
not follow the number of footnotes and are not en-
closed in brackets (e.g. !). The list of the references
appears at the end of the document and not at the
bottom of the pages. Although natbib offers fewer op-
tions for footnote references than the other packages,
it uses the same syntax for footnote, author-year,
and numbered styles. This allows switching from
one style to another by merely changing the pack-
age options in the preamble, without changing the
references in the text of the document.

43 The achicago package was written by Matt Swift and the
last version was released in 2001.

44 The natbib package was written by Patrick Daly and the
last version was released in 2009.

45 The footbib package was written by Eric Domenjoud and
the last version was released in 2004.

46 The opcit package was written by Federico Garcia and
the last version was released in 2007.

47 The jurabib package was written by Jens Berger and the
last version was released in 2004.

Lapo F. Mori

TUGDboat, Volume 30 (2009), No. 1

The inlinebib*® package can be used for footnote
references but is not recommended since it is rather
old, does not offer many options, and can be used
only with the indexing.bst style.

3.1.4 Hybrid approaches

Between author-year and numbered The style
alpha.bst is halfway between the author-year style,
such as ‘(Mori, 2006)’, and the numbered style, such
as ‘[1]’. It produces references such as ‘(Mor06|.
Since this style is not as concise as the numbered
and not as informative as the author-year, it is not
recommended. It is supported by natbib.

Between author-year and footnote Some hu-
manities journals report the bibliographic entries
directly in the text. The bibentry?® package can be
used for this purpose. It requires only a few mod-
ifications to the .bst style, hence, it can be used
almost with every style.

The inlinebib package, created for footnote refer-
ences, can also be used for in-text-references although
it is not recommended, as noted above.

The jurabib package, also created for footnote
references, can be used for in-text-references with a
small number of styles (jurabib.bst, jhuman.bst,
and two styles of the ‘Chicago’ family).

3.2 Style of the reference list
3.2.1 Existing styles

Almost every journal and publisher have their own
rules for formatting the bibliography (use of bold-
face or italic for the issue or volume number, use of
parentheses and of punctuation, etc.). Many journals
provide the BIBTEX style, hence TEX distributions
usually come with a lot of bibliographic styles; the
Comprehensive TEX Archive Network (CTAN)° pro-
vides even more styles.

BIBTEX comes with four styles (plain, unsrt,
abbrv and alpha) that were created by the author
of the program, Oren Patashnik. These styles, how-
ever, do not support the author-year approach (sec-
tion 3.1.2).

Ken Turner’s web site®' provides examples of
the most popular .bst styles. Another excellent
review of the available styles is available on the Reed
College web site.??

48 The inlinebib package was written by René Seindal and
the last version was released in 1995.

49 The bibentry package was written by Patrick Daly, also
the author of natbib, and the last version was released in 2000.

50 http://www.ctan.org/

51 http://www.cs.stir.ac.uk/"kjt/software/latex/
showbst.html

52 http://web.reed.edu/cis/help/LaTeX/bibtexstyles.
html

TUGboat, Volume 30 (2009), No. 1

The best way to test a .bst style is by using the
xampl.bib database that comes with the BIBTEX
documentation. If for example we want to test the
example.bst style, we can use the following:

\documentclass{article}
\begin{document}
\bibliographystyle{example}
\nocite{*}
\bibliography{xampl}
\end{document}

3.2.2 Customizing the style with makebst

There are two main reasons to create custom .bst
styles:

1. none of the available .bst styles satisfy the au-
thor (or publisher),

2. the document is written in a language different
from English.??

Writing a .bst style may prove to be difficult since
BIBTEX uses a rather non-intuitive programming lan-
guage. Luckily, Patrick Daly, who is also the author
of natbib and coauthor of the excellent book about
BTEX (Kopka and Daly, 2003), wrote a program
called makebst that can be used to create interac-
tively a customized .bst style for BIBRTEX (and fully
compatible with natbib). The program is usually
distributed as the custom-bib package.

The generic style merlin.mbs is the heart of the
program: it contains alternative code for all aspects
of a bibliographic style and is analyzed in detail in
Daly (2007b). This file has to be compiled by the
docstrip®* program in order to produce the respective
.bst style. Since the number of options is very high
(about one hundred), the program provides a graphic
interface by means of the makebst.tex file. The first
step consists in compiling makebst.tex with either
TEX or IATEX: at this point the user has to answer
interactively to the questions that appear on the
screen. At the very beginning the user has to select
an .mbs file, and, depending on the choice, a docstrip
batch file is created. This batch file can be used
to create a bibliographic style with the characteris-
tics of the .mbs file: the options that the user can
select interactively depend on the chosen .mbs file.
merlin.mbs is a third generation bibliographic style
that has replaced genbst .mbs (released in November
1993) and its multilingual version babel.mbs. Unlike
its predecessors, in merlin.mbs all the words such
as “editor” are represented by variables (in this case
bbl.editor) that assume different values depending

53 Almost all the available styles are in English.
54 docstrip, written by Frank Mittelbach, is a standard part
of INTEX distributions.

43

on the language in use (bbl.editor becomes “cura-
tore” in Italian, “editor” in English, “Redakteur” in
German, “redacteur” in French, etc.). merlin.mbs
supports only the options English and babel; the
definitions for all the other languages are provided
by separated .mbs files (e.g. italian.mbs). The
language must be chosen at very beginning: when
asked “Enter the name of the MASTER file” select
merlin.mbs, when asked “Name of language defini-
tion file” select the .mbs file corresponding to the
desired language. If the .mbs file is not available
for the desired language,®® the user can select babel
that, instead of substituting the variables with their
translation, substitutes them with commands (in
this case \bbleditor{}) whose definition must be
written in the babelbst.tex file.

Except from the language, some of the cus-
tomizations offered by merlin.mbs are:

e author-year or numbered citations;

e criteria for ordering the entries: citation order,
year ordered and then by authors, reverse year
ordered and then by authors, etc.;

e format for author names: full with surname last,
initials and surname, surname and initials, etc.;

e the number of names to report before substitut-

ing them with “et al.”;

formatting for the author names;

position of the date;

format for volume, issue, and page number;

punctuation.

At the end, the procedure creates a .dbj file
that has to be compiled with IATEX in order to obtain
the corresponding .bst style. If you want to modify
a style created with this procedure, it is very conve-
nient to open the .dbj file and modify it, instead of
answering again to the interactive questions. Further
details on makebst can be found in Daly (2007a,b).

4 The natbib package

The natbib package is highly recommended for bibli-
ography customization. The most common options
will be described in the following paragraphs and the
other details can be found in Daly (2009).

4.1 Compatible styles

natbib only works with styles that support its options;
the three that come with the package (plainnat.bst,
abbrvnat.bst, and unsrtnat.bst) can replace the
corresponding BIBTEX standard styles (plain.bst,
abbrv.bst, and unsrt.bst) with the advantage that

55 At the moment .mbs files are available for Catalan, Dan-
ish, Dutch, Esperanto, Finnish, French, German, Italian, Nor-
wegian, Polish, Portuguese, Slovene, and Spanish.

Managing bibliographies with IXTEX

44

TUGDboat, Volume 30 (2009), No. 1

Table 1: List of the commands for references in the text and their effect with an

author-year style (option authoryear).

Reference in the text
\citet{moriO6}
\cite{mori06}
\citet [chap. 2] {mori063}
References with parentheses
\citep{moriO6}
\citep[chap. 2] {mori063}
\citepl[see] [1{mori063}
\citep[seel [chap. 2] {mori06}

\citet*{moriO6}
\citep*{mori06}

Multiple references
\citet{mori06,rossi07}
\citep{mori06,rossi0O7}
\citep{mori06,mori07}
\citep{moriO6a,mori06b}

References without parentheses
\citealt{mori06}
\citealt*{moriO6}
\citealp{mori0O63}
\citealp*{moriO6}
\citealp{mori06,rossi07}
\citealp[p.~32]{mori06}

References with complete author lis

L O

t

4

S e 2 2 T A

Mori et al. (2006)
Mori et al. (2006)
Mori et al. (2006, chap. 2)

(Mori et al., 2006)

(Mori et al., 2006, chap. 2)
(see Mori et al., 2006)

(see Mori et al., 2006, chap. 2)

Mori, Lee, and Krishnan (2006)
(Mori, Lee, and Krishnan, 2006)

Mori et al. (2006); Rossi et al. (2007)
(Mori et al., 2006; Rossi et al. 2007)
(Mori et al., 2006, 2007)

(Mori et al., 2006a,b)

Mori et al. 2006

Mori, Lee e Krishnan 2006

Mori et al., 2006

Mori, Lee e Krishnan, 2006

Mori et al., 2006; Rossi et al., 2007
Mori et al., 2006, p. 32

Table 2: List of the commands for references in the text and their effect with a

numbered style (option numbered).

References in the text
\citet{moriO6}
\citet[chap.~ 2] {mori063}

References with parentheses
\citep{mori0O6}
\cite{mori06}
\citepl[chap. 2]{mori063}
\citep[seel [1{mori06}

Multiple references
\citep{moriO6a,moriO6b}

\citepl[see] [chap. 2] {mori063}

Mori et al. [11]
Mori et al. [11, chap. 2|

v

(11]

[11]

[11, chap. 2]
[see 11]

[see 11, chap. 2]

R

[11, 18]

they can be used for both numbered (the only option
available for the three original styles) and author-
year references. Several other styles that support
natbib are available on the Internet. This format is
also supported by makebst (section 3.2.2).

4.2 Commands for in-text references

natbib provides two main commands that substitute
the regular \cite for the citations: \citet for the
citations in the text and \citep for the citations in
parentheses. Both of them have a starred version
(\citet* and \citep*) that produce the complete
list of authors rather than the abbreviated one. All
commands have two optional arguments to add text
before and after the reference. Like \cite, these
commands can be used for multiple citations. The

Lapo F. Mori

package also provides commands that remove the
parentheses from the citations: \citealt instead of
\citet and \citealp instead of \citep. Examples
of these commands are shown in Tab. 1 for the author-
year style (option authoryear) and in Tab. 2 for the
numbered style (option number).

The standard \cite command can still be used
with natbib and it is interpreted as \citet for author-
year bibliographies (option authoryear) and as \citep
for numbered bibliographies (option number).

4.3 Package options
4.3.1 Type of parentheses

References can be enclosed in different types of brack-
ets by using the following options:

TUGboat, Volume 30 (2009), No. 1

e round (default): round brackets as in “see Mori
(2006)” or “see (2)™

e square: square brackets as in “see Mori [2006]
or “see [2]”;

”

e curly: curly brackets as in “see Mori {2006}” or
“see {2}
The \bibpunct command can also be used to select
the bracket type (Daly, 2007b).

4.3.2 Punctuation

The punctuation used to separate multiple references
can be selected with the following options:

e colon (default): the colon as in “(Mori et al.,
2006; Rossi et al., 2007)” or “Mori et al. (2006);
Rossi et al. (2007);

e comma: the comma as in “(Mori et al., 2006,
Rossi et al., 2007)” or “Mori et al. (2006), Rossi
et al. (2007)

\bibpunct can also modify the punctuation (Daly,
2007b).

4.3.3 Bibliography style

The bibliographic style can be set by invoking the
respective option when loading natbib: authoryear
(default) loads the author-year style, numbers the
numbered style, and super the footnote style. The
selected .bst style must support the reference type
chosen.

4.3.4 Ordering and compressing multiple
references

Multiple references such as \cite{a,b,c,d} by de-
fault produce bad results such as “[2,6,4,3]”. Ordering
the references by hand (i.e. \cite{b,c,d,a}) would
give “[2,3,4,6]” but such manual operations are unde-
sirable. natbib, when used with the numbers option,
provides the sort&compress option that automati-
cally orders and compresses multiple references. For
example \cite{a,b,c,d} would produce “[2-4,6]".

4.3.5 References from the bibliography to
the text

In the bibliography of a long document, it can be
useful to provide the page on which each reference
appears. Both the backref and the citeref packages
can be used for this purpose, although the former is
more modern and can work together with hyperref;
namely, it can create hyperlinks when used together
with hypernat. Neither of the two packages can com-
press the page list (“5, 6, 7’ cannot be automatically
converted into “5-7") but they do not repeat a page
number if the same reference appears several times
in it.

45

4.3.6 Reducing the space between
the references

The bibliography is composed as a list (very similar
to itemize, enumerate, and description) and the
space between the items can be controlled with the
\itemsep parameter (UK TUG, 2009):

\let\oldbibliography\thebibliography
\renewcommand{\thebibliography}[1]1{%
\oldbibliography{#11}/,
\setlength{\itemsep}{Opt}%
¥

The natbib package offers an even better solution by
providing the \bibsep parameter that can be used
as in the following example:

\setlength{\bibsep}{Opt}

4.3.7 Style of the numbers in
the bibliography

By default, ITEX formats the entry numbers in the
following way:

[1] GARcIA, F. (2007). BTEX and the different
bibliography styles. TUGboat, 28(2).

[2] GoossENs, M., MITTELBACH, F. and
SAMARIN, A. (1995). The ETEX Companion.
Addison-Wesley.

This behavior can be customized with com-
mands such as (UK TUG, 2009):

\makeatletter
\renewcommand*{\@biblabel} [1]{\hfill#1.}
\makeatother

or, if using natbib,

\renewcommand{\bibnumfmt} [1]{#1.} ‘

Both of them give:

1. GARCIA, F. (2007). ITEX and the different
bibliography styles. TUGboat, 28(2).

2. GOOSSENS, M., MITTELBACH, F. e SAMARIN,
A. (1995). The ETEX Companion. Addison-
Wesley.

5 BIBETEX

The BIBIATEX package offers a general solution for
customizing bibliographic entries and references. Be-
sides offering features similar to those of the packages
analyzed so far, it can be used to modify a biblio-
graphic style by using only IATEX commands.

This package, written by Philipp Lehman, is still
under development and, although (at the author’s

Managing bibliographies with ITEX

46

request) it is not included in many KTEX distribu-
tions, it is available on CTAN.%® BIBITEX requires
e-TEX, the etoolbox package, also under development,
and the packages keyval, ifthen, and calc. In ad-
dition, babel and csquote, while not required, are
recommended in order to use the full potential of
BIBETEX. A detailed analysis of BIBIATEX would
require a separate article; the following sections only
describe its main characteristics. Further details can
be found in the package documentation (Lehmann,
2009).

5.1 BIBIETEX styles

The main limitation of BIBTEX is that, in order to
have full control of the bibliographic style, the user
has to learn a new language that is completely differ-
ent from that of (I2)TEX. The custom-bib package,
as explained in section 3.2.2, is very helpful but is
not always enough to obtain the desired result.

With BIBIRTEX the bibliographic references and
citations can be fully controlled with IATEX com-
mands. The style is contained, not in a .bst file,
but in a .bbx (bibliographic style) or .cbx (cita-
tion style) file. The .Dbbl file that is created when
compiling does not contain a thebibliography en-
vironment, but rather a series of macros that contain
the bibliographic data.

The style can be specified by declaring a package
option:

\usepackage [style=numeric] {biblatex}

or:

\usepackage [bibstyle=authortitle,?
citestyle=verbose-tradi]{biblatex}

In the first case the value numeric is assigned both
to bibstyle and to citestyle.

The package comes with some styles. The bibli-
ographic styles cover the four traditional categories:
numeric, alphabetic, authoryear, and authortitle. A
citation style can be associated with each of them
to control the references in text (numbered, author-
year, footnote). The verbose style uses the complete
citation the first time and an abbreviated form, such
as idem, tbidem, op. cit, and loc. cit subsequently.

The user can modify the standard styles inside
the document or create new ones. For example, to
make the article titles in italic and the journal name
enclosed in quotation marks, the following commands
can be given in the preamble:

\DeclareFieldFormat [article]{title}’

56 http://www.ctan.org/tex-archive/macros/latex/
exptl/biblatex/

Lapo F. Mori

TUGDboat, Volume 30 (2009), No. 1

{\mkbibemph{#1\isdot}}
\DeclareFieldFormat{journaltitlel}/,
{\mkbibquote{#1}}

To modify the author-year style in order to use
it again with other documents, a user can write the
following in the myauthoryear.bbx file:

\RequireBibliographyStyle{authoryear}

\DeclareFieldFormat [article]{titlel}/
{\mkbibemph{#1\isdot}}

\DeclareFieldFormat{journaltitlel}/,
{\mkbibquote{#1}}

\endinput

and specify myauthoryear as the value for bibstyle.

5.2 BIBIETEX commands for references

BIBIMTEX, besides the standard \cite and \nocite
commands, provides citation commands for differ-
ent contexts: \parencite encloses the reference in
round brackets; \footcite inserts the reference in a
footnote; \textcite for when the citation is part of
a sentence; \supercite (only for numbered styles)
for superscript citations, and \fullcite insert the
full bibliographic entry. Finally, \autocite automat-
ically invokes the suitable command of these depend-
ing on the context. Examples of these commands
are reported in Tab. 3 and 4. Commands to cite
parts of the entry are also available: \citeauthor,
\citetitle, \citeyear, and \citeurl.

5.3 BIBETEX commands for bibliographies

The bibliographic list of references in BIBETEX is
inserted differently than with BIBTEX. As discussed
earlier, the bibliography style is specified as an option
to the package instead of with \bibliographystyle.
The \bibliography command only specifies which
databases to use, and does not create any list. The en-
try list can be generated with \printbibliography,
which accepts an optional argument. This argument
can be used to filter the entries:

e by special fields (type or keyword),

e via the definition of categories in the preamble
(using \DeclareBibliographyCategory), then
assigning each entry to one of these categories
(using \addtocategory),

e depending on the position of the citation in-
side the document, by using the refsection or
refsegment options.?”

This allows easily dividing the bibliography by chap-
ters or topics by using \printbibliography several
times with different filters. When making multiple

57 The sections can also be defined manually enclosing
portions of the document between \begin{refsection} and
\end{refsection}

TUGboat, Volume 30 (2009), No. 1

47

Table 3: List of the BIBIXTEX commands for the references in the text and their
effect in the compact author-year style (option authoryear-comp).

References in the text
\textcite{mori06}
\textcite[chap.~4]{mori06}

References with parentheses
\autocite{mori06}
\parencite{mori063}
\parencite[chap.~4]{mori06}
\parencite[see] []{mori0O6}
\parencite[see] [chap. 4] {mori06}

Multiple references
\cite{mori06,rossiO7}
\textcite{mori06,rossi07}
\parencite{mori0O6,rossi07}
\cite{mori06,mori08}
\cite{moriO6a,mori0O6b}

References without parentheses
\cite{moriO6}

\cite[chap. 4] {moriO6}

Mort et al. (2006)
Mort et al. (2006, chap. 4)

(Mort1 et al. 2006)

(MoRI et al. 2006)

(Mort et al. 2006, chap. 4)
(see MoRI et al. 2006)

(see MortI et al. 2006, chap. 4)

Mort1 et al. 2008; Rosst et al. 2007
Mort et al. (2008); RossI et al. (2007)
(Mort et al. 2008; RossI et al. 2007)
MortI et al. 2006, 2008

Mori1 et al. 2006a,b

MortI et al. 2006
MortI et al. 2006, chap. 4

S e 20 2 2 A A2

Table 4: List of the BIBXTEX commands for the references in the text and their
effect in the numbered style (option numeric-comp).

References in the text
\textcite{mori06}

References with parentheses
\cite{mori06}
\parencite{mori06}
\autocite{mori06}
\cite[chap. 4] {mori0O6}
\cite[see] [1{mori06}

Multiple references
\cite{mori06,mori08}

\textcite[chap. 4] {mori06}

\cite[see] [chap. 4] {mori06}

= MoriI et al. [6]

= MoriI et al. [6, chap. 4]
= [6]

= [6]

= 6]

= |6, chap. 4]

= see [6]

= see [6, chap. 4]

= 39

bibliographies, a complete entry list can still be gen-
erated with the \bibbysection, \bibbysegment or
\bibbycategory commands.

5.4 Commands for indexing

Automatic indexing of bibliographic entries is a very
interesting feature of BIBIXTEX. An index and an
author index are very useful for any kind of book
and thesis. BIBIKTEX can automatically add the
authors cited in the text into an author index (or
another type of index) by using the indexing option.
BIBIXTEX uses external packages to create indexes:
makeidx for basics operations and index for advanced
features such as multiple indexes.

This section will show an example of automatic
indexing; further details can be found in Lehmann
(2009, in particular section 3.1.2 and the templates
that come with the package documentation).

Assuming that our bibliographic database is
called database.bib, the following code can be used
to create an index with BIBITEX:

\documentclass{...}

\usepackage [indexing] {biblatex}
\bibliography{database}

\usepackage{makeidx}
\makeindex

\begin{document}

As reported by \textcite{Kopkal995}...
\clearpage

As discussed by \citeauthor{Goossens1995} in...
\clearpage

\nocite{*}
\printbibliography
\printindex
\end{document}

Managing bibliographies with ITEX

48

If our document is called document.tex, we need to
compile it in this order:

latex document
bibtex document
latex document
makeindex document
latex document

This produces a document with a bibliography fol-
lowed by an index with the name of all the cited
authors.

5.5 Multilingual bibliographies

BIBIXTEX also includes some of babelbib’s features.
When the babel option is used with one of the values
hyphen or other, the package checks the hyphenation
field for each bibliography entry. If a language is
specified through this field, BIBRTEX uses the ap-
propriate hyphenation rules and the translation for
words such as “editor”, “volume”, etc. The transla-
tions used are stored in .1bx files that come with

the package.

6 Acknowledgments

I would like to thank Massimiliano Dominici for writ-
ing section 5 about BIBIATEX and Gustavo Cevolani
for writing section 5.4 about indexes with BIBIATEX.
I also would like to thank Valeria Angeli, Claudio
Beccari, Caterina Mori, and Gianluca Pignalberi for
their suggestions during both the writing and the
reviewing process of this article.

Lapo F. Mori

TUGDboat, Volume 30 (2009), No. 1

References

Daly, P.W. “Customizing Bibliographic Style Files”,
2007a. http://mirror.ctan.org/macros/
latex/contrib/custom-bib/makebst . pdf.

Daly, P.W. “A Master Bibliographic Style File for
numerical, author-year, multilingual applications”,
2007b. http://mirror.ctan.org/macros/
latex/contrib/custom-bib/merlin.pdf.

Daly, P.W. “Natural Sciences Citations and
References (Author-Year and Numerical
Schemes)”, 2009. http://mirror.ctan.org/
macros/latex/contrib/natbib.

Garcia, Federico. “IATEX and the different
bibliography styles”. TUGboat 28(2), 2007.
http://tug.org/TUGboat/Articles/tb28-2/
tb89garcia.pdf.

Kopka, H., and P. Daly. A Guide to TEX —
Document Preparation for Beginners and
Advanced Users. Addison-Wesley, fourth edition,
2003.

Lehmann, Philipp. “The biblatex package”. 2009.
http://mirror.ctan.org/macros/latex/
exptl/biblatex/doc/biblatex.pdf.

Patashnik, Oren. “BIBTEXing”, 1998. http:
//mirror.ctan.org/biblio/bibtex/contrib/
doc/btxdoc.pdf.

UK TUG. The UK TUG FAQ, 2009. http:
//www.tex.ac.uk/faq.

¢ Lapo F. Mori
Dipartimento di Ingegneria Meccanica,
Nucleare e della Produzione
Universita di Pisa
Pisa, Italy
lapo dot mori (at) ing dot unipi dot it

TUGboat, Volume 30 (2009), No. 1

Managing languages within MIBIBTEX
Jean-Michel Hufflen

Abstract

We explain how the information about natural lan-
guages used throughout documents is managed in
MIBIBTEX, our multilingual reimplementation of
BiBTEX. That allows us to show how the interface
between MIBIBTEX and ITEX or ConTEXt’s tools for
multilinguism —e.g., the babel package —is organ-
ised, by means of a powerful data structure. We also
show how the generated texts for INTEX are built. In
fact, they take as much advantage as possible of the
multilingual packages of IMTEX’s recent versions.
Keywords MIBIBTEX, multilingual features, mul-
tilingual IATEX packages, ConTEXt, tries, multilin-
gual method, Scheme.

1 Introduction

The bibliography of a printed document, that is,
the list of its bibliographical references, can be pre-
pared manually, in which case its items may not be
directly reusable elsewhere. The layout of bibliogra-
phies is ruled by styles that are influenced by cultural
background. As a consequence, it can vary from a
document to another: for example, the bibliography
of some documents' use plain styles where items are
labelled with numbers, some use alpha styles based
on keys built from authors’ last names and publica-
tion’s years, e.g., ‘{Robeson 1965]” or ‘(Rob65|” — see
[34, § 13.5.1] for a survey of available styles and cor-
responding layouts. In addition, some information
may depend on the printed document’s language: let
us consider the date of a publication; a publisher may
require that month names are printed in English for
the bibliography of a document written in English, in
French (resp. German, ...) for a document written
in French (resp. German, ...). So managing biblio-
graphical references already typeset for a particular
document is tedious, and it is better for such refer-
ences to be automatically generated from a database
containing bibliographical entries.? In particular,
this allows us to put as much information as we want
within entries, even if some parts of information do
not appear within generated texts.

As an accurate example, the bibliography pro-
gram BIBTEX [36] is often used to build ‘Refer-
ences’ sections for documents suitable for IXTEX [34,
§ 12.1.3]. BIBTEX searches bibliography (.bib) files

1 This article, for example.

2 Within MIBIBTEX (‘MultiLingual BisTEX’), we use pre-
cise terminology: bibliographical entries are specified in bibli-
ography (.bib) files, and bibliographical references—in .bbl
files for use with IATEX — are what a word processor typesets.

49

for keys cited throughout a document: to do that,
it uses information put in auziliary (.aux) files pro-
duced by BTEX [34, Fig. 12.1]. BI1BTEX’s bibliog-
raphy styles® are programmed using a stack-based
language [34, § 13.6]. By means of such a bibliogra-
phy program, we should be able to fill in all the fields
of a bibliographical entry once, and derive as many
references as we want, according to layouts expressed
by bibliography styles. This is true in most cases,
but not always, depending on the expressive power
of bibliography styles. For example, let us consider
annotated bibliographies: the annotations should be
expressed in the document’s language. If we wish
to avoid the duplication of bibliographical entries
according to the language of an added annotation,
such annotations can be given different field names:

english-ANNOTE = ..., french-ANNOTE = ...,

but in this case, we have to generate several bibliog-
raphy styles differing only by the name of the chosen
annotation. This example shows that BIBTEX was
not ideally designed for multilingual applications.
There have been some attempts to insert multilin-
gual features into texts generated by BIBTEX —e.g.,
in the jurabib package [34, pp. 733-735] and the
custom-bib tool (usable by applying KTEX to the
makebst.tex program) [34, § 13.5.2] —but BIBTEX
itself does not take enough advantage of multilingual
features of IMTEX’s recent versions. In addition, we
think that the language BIBTEX uses for bibliogra-
phy styles leads to non-modular programs, which are
monolithic and hard to maintain, as we explained in
[17].

MIBIBTEX aims to ease the development of mul-
tilingual bibliographies, without giving any privilege
to a particular language, as the babel package does for
documents written with ITEX’s modern versions [34,
Ch. 9]. MIBIBTEX’s current version (1.3), described
in [18] and developed in Scheme [25], is usable to
generate bibliographies for INTEX documents. This
bibliography processor also opens a window towards
the world of XML,* which has become a central for-
malism for document interchange. Since parsing a
.bib file results in a tree that can be viewed as an
XML tree, this choice more easily allows us to build
other output files than thebibliography environ-
ments for BTEX [34, § 12.1.2]. In particular, we can
generate (X)HTML® pages for bibliographies to be

3 A representative selection of bibliography styles usable
with BIBTEX is given in [34, Table 13.4].

4 EXtensible Markup Language. Readers interested in an
introduction to this metalanguage can refer to [39].

5 (EXtensible) HyperText Markup Language. XHTML
is a reformulation of HTML using XML conventions. [35] is a
good introduction to these languages.

Managing languages within MIBIBTEX

50

©@BOOK{robeson1965,

TUGDboat, Volume 30 (2009), No. 1

AUTHOR = {first => Kenneth, last => Robeson},

TITLE = {The Polar Treasurel},
PUBLISHER = {Bantam},

SERIES = {Doc Savage},
NUMBER = 4,

NOTE = {[Titre de la traduction frangaise :
[Titel der deutschen \"{U}bersetzung: ‘Das Wrack im Eis’’]
[T\’{i}tulo de la traducci\’{o}n al Espa\“{n}ol: “El tesoro del Polo’’]

YEAR = 1965,
MONTH = apr,
LANGUAGE = english}

‘“Le trésor polaire’”] ! french
! german
! spanish}

Figure 1: Example of an entry using MIBIBTEX’s features.

displayed on the Web, or XML files written according
to the rules of XSL-FO® [43]. In fact, bibliography
styles are now programmed using a new language,
called nbst,” close to XSLT® [41], the language of
transformations for XML documents.

We have already written some documents about
MIBIBTEX’s implementation. In [19], we explain why
we have started a new implementation using Scheme
[25], after a first project in C [26]. We have also
begun to describe the broad outlines of this imple-
mentation using Scheme in [22]. Here? we explain
how the information about the natural languages
used throughout bibliographies—and KTEX docu-
ments —is organised. In the next section, we show
the drawbacks of deferring the generation of mul-
tilingual bibliographies to IXTEX. Then Section 3
exposes the notion of language identifiers, introduced
in MIBIBTEX. Section 4 explains how our data struc-
ture for handling language identifiers is built and how
it allows us to generate multilingual bibliographies.
We do not describe this data structure in Scheme
directly, but using an abstract way, so that we can
see that it could be implemented in any program-
ming language.!® Finally, we show that this data
structure should be able to evolve for MIBIBTEXs
future versions.

We assume that readers are familiar with the
multilingual babel package of WTEX 2¢, developed
by Johannes Braams and described in [34, Ch. 9.

6 EXtensible Stylesheet Language — Formatting Objects:
this language aims to describe high-quality print outputs. An
introductory reference to XSL-FO suitable for IATEX users is
[24], a more general one is [37].

7 New Bibliography STyles.

8 EXtensible Stylesheet Language Transformations.

9 The present article is a renewed and updated version of
previous material. A first version was initially designed for the
PracTEX 2005 conference. Later, this presentation was given
at a conference of the German-speaking TEX user group — at
Berlin, in 2006 —and was entitled Sprachen in MIBisTEX .

10 Besides, the implementation used within our preliminary
project in C [19] was quite close to the current one.

Jean-Michel Hufflen

We also assume that readers can understand some
simple macros, expressed using TEX’s language [28,
Ch. 20]. About BIBTEX, XML, and Scheme, basic
knowledge is sufficient to read this article, as well as
basic notions about the use of trees in programming.
Some notions related to specialised structures for
searching strings are recalled in footnotes.

2 Difficulty related to languages
2.1 Accents and other diacritical signs

Let us consider the robeson1965 entry given in Fig-
ure 1. It looks like a BIBTEX entry, but some syn-
tactic features indisputably belonging to MIBIBTEX
can be noticed: more user-friendly syntax for person
names (AUTHOR and EDITOR fields), the use of multi-
lingual switches (‘[...] ! .”) within the value of
the NOTE field. These notations are detailed in [18].

As mentioned in the introduction, such an entry
is viewed as an XML tree in the sense that we can
address its parts by using the XPath language [42].
As an example, Figure 2 gives the representation of
the value associated with the NOTE field.'! We can re-
mark that quotations are uniformly expressed by us-
ing the American quotation marks (‘“*...”*") within
a .bib file (see Figure 1), but each quotation is trans-
formed into an XML element — an occurrence of the
emph element with accurate attributes!? — so putting
quotation marks belonging to other languages is
eased: ‘« ... » " in French, ‘,,...“” in German, etc.
More exactly, bibliography stylesheets are in charge
of this. Likewise, we can remark that some accented
letters can be typed directly by end-users (see the
group expressed in the French language in Figure 1)
or by using TEX commands (see the group written

H In fact, MIBIBTEX internally uses the conventions of
SXML (Scheme implementation of XML) [27]. See [22] for
more details.

12 Readers interested in a description of elements and at-
tributes used throughout the XML versions of .bib files can
refer to [16]: that is an earlier version, but changes are slight.

TUGboat, Volume 30 (2009), No. 1

<note>
<group language="french">
Titre de la traduction frangaise :
<emph emf="no" quotedbf="yes">
Le trésor polaire
</emph>
</group>
<group language="german">
Titel der deutschen ﬁbersetzung:
<emph emf="no" quotedbf="yes">
Das Wrack im Eis
</emph>
</group>
<group language="spanish">
Titulo de la traduccién al Espafiol:
<emph emf="no" quotedbf="yes">
El tesoro del Polo
</emph>
</group>
</note>

Figure 2: Multilingual note as an XML tree.

in Spanish), but as shown in Figure 2, the charac-
ters resulting from these commands are directly put
within text nodes.'3

Letters with accents and other diacritical signs
illustrate some deficiency of the information put into
.aux files. As a consequence, we have to parse the
preamble of .tex source files'* to get this informa-
tion. When we generate texts, we cannot know if we
can insert such letters directly, or if we have to write
TEX commands to produce them. This last solution
works in any case, provided that such commands be-
long to BTEX’s basic set. That is true for commands
that produce most accents (acute, grave, circum-
flex, ...) but there is a simple counter-example: the

3

French guillemets.

Concerto comique n° 25 en sol mineur « Les
Sauvages et la Furstenberg ».

Such a French title may be mentioned within a
book written in any language. In other words, we
may have to write French guillemets even within
a document written in English. The KIEX com-
mands to produce them depend on the package
used to write French fragments: either ‘\og’ and
‘\fg’ for the frenchb option'® [5] of the babel pack-
age, or ‘\guillemets’ and ‘\endguillemets’ for

13 Although this behaviour only holds about the Latin 1
encoding (ISO-8859-1) presently. Future versions will probably
extend it to the other encodings summarised in [13, Table C.4].

14 That is, the commands located before the document
itself, introduced by ‘\begin{document}’.

15 This option has two aliases: french and francais. We
will come back to this point later.

51

the frenchpro package!® [11]. There are other com-
mands to get these guillemets, but they depend on
other packages: if the fontenc package [34, § 7.5.3]
has been loaded with the OT1 option,'” the com-
mands \guillemotleft and \guillemotright pro-
duce opening and closing guillemets as single charac-
ters. If BTEX uses its default encoding (0T1), these
commands are not provided and using them causes
errors. However, getting French guillemets by com-
bination of several characters is possible as shown in
[21, Fig. 3]. Besides, a more immediate way exists if
your keyboard allows you to type these guillemets,
in which case using the inputenc package [34, § 7.5.2]
with the latini1 option allows KTEX to process them
directly. If these characters are unavailable on your
keyboard, you can use the sequences ‘<<’ and ‘>>’
with the frenchb option [5] of the babel package.!®

These details may seem to be anecdotal, never-
theless they show how difficult the automatic genera-
tion of such texts is, especially if we wish to generate
‘nice’ texts, that is, readable by human agents. An
end-user can solve this problem by typing IKTEX
commands directly within .bib files, but as a conse-
quence, such bibliography files become difficult to be
shared among several users, unless they make sure
that the same packages with compatible options will
be loaded when texts are processed. In addition,
some files can be unusable for building other output
files than those suitable for I& 19 in particular,
this point can obstruct the generation of bibliogra-
phies suitable for ConTEXt, another format built on
TEX, created by Hans Hagen [14].

2.2 Using advanced BTEX commands

Let us consider again the value of the NOTE field
within the robeson1965 entry of Figure 1. This
multilingual text could be transformed for use with
ITEX by means of the \iflanguage command of
the babel package [34, § 9.2.1] as follows:

NOTE — \iflanguage{frenchb}{...}%
\iflanguage{germanb}{...}{/%
\iflanguage{spanish}{...}{}}}

16 This is a successor of the french package described in
[7]. For reasons explained in [8, 9, 10], it has been re-
placed by a freeware version frenchle — ‘french alLEgé’ (for
‘lightened’) — [12] and a shareware version frenchpro— ‘french
PROfessional’— [11]. The development of the freeware ver-
sion seems to have stopped since B. Gaulle’s death, in August
2007. Coming back to the French guillemets, the frenchle
package provides only some compatibility with the commands
“\og’ and ‘\fg’ of the babel package’s frenchb option [12, § 7].

17 That is, if the Cork encoding is used, with a range of
256 characters.

18 .. or the frenchpro package [11].

19 . although MIBIBTEX’s next version will probably be
able to solve this problem: cf. [20].

Managing languages within MIBIBTEX

52

provided that this entry is cited only by documents
written with the babel package, loaded with at least
the options frenchb, germanb,?’ and spanish. How-
ever, if a user writes only in French by means of the
frenchle package, this source text is unusable.?! In
addition, let us consider that we are building a bib-
liography for a document whose main language is
French. Therefore, the bibliographical reference for
robeson1965 is surrounded as follows:

\bibitem[...]{robeson1965%}

\begin{otherlanguage*}{english}Robeson
(Kenneth) ...

\end{otherlanguage*}

[34, § 9.2.1]. Besides, MIBIBTEX offers a choice [1§]
between two kinds of bibliography styles:

e a language-dependent style, that is, each biblio-
graphical item is expressed only in the entry’s
language,

e a document-dependent style, that is, each bibli-
ographical item is expressed in the document’s
language, as far as possible.

In the first case, nothing need be done because the
robeson1965 entry characterises a book in English.
In the second case, the French version of the NOTE
field should be put and the previous text of this note
should be surrounded as follows:

NOTE — \begin{otherlanguage*}{frenchb},
\iflanguage{frenchb}{...}{%
\iflanguage{germanb}{...}{%
\iflanguage{spanish}{...}{}}}%
\end{otherlanguage*}

Even if such texts are generated automatically, we
can see that they are quite complicated.

Now let us consider the entry given in Figure 3:
it concerns the English translation of a French book,
so most information is given in English, except for
the author’s name and the original title, given in
French. We wish these French fragments to be hy-
phenated correctly if need be, but if there is no way
to typeset French fragments, we accept them to be
typeset according to the rules of the language in use
at this point. So we can write a robust version of the
\foreignlanguage command provided by the babel
package [34, § 9.1.2], here called \putwrtlanguage:??

20 Like the babel package’s option for French (cf. foot-
note 15), ‘german’ is an alias and the option’s actual name is
germanb.

21 In fact, frenchle may be used as an option of babel [12,
§ 6.5]. However, frenchle has been developed to be loaded as
a package, in which case babel’s commands are unknown.

22 Let us recall that the commands giving access to lan-
guages are defined by natural numbers, thus we can use \ifnum
to compare them.

Jean-Michel Hufflen

TUGDboat, Volume 30 (2009), No. 1

Q@ARTICLE{ayerdhal2001,

AUTHOR = {[last => Ayerdhal] : french}

TITLE = {Flickering},

JOURNAL = {Interzone},

NUMBER = 167,

PAGES = {6--13},

NOTE = {English translation of
““[Scintillements] : french’’, by
Sheryl Curtis},

YEAR = 2001,

MONTH = may,

LANGUAGE = english}

Figure 3: English translation of a French writer’s
book.

\def\putwrtlanguage#1#2{/

\expandaftery,

\ifx\csname 1@#1\endcsname\relax}
\typeout{Language #1 unusable.}#2\else}
\ifnum\csname 1@#1\endcsname=\language/,

#2\else),
\foreignlanguage{#1}{#2}%
\fi%

\fi}

This command could be used to process the two
French fragments of the bibliographical reference for
ayerdhal2001:

\putwrtlanguage{frenchb}{Ayerdhal}
\putwrtlanguage{frenchb}{Scintillements}

So this command is used twice when this bibliograph-
ical reference is processed. That is, checking whether
the frenchb language is known is performed twice,
although the answer is always the same. Either the
\1l@frenchb command is available for the whole of
the document, or it is not at all. However, this repli-
cation does not result in great loss of efficiency: we
can imagine that TEX can check a command’s exis-
tence quickly. But in this first version, we assumed
that the multilingual tool used was the babel package.
If we take TEX’s other multilingual packages into
account — frenchle, german [38], ngerman and polski
[4, § F.7] —our command looks like:??

\def\putwrtlanguage#1#2{J
\@ifpackageloaded{babel}{\expandafter...
e % (As previously.)
H\@ifpackageloaded{frenchle}{%
\ifthenelse{\equal{#1}{french}}{%
\french#2}{\english#2}}{/

23 The frenchle package is not wholly multilingual in the
sense that it deals with the French language, and can revert
to INTEX’s original configuration — by means of the \english
command [12, § 6.5] —in which case texts are supposed to be in
English, as we do in the second version of the \putwrtlanguage
command.

TUGboat, Volume 30 (2009), No. 1

\@ifpackageloaded{german}{...}{%
\@ifpackageloaded{ngerman}{...}{}
\@ifpackageloaded{polski}{...}{%
#2333}

The waterfall of tests makes the command slower,
and as many times as it is called, the corresponding
results will be retrieved more and more slowly.2*

These two examples show that implementing
multilingual bibliographies by means of ITEX com-
mands only results in complicated texts. In addition,
these texts are suitable for IXTEX only. If we wish
to derive bibliographies for another word processor —
e.g., ConTEXt —we have to put the same basic algo-
rithms into action, but with the library of another
language. So it seems to be better for such algo-
rithms to be put into action by the bibliography
processor itself.

3 Language identifiers

If we consider the results of working groups related to
XML, natural languages throughout bibliographical
data bases should be specified using the two-letter
language, optionally followed by a two-letter country
code,?® described in [1] and [13, § C.1]. This conven-
tion allows the general reference to a language as well
as a more precise reference to a local variant of it. For
example, ‘en’ is for the English language in general,
whereas ‘en-UK’ (resp. ‘en-US’) is for British (resp.
American) English only. In particular, using this
convention would simplify an interface with the Con-
TEXt format, which also uses these codes. For exam-
ple, ConTEXt uses the statement ‘\language [fr]’ to
change the document’s current language into French
[14, Ch. 7]. When MIBIBTEX’s first version was
designed [15], it aimed at being a ‘better BIBTEX’,
mainly usable in cooperation with I TEX; we did not
relate this to XML features. Besides, we knew that
many users of BIBTEX put BTEX commands within
values of BIBTEX fields. For example, it seemed to
be interesting to process differently the texts writ-
ten in French by using the successors of the french
package and those using the frenchb option of the
babel package. The compromise we have settled is:

e a language identifier of MIBIBTEX is a non-
ambiguous prefix of:
— either an option of the babel package,
— or a multilingual ad hoc package;

the multilingual ad hoc packages we recognise
are frenchle, german, ngerman, and polski;

24 Also, any TgXnician will have noticed that this new
version requires the ifthen package [34, § A.3.2].

25 For a fragment of a document, such codes are used by the
predefined xml:lang attribute [39, p. 276]. Within DocBook
documents, this attribute is named lang [45, p. 81].

53

e by ‘non-ambiguous’, we mean that a language
identifier can denote several ways to get access
to the same language.

As examples:2°

e ‘po’ is ambiguous because that it may start ‘Pol-
ish’ or ‘Portuguese’, two different languages;

‘frenchb’ is a language identifier that gets ac-
cess to only the frenchb option of the babel
package;

‘fr’ and ‘fre’ are not ambiguous and get access
to either babel’s option or the frenchle package.
The ‘french’ identifier has the same property.
Since it can get access to the frenchb option of
babel, do not confuse this feature with aliases
handled by the babel package. The language def-
inition file for French is frenchb.1df,?” but this
option may be loaded by ‘frenchb’, ‘french’ or
‘francais’ (see footnote 15). This last identi-
fier is unusable with MIBIBTEX, because it only
recognises the names of the .1df files located
at babel’s directory.?®

4 Implementation issues
4.1 Implementing language identifiers

The language identifiers handled by MIBIBTEX obvi-
ously form a dictionary. As we show in the previous
section, we have to look into this dictionary not
only for complete language identifiers but also for
non-ambiguous prefixes. So this dictionary’s imple-
mentation must be efficient. Tries?® are the best
implementation to put into action such information
retrieval. Such a trie implementing our dictionary is
pictured in Figure 4. The root is an array indexed
by all the letters of the alphabet. Each component is
either a null pointer, in which case the word does not
exist within the dictionary, or an access to another
letter-indexed array if there are words beginning with
the recognised prefix, or a pointer to a resource if a

26 In the following we assume that the available packages
and options are those of TEX Live 2008.

27 ¢ .1df’ is for ‘Language Definition File’, see [34, § 9.5.3].

28 In the directory .../texmf-dist/tex/generic/babel if
we consider the TEX Live implementation.

29 Here is some terminology about trees implementing dic-
tionaries:

e a digital tree is a tree for storing strings in which
nodes are organised by substrings common to two or
more strings;

e a trie is a particular case of a digital tree: there is only
one node for every common prefix.

The name ‘trie’ originates from the central letters of the word
‘reTRIEval’ [6]. A good but old-fashioned description of this
structure has been given by Donald E. Knuth: cf. [31, § 6.3]
& [30, Ch. 6, §§ 17-31]. Tries are used within TEX’s program
[29, §§ 920-924].

Managing languages within MIBIBTEX

54

TUGDboat, Volume 30 (2009), No. 1

Coxx [[xxx | Txnx]
:(—glish) (-peranto)
(-tonian)

a e r

[Txxx. [, [xxx. 1 [xxx_]

(-lician) (-rman[b]) (-eek)

Figure 4: Searching for language identifiers by means of a trie.

word’s end has been reached. In the trie in Figure 4,
we see that the only language identifiers beginning
with ‘e’ are those whose second letter is ‘n’ (for ‘en-
glish’) or ‘s’ (for ‘estonian’). Likewise, we can see
that the language identifiers beginning with ‘g’ are
the non-ambiguous prefixes of galician, german [b]
and greek.

As the authors of [2] noticed, such an imple-
mentation by means of an array can be very space-
consuming since there is many empty locations in
the arrays of a trie. That is particularly true in our
case, since there is only a few words denoting natural
languages’ names, in comparison with the whole of a
dictionary for a complete language. So we decided to
implement such tries by ternary search trees,? as
shown in Figure 5, where the trie of MIBIBTEX's lan-
guage identifiers is sketched. Such a ternary search
tree either is a leaf, or has three branches. Left and
right branches— pictured in Figure 5 by a double-
headed arrow — give access to letters less and greater
than the current one. A middle branch gets access to
the following letter of a word. A boxed character®!
means that this character comes last in the shortest
non-ambiguous prefix of a language identifier.

At MIBIBTEX’s installation, we consider the ad
hoc packages’ names and the .1df files located in the
babel’s package directory. These names are used to
build a height-balanced ternary search tree.?? In our

30 Another solution could have used a compact implemen-
tation of maps, as provided by Python [32, pp. 49-51|. Often
hash tables — associating keys with values by means of a hash
code — are used for such search. They are directly provided
by Common Lisp [40], Perl [44, Ch. 2], and Ruby [33], but are
not as efficient as ternary search trees, as shown in [3].

31 The ‘#\...’ notation for a character comes from Scheme
[25, § 6.3.4].

32 The height of a tree is the maximum distance of any leaf
from the root of a tree. In a height-balanced ternary tree,
left and right branches differ in height by no more than one

Jean-Michel Hufflen

case, this property means that if we are located at
any node within our ternary search tree, the numbers
of letters to the left and right of the current one differ
by one at most.

4.2 Multilingual method information

When MIBIBTEX searches the language identifier
trie for a non-existing or ambiguous identifier, the
result is #£, the ‘false’ value in Scheme [25, § 6.3.1].
Otherwise, the result is a linear list whose elements —
called multilingual methods w.r.t. MIBIBTEX’s
terminology — are organised this way:

({marker) (opening) . (closing))

where:

(marker) specifies a method used to switch to the
language denoted by the identifier, e.g., an op-
tion of the babel package or an ad-hoc package;

(opening) is a thunk®? that results in a string put
before a fragment written in the corresponding
natural language;

(closing) the same, but the string result is put
after a fragment in the corresponding language.

Figure 6 shows how the language identifiers for
French allow us to get access to the different ways
to surround a fragment written in French. Given
a character within our trie, a dashed arrow points
to the result of the function searching for a string
ending with this character.3* There exist default
multilingual methods, e.g.:

and each of these two branches is recursively height-balanced,
too. Searching balanced trees is more efficient on average. See
[31] for more details about this notion.

33 In functional programming, this word denotes a zero-
argument function.

34 In fact, the actual implementation — more efficient — is
slightly different, due to some advanced features of Scheme.
But our functions behave exactly as shown in Figure 6.

TUGboat, Volume 30 (2009), No. 1

\#g
\#£f \tte
<
\tre \#r | \#r
< <

\#n \#e \#m
\#g \#n \#a
\#1 \#c \#n
\#i \#h \#b

\#s \#1

b
\#h \#b \#e

\#p

55

\#n \#o

s)
\#te \#1 | \#t
\#r \#s \#u
7
\#m \#i \#k \#g
\#a \#s \#i \#e
\#n \#h \#s
\#b

Figure 5: Implementing a trie by means of a ternary search tree.

((xfrenchlex) (lambda () "{\english")
(lambda O "3}"))

being used for natural languages other than French
if the frenchle package has been loaded when the
document is processed.?>

In Figure 6, we can remark that the approach
used in ConTEXt is included in such lists, except if the
language identifier gets access to one method suitable
for X'TEX even though other methods for the same
language exist. So the identifiers fr, fre, ... french
can be used when a bibliography for ConTEXt is
derived, but neither frenchb nor frenchle.

5 Conclusion

This article is an introduction to MIBIBTEX’s im-
plementation core. We have tried to be precise as
far as possible and avoid low-level details. Our goal

35 But the language identifier must be recognised. If not,
any multilingual method, even a default one, cannot be used.

was to show our realisation as a compromise between
user-friendliness and a high-performing implementa-
tion. At the time of writing, the available backends
are BTEX and ConTEXt. As we wrote in [23], ‘when
we began [our adaptation of MIBIBTEX to ConTEXt]
(...), we were afraid we would have to reprogram
some important parts of MIBIBTEX’. As shown by
our examples, the management of language identifiers
did not need a major revision when we integrated
a backend for ConTEXt. So we think that our im-
plementation is robust. Other adaptations to other
backends —e.g., for (X)HTML —should confirm that.
We are confident.

6 Acknowledgements

After discussion with some people, I realised that
tries were not very well-known. Implementing them
is not a small exercise, but is very worthwhile. .. and
actually useful within natural language processing. I

Managing languages within MIBIBTEX

56
\#f — — — > #f
\#r— — > (0 6 ©)
<
where:
\t#te — — > (0 @ ©)
\#n— — > (0 @)
\#tc— — > (0 @ O)
\#h— — > (0 6 ©)
S

(@) <— —\#b \#1— — — > (©)

\t#te — — — > (©)

TUGDboat, Volume 30 (2009), No. 1

O = ((xcontext*) (lambda () "{\languagel[fr]")

(lambda O "3}"))

® = ((xbabel-optionx)

(lambda ()

(if

((1-available-languages ’check?) ’frenchb)
"\begin{otherlanguage*}{frenchb}"
nn))

(lambda ()
(if ((1-available-languages °’check?) ’frenchb)

"\end{otherlanguage*}"
nn)))

® = ((xfrenchlex) (lambda () "{\french ")

(lambda () "}"))

Figure 6: Multilingual methods associated with a language identifier.

hope that this article will contribute to demystifying
this structure. Thanks to Karl Berry and Barbara
Beeton, who kindly proofread this article.

References

1

2]

3]

4]

(5]

(6]

Harald Tveit ALVESTRAND: Request for Com-
ments: 1766. Tags for the Identification of Lan-
guages. UNINETT, Network Working Group. March
1995. http://wuw.cis.ohio-state.edu/cgi-bin/
rfc/rfcl766.html.

Jun-Ichi Aog, Katsuhi MoriMoTO and Takashi
Sato: “An Efficient Implementation of Trie Struc-
tures”. Software — Practice and Ezxperience, Vol. 22,
no. 9, pp. 695-721. September 1992.

Jon L. BENTLEY and Robert SEDGEWICK: “Algo-
rithms for Sorting and Searching Strings”. In: Proc.
8th Annual ACM-SIAM Symposium on Discrete Al-
gorithms, pp. 360-369. January 1997.

Antoni DILLER: ETEX wiersz po wierszu. Wydawnic-
two Helio, Gliwice. Polish translation of ETEX Line
by Line with an additional annex by Jan Jelowicki.
2001.

Daniel Fripo: Documentation sur le module
frenchb de babel. Version 2.3c. February
2009. http://daniel.flipo.free.fr/frenchb/
frenchb2-doc.pdf.

Edward FREDKIN: “Trie Memory”. Communications
of the ACM, Vol. 3, no. 9, pp. 490-499. September
1960.

Jean-Michel Hufflen

7]

18]

9]

[10]

[11]

[12]

[13]

[14]

[15]

Bernard GAULLE : « Comment peut-on personnaliser
Pextension french de ¥TEX ? ». Cahiers GUTenbery,
Vol. 28-29, p. 143-157. Actes de la x°® conférence
TEX européenne. Saint-Malo, France. Mars 1998.
Bernard GAULLE : « A propos de french ». La lettre
GUTenberg, Vol. 15, p. 16—17. Juillet 1999.
Bernard GAULLE : « Nouvelles french ». La lettre
GUTenberg, Vol. 16, p. 11-12. Décembre 1999.
Bernard GAULLE : « A propos de french ». La lettre
GUTenberg, Vol. 20, p. 5—7. Octobre 2001.

Bernard GAULLE : Notice d’utilisation de ’exten-
sion frenchpro pour ETEX. Version V5,995. Avril
2005. http://www.frenchpro6.com/frenchpro/
french/ALIRE.pdf.

Bernard GAULLE : L’extension frenchle pour KTEX.
Notice d’utilisation. Version V5,9993. Février 2007.
http://www.tug.org/texlive/Contents/live/
texmf-dist/doc/latex/frenchle/frenchle.pdf.
Michel GoosseNs and Sebastian RAHTZ, with Ei-
tan M. GURARI, Ross MOORE and Robert S. SUTOR:
The BTEX Web Companion. Addison-Wesley Long-
mann, Inc., Reading, Massachusetts. May 1999.
Hans HAGEN: ConTgXt, the Manual. Novem-
ber 2001. http://www.pragma-ade.com/general/
manuals/cont-enp.pdf.

Jean-Michel HUFFLEN: “MIBIBTEX: a New Imple-
mentation of BIBTEX”. In: Simon PEPPING, ed.,
FuroTgX 2001, pp. 74-94. Kerkrade, The Nether-
lands. September 2001.

TUGboat, Volume 30 (2009), No. 1

[16]

[17]

(18]

[19]

[20]

[21]

22]

23]

24]

[25]

[26]

27]

(28]

29]

Jean-Michel HUFFLEN: “Multilingual Features for
Bibliography Programs: From XML to MIBIBTEX”.
In: EuroTEX 2002, pp. 46-59. Bachotek, Poland.
April 2002.

Jean-Michel HUFFLEN: “European Bibliography
Styles and MIBIBTEX”. TUGboat, Vol. 24, no. 3,
pp. 489-498. EuroTgEX 2003, Brest, France. June
2003.

Jean-Michel HUFFLEN: “MIBIBTEX’s Version 1.3”.
TUGboat, Vol. 24, no. 2, pp. 249-262. July 2003.

Jean-Michel HUFFLEN: “A Tour around MIBIBTEX
and Its Implementation(s)”. Biuletyn GUST, Vol. 20,
pp- 21-28. In BachoTgX 2004 conference. April
2004.

Jean-Michel HUFFLEN: “MIBIBTEX: beyond ETEX”.
In: Apostolos SyrorPouLOS, Karl BERRY, Yannis
HaravLaMBOUS, Baden HUGUES, Steven PETER and
John PLAICE, eds., International Conference on TEX,
XML, and Digital Typography, Vol. 3130 of LNCS,
pp. 203-215. Springer, Xanthi, Greece. August 2004.

Jean-Michel HUFFLEN: “Making MIBIBTEX Fit for
a Particular Language. Example of the Polish Lan-
guage”. Biuletyn GUST, Vol. 21, pp. 14-26. 2004.

Jean-Michel HUFFLEN: “MIBIBTEX in Scheme (First
Part)”. Biuletyn GUST, Vol. 22, pp. 17-22. In
BachoTEX 2005 conference. April 2005.

Jean-Michel HUFFLEN: “MIBIBTEX Meets ConTEXt”.
TUGboat, Vol. 27, no. 1, pp. 76-82. EuroTEX 2006
proceedings, Debrecen, Hungary. July 2006.

Jean-Michel HUFFLEN: “Introducing I¥TEX users to
XSL-FO”. TUGboat, Vol. 29, no. 1, pp. 118-124.
EuroBachoTEX 2007 proceedings. 2007.

Richard KELSEY, William D. CLINGER, Jonathan A.
REEs, Harold ABELSON, Norman I. ADAMS 1v,
David H. BARTLEY, Gary BROOKS, R. Kent DyB-
viG, Daniel P. FRIEDMAN, Robert HALSTEAD, Chris
HansoN, Christopher T. HAYNES, Eugene Edmund
KOHLBECKER, JR, Donald OXLEY, Kent M. P1T-
MAN, Guillermo J. Rozas, Guy Lewis STEELE,
JR, Gerald Jay SussMAN and Mitchell WAND:
“Revised® Report on the Algorithmic Language
Scheme”. HOSC, Vol. 11, no. 1, pp. 7-105. August
1998.

Brian W. KERNIGHAN and Dennis M. RiTcHIE: The
C Programming Language. 2nd edition. Prentice
Hall. 1988.

Oleg E. KiseLyov and Kirill Lisovsky: “XML,
XPath, XSLT Implementations as SXML, SXPath,
and SXSLT”. In: International Lisp Conference 2002.
San Francisco, California. October 2002.

Donald Ervin KNuTH: Computers & Typesetting.
Vol. A: The TgXbook. Addison-Wesley Publishing
Company, Reading, Massachusetts. 1984.

Donald Ervin KNuTH: Computers & Typesetting.
Vol. B: TgX: The Program. Addison-Wesley Pub-
lishing Company, Reading, Massachusetts. 1986.

[30]

31]

[32]

[33]

[34]

[35]

[36]
[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

57

Donald Ervin KNuTH: Literate Programming. No. 27
in Lecture Notes. Center for the Study of Language
of Information. 1992.

Donald Ervin KNUTH: Sorting and Searching, Vol. 3
of The Art of Comuter Programming. 2nd edition.
Addison-Wesley, Reading, Massachusetts. 1998.
Alex MARTELLL: Python in a Nutshell. O’Reilly.
March 2003.

Yukihiro MATSUMOTO: Ruby in a Nutshell. O’Reilly.
English translation by David L. Reynolds, Jr.
November 2001.

Frank MITTELBACH and Michel GOOSSENS, with
Johannes BrRaams, David CARLISLE, Chris A. Row-
LEY, Christine DETIG and Joachim SCHROD: The
ETEX Companion. 2nd edition. Addison-Wesley Pub-
lishing Company, Reading, Massachusetts. August
2004.

Chuck Musciano and Bill KENNEDY: HTML &
XHTML: The Definitive Guide. 5th edition. O’Reilly
& Associates, Inc. August 2002.

Oren PaTasHNIK: BIBTEXing. February 1988. Part
of the BIBTEX distribution.

Dave PawsoN: XSL-FO. O’Reilly & Associates, Inc.
August 2002.

Bernd RAICHLE: Die Makropakete ,german® und
sngerman® fir INTEX 22, BTEX 2.09, Plain-TEX and
andere darauf Basierende Formate. Version 2.5. Juli
1998. Im Software KTEX.

Erik T. RAY: Learning XML. O'Reilly & Associates,
Inc. January 2001.

Guy Lewis STEELE, JR., Scott E. FAHLMAN, Rich-
ard P. GaBRIEL, David A. MooN, Daniel L.
WEINREB, Daniel Gureasko BoBrow, Linda G.
DEMICHIEL, Sonya E. KEENE, Gregor KICZALES,
Crispin PERDUE, Kent M. PrtmAN, Richard Wa-
TERS and Jon L WHITE: Common Lisp. The Lan-
guage. Second Edition. Digital Press. 1990.

W3C: XML Names. W3C document. Edited
by Tim Bray, Dave Hollander, and Andrew Lay-
man. January 1999. http://www.w3.org/TR/1999/
REC-xml-names-19990114/.

W3C: XSL Transformations (XSLT). Version 1.0.
W3C Recommendation. Edited by James Clark.
November 1999. http://www.w3.org/TR/1999/
REC-xs1t-19991116/.

W3C: Extensible Stylesheet Language (XSL). Ver-
sion 1.0. W3C Recommendation. Edited by James
Clark. October 2001. http://www.w3.org/TR/2001/
REC-xs1-20011015/.

Larry WALL, Tom CHRISTIANSEN and Jon ORWANT:
Programming Perl. 3rd edition. O'Reilly & Asso-
ciates, Inc. July 2000.

Norman WALSH and Leonard MUELLNER: DocBook:
The Definitive Guide. O’Reilly & Associates, Inc.
October 1999.

Managing languages within MIBIBTEX

58

Graphics

Asymptote: Lifting TEX to three dimensions
John C. Bowman and Orest Shardt

Abstract

Asymptote, a modern successor to the METRPOST
vector graphics language that features robust floating-
point numerics, high-order functions, and deferred
drawing, has recently been enhanced to generate
fully interactive three-dimensional output. This
data can either be viewed with Asymptote’s native
OpenGL-based renderer or internally converted to
Adobe’s highly compressed PRC format for embed-
ding within a PDF file. Asymptote thus provides
the scientific community with a self-contained and
powerful TEX-aware facility for generating portable
interactive three-dimensional PDF files.

1 Introduction

The descriptive vector graphics language Asymptote’
was developed to provide a standard for drawing
mathematical figures, just as TEX and ITEX have
become the standard for typesetting equations in the
mathematics, physics, and computer science commu-
nities [1]. For professional quality and portability,
Asymptote natively generates PostScript, PDF, and
PRC vector graphics output. The latter is a highly
compressed 3D format that is typically embedded
within a PDF file and viewed with Adobe Reader.
In both two and three dimensions, consistent
fonts and equations should be used in the graphics
and text portions of a document. This implies that
labels must be typeset directly by TEX. This article
provides an overview of the major advances in the
current version (1.82) of Asymptote that allow it to
extract and lift Bézier font descriptions generated by
TEX and Dvips into 3D, using efficient algorithms
for partitioning planar regions into nondegenerate
Coons patches [3]. Together with 3D generalizations
of the METAFONT path operators and a method for
computing twist-free tubes and arrowheads, these
algorithms provide the 3D foundation of Asymptote.

2 Bézier surfaces

A major recent advance in Asymptote is the ability
to embed Bézier surfaces as interactive PRC content

1 Andy Hammerlindl, John Bowman, and Tom Prince,
available under the GNU Lesser General Public License from
http://asymptote.sourceforge.net/.

John C. Bowman and Orest Shardt

TUGboat, Volume 30 (2009), No. 1

Figure 1: An interactive 3D PDF of a Bézier surface
representation of the Utah Teapot.

within a PDF file, as illustrated in Fig. 1.2 In contrast,
the version of U3D supported by Adobe can only
render surfaces described by polygons and hence is
not a suitable vector graphics format.

3 Three-dimensional TEX

TEX produces output in a special device independent
format (DVI). While this output can be easily turned
into PostScript, one needs a way of extracting Bézier
curves that describe properly kerned font characters.
Asymptote does this by overloading the PostScript
/show operator, as described in Appendix A. Special
care was required to handle the filled rectangles that
TEX uses to draw square root symbols and fraction
bars. The resulting exact 2D vector representation
of the original TEX input is treated by Asymptote
as an array of paths to be filled with the PostScript
nonzero winding number fill rule.

The routine bezulate described in Figs. 2 and 3,
along with the nondegenerate patch splitting algo-
rithms described in [3], is used to convert the result-
ing Bézier paths to Bézier surfaces. These surfaces
are then output in the PRC format, along with a
rendered preview image for noninteractive viewing
and printing. Using these techniques, Asymptote is
then able to typeset the Gaussian integral in Fig. 4
as an interactive 3D diagram.

4 Thick lines in 3D

Figure 5 depicts capped thick lines and Asymptote’s
five (METAPOST-inspired) path connectors [2]:

-— .. & -
for the following path, when lifted to the z—y plane:

2 An interactive PDF version of this article may be found
at http://asymptote.sourceforge.net/articles/.

TUGDboat, Volume 30 (2009), No. 1

(a) (b) () (d) (e)

Figure 2: The bezulate algorithm. Starting with
the original curve (a), several possible connections
between nodes separated by 3 or 2 segments are
tested. Connections are rejected if they do not lie
entirely inside the original curve. This occurs when
the midpoint is not inside the curve (b), or when the
connecting line segment intersects the curve more
than twice (c). If a connecting line passes both tests,
the shaded section is separated (d) and the algorithm
continues with the remaining path (e).

(a) (b) () (d) (e) ()

Figure 3: Splitting of non-simply connected regions
into simply connected regions. Starting with a
non-simply connected region (a), the intersections
between each curve and an arbitrary line segment
from a point on an inner curve to the outer curve

are found (b). Consecutive intersections of this line
segment, at points A and B, on the inner and outer
curves, respectively, identify a bounded region. Such
a region can be found by searching along the outer
curve for a point C' such that the line segment AC
intersects the outer curve no more than once, intersects
an inner curve only at A, and determines a region
ABC between the inner and outer curves that does
not contain an inner curve. Once such a region is
found (c), it is extracted (d). This extraction merges
the inner curve with the outer curve. The process is
repeated until all inner curves have been merged with
the outer curve, leaving a simply connected region (e)
that can be split into Bézier surface patches. The
resulting patches and extracted regions are shaded

in (f).

oo

¢~a32§ w

—

(%

Figure 4: The Gaussian integral lifted to 3D.

TS

59

”K: |
\“\

\

Figure 5: Interactive 3D diagram illustrating thick
capped lines, opacity, and the five Asymptote path
connectors.
\

== .3

Ve N

&

= /
=

Figure 6: Comparison of arc length adjusted (green)
and unadjusted (red) 3D dashed lines.

(0,10)..(5,0)---(18,0)::{(0,1)}(20,10)
&(20,10)..(25,0)--(38,0) : : {(0,1)}(40,10)
&(40,10) ::(45,0)---(58,0)..{(0,1)}(60,10) .

Hemispheres are aligned at discontinuous junc-
tions of Bézier segments. Disks, hemispheres, or
closed cylinders can be used to cap the ends of a
Bézier curve, according to the specified PostScript
line cap.

Just as in 2D, the on-off duty cycle pattern
for generating dashed lines can be automatically
adjusted slightly to fit the path arc length evenly, as
illustrated in Fig. 6.

A modification of Asymptote’s adaptive thick
line routine, contributed by Philippe Ivaldi and based
on the rotation minimizing frame algorithm described
by Wang [4], can be used to construct a tube of
arbitrary (noncircular) cross section. For example,
Fig. 7 was created by rotating the Greek letter =
along a curve describing a trefoil knot.

Jens Schwaiger used similar methods to design
a 3D version of Asymptote’s labelpath function
for typesetting text along curves and surfaces, as
illustrated in Fig. 8.

5 Arrowheads in 3D

Arrows are frequently used in illustrations to draw
attention to important features. We designed curved

Asymptote: Lifting TEX to three dimensions

60

Figure 7: A trefoil knot drawn with Asymptote’s
arbitrary cross section tube module.

3D arrowheads that can be viewed from a wide range
of angles. For example, the default 3D arrowhead
was formed by bending a cone around the tip of a
Bézier curve using the same algorithm as is used for
constructing thick lines. Planar arrowheads derived
from 2D arrowhead styles are also implemented; they
are oriented by default on a plane perpendicular
to the initial viewing direction. Examples of these
arrows are displayed in Figs. 9 and 10. An engineer-
ing drawing that uses planar arrows is displayed in
Fig. 11.

6 Double deferred drawing

Journal size constraints typically dictate the final
width and height, in PostScript coordinates, of a 2D
or projected 3D figure. However, it is often conve-
nient for users to work in more physically meaningful
coordinates. This requires deferred drawing: a graph-
ical object cannot be drawn until the actual scaling
of the user coordinates (in terms of PostScript coor-
dinates) is known [1]. One queues a function to do
the drawing only once the overall scaling is known.
Asymptote’s high-order functions provide a flexible
automatic sizing mechanism: either or both of the
3D model dimensions and the final projected 2D size
may be specified. This requires two levels of deferred
drawing, a first pass to size the 3D model and a
second pass to scale the resulting picture to fit the
2D size specification.

Deferred drawing allows one to draw a fixed-
sized object at a scaled coordinate. The following

John C. Bowman and Orest Shardt

TUGDboat, Volume 30 (2009), No. 1

\
\

Figure 8: Illustration of curved labels drawn with the
labelpath3 module.

=

Figure 9: Predefined 3D revolved arrowheads: (blue)
TeXHead3; (green) HookHead3; (red) DefaultHead3.

code shows how to draw circles with 5mm radii at
each vertex of a unit cube, independent of the overall
picture scaling (cf. Fig. 12):

import three;
size(4cm);
currentprojection=orthographic(5,4,2);

void Circle(triple c, pen p) {
picture pic;
draw(pic,scale3(5mm)*unitcircle3,p);
add(pic,c);

}

path3[] g=unitbox;
draw(g) ;

for(path3 p : g)
for(int i=0; i < length(p); ++i)
Circle(point(p,i),red);

TUGboat, Volume 30 (2009), No. 1

~

’

Figure 10: Predefined planar curved arrowheads:
(blue) TeXHead2; (green) HookHead?2; (red)
DefaultHead2

>

Figure 11: Temperature distribution in a cross
section of a heat fin.

7 Interactive 3D Graphs

An important application of 3D TEX is in scientific
graphing. The following code generates the interac-
tive 3D surface in Fig. 13.

import graph3;
import grid3;
import palette;

currentprojection=orthographic(0.8,0.7,1.5);
size(225pt,0,IgnoreAspect);

real f(pair z) {
return cos(2pi*z.x)*sin(2pi*z.y);

}

surface s=surface(f,(-1/2,-1/2),(1/2,1/2),20,
Spline);

draw(s,mean(palette(s.map(zpart) ,Rainbow())),

black) ;
xaxis3(Label ("x",0.5) ,Bounds,InTicks);
yaxis3(Label("y",0.5) ,Bounds, InTicks) ;
zaxis3(Label("z",0.5),Bounds,-1,1,
InTicks(trailingzero));
grid3(XYZgrid) ;

In Fig. 14, a 3D interactive plot of the surface
of the function I'(z) = [, e "t*~! dt, extended ana-
lytically to the complex plane, emphasizes its poles

61

Figure 12: Example of double deferred drawing.

Figure 13: An interactive surface plot with elevation
coloring.

at the origin and at negative integers. This was

produced with the Asymptote code:

import graph3;

import palette;
size(225pt,0,IgnoreAspect);
currentprojection=orthographic(1,-1.8,1);

real X=4.5; real M=abs(gamma((X,0)));
pair Gamma(pair z) {
return (z.x > 0 || z != floor(z.x)) 7
gamma(z) : M;
}

real f(pair z) {return min(abs(Gamma(z)),M);}
surface s=surface(f,(-2.1,-2),(X,2),60,Spline);
real Arg(triple v) {

return degrees(Gamma((v.x,v.y)),warn=false);

}

s.colors(palette(s.map(Arg) ,Wheel()));
draw(s) ;

Asymptote: Lifting TEX to three dimensions

62

IT(2)]

Re 2 Im z

Figure 14: Surface plot of I'(z) in the complex plane,
using an RGB color wheel to represent the phase. Red
indicates real positive values.

xaxis3("$\mathop{\rm Re} z$",Bounds,InTicks);
yaxis3(Label ("$\mathop{\rm Im} z$",align=Y-3Z),
Bounds, InTicks) ;
zaxis3(rotate(90)*"$|\Gamma(z) |$",
Bounds, InTicks) ;

8 Inline 3D PDF animations

Inline 3D PDF movies like the one below can be
embedded with the help of the KTEX animate.sty
package. Unlike 2D inline PDF movies, each frame of
a 3D movie is currently pre-rendered by Asymptote
to a specified resolution, in order to resolve hidden
surfaces correctly.

¢

9 Future directions

There are still a number of applications (including
the above animation) where vector PostScript or
non-interactive PDF output of 3D scenes would be
desirable. For example, Adobe Reader currently
cannot generate and print high-resolution renderings
of 3D objects.

PostScript is a 2D language that supports only
Bézier splines and surfaces, which are shape invari-
ant under affine (orthographic) projection but not
perspective projection. In contrast, nonuniform ra-

John C. Bowman and Orest Shardt

TUGboat, Volume 30 (2009), No. 1

tional B-splines are invariant even in the presence of
perspective distortion since they are Bézier curves in
a projective space described by homogeneous coor-
dinates. Although PostScript is only a 2D language,
vector graphics projections of Bézier surfaces are nev-
ertheless possible using tensor product patch shading
and hidden-surface splitting along approximations
to the visible surface horizon.

We plan to implement partial prerendering of 3D
manifolds to allow 3D scenes to be described within
a 2D language like PostScript, without giving up on
a vector (scalable) description. The idea is to extend
Asymptote’s 3D picture structure to segment and sort
Bézier surfaces to resolve hidden surfaces correctly
in the projected PostScript output. This will require
the development of new algorithms for approximating
intersections of Bézier surfaces and curves with each
other. In collaboration with Troy Henderson and
L. G. Nobre, we also plan to investigate techniques
for optimally approximating nonuniform rational B-
splines by Bézier curves through the addition of new
control points. This will allow 2D projections of
Bézier curves and surfaces to be well described as
vector graphics objects in PostScript.

In the near future, we plan to provide JavaScript
support for stationary billboards that always face
the camera, as well as PRC animations.

As an aside, let us return to the issue regard-
ing implicit equation solving raised in [1]. Unlike
METAFONT and METAPOST, Asymptote does not
currently have the notion of a whatever unknown. It
was pointed out in [1] that the most common uses of
whatever in METAPQOST are probably more clearly
written using explicit functions like extension. One
METAPOST user recently asked us whether there is
an elegant way to construct the circumscribed circle
of a triangle, centered at the intersection point of
two perpendicular bisectors. Indeed, the METAPQOST
code:
beginfig(1)

path tri;

u := lin;

tri := (origin--(1,0)--(2,1)--cycle) scaled u;

z0 = (point 0.5 of tri) + whatever *
(direction 0.5 of tri rotated 90);

z0 = (point 1.5 of tri) + whatever *
(direction 1.5 of tri rotated 90);

dotlabel (btex etex, z0);

draw fullcircle scaled

(2*abs(z0-point O of tri)) shifted zO;

draw tri withcolor red;
endfig;
end
can be written elegantly in Asymptote:

unitsize(linch);
path tri=(0,0)--(1,0)--(2,1)--cycle;

TUGDboat, Volume 30 (2009), No. 1

pair zl=point(tri,0.5);

pair z2=point(tri,1.5);

pair zO=extension(zl,z1+Ixdir(tri,0.5),
z2,z2+I*dir (tri,1.5));

dot (z0);

draw(circle(z0,abs(z0-point (tri,0))));

draw(tri,red);

Perhaps this example will help motivate hesitant
METAPOST users to migrate to Asymptote, allowing
them to take full advantage of the powerful interac-
tive 3D functionality described in this article.

10 Conclusions

We believe that Asymptote is the first software pack-
age to lift TEX into 3D. It also provides a self-
contained open source tool for producing portable
3D PDF files that support Bézier surfaces. As illus-
trated in the examples we have provided, these are
important features for publication-quality scientific
graphing. Interactivity is critical for visualization
and mental reconstruction of 3D data, as it helps the
human brain resolve the degeneracy inherent in 2D
projection.

11 Credits

We thank Philippe Ivaldi, Radoslav Marinov, Mal-
colm Roberts, Jens Schwaiger, and Olivier Guibé for
discussions related to this work. Special thanks goes
to Andy Hammerlindl, who designed much of the
underlying Asymptote language. Financial support
for this work was provided by the Natural Sciences
and Engineering Research Council of Canada.

A Extracting Bézier curves from TEX

We now describe the PostScript code used to ex-
tract smooth font descriptions from Dvips output.
First, a PostScript procedure is defined to output a
coordinate:

/ASYo {() print 12 string cvs print} bind def

The PostScript /show operator can then be over-
loaded, using the pathforall operator to obtain the
coordinates of the Bézier control points:

/show {currentpoint newpath moveto false charpath
{(moveto) print ASYo ASYo}

{(lineto) print ASYo ASYo}

{(curveto) print ASYo ASYo ASYo ASYo ASYo ASYo}
{(closepath) print}

pathforall} bind def

The filled rectangles that TEX and Dvips use
to draw square root symbols and fraction bars are
extracted by overloading the /v procedure:

/v {neg exch 4 copy 4 2 roll 2 copy 6 2 roll

2 copy
(moveto) print ASYo ASYo

63

(lineto) print ASYo add ASYo

(lineto) print add ASYo add ASYo
(lineto) print add ASYo ASYo

(closepath) print} bind def

This technique was used to form the TEX char-
acters in the 3D Asymptote logo in Fig. 15.

Figure 15: The Asymptote logo in three dimensions.

References

[1] John C. Bowman and Andy Hammerlindl.
Asymptote: A vector graphics language.
TUGboat: The Communications of the TEX
Users Group, 29(2):288-294, 2008.

[2] Donald E. Knuth. The METAFONTbook.
Addison-Wesley, Reading, Massachusetts, 1986.

[3] Orest Shardt and John C. Bowman.
Three-dimensional vector representations
of nonsimply connected planar surfaces.
Submitted to ACM Trans. Graph., 2009.

[4] Wenping Wang, Bert Jiittler, Dayue Zheng,
and Yang Liu. Computation of rotation
minimizing frames. ACM Trans. Graph.,
27(1):1-18, 2008.

¢ John C. Bowman
Dept. of Mathematical and Statistical Sciences
University of Alberta
Edmonton, Alberta
Canada T6G 2G1
bowman (at) math dot ualberta dot ca
http://www.math.ualberta.ca/ bowman/

¢ Orest Shardt
Dept. of Chemical and Materials Engineering
University of Alberta
Edmonton, Alberta
Canada T6G 2V4
shardt (at) ualberta dot ca

Asymptote: Lifting TEX to three dimensions

64

Supporting layout routines in MetaPost
Wentao Zheng

Abstract

METAPOGST is known as a powerful graphics drawing
language. However, METAPOST dose not provide
any mechanisms to automatically lay out graphic
objects. In this article, we present two approaches
to help METAPOST users to automatically or semi-
automatically lay out objects that they are drawing.

1 Introduction

METAPOST is widely adopted by KTEXers to gen-
erate high quality graphics in their documents. It
is well known for its precisely controlled geometric
restriction, textual label integration with TEX, and
extendable macros. A variety of packages/macros,
like MetaUML, m3D, have been created that allow
IMTEX users to draw high quality graphics easily and
professionally. Although these packages provide us
with the functionality to draw objects and links, it
is often noticed that we still need to spend a lot of
effort laying out the objects we are drawing.

Let’s take a look at an example diagram (Fig-
ure 1) from John Hobby’s METAPOST manual [1]
on page 63 (it may appear on different pages in dif-
ferent versions of the METAPOST manual). It is a
simple finite state diagram that has five states, ten
arrow links and corresponding labels. There are sev-
eral routines in the source code that have something
to do with the diagram’s layout, i.e., state (node)
positioning, arrow (link) direction tuning and label
positioning. And these routines take at least half of
the total source code. The problem is clear now: can
we develop a METAPOST package that provides users
with automatic or semi-automatic layout routines?

Figure 1: An example diagram from the METAPOST
manual

The problem of automatically laying out general
graphs is not new. A number of academic activities,
such as the International Symposium on Graph Draw-

Wentao Zheng

TUGDboat, Volume 30 (2009), No. 1

ing, have been existed for decades on the research of
algorithms and methods for graph visualization. Aes-
thetics and computational complexity are the major
concerns in the research. However, algorithms/meth-
ods for general graph drawing problem with both
efficiency and aesthetics have not been presented.
Most current research is focused on special graph
drawing problems or approximated solutions.

Therefore, the question that whether we can de-
velop a (semi-)automatic layout package for META-
POST cannot be answered simply by a ‘Yes’ or ‘No’.
In this article, we first address some issues and chal-
lenges in developing a layout package for METAPOST
(Section 2), then propose several possible approaches
(Section 3). Some future work is also discussed at
the end (Section 4).

2 Challenges

Although we will not develop a general method to lay
out graphs, even (semi-)automatic layout is difficult.

First of all, METAPOST is not an object-oriented
programming language. Although it has facilities to
simulate some aspects of OO programming, there is
no “base object” in METAPOST. Therefore it is not
easy to write a layout routine that can be applied on
different graphic objects. For example, METAPOST’s
boxes macro introduces a kind of object (box and
circle) with properties

Cneswnenw se sw

SO we can manage an object’s positions by manipu-
lating geometric relations on those properties. But
what if another user wants to use the routine to lay
out objects without the properties mentioned above?
A practical, though not friendly, solution is to specify
rules (properties and methods) to objects that need
to use the layout routine.

Secondly, developing a purely automatic layout
routine is difficult, even impossible. In the research
of graph drawing, practical algorithms exist only for
special graphs, such as trees, DAGs (direct acyclic
graphs). There exists no general layout method for
an arbitrary graph with satisfactory aesthetics and
acceptable running time.

The first solution to this problem is designing on
demand. That is to say, to develop layout routines
for specific graphs. Graphviz is a graph drawing
program that takes this approach, providing several
practical routines to draw graphs.

Another solution is using the KISS (keep it sim-
ple, stupid) principle. That is to keep layout routines
small, easy to understand and practical to use. How-
ever, by taking this approach, another problem arises:
how to design those routines? That is, what to pro-
vide, and what to omit? It has been seen in some

TUGDboat, Volume 30 (2009), No. 1

diagramming tools that small layout routines are
very useful and easy to use. For example, “horizon-
tal or vertical alighment”, “equal height or width”
are good layout routines. But these examples are
not enough; we need to design more routines and
expect some combinations of them will generate very
useful and sophisticated results.

3 Possible approaches

In this section, we will present several approaches to
developing layout routines in METAPOST.

3.1 Reusing Graphviz

Actually, Graphviz is a set of programs for automat-

ically specifying graph layout:

dot makes hierarchical or layered drawings of di-
rected graphs.

neato and fdp make spring model layout.
twopi makes radial layout.
crico makes circular layout.

For more information, please take a look at their web
site: http://www.graphviz.org.

There is a BTEX package called dot2tex that
makes use of Graphviz to generate PSTricks and
PGF/TikZ commands in BTEX documents. For de-
tailed information, please take a look at their web
site: http://www.fauskes.net/code/dot2tex. It
is obvious that we can take a similar approach to
adopt Graphviz in METAPOST.

In the rest of this section, we are going to use
dot as an example to show how to use Graphviz to
generate automatic layout routines for METAPQOST.

Let’s first take a look at how to represent the
simple graph in Figure 2 in the dot language:

digraph G {
A -> B [label = "x"];
A -> C [label = "y"1;
C -> B [label = "z"];

Figure 2: A simple graph

By using the dot program, a diagram with au-
tomatic layout is generated, as shown in Figure 3.
We can see that nodes are separated with proper
distances, links are placed with appropriate angu-
lar resolutions, and labels are displayed at the right

65

Figure 3: Diagram generated by dot

places. Although the diagram is not as “pretty” as
the one in Figure 2, the layout is at least readable.

In dot, some mechanisms are provided to tune
the graph layout with manual control of nodes, links,
and labels. We won’t introduce them here because
we want to keep our focus on the adoption of dot in
METAPOST.

dot supports several kinds of output format,
such as plain text, PostScript, SVG, and binary im-
ages. Among those, plain text is the easiest to reuse
in METAPOST. The following text is the compiled
output of the aforementioned dot source code.

digraph G {

node [label="\N"];

graph [bb="0,0,85,212"];

A [pos="27,194",
width="0.75",
height="0.50"];

B [pos="27,18",
width="0.75",
height="0.50"];

C [pos="58,106",
width="0.75",
height="0.50"];

A -> B [label=x, pos="e,23,36

23,176
21,46",
1p="18,106"];
A -> C [label=y, pos="...",
1p="46,150"];
C -> B [label=z, pos="...",
1p="47,62"];

3

We can see that layout information can be extracted
from the output. Graph nodes, such as A, are indi-
cated by pos (position), width, and height, while
links, such as A -> B, are indicated by label, pos
(path points), and 1p (label position). It is easy to
automatically extract the layout information from
the output and then use it in METAPOST.

Supporting layout routines in MetaPost

66

In order to use dot in METAPOST, we should
firstly write METAPOST /dot hybrid code (named
as an MPdot file) as follows:

input boxes;

beginfig(1);
circleit.a(btex A etex);
circleit.b(btex B etex);
circleit.c(btex C etex);

begindot Y begin of dot code
digraph G {

a -> b [label = "x"];
a -> ¢ [label = "y"];
c -> b [label = "z"];
}
enddot % end of dot code
endfig;

It is noticed that the content between begindot
and enddot is written in dot language. We are
using METAPOST suffixes, such as a, instead of their
labels, such as "A", to represent nodes in dot. This
is because we want to connect the dot with the
METAPOST code. We show the importance and
desirability of doing this below.

In the next step, we use a program to parse dot
code from the MPdot file and rewrite it into another
intermediate dot file (named an IMdot file) for com-
pilation. For those nodes represented by METAPOST
suffixes, such as a, their respective definitions, like
circleit.a(...), will be used to determine their
dimensions (width and height). The following code
shows what the generated IMdot file looks like.

digraph G {
a [height = 0.19595, width = 0.19595,
label = ""];
b [height = 0.19174, width = 0.19174,
label = ""];
¢ [height = 0.19313, width = 0.19313,
label = "" 1;

a > b [label = "x"]

a ->c [label = "y" 1;

c > b [label = "z"]
¥

We can see that nodes are defined with height,
width, and label properties. The height and width
of a node are calculated based on the correspond-
ing suffix defined in METAPOST code. This is the
reason why we use METAPOST suffixes to represent
dot nodes in the MPdot file.

The IMdot is then sent to the dot program for
compilation, and layout information is generated. We
can extract the layout information from the output
and generate METAPOST code to replace the dot

Wentao Zheng

TUGDboat, Volume 30 (2009), No. 1

code in MPdot file, resulting in the final META-
POST file. The following is the final METAPOST
file, in which the dot code is replaced by generated
METAPOST code. After compilation, it outputs a
graph shown in Figure 4.
input boxes;
beginfig(1);

circleit.a(btex A etex);

circleit.b(btex B etex);

circleit.c(btex C etex);

% the following code is auto generated

a.c = (7pt,141pt);
b.c = (7pt,7pt);
c.c = (24pt,74pt);

drawunboxed(a,b,c);

draw fullcircle scaled 0.19in
shifted a.c;

draw fullcircle scaled 0.19in
shifted b.c;

draw fullcircle scaled 0.19in
shifted c.c;

label(btex x etex, (4pt,74pt));

label(btex y etex, (19pt,108pt));

label(btex z etex, (19pt,40pt));

drawarrow

(6pt,134pt) .. (0,62pt) .. (6pt,14pt);

drawarrow

(9pt,134pt) .. (16pt,105pt) .. (22pt,81pt) ;

drawarrow

(22pt,67pt) . . (15pt,38pt) .. (9pt, 14pt) ;

endfig;

Figure 4: Graph generated by METAPOST with dot
layout information

With TEX labels integrated and METAPOST’s
curve path tuning, the graph shown in Figure 4 looks
better than that in Figure 3.

The approach of reusing Graphviz that we just
explained can be summarized in Figure 5. At first, a
user writes a MPdot file, in which the dot code is
translated into a IMdot file. The IMdot file is then

TUGDboat, Volume 30 (2009), No. 1

sent to dot for compilation, and layout information
is returned. The information is extracted and trans-
lated into METAPOST statements to replace the dot
code in MPdot file, resulting a pure METAPOST file,
based on which the final graphics is generated.

MPdot file H IMdot file H Layout Info

MetaPost file

Final Graphics

Figure 5: Approach of reusing Graphviz (dot)

3.2 Small, stupid routines

As we can see in the previous section, Graphviz is
not a perfect layout tool. Users with strong sense
of aesthetics may not be satisfied with Graphviz’s
result. This is why we propose another approach:
designing small and stupid routines.

Trivial layout routines have long existed in vari-
ous diagramming software and user interface design-
ing tools. For example, you can select a number of
graphic objects, make them align horizontal, from
left to right, and have same width and height. These
routines, including alignment, order, and dimension
specification are very useful when we are drawing
diagrams. So we are going to extend them and make
them available in METAPOST.

Generally, there are three types of graphic ob-
jects in diagrams, i.e., shapes, links, and labels. A
shape is an object with a surrounding path (usually
closed), such as a rectangle, ellipse, etc. A link is a
path connecting two shapes, usually parameterized
with a start shape and end shape, such as arrow link,
line link, etc. A label is a textual container containing
formatted text, and a transparent surrounding path.
Figure 6 shows two shapes (rectangles) connected by
an arrow link labeled by “Label”.

Label

Figure 6: Three types of graphic objects

For a shape, its internal properties should be
set by end users or calculated based on its inner
label. For a link, the objects it connects to should
be set by end users. For a label, only the textual
content should be set by end users. Therefore, layout
routines should care about where a shape is located,

67

what path points a link should go through, and where
a label is placed.

As we mentioned in Section 2, METAPOST is
not an object-oriented language. So it is difficult
to design routines for different graphic objects. For
simplicity, let us focus on laying out graphic objects
defined by the boxes package, i.e., box and circle.
The common attributes they share are (as shown in
Figure 7):
center point of a shape
north point of a shape
south point of a shape
east point of a shape

s 0o n B 0

west point of a shape

Another very important attribute is bpath, which
is the surrounding path of the shape. We can use
this path to determine a shape’s bounding area, and
ensure that a link’s end points are tightly connected
on the path.

Y
\s/

Figure 7: Attributes of a box or circle

Let’s focus on shape layout routines first. The
simplest and most frequently used is linear alignment.
That is to say, align a number of objects through a
line. Consider the following macro

line_align <dir>,<gap>,<objects>
It uses dir (the direction of the line), gap (distance
between consecutive objects), and objects (objects
to be aligned) as parameters.

Sometimes, line alignment is not sufficient, so
we present another way to align objects: general
path alignment. It looks like

path_align <path>, <objects>
The parameter path specifies a path (line or curve)
along which the <objects> are placed and separated
evenly.

Being different from shapes, there is no need to
specify the location of a link, because it is used to
connect two shapes (in most cases). After the laying
out of shapes, the question of where links start and
end is quite easy to answer. So link layout should be
focused on how we link two shapes: on a straight line,
curve or orthogonal polyline. The following macros
are used to specify how to layout links:

line_link <start_shape>, <end_shape>
curve_link <start_shape>, <start_dir>,

Supporting layout routines in MetaPost

68

6 o o
\\\®/

Figure 8: Alignment of shapes

<end_shape>, <end_dir>
orth_link <start_shape>, <start_side>,
<end_shape>, <end_side>

The line_link is used to connect start_shape and
end_shape. The curve_link takes two other param-
eters, i.e., start_dir (the direction of link path at
the start point) and end_dir (the direction of link
path at the end point). Similarly, the orth_link
takes parameters start_side (north, east, south, or
west) and end_side. For the first and second link
macros, it’s easy to implement. But for the last one,
more effort is required, and we are not going to solve
it in this article. Figure 9 shows three types of link
layout (the orthogonal one is drawn manually, just
to show what it looks like).

Figure 9: Layout of links

A label’s layout is a little complicated. First of
all, labels can be treated as a special kind of shape
without a surrounding path. It is natural that we
let shape layout routines, such as linear alignment,
be applicable for labels. Besides, labels have other
means for layout. An example is creating a label for
a link or a shape. We name this kind of label an
association label.

Let’s start with association labels for links. Be-
cause a label is usually placed somewhere along the

Wentao Zheng

TUGDboat, Volume 30 (2009), No. 1

path of a link, we can use the following macro to lay
out the label.

link label <label> <link> <portion>

label defines what textual content to be displayed,
link is a link object suffix, and portion is a number
between 0 and 1 that denotes where the label is
placed along the link path.

Association labels for shapes are easier to handle.
In most cases, a shape’s properties like n and c is
sufficient for manipulating the positions of labels.
Figure 10 shows a number of labels for links and
shapes.

A portion = 0.2 portion = 0.8@
portion = 0.5

Figure 10: Layout of association labels

After introducing some small and stupid layout
routines, we suggest users use them in the following
order:

1. Declaring shapes with macros like boxit and
circleit

2. Laying out shapes by using the aforementioned
routines

3. Declaring and laying out links
4. Declaring and laying out labels

The reason for this order is that label positions rely
on links and shapes, and link paths relies on shapes.
So it is necessary to first lay out shapes, then links,
and do labels last.

4 Future work

In this article, we propose two approaches of sup-
porting layout routines in METAPOST, to make the
drawing of diagrams convenient and aesthetic. We
introduce them separately with detailed explanation
and some examples. However, the methods presented
in this article are at a very early stage; refinement
and extension must be done to make them more
practical. This is planned for the near future.

References

[1] John Hobby, “METAPOST: A User’s Man-
ual”, ctan:graphics/metapost/base/manual/
mpman . pdf.

o Wentao Zheng
IBM China Research Laboratory
zhengwt (at) cn dot ibm dot com

TUGDboat, Volume 30 (2009), No. 1

Glisterings
Peter Wilson

Calm was the day and through the
trembling air

Sweet-breathing Zephyrus did softly play—
A gentle spirit, that lightly did delay

Hot Titan’s beams, which then did glister
fair.

Prothalamion, EDMUND SPENSER

The aim of this column is to provide odd hints or
small pieces of code that might help in solving a
problem or two while hopefully not making things
worse through any errors of mine.

Corrections, suggestions, and contributions will
always be welcome.

This installment is not really about (I&)TEX,
except peripherally.

Nothing in India is identifiable, the mere
asking of a question causes it to disappear
or to merge into something else.

A Passage to India, E. M. FORSTER

1 Reprise

Following the last column [4], Prof. Klaus Lagally
wrote to me with another way of discarding an un-
wanted character at the end of a command. I had
shown some code that acted in a similar manner to
IXTEX starred macros, except with a ‘?” instead of
a ‘*. The problem was to recognise the presence
or absence of the character ‘?” and take different
actions according to whether it was there or not,
and to also discard the ‘7’ if it was present. More
precisely I presented

\makeatletter
\def\maybeQ{%

\@ifnextchar ?{\@maybeQ}{\Cmaybe}}
\def\@maybeQ#1#2#3{Query (#2) and (#3).}
\def\Cmaybe#1#2{(#1) and (#2).}
\makeatother

Prof. Lagally instead suggested that \@maybeQ could
be more simply defined as:

\makeatletter

\def\@maybeQ 7#1#2{Query (#1) and (#2).}
\makeatother

as a means of disposing of the ‘7’. In either version
here are a couple of example results:
\maybeQ{1st}{2nd} -> (1st) and (2nd).
\maybeQ?{1st}{2nd} -> Query (Ist) and (2nd).

69

Child! do not throw this book about!
Refrain from the unholy pleasure

Of cutting all the pictures out!
Preserve it as your chiefest treasure!

A Bad Child’s Book of Beasts,
HILLAIRE BELLOC

2 MetaPost and pdfIATEX

The MetaPost program generates PostScript illus-
trations. These can easily be inserted into a docu-
ment to be processed by (I8)TEX to produce a dvi
file. Generally speaking, though, pdfIATEX cannot
handle PostScript files. Fortunately it can handle
the limited form of PostScript that MetaPost gener-
ates, and so MetaPost illustrations can be directly
embedded into a pdfIATEX document. This, though,
is not quite as straightforward as it might be.

Given a file called, say, figs.mp, which con-
tains perhaps three pictures, MetaPost will gener-
ate 3 files, figs.1, figs.2 and figs.3, one for each
picture. On the other hand, pdfIATEX expects Meta-
Post generated PostScript files to have an .mps ex-
tension. If you use the graphicx package you can get
it to accept files with numeric extensions as though
they had an mps extension by specifying:

\DeclareGraphicsRule{*}{mps}{*}{}

which tells \includegraphics to treat any exten-
sion it does not recognise as though it were mps.
ETEX, or at least programs like dvips or xdvi,
can handle Encapsulated PostScript (eps) files, and
you can perform similar magic for the graphicx pack-
age:
\usepackage{ifpdf}
\ifpdf
\usepackage{graphicx}
\DeclareGraphicsRule{*}{mps}{*}{}
\else
\usepackage{graphicx}
\DeclareGraphicsRule{*}{eps}{*}{}
\fi
If a MetaPost illustration might be used in a BTEX
(as opposed to pdfIATEX) document, then put
prologues := 1;
at the start of the MetaPost file, which tells Meta-
Post to generate Encapsulated PostScript files. It
seems to do no harm to use the same prologues
specification for pdfITEX.

A mathematician, like a painter or a poet,
is a maker of patterns. If his patterns are
more permanent than theirs, it is because
they are made with ideas.

A Mathematician’s Apology, G. H. HARDY

Glisterings

70

3 Spidrons

The other week I was idly glancing through Sci-
ence News when I came across a short article about
spidrons [3]; try googling for ‘spidron’ to get more
on the subject. Spidrons, which were discovered
and named by the Hungarian designer and graphic
artist Daniel Erdély while doodling with hexagons,
are made up of ever smaller connected triangles al-
ternating between isosceles and equilateral in form.

It occurred to me that MetaPost could be used
to draw these and after a little trial and error I came
up with the following MetaPost program to support
drawing spidrons.

%% semispid.mp MP macro to draw a semi-spidron
% semispid(center, vertex, iterations,
% colorl, color2, clockwise)
def semispid(suffix $$, $)%
(expr iter, shadea, shadeb, clock) =

if clock: hxa := -60; else: hxa := 60; fi
pair v[];
path phex[];
v0 := z$$;
vl := z$;
% enclosing hexagon
for i := 2 upto 6:
v[i] := v1 rotatedaround(vO, (i-1)*hxa);
endfor

z$a = v1; z$b = v2; z$c = v3;
z$d = v4; z$e = v5; z$f = v6;
phex0 := v1--v2--v3--v4--vb--v6--cycle;
if showverts:
dotlabels.1lft($a,$b,$c,$d, $e,$f);
fi
if showlines:
draw vl--v3--vb--cycle;
draw v2--v4--v6--cycle;
fi
% construct triangles
for n:= 1 upto iter:

k := 10(n-1);

j := 10n;

v[1+j] := (v[1+k]--v[3+k])
intersectionpoint
(v[2+k]--v[6+k]) ;

for i := (2+j) upto (6+j):

v[i] := v[1+j]

rotatedaround
(v0, (i-1-j)*hxa);

endfor

if showlines:

draw v[1+j]--v[3+j]l--v[6+j]--cycle;

draw v[2+j]--v[4+j]--v[6+j]--cycle;
fi
phex[n] := v[1+j]--v[1+k]--v[2+k]--cycle;
phex[n+1] := v[1+j]--v[2+j]--v[2+k]--cycle;
f£ill phex[n] withcolor shadea;
£ill phex[n+1] withcolor shadeb;

Peter Wilson

TUGDboat, Volume 30 (2009), No. 1

if showcells:
draw phex[n]; draw phex[n+1];
fi
if showedges:
draw v[1+k]--v[1+j];
draw v[2+k]--v[2+j];
fi
endfor
if showedges: draw v[1+j]--v[2+j]; fi
if showhex: draw phexO; fi
enddef;

As its name implies, the routine semispid gen-
erates and draws half of a spidron, which Erdély
called a semi-spidron, and this is contained within
a hexagon. The location arguments are the center
point of the enclosing hexagon and the location of
one of the vertices. The other arguments control the
number of triangles and two colors for coloring alter-
nate triangles. The routine uses booleans, specified
elsewhere, to control the display of various aspects
of the construction method.

T used the next MetaPost program to create the
spidron shown in Figure 1.

% glstr9.mp MP spidron figures

prologues := 1;

input semispid

%%% define the boolean flags and defaults
% show the initial hexagon

boolean showhex; showhex := false;

% label vertices

boolean showverts; showverts := false;
% draw construction lines

boolean showlines; showlines := false;
% draw triangle cell boundaries
boolean showcells; showcells := false;
% work clockwise (yes = true)

boolean rh; rh := false;

% draw sem-spidron outline

boolean showedges; showedges := false;

% shading

color light,dark;

light := 0.1[white,black];
dark := 0.2[white,black];

beginfig(1); % a spidron

u := 1in; % units
showhex := false;
showverts := false;
showlines := false;
showcells := false;
rh := false;
showedges := false;

% center & initial vertex
z0 = (0,0);

zl = (x0-2u,y0) rotatedaround(z0,60);
semispid(0, 1, 9, dark, light, rh);
yO-yla = yla-y10; x10=x0;

TUGDboat, Volume 30 (2009), No. 1

Figure 1: A spidron

z11 = zlb;

semispid(10, 11, 9, light, dark, rh);
endfig;

%% more pictures here

end

The construction details of a semi-spidron are
illustrated in Figure 2. The semispid routine gen-
erates the vertices of a hexagon, labelling the given
one as ‘a’, then the others in turn as ‘b’, ‘c’, etc.
The hexagon is repeatedly partitioned by joining
alternate vertices, which creates a smaller interior
hexagon, which is then partitioned into a smaller
one again, and so on until it all gets ‘too small’. The
shaded triangles form a semi-spidron, starting on the
‘a-b’ side of the hexagon, and finishing close to the
center. The second half of the complete spidron is a
rotation of the first semi-spidron about the midpoint
of the ‘a-b’ edge of the hexagon, with the colors re-
versed.

Spidrons are space-filling; that is, they can be
assembled to completely cover, or tile, a plane sur-
face. You can get a hint about this from Figure 3
which shows three semi-spidrons constructed in a
single hexagon. The empty spaces can be exactly
filled by three more semi-spidrons. A plane can be
completely tiled using hexagons; in this particular
case it happens that it can also be completely tiled

71

le

[y

1f ; 1

la TOD

Figure 2: Construction details of a spidron

Figure 3: Three semi-spidrons in a hexagon

by spidrons. Interesting effects can be achieved by
changing the coloring of the spidrons. An example is
shown in Figure 4. For much, much, more on tilings
see Tilings and Patterns (2], although it doesn’t in-
clude spidrons as they hadn’t been discovered when
the book was published.

There is an associated figure that can also be
made out of two semi-spidrons. In a spidron the
two semi-spidrons are rotations of each other. In
the shape that Erdély calls a hornfiake, shown in
Figure 5, the two halves are mirror images of each
other. Unlike spidrons, hornflakes are not space-
filling but can be used for tiling if they are suitably
combined with spidrons, as can be seen in Figure 4.

In his article, Peterson says that

[Erdély’s] insight was to start with an ar-
ray of hexagons drawn on a sheet of paper
and laid as if they were bathroom tiles. By
creasing the pattern in the right combina-
tions of mountains and valleys at the lines
within each spidron arm and leaving a small

Glisterings

72

Peter Wilson

TUGDboat, Volume 30 (2009), No. 1

Figure 4: Tilings: (left) Spidrons can do it alone (right) Hornflakes need spidrons

Figure 5: A hornflake

hole at the center of each hexagon, he crin-
kled the whole aray into a dramatic three-
dimensional relief.

It turns out that spidron patterns can also be assem-
bled into novel three-dimensional crystal-like froms
with spiral polygonal faces.

What is missing from the article is any hint as
to what the ‘right combinations’ of folds might be
to create these effects. After some searching on the
web I found the following remarks by Erdély [1].

I folded every second edge, reaching to the
centre of the created hexagon in the given
Spidron system, as a spine and folded every
first edge as a groove. The resulting relief-
like surface, under the impact of an external
deforming force, does not show simple linear
displacements, such as those produced with
an accordion; instead, the edges between the
vertices and the centres of the original hexag-
onal system move in a vortex within each
hexagon.

After a lot of cogitation and physical experi-
mentation I came to believe that among the ‘right
combinations’ are the ones shown in Figure 6, which
shows half a hexagon with three semi-spidrons. The
dotted lines indicate ‘valley’ folds (paper on either
side of the fold, or crease, is bent upwards) and the
full lines indicate ‘mountain’ folds (paper on either
side of the crease is bent downwards).

If you want to create a large construct for fold-
ing, here is the code for generating the spidron tiling

TUGDboat, Volume 30 (2009), No. 1

Figure 6: Folding

shown in Figure 4. You can, of course, modify this
to meet your needs.

% glstr9.mp MP spidron figures

% earlier pictures

beginfig(5); % spidron tiling
u := 0.175in;

showhex := false;

showverts := false;

showlines := false;

showcells := false;

rh := false;

showedges := false; showedges := true;

color cola, colb;
cola := light; colb := dark;

depth :=7;
rad := 2u;
z0 = (0,0);

% £ill initial hexagon

for kn := 1 upto 6:

z[kn] = (x0-2u,y0) rotatedaround(z0,60%(kn-1));
if odd kn:

cola := light;
else:

cola := dark;
fi

colb := cola;

semispid(0, [kn], depth, cola, colb, rh);
endfor

% copy (in circles) the filled hexagon

% to make the tiling

shd := (sqrt 3)/2#rad; ’% shift up/down
shr := 3rad; % shift left/right

73

picture pic[];

picl100 := currentpicture;

picO := pic100 shifted (0,2shd);
for kn := 1 upto 6:

piclkn] := picO rotatedaround(z0,60kn) ;
draw pic[kn];
endfor

picl0 = pic100 shifted (0,4shd);
for kn := 1 upto 6:

pic[10+kn] := picl0 rotatedaround(z0,60kn) ;
draw pic[10+kn];
endfor

pic20 = pic100 shifted (3rad, 0);
for kn := 1 upto 6:

pic[20+kn] := pic20 rotatedaround(z0,60kn) ;

draw pic[20+kn];
endfor
endfig;
% more pictures
end

However, I found that it was difficult enough to

properly fold even a single large filled hexagon e.g.,
one that just fitted onto a typical sheet of paper,
such as letter paper or A4. I decided that the best
way was to use single spidrons, fold them appro-
priately, and then hinge them together with sticky
tape. I then concluded that it was much more plea-
surable to look at pictures of what others had accom-
plished (most of which, T suspect, were done using
computer graphics instead of using physical meth-
ods and photographing the results).

References

[1] Déniel Erdély. Spidron system: A flexible
space-filling structure. Idea 1979, first
presented on the Twelfth International
Conference on Crystal Growth in 1998, 2002.
Possibly available at http://www.szinhaz.hu/
spidron.

[2] Branko Grunbaum and G. C. Shephard.
Tilings and Patterns. W. H. Freeman, 1987.

[3] Ivars Peterson. Swirling seas, crystal balls.
Science News, 170(17):266-268, 21 October
2006.

[4] Peter Wilson. Glisterings. TUGboat,
29(2):324-327, 2008.

o Peter Wilson
18912 8th Ave. SW
Normandy Park, WA 98166
USA
herries dot press (at)
earthlink dot net

Glisterings

74

METAPOST macros for drawing Chinese
and Japanese abaci

Denis Roegel
for #7it
Abstract

This article shows how Chinese (%&£, suanpan) and

Japanese abaci (ﬁfﬁ, soroban) can be drawn with
METAPOST, and is illustrated with the details of a
simple algorithm.

|i‘u““‘&nﬂﬁh

\§ e

Q

BESES zwi

[T u”» 2l

Figure 1: A traditional Chinese abacus (H %,
suanpan) with all its beads set to 0. (Photograph:
author’s collection)

1 Introduction

One of the oldest calculating tools still in use today
is the abacus (Knott, 1886; Smith and Mikami, 1914;
Li Shu-T’ien, 1959; Needham and Wang Ling, 1959;
Moon, 1971; Ifrah, 2000; Martzloff, 2006). It is
now mainly used in Asia for performing arithmetical
calculations. Until recently, the use of the abacus was
still taught in Chinese schools and there were abacus
proficiency tests for applying for certain occupations.
In Japan, the first such proficiency test was held in
Tokyo in 1928.

An experienced abacist can be very fast, faster
than a person using a handheld calculator, at least for
small values and basic processes, such as addition or
multiplication. Abaci can be used for more advanced
tasks, such as extracting a square or cube root, but
these tasks may require a non-standard abacus, large
enough to store all values.

An abacus is basically a tool to store numerical
values by the position of beads on rods. The values
which are stored can be changed following an algo-
rithm and an abacist can operate very quickly using
automatic patterns which are applied in sequence.

Abaci have a long history and there have been
many variants which will not be considered here.
The Chinese abacus probably goes back 1000 years
or more. Other civilizations, such as Rome and

Denis Roegel

TUGDboat, Volume 30 (2009), No. 1

Greece, have used related tools where the stored
values were marked by pebbles, or special tokens.
In this article, we describe METAPOST macros
to draw the common Asian abaci as well as the
operations which are performed on them.

2 Types of abaci

We will consider only two types of abaci, namely the
typical current Chinese and Japanese abaci which
are still in use.

2.1 The suanpan

The Chinese abacus is called H#& (suanpan). The
Chinese word & (suan) means “to calculate” and
%% (pan) is the word for a “tray”. A sudanpan can
come in various widths. The standard suanpan has
13 rods with five beads in the lower deck and two
beads in the upper one (figure 1). Each bead in the
upper deck is worth five beads in the lower one. Four
of the lower and one of the upper beads are normally
enough for decimal computation, but it seems that
the extra beads were originally used to represent an
hexadecimal digit, which was useful for the tradi-
tional weighing system where one jm (JT) is equal
to sixteen liang (M) (about 50 grams). However,
these extra beads were also useful to simplify (and
accelerate) some computations (Moon, 1971, p. 85).

2.2 The soroban

The H#& (% 513 A, soroban) is the Japanese form
of the Chinese suanpan, and was derived from it. “#&”
is the traditional character for “tray”; still used in
Japan. The basic soroban usually also has 13 rods,
but there are only four beads in the lower deck and
one in the upper deck. In some cases, there are five
beads in the lower deck, but only one in the upper
deck. A soroban has an additional feature which
distinguishes it from the suanpan, namely that every
third rod is marked by a dot. These are the unit
rods. This makes it easier for calculations and for
setting values on the soroban.

3 The suanpan METAPOST package

In order to show how to operate an abacus, we have
written a METAPOST package to produce simple —
but flexible— abaci representations. METAPOST is
a powerful graphical tool, well suited for technical or
geometrical drawings (Goossens, Mittelbach, Rahtz,
Roegel, and Voss, 2008; Hobby, 2008). All the figures
in this article were produced with the suanpan METR-
POST package, available on CTAN. This package
should however be seen only as a basis and it can
easily be extended, for instance to vary the shape

TUGboat, Volume 30 (2009), No. 1

of the beads, or to automatically demonstrate more
complex algorithms than what we show here.

There are currently two other packages by Alain
Delmotte for drawing a soroban with PSTricks or
PGF, but these packages do not (yet) implement
calculation algorithms (Delmotte, 2007a; Delmotte,
2007b).

4 Algorithms on abaci

Calculating on an abacus amounts to resetting the
abacus to a standard position, then setting (storing) a
value, and then performing some operation, following
a known algorithm. The result is then read off the
abacus.

4.1 Initial position

Figure 1 shows the initial position of a Chinese suan-
pan and figure 2 compares the Chinese and Japanese
abaci. The two decks are divided by a bar known as
the reckoning bar. In the standard position, all the
beads are moved away from the reckoning bar, and
this represents the value 0. Each rod represents one
decimal (or sometimes hexadecimal) place, the units
being normally at the right. The rods are usually
numbered, but this feature can be deactivated using
the boolean rod_numbers as shown below.

Using the suanpan macros, the initial position
of a suanpan is obtained as follows:
input suanpan
setup_abacus (N=13,NBL=5,NBU=2,

bead="suanpan" ,units=0) ;
beginfig(1);
rod_numbers:=false;
reset_abacus;draw_abacus;

endfig
end

The setup_abacus macro sets the number of
rods (N), as well as the number of beads in each deck
(NBL and NBU), the type of bead (bead) and the unit
rods (units). The arguments are given as key=wvalue
pairs. Currently two bead types are possible, cor-
responding to the strings "suanpan" (almost round
beads) and "soroban" (biconal beads).

4.2 Setting a value

Setting a value on an abacus is equivalent to moving
some of the beads towards the reckoning bar. A
bead from the lower deck represents one unit of the
corresponding place, and a bead from the upper deck
represents five units. Using four of the lower beads
and one upper bead, one can therefore set values up
to 5+ 4 = 9. If all the beads of a Chinese abacus
are used, and the upper beads are still weighing 5
lower beads, then the maximum value on a rod is

75

545+ 5 =15. All values between 0 and 15 can be
expressed that way.
In the suanpan macros, the number of beads set
in each deck is stored in two arrays, and all values
of this array can be set by hand as follows (figure 3,
left):
beginfig(3);
reset_abacus;
valL[1]:=2;valL[3] :=5;
valU[2] :=1;valU[4] :=2;
draw_abacus;

endfig;

Proceeding this way can be useful when the
abacus needs to be set in a non-standard decimal
position. This is the case above, with one of the rods
having 5 beads set in the lower deck. The suanpan
macros do currently not support hexadecimal com-
putations, but they could easily be handled, based
on the implementation for decimal numbers.
In the usual case, at most four beads are set in
the lower deck. There is a macro set_abacus_val
which automates the setting of an initial value (fig-
ure 3, right):
beginfig(4);
reset_abacus;
set_abacus_val("651324");
draw_abacus;

endfig;

If n is the number of rods, only the rightmost n
digits of the initial value are taken into account.

4.3 Adding a value

Once a value is stored in the abacus, we can apply
simple algorithms to change this value. In this article,
we will consider only addition. Even for addition, one
can contemplate different methods, and one typical
algorithm performs the addition not from right to
left, but from left to right. In order to demonstrate
the process, the suanpan package provides a macro
add_val which decomposes the addition in a number
of steps. This command should not be used inside a
beginfig/endfig pair, as it generates a number of
such environments. We demonstrate the calculation
on a soroban, using the initial value 651324 of the
above example (figure 4).
setup_abacus (N=13,NBL=4,NBU=1,
bead="soroban" ,units=1);
set_abacus_val("651324");
add_val (v="82363456",iv=100,fig=true) ;

If the main file is abacus.mp, the above com-
mand produces files abacus. 100, abacus.101, ...,
abacus. 108, which can then be included in a ITEX
file.

METAPOST macros for drawing Chinese and Japanese abaci

76 TUGboat, Volume 30 (2009), No. 1

PITTTTTTTITTY (FTTTeTenies
i

Figure 2: Initial setting of a B & (suanpan, left) and of a HH#& (soroban, right).

13 12 11 10 9 8 7 6 5 4 3 2 1 13 12 11 10 9 8 7 6 5 4 3 2 1

THTTTTTatlh) | RPTTTTTTLLY

13 12 11 10 9 8 7 6 5 4 3 2 1 13 12 11 10 9 8 7 6 5 4 3 2 1

Figure 3: The decimal value 10552 represented in a non-standard way (left) and a standard one (right).

T000— =
0000— —|
0000— |
—1000] 01—
00—
— 00—
0000— (10—
000—q| |
—00 0]
10— —|
s
- 00— =0
- 0000— 7] -
-{lpe0—a —q -
—00) =)
00— =
$000— —
0000— —|
—000] 0—
—000]
$00—q| —q|
R
0—00H—]
00— —|
—000 =

TS ﬁ%‘m%m T
%%%%5%%%@% %%%%5%%@% %%%%5%%%%

Figure 4: The decomposition of an addition in nine steps on a soroban.
(a) represents the initial value 651324, and we add 82363456 in eight steps, one for
each digit.

Denis Roegel

TUGboat, Volume 30 (2009), No. 1

Figure 4 (a) shows the initial state of the abacus,
with the value 651324. In a first step (b), we add 8 to
rod 8, hence moving three beads from the lower deck
and one bead from the upper deck. The other beads
are not moved. Then, step (¢) adds 2 to rod 7. So
far, the changes were straightforward, since these two
rods were initially set to 0. In step (d), 3 is added
to rod 6, which now contains the value 9. Step (e)
adds 6 to rod 5 which contained 5, and this leads
to the value 11, hence only 1, and a carry of 1. So,
this configuration shows one bead set in the lower
deck of rod 5, no bead set in the upper deck, and
an additional bead carried to rod 6. However, rod 6
already contained the value 9, and this leads itself
to another carry. Finally, it is rod 7 which has an
additional bead set in its lower deck. This process
goes on digit by digit, until the units have been added.
Every single digit addition is therefore sometimes
decomposed in multiple steps which are not detailed
here. They could be made explicit by other macros.

The add_val macro can also be used without
generating new drawings, by giving false for its
fig argument. It then only applies the standard
addition algorithm and produces the result in the
stored arrays.

Of course, additions can also be simulated by
doing the computation externally and setting new
values for each step. As such, the suanpan macros
could be used as a back-end for other tools.

Here is for instance an addition not producing
any intermediate figures:

beginfig(200);
reset_abacus;reset_abacus_gray;
set_abacus_val("82951324");
draw_abacus;

endfig;

beginfig(201);
set_abacus_val("82951324");
add_val(v="60000",iv=100,fig=false);
draw_abacus;

endfig;

An addition can produce an overflow, and this
sets the overflow boolean to true. The add_val
macro resets this value to false before performing
the addition.

4.4 Shortcuts for fast computation

In order to become proficient with the abacus, it is
useful to memorize a number of patterns which recur
very frequently and which enable automating much
of the computation. A simple example will show
what is meant.

7

If one of the rods of the abacus has three beads
set in the lower deck, and one more bead has to be
set, then this additional bead can merely be moved
towards the reckoning bar. However, if three units
had to be added instead of one, then a novice user
of the abacus would probably mentally compute 3 +
3 = 6, then remove 5 and set only one bead in the
lower deck, while adding one too in the upper deck.
However, this is inefficient, because the burden of the
computation is on the user. Instead, if three beads
cannot be moved, one should consider 3 =5 — 2 and
therefore perform two operations: adding one (5) to
the upper deck, and removing 2 from the lower deck.
This is a typical shortcut, which does not require
the calculation of 3 + 3 = 6, and only requires to
notice that three more beads cannot be set in the
lower deck.

Some of the operations in the upper deck may
also be impossible, and may require similar rewrit-
ings. If one bead (5) cannot be added in the upper
deck part, we can instead write 5 = 10 — 5 and add
one (10) to the units of the next rod, and remove one
bead from the upper deck of the current rod. This
process then repeats until the computations have
been entirely performed.

If five or more beads have to be added in the
lower deck, the number of beads to be added can be
written either as 5+ a or as 10 — b, and whichever
is possible must then be applied. For instance, if we
still have three beads in the lower deck, and if we
have to add six beads, we can write either 6 = 5+1 or
6 = 10—4. The second decomposition cannot be per-
formed, because it amounts to removing four beads
from the lower deck. But the first decomposition is
possible, and so we set one more bead in the lower
part, as well as one more bead in the upper deck. If
the latter is not possible, we again decompose the
calculation.

More complex operations, such as multiplica-
tions, divisions, square roots, etc., can be performed
efficiently using tables that the abacist has to mem-
orize. Examples of such tables for the soroban are
given by Knott (Knott, 1886).

5 Special abaci macros

In order to explain how to operate an abacus, it is
sometimes useful to mark some of the beads. Two
possibilities are provided by the suanpan package:
some of the beads can be shown in gray, or they can
be marked with a label.

Using the macro set_abacus_gray, it is easy to
put some of the beads in gray. This macro takes three
arguments, given as key=wvalue pairs. The deck key
identifies the deck (lower or upper), and the other

METAPOST macros for drawing Chinese and Japanese abaci

78

13 12 11 10 9 8 7 6 5 4 3 2 1

3 12 11 10 9 8 7 6 5 4 3 2 1

TUGboat, Volume 30 (2009), No. 1

3 12 11 10 9 8 7 6 5 4 3 2 1

Figure 5: Highlighting one of the steps of the addition, with special marks. All the
beads which have been moved have been drawn in gray, and, in addition, the sole
bead moved from the lower deck of the fifth rod has been marked with ‘1°.

two are strings with one digit for consecutive rods
starting from the right. The key below corresponds
to the beads which are in the lowest positions in a
deck. If the value is 2, for instance, it means that the
two top beads in the lower part of the deck (upper
or lower) will be grayed. These are the first beads
that would be moved if two beads had to be set (in
the lower deck) or reset (in the upper deck).

There is currently no automated way to pro-
duce these special marks, but their automation is of
course possible. There are however so many differ-
ent imaginable schemes, that we have decided not
to implement them for the moment. Only low-level
commands are currently supported.

We illustrate these commands by considering
again the addition seen previously, but this time
marking all the changes. The resulting configurations
are shown in figure 5 and the code which produces
them is the following:
beginfig(202) ;

reset_abacus;reset_abacus_gray;

set_abacus_val("82951324");

set_abacus_gray(deck="lower",
below="1010000",above="0400000") ;

set_abacus_gray (deck="upper",
below="0110000",above="0000000") ;

draw_abacus;

endfig;

beginfig(203) ;
reset_abacus_gray;
add_val(v="60000",iv=100,fig=false);
set_abacus_gray(deck="lower",
below="0400000",above="1010000") ;
set_abacus_gray (deck="upper",
below="0000000",above="0110000") ;
draw_abacus;
mark_abacus(5,5) (btex 1 etex);
endfig;

Denis Roegel

In these examples, reset_abacus_gray merely
resets all the grayed beads. It will be easy to see
how the gray encoding translates to the figures.

The other macro to mark beads is mark_abacus.
This macro overwrites a bead with a (short) la-
bel. mark_abacus(3,5) (btex 1 etex) writes ‘1’
over the fifth bead (from the bottom) in the third
rod from the right. One of the advantages of this
encoding is that even if a bead is moved, the mark
will still remain on it and the command will not need
to be altered.

6 Abaci in other bases

As was explained before, the Chinese abacus can be
used both for computing with decimal values and
with hexadecimal values, depending on the use of
the two extra beads in the lower and upper decks.
We can imagine other abaci, adapted to other bases.

Figure 6, for instance, shows an addition with
a base-8 abacus. Each rod has three beads in the
lower deck and one bead in the upper deck, and a
rod can hold values from 0 to 7. The figure on the
left represents the value 34012565. Adding 1234g, we
get 34025125.

Producing these drawings is straightforward: in
addition to the number of beads in each deck, there
is a variable vbu representing the value of one bead
in the upper deck. In a natural base-8 abacus, the
upper beads would be worth 4 lower beads, and
so, we can just write the following to produce the
two configurations, before and after the addition.
Similar constructions are possible in other bases,
but experienced users would have to adapt all their
mnemonic rules to fit these new configurations.

vbu:=4; Y, upper deck value of a bead
setup_abacus (N=13,NBL=3,NBU=1,
bead="suanpan" ,units=0) ;

TUGboat, Volume 30 (2009), No. 1

13 12 11 10 9 8 7 6 5 4 3 2 1

3 12 11 10 9 8 7 6 5 4 3 2 1

79

13 12 11 10 9 8 7 6 5 4 3 2 1

Figure 6: Base-8 abacus addition. The value on the left is 3401256g and we add

1234g, which produces 34025125 on the right.

beginfig(300) ;
reset_abacus;reset_abacus_gray;
set_abacus_val("3401256") ;
draw_abacus;

endfig;

beginfig(301);
add_val(v="1234",iv=100,fig=false);
draw_abacus;

endfig;

7 Conclusion and future extensions

This article is meant as an illustration of some simple
METAPOST macros for drawing Chinese or Japanese
abaci, and we have only strived to provide a good
foundation. Many improvements are possible, both
graphically and algorithmically. The abaci can be
made more realistic, and in particular other bead
shapes could be supported. The main possible im-
provements, however, concern the implementation of
new algorithms. So far, we have only concentrated
on the implementation of one addition algorithm, but
other algorithms are possible, for instance one where
the additions are performed from the right-most rod
to the left-most one. More complex operations, such
as multiplication, division, the calculation of square
or cube roots, etc., could also be supported (Knott,
1886; Kojima, 1963; Moon, 1971; Heffelfinger and
Flom, 2007). For each of these cases, it would be
desirable to provide automatic output detailing each
algorithm. This could easily be built upon the exist-
ing macros.

References

Delmotte, Alain. “Soroban abacus: package
pgf-soroban”. 2007a. Available on CTAN.

Delmotte, Alain. “Soroban abacus: package
pst-soroban”. 2007b. Available on CTAN.

Goossens, Michel, F. Mittelbach, S. Rahtz,
D. Roegel, and H. Voss. The EATEX Graphics

Companion, Second Edition. Boston:
Addison-Wesley, 2008.

Heffelfinger, Totton, and G. Flom. “ H##

Abacus: Mystery of the Bead”. 2007. http:
//webhome.idirect.com/\~{}totton/abacus.

Hobby, John. “METAPOST: A User’s Manual”.
2008. Updated version of the original manual;
available at http://tug.org/docs/metapost/
mpman . pdf.

Ifrah, Georges. The Universal History of
Computing: From the Abacus to the Quantum
Computer. New York: John Wiley, 2000.

Knott, Cargill Gilston. “The Abacus in its Historic
and Scientific Aspects”. Transactions of the
Asiatic Society of Japan 14, 18-71, 1886.

Kojima, Takashi. Advanced Abacus: Japanese
Theory & Practice. Tokyo: Charles E. Tuttle &
Company, 1963.

Li Shu-T’ien. “Origin and Development of the
Chinese Abacus”. Journal of the ACM 6(1),
102-110, 1959.

Martzloff, Jean-Claude. A history of Chinese
Mathematics. New York: Springer, 2006.

Moon, Parry. The Abacus: Its history; its design;
its possibilities in the modern world. New York:
Gordon and Breach Science Publishers, 1971.

Needham, Joseph, and Wang Ling. Science and
Civilisation in China, volume 3: Mathematics
and the Sciences of the Heavens and Earth.
Cambridge: Cambridge University Press, 1959.

Smith, David Eugene, and Y. Mikami. A history
of Japanese mathematics. Chicago: The Open
Court Publishing Company, 1914.

¢ Denis Roegel
LORIA —BP 239
54506 Vandceuvre-lés-Nancy cedex
France
roegel (at) loria dot fr
http://www.loria.fr/"roegel

METAPOST macros for drawing Chinese and Japanese abaci

80

Spheres, great circles and parallels*

Denis Roegel
Abstract

Each domain has its graphical archetypes. In par-
ticular, spheres are unavoidable components of do-
mains such as geography or astronomy. However,
when perusing a number of publications, we noticed
that spheres were often incorrectly drawn with re-
spect to their features such as great circles and paral-
lels. This article examines several simple METAPOST
techniques that remedy these problems.

1 Introduction

The spheres and their components (great circles,
meridians, parallels) make up the typical illustrations
in certain fields such as geography or astronomy. For
instance, the motion of the Sun in the sky will often
be represented as a sphere with the celestial equator,
the ecliptic and the apparent path of the Sun on this
sphere. In certain fields, spheres illustrate projec-
tions, be it in cartography, gnomonics, or elsewhere.
The representations of spheres in publications are
themselves projections.

Here we examine the simplest case: spheres rep-
resented in parallel projection on a plane. In that
case, the projection is done along parallel lines. We
will also assume, for simplification, that the projec-
tion plane is orthogonal to the projection direction,
although part of our conclusions are independent of
this assumption.

More precisely, the problem we consider is that
of drawing a sphere, with an equator, meridians,
other great circles, parallels, all of them with correct
dashed lines.

In order to get a good understanding of the
possible difficulties of this task, it is useful to review
the general principles of the projections which are
commonly used.

2 Projections

The main projections are illustrated in figure 1. We
have represented the projections of the equator, of
the North pole and of one of the points whose pro-
jection follows a line which is tangent to the sphere.

3 How the problem is handled in
the literature

A perusal of the literature, be it on paper or the
Internet, is a source of surprises. Assuming that

* Translation of “Spheéres, grands cercles et paralléles,”
Les Cahiers GUTenberg, number 48, April 2007, pages 7-22.
Reprinted with permission.

Denis Roegel

TUGDboat, Volume 30 (2009), No. 1

the projections are done on a plane and either along
parallels or in a perspective manner, two totally
natural assumptions, it appears that the majority
of the books consulted represent the spheres in a
contradictory way.

The problems are all confined to figures which
have not been drawn by projection. For instance,
aside from the fact that many of these figures do not
represent the projected circles as ellipses, the prob-
lems displayed in most of the printed figures concern
the position of certain points, in particular the poles.
For instance, in the case of the projections of figure 1,
when the equator is transformed in an ellipse, the
poles should not be positioned at the periphery of
the projected sphere, but this is unfortunately often
the case on the printed representations.

To support our claim, we give a list of a few
books where the spheres are problematic, with a page
example, which will allow the interested reader to
locate them:

e W. M. Smart: Celestial Mechanics, New York:
Longmans, 1953, p. 24.

e Derek J. Price: The equatorie of the planetis,
Cambridge: the University press, 1955, p. 96.

e John D. North: Richard of Wallingford, Oxford:
Clarendon Press, 1976, vol. 3, p. 152.

e René R. J. Rohr: Sundials: History, Theory,
and Practice, New York: Dover Publications,
1996, p. 25.

e Gianni Pascoli: Eléments de mécanique céleste,
Paris: Masson, 1997, p. 12.

e Raymond d’Hollander: L’astrolabe : histoire,
théorie et pratique, Paris: Institut océanogra-
phique, 1999, p. 26.

e Denis Savoie: La gnomonique, Paris: Les Belles
Lettres, 2001, p. 44.

e Denis Savoie: Cosmographie, Paris: Belin-Pour
la science, 2006, p. 17.

That said, some books take care not to put the
poles on the limit circle, and this is in particular the
case in Otto Neugebauer’s classic A History of An-
cient Mathematical Astronomy, New York: Springer,
1975, p. 1408.

A number of web sites are also faulty, for in-
stance those of the Paris-Meudon observatory or of
the Institut de Mécanique Céleste et de Calcul des
Ephémérides (http://www.imcce.fr) which display
objectionable representations.

The reasons for perpetuating these errors are
not totally clear; it seems that it is a certain habit,
perhaps a kind of laziness, and — in some cases — the
result of the subcontracting of figures by the authors.

TUGboat, Volume 30 (2009), No. 1

81

Figure 1: Orthogonal (left), oblique (center) and perspective (right) projections on a vertical plane.

4 A METAPOST approach

Although our application is very simple, it doesn’t
seem to have been handled with the METAPOST
software, or with other graphical TEX tools such
as PSTricks. The extensions of the latter system
already provide a number of facilities for the repre-
sentation of 3-dimensional objects, but the represen-
tation of objects in space obscures the hidden parts
by overlaying them and therefore doesn’t involve
the computation of boundaries between visible and
invisible parts.

One of the difficulties of the representation of
spheres is related to dashed lines. Dashed lines are
traditionally used for representing the hidden parts.
It is therefore necessary to ensure that these lines
start and end at the right places, and this task usually
requires the computation of intersections.

It is when designing a figure for a lecture in
astronomy that we have, in the first place, made the
same error as that of our predecessors; the reflex of
“poles on the circle” was rooted in our habits. Fig-
ure 2 represents these first attempts, typical of the
figures which are found almost everywhere. Figure 3
illustrates how the spheres should have been repre-
sented. The positions of the poles are here computed
in an exact way, for the poles of the equator (N
and S) as well as for those of the ecliptic (N* and
S*). Moreover, the angle between the planes of the
equator and the ecliptic is also correctly displayed
(23.5°). In the case of the lunar orbit, however, we
have intentionally increased the angle between that
orbit and the plane of the ecliptic.

We will now describe how the correct figures
were obtained, and we will restrict ourselves to the
case of orthogonal projections. Our constructions
will be in METAPOST, but nothing prevents the
transposition of our techniques to other languages.!

1 For an introduction to METAPOST, one can readily con-
sult various tutorials on the web, the documentation available

4.1 The projection of the sphere

The orthogonal projection of the sphere is a circle
whose diameter is that of the sphere. We will assume
for simplification that the circle is centered at the
origin.

r=5cm;draw fullcircle scaled 2r;

4.2 Definition of vectors

In order to precisely control the projection, we first
define a vector type. METAPOST does not provide
such a type, but it has a color type with three
numerical components which we disguise as a vector.
Accessing the components of the vectors is done with
Xp, Yp and Zp. We then define a few elementary
operations on these vectors, like the dot product
(dotproduct), the vector product (vecproduct) and
the construction of a unit vector.

let vector=color;
let Xp=redpart; let Yp=greenpart; let Zp=bluepart;

def dotproduct(expr Vi,Vj)=
(Xp (Vi) *Xp (V§) +Yp (Vi) *Yp (V) +Zp (Vi) *Zp (Vj))
enddef;

def vecproduct(expr Vi,Vj)=
(Yp(Vi)*Zp(Vj)-Zp (Vi) *Yp(Vj),
Zp (Vi) *Xp (Vj) -Xp (Vi) *Zp (Vj) ,
Xp (Vi) *Yp(Vj) -Yp (Vi) *Xp(Vj))

in most TEX distributions, or the second edition of the IATEX
Graphics Companion.

Spheres, great circles and parallels

82 TUGDboat, Volume 30 (2009), No. 1

lunar orbit

ecliptic ecliptic

equator

I
South South

Figure 2: Two sphere drawings violating the properties of parallel projections on a
plane. The poles are here put at the periphery of the spheres, although they should
be located slightly inside of the spheres, given the angle under which the plane of the
equator is seen.

lunar orbit

ecliptic

equator

Figure 3: Two correct drawings of the planes of the equator and of the ecliptic, of
the poles and of the meridians. The inclination of the lunar orbit has intentionally
been magnified.

Denis Roegel

TUGboat, Volume 30 (2009), No. 1

enddef;

def norm(expr V)= sqrt(dotproduct(V,V)) enddef;
def normed(expr V)= (V/norm(V)) enddef;

4.3 Orientation in space

Before performing the projection, the sphere is ori-
ented in space. More precisely, we construct three
vectors Vq, Vo, V3 using the vectors of the orthonor-
mal basis. We employ only two angles, and in that
manner we maintain the vertical character of the
projection of one of the vectors. 6 is the angle by
which 7’ is rotated around E, which produces {7{ 10)
is the angle by which k is rotated around ‘717, which
produces 172) 173) is the vector product of 171) and ‘75
and is oriented towards the observer. Finally, 17{
represents the vector of the projection plane directed
towards the right and \7; the one directed towards
the top. The figures in the sequel were obtained with
0 =70 and ¢ = —15.

vector V[]; % vector array

theta=70;phi=-15;

Vi=(cosd theta,sind theta,0);

V2=(sind(phi) *sind(theta),

-sind(phi)*cosd(theta),cosd(phi));
V3=vecproduct (V1,V2);

4.4 The projection

The projection itself is very simple to achieve, as it
is sufficient to det_e}rrgne the components of a vector
in space in the (V1, V3, 73) base, something which is
immediate with the dot product. Only the first two
components are of interest to us, since V;; is parallel
to the projection direction. A project function
allows us to write this projection naturally, and this
function therefore doesn’t use the third vector:

def project(expr V,Va,Vb)=

(dotproduct (V,Va) ,dotproduct (V,Vb))

enddef;

20=(0,0) ;

zl=project ((r,0,0),V1,V2);

z2=project((0,r,0),V1,V2);

z3=project ((0,0,r),V1,V2);

drawarrow z0--zl;drawarrow z0--z2;

drawarrow z0--z3;

83

4.5 Construction of the equator

We can now draw a great circle, for instance the circle
of the equator. Its equation is very simple: it is the
set of points (r cost, rsint,0) for 0 < ¢ < 360, ¢t being
expressed in degrees. The f_equ macro corresponds
to this expression and the projected curve is obtained
by connecting the projections of points at regular
intervals, here from 10 to 350 degrees.

def f_equ(expr r,t)=(r*cosd(t),r*sind(t),0) enddef;

path equator; equator=
project(f_equ(r,0),V1,V2)
for t=10 step 10 until 350:
. project(f_equ(r,t),V1,V2)
endfor .. cycle;
draw equator withcolor blue;

4.6 Simplification of the equator

The equator is now represented by a curve con-
structed from a large number of points. However, this
curve should be an ellipse and we can obtain a very
good approximation of it by constructing it using
fullcircle instead. (It is only an approximation
since fullcircle is not exactly a circle.)

The construction of an ellipse from a circle is
done as follows, using the semi-major axis, the semi-
minor axis and the angle of the ellipse. The correct
drawing of the ellipse requires the knowledge of its
two axes, which are not yet known in the above
construction.

def ellipse(expr ra,rb,an)=

(fullcircle xscaled 2ra yscaled 2rb rotated an)
enddef;
draw ellipse(r,.5r,0);

Spheres, great circles and parallels

84

4.7 Determination of the elements of
the ellipse

In order to obtain the elements of the ellipse (axes
and orientation), the projection parameters can be
used, or we can merely measure these elements on
the ellipse as constructed pointwise. This can be
done as follows:

e first, a circle is superimposed to the ellipse;

e the four intersections of this circle with the el-
lipse are determined (this may require the circle
to be resized);

e the intersections easily provide the directions of
the axes;

e these axes are then measured;

e finally, the ellipse is constructed in a more eco-
nomical way.

We will now examine in more detail how this
procedure is realized.

4.7.1 Orientation of the ellipse

In order to determine the orientation of the ellipse,
we make use of the ellipse_major_angle macro
below, which takes a path p representing an ellipse
of semi-major axis a centered at the origin. A simple
dichotomy looks for a half circle of radius rc with
a non-void intersection with the ellipse. Then, two
intersections (pil, pi2) are obtained with the help of

Denis Roegel

TUGDboat, Volume 30 (2009), No. 1

intersectionpoint, by carefully splitting the half-
circle. By symmetry, these two intersections give two
other intersections (pi3, pi4).

The orientation of the ellipse is obtained by
locating two intersections, pi5 and pi6. One of
these intersections is with the major axis, the other
with the minor axis.

vardef ellipse_major_angle(expr p,a)=
save pa,pc,pi,ra,rb,rc,an;
path pc[];pair pa,pil];ra=.5a;rb=a;
forever: Y% i
rc:=.5[ra,rbl;
pcO:=subpath(0,4) of fullcircle scaled 2rc;
pa:=pcO intersectiontimes p;
exitif pa<>(-1,-1);ra:=rc;
endfor;
%=== computation of two intersections ===
pil=p intersectiontimes pcO;
pcl=subpath(0,ypart(pil)-0.01) of pcO;
pc2=subpath(ypart (pi1)+0.01,length(pc0)) of pcO;
pil:=p intersectionpoint pcO;
pi2:=p intersectiontimes pcil;
if pi2=(-1,-1):
pi2:=p intersectionpoint pc2;
else:
pi2:=p intersectionpoint pcil;
fi;
pi3=pil rotated 180;
pi4=pi2 rotated 180; % other intersections
%======= orientation ======
pib=p intersectionpoint
(origin-- (unitvector (pi2-pil)*2a));
pi6=p intersectionpoint
(origin-- (unitvector(pil-pi4)*2a));
if arclength(origin--pib)>arclength(origin--pi6):
an=angle (pil-pi2);
else:
an=angle (pil-pid);
fi;
an % result of the macro
enddef;

4.7.2 The minor axis of the ellipse

The ellipse_minor_axis macro takes a path p rep-
resenting an ellipse of semi-major axis a centered at
the origin, and whose major axis is oriented accord-
ing to the angle an. The macro merely determines
the intersection of p and a line located at a right
angle to the major axis and measures its distance
from the center of the ellipse.

vardef ellipse_minor_axis(expr p,a,an)=
save pa;pair pa;
pa=p intersectionpoint (origin--(dir(an+90)*2a));
arclength(origin--pa) % result

enddef;

These two macros make it therefore possible
to determine all the parameters necessary to the
economical drawing (that is, not pointwise) of an
ellipse.

TUGboat, Volume 30 (2009), No. 1

4.8 The dashes on the equator

The dashes on the equator correspond to one half of
the ellipse and the two halves are joined by the major
axis. It is therefore sufficient to cut the ellipse in two
parts and draw one in plain lines, the other in dashed
lines. The ellipse returned by the ellipse macro is
a parametric curve where the parameter goes from 0
to 8 (the base circle contains eight points), 0 being
on the major axis, and the paths from 0 to 4 and
from 4 to 8 are excerpted from it.

path pa,pb,pc;
pa=ellipse(r,rb,0);
pb=subpath(0,4) of pa;
pc=subpath(4,8) of pa;

draw pb dashed evenly; % hidden
draw pc; % visible

4.9 Great circles

The same principle is used for all the great circles.
The only difficulty is the determination of an equa-
tion for these great circles. The macros used are
parameterized in order to be able to choose which of
the two parts is dashed.

lunar orbit

Some of the circles are determined by certain
constraints. For instance, in the above drawing, we
were given point L1 on the ecliptic, then the ecliptic
meridian going through L; was constructed, leading
to the determination of point Ly on the lunar orbit.
These intersections were obtained by the intersection
of projections, but the intersection in space was then

85

found again using the knowledge of the curves. Fi-
nally, the equatorial meridian going through L, was
drawn, making it possible to obtain Ls.

4.9.1 Constraints

We can easily take such constraints into account
by using the rotatearound macro which rotates a
vector around another one.

% rotates Va around Vb by the angle ‘a’

vardef rotatearound(expr Va,Vb,a)=
save v;vector v[];
v0=normed (Vb) ; vi=dotproduct (Va,v0)*v0;
v2=Va-v1;v3=vecproduct (v0,v2) ;
vd=v2*cosd(a)+v3*sind(a)+vl;
v4 % result

enddef ;

Therefore, for the case of the curve representing
the ecliptic, whose equation is determined by the
function

def f_ecliptic(expr t)=

(ax(cosd(t) ,sind(t)*cosd(ec_angle),
sind(t)*sind(ec_angle)))

enddef;
where ec_angle is the obliquity of the ecliptic plane
(23.5°), we begin by determining the North pole (N*)
of the ecliptic, assuming v = (1,0, 0):

vector North,North_Ec;North=a*(0,0,1);

North_Ec=rotatearound(North, (1,0,0),ec_angle);

Since point L; is chosen on the ecliptic, the

meridian going through IL; and N* is determined
== — .

by the two vectors ON*™ and OL;, each point of
the meridian being obtained by the rotation of OL,
around a vector orthogonal to OL; and ON". The
following macro, parameterized by the point A (in
space) on the ecliptic and an angle ¢, makes it possible
to describe this meridian:

def f_ec_meridian(expr t,A)=

(A*cosd(t)+North_Ec*sind(t))

enddef ;

This function is then used to define the projected
path ec_meridian, using project, as we did above
when defining the equator path.

4.9.2 Inverse projection

The principle of the “inverse projection” is very sim-
ple and we will only sketch it. For instance, in
order to determine Lo from L; in the previous fig-
ure, we have on the one hand constructed the great
circle going through L; and N* as explained above
(ec_meridian), and on the other hand the lunar orbit
(moon) applying analogous principles. The intersec-
tion of these two projected curves was computed in
the usual way:

Lp2=moon intersectionpoint ec_meridian;

Spheres, great circles and parallels

86

Here, the intersectionpoint macro was as-
sumed to return the correct intersection, which is
not always the case.

Now, point Ly in space is a linear combination
determined by two vectors forming a basis of the
plane of the lunar orbit. These two vectors can be
determined by the equation of the lunar orbit and we
call them moon_x and moon_y. We have therefore:

L2=m_x*moon_x+m_y*moon_y;

where m_x and m_y are scalar values. These un-
knowns can be determined by projecting the above
equation, because a parallel projection is a linear
transformation:
Lp2=m_x*project (moon_x,V1,V2)

+m_y*project (moon_y,V1,V2);

The latter equation defines m_x and m_y from
Lp2 (point of the plane) and therefore defines at the
same time L2 (point in space).

Once L5 is known, we are able to use it to obtain
L3 in an analogous way.

4.10 Parallels

The case of the great circles was relatively simple,
because these circles were always half visible and half
invisible, the limit of visibility being on the major
axis of the ellipse. This is not the case for the other
circles of the spheres. We examine here only the case
of the parallels to the equator.

Parallels have a number of distinctive features:
they do not necessarily have as much visible as they
have hidden; they can be totally visible or totally
hidden; they have a visible/hidden limit which is not
on the major axis.

In order to draw the parallels correctly, it is
necessary to determine the limits between the visible
part and the hidden part of a parallel.

The limits of visibility are determined by the
intersection between the plane orthogonal to the

Denis Roegel

TUGDboat, Volume 30 (2009), No. 1

viewing direction (‘73)), and the circle representing the
parallel. This intersection can consist in zero points
(the parallel is then totally visible, or totally hidden),
two points (there is both a hidden and a visible part),
or one point (this is the limit case between the two
previous cases).

Once the intersections are obtained in space,
they are converted into angles and the two arcs are
drawn separately using these angles. The macro
draw_parallel is defined in figure 4.

The equation of a parallel at latitude ¢ will be
the following:

def f_parallel(expr r,theta,phi)=
(r*cosd(phi)*cosd(theta),
rxcosd(phi)*sind (theta) ,r*sind(phi))
enddef ;

5 Conclusion

Having observed that many spheres were not cor-
rectly represented in the literature, we have analyzed
the problem in detail and have written a few METRA-
POST commands to produce correct drawings. We
now only hope that this work will contribute, even
indirectly, to an improvement of the realism of the
spheres in the way they are employed in cosmography
and elsewhere.

Moreover, it seems interesting to extend other
graphical packages with such functionalities, always
for the purpose of fostering their use. The PSTricks
package might benefit from such an extension, which
would moreover allow for a comparison with our own
implementation.

¢ Denis Roegel
LORIA —BP 239
54506 Vandoeuvre-lés-Nancy cedex
France
roegel (at) loria dot fr
http://www.loria.fr/"roegel

TUGboat, Volume 30 (2009), No. 1

87

% phi=latitude, col=color, side=1 or -1 depending on the dashes

vardef draw_parallel(expr phi,col,side)=
save p;path p[];pO=project(f_parallel(a,0,phi),V1,V2)

for t=0 step 10 until 360 :..project(f_parallel(a,t,phi),V1,V2) endfor;
% we now search for the intersections of this parallel

% with the projection plane:
% plane: V3x*x+V3y*y+V3z*z=0

% parallel: x=r*cos(phi)*cos(theta), y=r*cos(phi)*sin(theta), z=r*sin(phi)

% we search theta:
save A,B,C,X,Y,ca,cb,cc,delta,nx,tha,thb;
numeric X[],Y[];ca=Xp(V3);cb=Yp(V3);cc=Zp(V3);
if cb=0:X1=-(cc/ca)*sind(phi)/cos(phi) ;nx=1;
else:

A=1+(ca/cb) **2;B=2*ca*cc*sind (phi) / (cb*cb) ;

C=((cc/cb)*sind (phi))**2-cosd(phi) *cosd (phi) ;delta=B*B-4A*C;

if delta<0:nx=0;% no intersection
else:

X1=((-B-sqrt(delta))/(2A))/cosd(phi); % = cos(theta)

X2=((-B+sqrt(delta))/(24))/cosd(phi); %

cos (theta)

Y1=-((caxX1l+cc*sind(phi) /cosd(phi))/cb); % = sin(theta)
Y2=-((caxX2+cc*sind (phi) /cosd(phi))/cb); % = sin(theta)

tha=angle(X1,Y1) ;thb=angle(X2,Y2) ;nx=2;
fi;
fi;
if nx=0: % totally (in)visible parallel
if side=1:draw pO withcolor col;
else:draw pO withcolor col dashed evenly;fi;
message "NO INTERSECTION";
elseif nx=1:X10=angle(X1,1+-+X1);X11=360-X10;
else: % general case
if tha<thb:X10=tha;X11=thb;else:X10=thb;X11=tha;fi;
fi;
if nx>0: 7 determination of the two paths
pl=project(f_parallel(a,X10,phi),V1,V2)

for t=X10+1 step 10 until X11:..project(f_parallel(a,t,phi),V1,V2)

endfor;
p2=project(f_parallel(a,X11,phi),V1,V2)

for t=X11+1 step 10 until X10+360:..project (f_parallel(a,t,phi),V1,V2)

endfor;
% drawing the two paths
if side=1:draw pl withcolor col;
else:draw pl withcolor col dashed evenly;fi;
if side=1:draw p2 withcolor col dashed evenly;
else:draw p2 withcolor col;fi;
fi;
enddef;

Figure 4: Code for drawing a circle parallel to the equator.

Spheres, great circles and parallels

88

An introduction to nomography:
Garrigues’ nomogram
for the computation of Easter

Denis Roegel
Abstract

This article analyzes a calendrical nomogram for the
determination of the date of (Julian or Gregorian)
Easter, and shows how it can be reproduced with
METAPOST.

1 Introduction

The field of nomography is ancient, and is related
to slide rules. The object of nomography is to study
the graphical representation of equations with n un-
knowns, in order to construct graphical tables repre-
senting mathematical laws of which these equations
are the analytical expression. These tables are called
“nomograms” and can be used to obtain one of the n
values given the values of the n — 1 other unknowns.

The art of nomography was developed exten-
sively by Maurice d’Ocagne (1862-1938), from 1884
onwards. In his 1921 treatise on the subject, he men-
tioned a nomogram for the calendar, as well as the
unpublished work of André Crépin on one for find-
ing Easter (d’Ocagne, 1921, p. 468-470). Then, in
1939, Damien Garrigues published an article with
a nomogram for finding the date of Easter in the
Julian and Gregorian calendars (Garrigues, 1939).
Garrigues did not refer to Crépin, and may have
constructed his nomogram independently.

Our article explores this particular example and
shows how this nomogram can be reproduced using
METAPOST.! We will first analyze the structure of
Garrigues’ nomogram, and we will need to review
some basic information on the calendar. Once we
have a good grasp of the principles underlying Gar-
rigues’ nomogram, we will examine how to tackle its
graphical challenges with METAPQOGST.

2 Easter in the Christian calendar

Easter is a Christian feast commemorating the res-
urrection of Christ and has been celebrated since
the first centuries of our era. As time went by, it
was decided to set the date of Easter on the Sunday
immediately following the first full moon of Spring.
For practical reasons, Spring is considered to be-
gin on March 21st, and the full moons are based on
simplified tables, not on astronomical observations.
This rule applies both to the Julian calendar (be-
fore the Gregorian reform which took place in 1582)

1 The complete METAPOST code is available on CTAN
under the name garrigues.mp.

Denis Roegel

TUGDboat, Volume 30 (2009), No. 1

and to the Gregorian calendar. However, the tables
for the paschal lunar phases were made more accu-
rate in 1582, and the average year was made slightly
shorter, so that this actually made the computation
of Easter more complex.

We will not enter into the details of the his-
tory of the Christian calendar, nor of the many al-
gorithms for the computation of Easter, but we will
summarize — without proof—the basic procedure
for the computation of Easter. More detailed in-
formation on calendrical calculations can be found
in the standard (Dershowitz and Reingold, 2008),
but information on Easter algorithms is scattered
in multiple other sources. Besides (Gauss, 1973),
one can consult (Knuth, 1997) for a simple (but ex-
act) algorithm, and (Bien, 2004) for a comparison
between a few Easter algorithms.

2.1 Julian calendar

In the Julian calendar, the date of Easter repeats
itself after exactly 532 years. The computation is
based on a lunar cycle of 19 years (the phase of the
moon was supposed to be again the same after 19
years) and on a (solar) calendar cycle of 28 years
(the years repeat after 28 years, since every fourth
year is a leap year, since common years would repeat
after seven years, and 28 = 4 x 7). We then merely
have an Easter cycle of 532 = 19 x 28 years.

In this calendar, the position of a year in the 19
year lunar cycle is given by its Golden Number G:

Y « year (1)
G« (Y mod 19) + 1 (2)

Using the Golden Number, the (Julian) epact
E; of the year can be computed: the epact (in its
modern sense) is the age of the moon on January 1st,
minus one (Roegel, 2004). Since the moon phases
shift by about 11 days every year, the epact conse-
quently increases by about 11 units every year. It
can be obtained from the Golden Number as follows:

E; — (11G — 3) mod 30 (3)

And the value of the epact then determines the
date of paschal full moon.

Sundays are determined by what is called the
“dominical letter”. All the days of a common year
can be labeled by a letter from A to G, starting with
A on January 1st, B on January 2nd, etc., G on
January 7th, A again on January 8th, etc., reaching
C on February 28, and D on March 1st (February 29
is considered to be without a letter). The “dominical
letter” is then merely the letter associated to the
Sundays of a year. When the year is a leap year,
there are of course two dominical letters, one for
January and February, and one for the other ten

TUGboat, Volume 30 (2009), No. 1

months, because the layout of the letters is defined
for common years.

The date of Easter is obtained by combining the
epact and the dominical letter.

2.2 Gregorian calendar

In the Gregorian calendar, the phases of the moon
do no longer follow a 19 year cycle. The new cycle
is more complex, as a consequence of a more accu-
rate modeling of the mean motion of the moon, and
because of the shorter mean solar year. The com-
putation can still be based on the Golden Number
and the (Julian) epact, but the epact is corrected
as follows. We first define the secular part S of the
year, then a correction M:
Y
S — {IOOJ (4)

M e (15+s— EJ - {85;513D mod 30 (5)

It was Gauss who introduced M in this form in
1816 (Gauss, 1800; Gauss, 1816).

What we call the “mean Gregorian epact” Eg
is defined as follows:

Eg « (Ey — (M —15)) mod 30 (6)

The previous correction to F; can also be used
for the Julian calendar, by taking M = 15. In that
case, Eq = Ej.

The real (or corrected) Gregorian epact Eg, in-
stead, is given by:

if (Fg =25 and G > 11)
or (Eg = 24) (7)
Fq otherwise

FEo+1
Eg — G+

This value of the epact can be used to obtain a
full moon in March. Nj is the day in March for a
full moon, but it may be another full moon than the
paschal full moon (full moon on which the definition
of Easter is based):

Nl — 44 — EG (8)
The real paschal full moon in March is:

Ny +30 if Ny <21
Ny .
N otherwise

9)

Garrigues’ nomogram computes the paschal full
moon without the corrections for Eq, and obtains a
date of Easter. Ignoring the corrections on the epact
produces certain wrong epacts, but only some of
these wrong epacts cause an incorrect date of Easter.
The dates are incorrect in only rare circumstances,
which are listed in the nomogram (1954, 2049, 2106,
etc.) and which will be analyzed later in this article.

89

3 The structure of Garrigues’ nomogram
3.1 An example

Garrigues’ article shows the use of the nomogram for
the year 1939, the year the article was published.
Using the nomogram is straightforward. The year
is first divided in its century number (called “partie
séculaire”, or secular part in French) and the last
two digits of the year (merely called “Année”, that
is, year in French). Each of these parts is looked
up in columns I and 11T (figure 1) and the centers
of the two circles containing the values sought are
connected by a dashed line. This line falls on a point
in column 11, and this point is in turn connected to
the first point at the top of column 1v. This is the
Golden Number associated to 1939.

The secular part is reused in column VI, and
joining it with the Golden Number just found, a
new point is obtained in column v. This point is
connected to the point labeled 10 in column Vi1, and
this is the value of the (mean) Gregorian epact.

Now, using again the secular part in the right
part of column vIII and the last two digits of the
year in column X, we obtain a point labeled “A” in
column 1X. This point is connected to point “A”
in column XI. Finally, the intersection of the lines
connecting point 10 of column Vil and point B on
one hand, and point “A” of column XI and point C'
on the other hand, falls in the slot corresponding to
April 9, which is the date of Easter in 1939.

Before attempting to reproduce the nomogram,
we will first try to analyze its construction. This
will provide us with enough insight and will lead
seamlessly to the METAPOST code.

As we have just seen, Garrigues’ nomogram is
made of several parts, which are all fairly regular.
The areas were numbered by Garrigues in Roman
numerals I, I1, II1, ..., XVI, but in this article we will
only consider the first eleven areas, the only ones
which are concerned with the calculation of Easter.
We will analyze each of these areas in sequence.

It is important to understand the geometry of
the nomogram, because the geometry represents the
relationship between the variables.

3.2 Basic features of the nomogram

The basic features of Garrigues’ nomogram are the
following:

e some lines or sequences of points are annotated
using various functions: a set of points 1, 2, ...,
i are distributed linearly and annotated with
f(i); examples are given in figure 2;

e additions are obtained by drawing a line: the
addition is on the index values, that is, on po-

An introduction to nomography: Garrigues’ nomogram for the computation of Easter

90

TUGboat, Volume 30 (2009), No. 1

P—\@

Parlie séculaire

Partieséculaire du Milkésime

MILLESIME

Année

menls pour

18 3)

),
3

)
)
o

¥

B
b |

R 3\
—

Lestrails —.~.— et .. marquent les Aligne-

les exemples Fa gues 1959=9avril
et 11 Novembre 1939 =Samedi

S
culoy - -
alJulien Cal.Grégorien Numérodel'Année

mlmco0 a0 e o

. 53359
6470-81- 879298,

L X dome

NOMOGRAMME DU CALENDRIER
A POINTS ALIGNES
donnant, duns chacun des styles Julion ot Grégorien,
depuis Porigino de I'ére chrétienne jusqu'a l'année
84yg, ln Date de PAques, lo Jour de la Se-
maine cl, accessoiroment, les principaux éléments
du Comput : Nombre dOr, Epucte, Letire Dominicale.

Par Dasiex GARIIGUES (Toulouss).

B
- <?
p d < L A
#
5
. i
‘-.32'2195} o330 ioeayl M org f21e) sraq fe -2y
22 33 U3 N s \26./ N\27./ \28/

(lmmivspimnivéoimmov

0 A%

Figure 1: Garrigues’ original nomogram (excerpt from (Garrigues, 1939)).

sitions; this scheme is used here three times; in
each case, from two values among n values, we
obtain 2n — 1 combined values.

— for columns 1111, n = 19;
— for columns 1v—vI, n = 30;
— for columns vIII-X, n = 7.

We first consider the scheme represented on
the left of figure 2. For ¢ =0,1,..., let ¢(p;)
(0,7), c(g;) = (2,%) and c(r;) = (1,4/2) be the
coordinates of points p;, ¢; and r;, and let v(p;),
v(g;) and v(ry) be the values associated to p;,
g; and . We have of course v(p;) =1, v(g;) =
j and v(rx) = k. Let v'(p) be the value as-
sociated to the point at coordinates p, then
v'((0,4)) =4, v'((2,7)) = 4, and v'((1,:/2)) =
i. Finally, v'(c(pi)) = i, v'(c(g;)) = j, and
of (L)) — (1, i+)/2)) = i+ . The
example shows how we obtain 5 by adding 2
and 3.

On the right of figure 2, instead, we do not
add 2 and 3, but we obtain the position 5 from
positions 2 and 3. 2, 3 and 5 are index val-

Denis Roegel

ues, not the values sought themselves. So, the
scheme on the right can be used to compute
zi+; from x; and y;, but the value of z;;; need
not be the sum of z; and y;. The first case is of
course a special case of the second one, where
x; =1, y; =jand z; = k.

This scheme is used three times in Garrigues’
nomogram, with zq, yo and zy at the bottom in
the three cases. In columns I-11I (see figure 3),
x; is the sequence of Golden Numbers 4, 12, 1,
9, 17, we can take y; = z; (or any other shifted
sequence ;4 s), and z; is the sequence 18, 7, 15,
4,12, 1, 9, etc.

In columns 1v—v1 (figure 5), z; = E;(i) (Ju-
lian epact), y; = 15 — M(i) and z; = Eg(i)
(mean Gregorian epact).

In columns viii—x (figure 7), z;, y; and z; are
values associated to dominical letters.

some values are rearranged: data can be trans-
ferred from one line to another, using a map-
ping; f(i) = g(h(i)) where f(¢) is the function
on the first line, g(j) is the function on the sec-
ond line, and j = h(%) is the mapping from one

TUGboat, Volume 30 (2009), No. 1

5 e . 10 .5
.9

4 e e 8 o 4
. 7

3 . . 6

[N]

.\
w > ot

.

[\V]

1 e) e 1
e 1
0 e e 0 e 0
Di r; qi

Ts5

Ty

Z3

T2

Zo

91
e 210 e Us
e 29
e 23 o Y4
o Zv

| 26/ y3

/ Z5
* Z4 o Y2

b

o Z3

o 29 e U1

e 21

e 2y e Yo
T q;

Figure 2: Basic addition on a nomogram: direct addition (left), and addition on
indices (right). This scheme is used three times by Garrigues. The left part is a
special case of the right one with x; =14, y; = ¢, and z; = i.

line to the other; see for example figure 4.

e certain values are obtained as intersections in a
2-dimensional grid: from two lines indexed by @
and j, a grid can be constructed from the values
of f(i,7). See for instance figure 10.

3.3 Description of the components of
Garrigues’ nomogram

The columns of the nomogram will be described in
the following order, not strictly from left to right.

Columns I-III (figure 3) The purpose of the first
three columns is to obtain the Golden Number
G corresponding to a given year. The year is
identified by its secular part S and by its last
two digits A. The arrangement of columns I
and III is a consequence of the arrangement of
column 11. We therefore first need to under-
stand column 11 and then we can proceed with
columns 1 and I1I.

Column IT: The points in this column repre-
sent values of the Golden Number G, from
top to bottom: 2, 13, 5, 16, 8, 19, 11, 3,
14, 6, 17, 9, 1, 12, 4, 15, 7, 18, 10, and
then again 2, 13, ..., until 18 (the val-
ues are shown in column 1v). This is the
order of the Golden Numbers if they are
rearranged by the corresponding values of
the Julian epacts E; which are 19, 20,
(21), 22, 23, (24), 25, 26, (27), 28, (29),
0, 1, (2), 3, 4, (5), 6, (7), 8,9, (10), 11,
12, (13), 14, 15, (16), 17, (18). (Values
between parentheses do not occur as Ju-

lian epacts, hence the gaps in column 1v.)
So, G = 2 corresponds to Julian epact 19,
G = 13 corresponds to Julian epact 20,
and so on. Let c3[i] be the i-th Golden
Number value (from the bottom) in col-
umn II: we have c3[l] = 18, [2] = 7,
etc. It is easy to see that cofi] =1+ ((9+
8i) mod 19). We can also write c2[20—i] =
(5-+11(i—1)) mod 19 = (13+117) mod 19,
which shows that the Golden Numbers in-
crease by 11 (mod 19) from top to bottom.

Column I: The first column is related to the

secular parts S of the years, that is, the
digits left when removing the last two dig-
its of the year. 2008, for instance, has 20
for its secular part S. The secular parts
are arranged by their remainder by 19 and
there are therefore 19 circles with values
inside. However, the circles are not or-
dered in the usual order, that is, remain-
der 1 does not follow remainder 0, remain-
der 2 does not follow remainder 1, etc.
Instead, the secular parts are ordered ac-
cording to their contribution to the Golden
Number in column 11. So, S = 9 follows
S = 3 because 900 = 47 x 19 + 7, and
300 = 15 x 19 + 15, and 7 follows 15 in
column 11, and so on.

We refer to these circles by the smallest
values found inside, namely 3, 9, 15, 2, 8,
..., 16. Two consecutive values differ by
6 (mod 19), because adding 6 to a secu-

An introduction to nomography: Garrigues’ nomogram for the computation of Easter

92

I II 111

Figure 3: Finding the Golden Number in column 11,
using the components of the year. The Golden
Numbers G are given in the order of the Julian epacts
E;, but without gaps. We have added the values of
(100S) mod 19 (left of column 1) and A mod 19 (right
of column 111).

lar part is equivalent to adding 11 to the
Golden Number (6 x 100 = 11 (mod 19)),
and we have seen that the Golden Num-
bers in column II increase by 11 (mod 19)
from one point to the next point below.

Moreover, values such as 3, 22, 41, etc.,
are located in the same circles since they
are equal modulo 19. If we call ¢[i] the
index value on the i-th point in column I
(with point 1 at the bottom), we can see
that ¢1[i] = (22 — 6i) mod 19. For in-
stance, ¢1[17] = (22—6 x17) mod 19 = 15.

Denis Roegel

TUGDboat, Volume 30 (2009), No. 1

When the secular part is S, it goes on the
point pointg(S) =1+ ((3S + 9) mod 19).
For instance, if S = 19, 1+ ((3 x 19 +
9) mod 19) = 10, so 19 is located on the
10th point. We can check that VS < 19 :
c1[point4(S)] = S.

Column III: The last two digits of the year

are also positioned in relation with the sec-
ond column, for the same reason as for col-
umn I; we can notice that the years ap-
pear in the order (from top to bottom)
5, 16, 8, 19, 11, etc., exactly like the or-
der of the values in column II; that is,
csli] = (5 — 11¢) mod 19, where c3[i] is
the smallest value in a circle in column I1I.
For instance, on the first point, cs3[l1] =
(5 —11)mod 19 = 13. On the second
point ¢3[2] = 2, etc. The point corre-
sponding to the last two digits A of the
year is point ,(A) = 1+ ((15+ 124) mod
19) and one can check that VA < 19 :
cspoint 4(A)] = A.

Linking columns I and III: If the centers of

the circles in the first column are at coor-
dinates (0,7 — 1) where 4 is the point num-
ber (in the enumeration given above), and
if the centers of the circles in the third col-
umn are at coordinates (2, j) with j = 0 to
18 (j = 0 at the bottom), then the points
in the second column are located at coordi-
nates (1, k/2) where k = 0,1,...,36. This
is the scheme shown in figure 2.

We can now check that linking the sec-
ular part and the last digits of the year in-
deed gives the Golden Number. Figure 3
shows columns I to 111, and, for every value
of S and A, we have added the value of
(1005) mod 19 (left of column 1) and of
A mod 19 (right of column 111). We have
also added the values of the Golden Num-
ber G in column 11. We are in the condi-
tions of figure 2, where z; = (4 4 8i) mod
19, y; = (13 + 8i) mod 19, and z; = (18 +
8i) mod 19. The case ¢ = j = 0 corre-
sponds (for instance) to the year 1613, for
which G = (1613 mod 19)+1 = 18. There-
fore, the triplet (xg, yo, 2z0) is indeed a cor-
rect one. What we need to prove is that
any three aligned points make a correct
triplet. A correct triplet is of the form
(@i, Y5, %it;) (figure 2). This can be proved
by induction. If we assume that the triplet
(@i, i, zi4+;) is a correct triplet, then, since
(2341 —x;) mod 19 = (y;4+1—yi) mod 19 =

TUGDboat, Volume 30 (2009), No. 1

Q
e}

2 (19; G By
T —— Y
]g gg; /, 13 (20)
19 (26) [5@
1; Ezg; /, 16 (23)
14 (1) { .
6 (3) \ / 8 (25)
17 (4) 19 (26)
? Eg; 11 (28)
12 (9 N
FRES \ ’,’,’
15 (12) “"0‘ 3(0)
7 (14) "
18 515;) ":”0""&" 14 (1)
10 (17) K
XA 6 ()
Y ok
18R e
R ORI
‘ O
i s
6 (3) “‘\ 4 (11
7Y ‘\‘ 15 512;
i “‘\
12 (9 7 14)
13 EB N\ 18 (15)
7 (14)
18 (15) 10 (17)

1I v

93
S
Eq A7\ 15
2 (19) « 27 =~ .
. 28
13 (20) « 29 .
. ;' ~
. 5.
5 (22) N 3 .
16 (23) Nt =
SO
. N
8 (25) lg\\:\ .
19 (26) AN .1
3. ~
11 . N N\
11 (28) ERN @ o
16 N
17 S e
18«
200 i 3
14 (1) 2 - N
24 . N—V
(3)' % . ~
17 (4) - o @
28 .

&
f@@@

-

-
—
[
'S
=
»3

Figure 4: Rearranging the Golden Numbers

(column 11) according to the Julian epacts (column 1v),

but with gaps for the missing epacts.

—

ot
—
[
S
=

SoR&me

@

A

H
S

—
=
=

3
w0
b

v Y% VI

Figure 5: Finding the mean Gregorian epact

(zi41 — %) mod 19 = 8, it follows that
(Tit1,Yi» Zitj41) and (24, Yit1, Zitj41) are
also correct ones, because zj increased by
exactly as much as either the secular part
or the last digits of the year contributed
to the Golden Number, and therefore zj
must still be the Golden Number.

Garrigues could have designed the col-
umns I-11I more naturally, by putting the
Golden Numbers in their natural order,
but he chose to put them in the order of
the Julian epacts without showing the val-
ues of those.

Columns IV-VI: (figure 5) The purpose of these
three columns is to compute the mean Grego-
rian epact Eqg from the Julian epact E;.

Column V: This column is found halfway be-

tween columns 1v and vi. Column 1V rep-

resents the Julian epact E;y and column VI

corresponds to the correction 15— M, with
s S

M= (15+5—|5] — |22]) mod 30,

where |...| is the integer part. M is Gauss’

(column V) using the Julian epact (column 1v)

and the value of M (column vi1). If we add E; to

15 — M, we obtain the mean Gregorian epact Fg.
Fori =0,E; =17, M = 9,15 —- M = 6 and

Ec = E;j — (M — 15) = 23. When M increases, Eg
decreases. When F; decreases, Eq decreases too. The
left column shows z; = (17 —) mod 30, the right
column shows y; = (6 — i) mod 30 and the middle
column shows z; = (23 — i) mod 30.

correction (Gauss, 1816). The mean Gre-
gorian epact Eg is given by Eg = (E; —
(S —1S/4] — [(85+13)/25])) mod 30 =
(E; + (15 — M)) mod 30. We call Eg the
“mean Gregorian epact”, because it is the
epact considered without the corrections
for epacts 24 and 25.

The real Gregorian epact Eg sometimes
differs from the value of the mean Grego-
rian epact FEg which is obtained from the
nomogram. Eg = Eg+1 if (Eg = 25 and
G > 11) or (Eg = 24). This shifts the

An introduction to nomography: Garrigues’ nomogram for the computation of Easter

94 TUGboat, Volume 30 (2009), No. 1

paschal full moon one day earlier. We will Eg ic
come back to these exceptions when exam- > 25
ining the Easter area between columns VII §§, /] ;‘;
and XI. 5 Iz‘ 28
Column Vv can therefore be seen as the 2 'z‘II 29
sum of columns 1v and v1, and will be the 7 ,“‘l'z 1
mean Gregorian epact Fg. This column HR lz'll‘"l 2
: d IR """" "' 3
has 58 points, that is, as many as there are NN ,'l','i"'l" 1
combinations between columns Iv and VI. ? "l"'o"l"" 5
; _ 16 0,//,'0’0'"' 6
The values of the epact are shown in col o ",","[”0'," ;
umn VII. Epact 0 or 30 is usually written 12 0'5‘:““‘“:’%‘ 8
) 2 .':0:""‘0‘."0"." ’ 9
EIN%995%20:%°0.96% 10
Column IV: This column only serves for an J‘ 6‘:2:;‘:‘:‘:2‘:‘:‘:‘:’:’::0 11
addition with the value represented in col- 7 "::i:i::::::::::::::’: ii
umn V1. There are 30 points in column 1v » ‘Q:Q:Q:Q:Q:Q:.:.:‘ 14
if one includes the gaps. As mentioned > “:::::’:O:Q:” 15
above, the point numbers correspond to i ‘Q‘:‘:Q“’: i;’
: : SRR
the Julian epacts on a 1-30 scale (hence s “““ 18
; s \“‘$ 19
the gaps). Each point corresponds to a E ““ 20
value of the Julian epact, but the points 1 “ 21
are labeled with the Golden Number, since ? N ;i
there is an exact correspondence between h B
them. When the Golden Number is G, the ﬁ g
Julian epact E; is (11G — 3) mod 30 and 5 =
Ej is on point 1 + ((17 + 29E ;) mod 30) * i
hence on point 1 + ((20 + 19G) mod 30). v

G = 1 corresponds to point 10, G = 2 to

point 29, G = 3 to point 18, G = 4 to Figure 6: Rearranging the mean Gregorian epacts
point 7, etc. The first point on the top uniquely in column vir.

of column 1v corresponds to E; = 19 (for

G = 2). The empty slot above it would space. It was certainly this column which
correspond to Ju.har.l epact 18, but such a led Garrigues to stop the secular parts at
value does not exist in the Julian calendar. 84. because S = 85 would have had to

The second point from the top corresponds be added to the circle with S = 15 and
to By = 20 (for G = 13), the second empty
slot to F; = 21 (which does not exist), the
next point is £y = 22 (for G = 5), and so
on, until Julian epact 17 (for G = 10) at
the bottom.

So, column 1v shows the Golden Num-
ber, but at positions corresponding to the
Julian epacts.

Column VI: Th 1 ts S of th
otumn ¢ sectiiar pat S. . Ot the year, Column VII: This column is like column v, but it
between 15 and 84, are positioned accord- ’

ing to the values of M = (1545 — | S/4] — will be used for the right-hand side of the draw-
(85 + 13)/25]) mod 30; 30 points are in ing. The values do not start at the bottom, but
’ this doesn’t matter, as we have some freedom
in the positioning of the points.

S = 16, breaking the evenness of the dis-
tribution of S. Nevertheless, the nomo-
gram could easily be extended if necessary.

This column is used together with the
Golden Number G (column 1v) to obtain
the epact (column v). The Julian calendar
corresponds to M = 15 which goes with
S =67 and 69 in the Gregorian calendar.

this column. The first point at the top

corresponds to M = 8, the second point
to M = 7, etc., until M = 9 at the bot- Columns VIII-X: (figure 7) The purpose of these

tom (for S = 54, 55, and 56). If S cor- three columns is to obtain the dominical letter
responds to a value M, it is put on the of the year, using the secular part S and the
(1 + (M + 21) mod 30)-th point from the last two digits A of the year.

bottom. 30 different circles are put along Column IX: This column gives the series of
that column, left and right of it, to save dominical letters DL from bottom to top,

Denis Roegel

TUGboat, Volume 30 (2009), No. 1

Year

—~ e~ —~
IS
J=o==

’
/

= ot

,\,\,\AA,\,\A,\
S =
BEPZoozZkerZ

= Ot

H
Dom. L H=QrmQa0m=aswa

Figure 7: Finding the dominical letter (column 1x)

of a year, using its components S and A. The 1st of
March 1900 was a Thursday (d.l. = G). Consequently,
the 1st of March 2000 was a Wednesday (and d.l. =
A). The 1st of March 2100 will be a Monday, and so
on. If the vertical scale in column V111 is such that

the days of the week go up from top to bottom, the
centuries will be arranged as on the figure and the
dominical letters must go in the opposite direction. In
the Julian calendar, there is always a gap of 1 between
two centuries. This figure shows the second dominical
letters of the years 100S over the points of column viii,
with the convention A — 0, ..., G — 6. The first line
corresponds to 2008 (for instance) and zo = xo + Yo-

starting with FE. Each letter is associated
with a number: A — 0, ..., G — 6.

Column VIII: For a year Y = 1005 + A, col-
umn VIII corresponds to the day of the
week for the 1st of March of year 1005, and
hence also to the second dominical letter of
year 1005 (the first dominical letter is for
January and February). The case where
March 1st is a Wednesday is put at the
bottom and corresponds to the dominical
letter A (because the letter associated with
March 1st is D, and the previous Sunday is
on the letter A). This is the case for 1600
and 2000, for instance. In the Julian calen-
dar, since 100 years make up 36525 days
(= 6 mod 7), advancing 100 years means
going one day backwards in the week and
one letter forward in the dominical letters.
This is shown in column VIII on the left
when we go up when the century increases.

95

In the Gregorian calendar, there are ei-
ther 36525 days or 36524 days in a century.
Hence, we go up by two days, except when
going from S = 19 to 20, from S = 23 to
24, etc.

Column X: The values on the right of col-
umn X show the second dominical letters
in the 21st century, with the same conven-
tions as in column 1x. 2000, for instance,
had dominical letter A, and the last digits
0 of 2000 fall at position 0 (figure 7), 0 be-
ing associated with the dominical letter A.

Since the value associated at the bottom
of column vI11 is 0, and since the first value
in column IX is 4, the years such as 2008
(with DL equal to E) are also put at the
bottom of column X.

We can see how the other values are laid
out: 365 days are a multiple of 7 plus 1.
So every time we have a new year, we add
one to the day of the week, except when
we pass from a year like 4n — 1 to 4n (for
instance from 2007 to 2008). The year A
goes on point 14+ (3 — A — |A/4]) mod 7
(counted from 1 at the bottom).

Linking columns VIII and X: Column VIII
corresponds to the day of the week of the
first March of the first year with secular
number S, and column X corresponds to
the shift introduced by the year within the
21st century. Adding the two gives the day
of the week for the 1st of March of the year
considered, because 2000 is at the bottom
of column VvIII, and hence gives the second
dominical letter of the year. The values of
column 1X follow.

Column XI: This column reproduces the values of

column 1X, but avoiding the duplication.

Easter area: This is a table giving Easter using

the mean Gregorian epact Eg and the domini-
cal letter DL. Points B and C' are used to draw
lines towards the epact and dominical letter val-
ues, and the intersections fall in a slot. There
are 35 possible days for Easter and therefore 35
slots in this area. Basically, the epact gives us
the day of the pascal full moon, and the domini-
cal letter gives us the day of the week of that
full moon. The two together give the date of
Easter. There are five Easter dates correspond-
ing to each dominical letter.

This table must take the epact exceptions
into account. As we have seen earlier, the value

An introduction to nomography: Garrigues’ nomogram for the computation of Easter

96
¢
¢
B
e A
e A
AT i F
E
G D
¢
F B
A
) G
F
0 E
¥ 4
IX §
Q
(=]

Figure 8: Rearranging the dominical letters for use in
the Easter area (column XI).

of the mean Gregorian epact is subject to a cor-
rection in certain cases. If there are no correc-
tions, a (mean) epact value of 24 corresponds to
a paschal full moon on April 19, and a (mean)
epact value of 25 corresponds to a paschal full
moon on April 18. The corrections have as an
effect to always shift the epact 24 full moon to
April 18, and to move the epact 25 full moon
to April 17 only when the Golden Number is
greater than 11. This means that the cases
Eg =24 and (Eg = 25) A (G < 11) correspond
to the same paschal full moon (April 18), and
this is what is shown in figure 10. The only
exception in the Easter area table is therefore
the case (Eg = 25) A (G > 11). In this case,
the new paschal full moon is April 17, and this
will only cause the date of Easter to move if
April 18 happened to be a Sunday, hence if the
dominical letter was C'.

So, the table would give the date of Easter
April 25 when the mean Gregorian epact is 25,
the dominical letter is C, and the Golden Num-
ber is greater than 11. Between 1583 and 10000,
this occurs only in 1954, 2049, 2106, 3165, 3260,
3317, 3852, 3909, 4004, 6399, 6551, 7086, 7143,
7238, 8202, 8297, 8354, 8449, and 9041. In these
cases, the date of Easter should therefore be
April 18 and not April 25 and this is what Gar-
rigues indicated in a footnote.

4 Reproducing the nomogram with
METAPOST

Reproducing Garrigues’ nomogram in METAPOST
is easy, once we have a good understanding of its
structure. The complete reconstructed nomogram
is shown in figure 9. We will in turn consider the
positions of the points, the connections, the labels,
and the Easter grid (between columns vII and XI).

Denis Roegel

TUGDboat, Volume 30 (2009), No. 1

4.1 METAPOST

METAPOST is the graphical programming language
accompanying TEX. Graphics are expressed as pro-
grams where various points, lines and labels are de-
fined. We will not describe the language here, and
we refer the reader to the main references (Goossens,
Mittelbach, Rahtz, Roegel, and Voss, 2008; Hobby,
2008). However, in the sequel, we will explain some
of the interesting or particular constructions used in
our code.

4.2 KTEX labels with the latexmp package

TEX labels are usually included in METAPOST us-
ing the btex ... etex construction, but this is a
very inefficient solution, especially when labels are
parameterized. A much better solution is to use the
latexmp package which provides a macro textext
taking a string representing some IATEX code. This
is what we have been using throughout our code.

4.3 Auxiliary functions

The following macros are used in several places of
the nomogram code and are described first.

The first macro DL (defined with def and taking
i as a parameter) transforms an integer ¢ from 1 to 7
into a character from A to G and is used to display
the dominical letter:
def DL(expr i)=char(64+i) enddef;

The macro gn_epact returns a pair made of the
Golden Number and the Julian epact associated to
the i-th point in column 11 (see figure 4), 1 being
at the bottom. For i = 2, for instance, this macro
returns (7,14). The macro is defined with vardef,
which is a variant of def making it possible for the
G and JE variables to have only a local scope after
their save declaration.
vardef gn_epact(expr i)=

save G,JE;

G=1+((9-11i) mod 19);

JE=(11G-3) mod 30;

(G,JE) % value returned
enddef;

The macro gn_epactl returns the value of the
Golden Number and the point in column 1v associ-
ated to the i-th point in column 11, 1 being at the
bottom (see figure 4). For ¢ = 2, for instance, this
macro returns (7,4), because it is the 4th point of
column 1v which is associated to G = 7 (the second
point being empty).
vardef gn_epactl(expr i)=

save G,JE,JEL;
G=1+((9-11i) mod 19);
JE=(11G-3) mod 30;
JEL=30- ((JE+12) mod 30);

TUGboat, Volume 30 (2009), No. 1

Year

97

Year

wQ

A

aoEEar

Dom. L. & = Q »

Figure 9: The complete METAPOST version of the nomogram.

(G,JEL) % value returned
enddef;

whatever is a very useful METAPOST instruc-
tion which represents a yet undefined and unnamed
scalar value. It is then possible to solve linear equa-
tions very easily, for instance finding point P such

— — —
that OP = OA + xd = OB + y¥, and y being the
unknowns, with

0OP=0A+whatever*u=0B+whatever*v;

0P, 04, 0B, u, and v being points (or complex values).

Interestingly, the two values of whatever (cor-
responding to the unknowns = and y) are usually not
equal, which is why whatever should not be viewed
as the name of a variable. In the previous exam-
ple, we were more interested in the position of P
than in the values of z and y, and P is merely the
intersection of two lines.

In our code, we use the macro whateverpair
which is the equivalent of whatever for pairs. It
defines a “fresh” pair of numerical values (which need
not be equal, despite the way they are defined, for
the reason given above).

def whateverpair=
(whatever,whatever)
enddef;

The next three macros are defined for format-
ting purposes. The first macro ep_st formats the
epact value so that it fits on two characters, and
the value 0 is displayed as ‘x’. textext is the main
macro provided by the latexmp package.

def ep_st(expr i)=
if i=0:
textext ("\star")
elseif i<10:
textext (""&decimal (i))
else:
textext (decimal(i))
fi
enddef;

The second macro gstring is somewhat simi-
lar, but only formats a one or two-digit value with a
two-digit width, forcing the value to have the same
vertical size as an opening parenthesis, for alignment
purposes.

def gstring(expr i)=

if i<10:
textext ("\vphantom{ (}"
&decimal (i))
else:

textext ("\vphantom{ (}"&decimal(i))
fi
enddef;

An introduction to nomography: Garrigues’ nomogram for the computation of Easter

98

The third macro tddec (two-digits decimal) for-
mats a one or two-digit value as two digits, by pos-
sibly adding a 0 in front of it.
def tddec expr i=

if i<10: "0" & decimal(i)
else:

decimal(i)

fi
enddef;

4.4 Defining the points

In this section, we define the various points used in
the construction of the nomogram.

4.4.1 Variables

For the points in the different columns, we mainly
use two arrays of pairs:

pair col[][],col[lall;

The points in column 1 will be stored in the
variables col[1][1], col[1][2], col[1][3], etc.
The points in column 11 will be stored in col[2] [1],
col[2] [2], col[2] [3], etc. In METAPQOST, we can
write col1[1] instead of col[1] [1], and this will
simplify a little bit our code.

The second array (col[Ja[]) is only used for
the centers of the circles which are along column V1.

4.4.2 First points

The points in columns I to VII are set easily. The first
and third columns have 19 points each, the second
and fourth columns have 37 points each, column v
has 58 points and columns VI and VII both have
30 points. All these points are linearly set and the
points in columns IT and v are obtained by bisecting
segments linking points from adjacent columns.

The first three columns are straightforward to
set, using a height constant defined elsewhere (and
not described in this article):

for i:=1 upto 19:
c0l1[i]=(0, (i-1)*height/18);
endfor;
for i:=1 upto 19:
c013[i]=(40u, (i-1) *height/18);
endfor;
for i:=1 upto 37:
col2[i]=
((xpart(col1[1])+xpart(col3[1]))/2,
.5%(i-1)*height/18);
endfor;

Column 1V is a bit more tricky, and for each of
the 37 points in column 11, the macro gn_epactl re-
turns a pair made of the Golden Number associated
to this point, and of the corresponding point in col-
umn IV. The Golden Number is not used here. The
value of col4 is then set:

Denis Roegel

TUGDboat, Volume 30 (2009), No. 1

for i:=1 upto 37:
E:=ypart(gn_epactl(i));
c0l4[E]=(60u, (E-1) *height/29) ;

endfor;

Columns V to VII are also easily set. In the case
of column VI, additional points col6a are defined for
the positions of the circles offset in that column. The
points in column VII are shifted upwards by a certain
amount (here 20u, u being here equal to 1 mm).

for i:=1 upto 30:
col6[i]=(110u, (i-1)*height/29);
endfor;
for i:=1 upto 58:
colb5[i]=
((xpart(cold[1])+xpart(col6[1]))/2,
.5x(i-1)*height/29);
endfor;
for i:=1 upto 30:
if i mod 2=0:
col6alil=col6[i]-(8u,0);
else:
col6alil=col6[i]+(8u,0);
fi;
endfor;
for i:=1 upto 30:
col7[1]=(130u,
20u+(i-1)*(height-20u)/29);
endfor;

4.4.3 Easter table

The whole Easter table is obtained by setting points
B and C, as well as four corners of the table. B and
C can be positioned freely.
vardef define_easter_table=
save corner,p;pair corner[];
C=(xpart(col7[1])+10u,-10u);
B=(xpart (C)+150u,ypart (col7[5]));

We define two additional points in column ViI,
one above the 30th (col7[31]), and one below the
first (col7[0]):

c0l17[1]-col17[0]=col7[31]-co0l7[30]
=col7[2]-col7[1];
The shape of area XI is defined by its four corners:

corneri=whatever[col7[0],B]

=C+whatever*up;
corner3=.3[B,col7[31]];
corner2=(C--corner3) intersectionpoint

(B--cornerl);

corner4=vhatever[B,col7[31]]

=C+whatever*up;

Then, the whole area determined by the points
cornerl, corner2, corner3, and corner4 is divided
into eight slices, only seven of which will be drawn
(figure 10). The first slice contains the Easter dates
March 28, April 4, 11, 18 and 25. The second slice

TUGboat, Volume 30 (2009), No. 1

contains the Easter dates March 27, April 3, 10, 17,
and 24, and so on. The eighth slice is not drawn,
but defined for practical reasons. These eight slices
are limited by nine boundary lines. The first seven
slices correspond to the dominical letters C, B, A,
G, F, FE, and D shown in column XI:

The slices are represented using two two-dimen-
sional arrays, s[11[] and s[Jr[]. The Easter area
is divided into slots, and each slot is a quadrilateral.
Two of the vertices of each quadrilateral are located
on one slice boundary, and the two others are located
on another boundary. If we now consider a bound-
ary between slices, which is a (more or less) vertical
segment, this boundary contains points from which
some segments go to the left, and other go to the
right (more or less). In the former case, the points
are given by the array s[11[]1 (‘I for left), and in
the latter case by the array s[1r[] (‘r’ for right).
All the boundaries contain 10 points. The points of
the second boundary, for instance, are s210, s211,
s212, s213, s214, s215, s2r0, s2rl, s2r2, s2r3,
s2r4, s2r5. s210 is equal to s2r0, and s215 to
s2rb.

The first part of the code defines the beginnings
and ends of each boundary line:

for i=1 upto 9:
s[i]10=s[ilr0
=(((i-1)/8)) [corner4,corner3];
s[i]15=s[i]xr5
=whatever [cornerl,corner2]
=whatever([s[i]10,C];
endfor;

We then divide each of the eight boundaries
four times. 4 is the boundary number and goes
from left to right. Eight vertical lines enclose the
35 Easter slots. j varies over the horizontal inner
divisions. A division is made so that the line going
through B and the division falls exactly between two
epact values in column VII:

for i=1 upto 8:
for j=1 upto 4:
p:=30-i-(j-1)%7;
if i<8:
% division leaving to the right
% of vertical line i
s[i]lr[jl=(s[i]10--s[i]15)
intersectionpoint
(B--.5[col7[pl,col7[p-111);
fi;
if i>1:
% division leaving to the left
% of vertical line i
s[i11[j1=(s[1]110--s[i]15)
intersectionpoint
(B--.5[col7[p+1],col7[pll);

99

fi;
endfor;
endfor;
enddef;

Finally, the points in column XI are obtained
from the upper boundary of the Easter area. They
are put on a line parallel to (corner3, corner4) and
in the middle of the slices (as seen from C).
vardef define_dominical_letters=

save shift;pair shift;
shift=(3u,3u);
for i=1 upto 8:
col11[i]
=whatever[C, .5[s[i]r0,s[i+1]10]]
=whatever[s1rO+shift,s810+shift];
endfor;
enddef;

4.4.4 Last points

The points in columns VIII to X are determined as
follows:
for i=1 upto 7:
col8[i]=s810
+(15u,10u+(i-1)*ypart (s110-s810)/7);
c0110[i]l=co18[i]+(50u,0);
endfor;
for i=1 upto 13:
col9[i]=(xpart(col8[1]+col10[1])/2,
ypart(col8[1])
+(i-1)*(ypart(col8[7]
-col8[11))/12);
endfor;

4.5 Drawing the connections

Connections between columns II and IV are drawn
by the following code:
for i:=1 upto 37:
draw col2[i]
--col4[ypart(gn_epactl(i))];
endfor;
Connections between columns v and VII are
drawn by the following code:
for i:=1 upto 58:
draw col5[i]--col7[1+((i-1) mod 30)];
endfor;
Connections between columns 1X and XI are ob-
tained by the following code:
for i=1 upto 13:
draw col9[i]--co0l11[1+(13-i) mod 7];
endfor;

4.6 Drawing the circles

Double circles are drawn using a straightforward
macro not described here. For column 1, the circles
are drawn with:

for i:=1 upto 19:

An introduction to nomography: Garrigues’ nomogram for the computation of Easter

100

s210

corner4

o
Q

NN NN NN
* © 00~ O Tt

00 -1 O U= W N

! corner?2

cornerl

TUGDboat, Volume 30 (2009), No. 1

corner3

s7r2

Figure 10: The Easter area, for the determination of Easter using the dominical
letter and the mean Gregorian epact. This table shows one exception (note (a)),
corresponding to the case F¢ = 25, G > 11 and DL = C. The cases Eg = 24 and

(Eg = 25) A (G > 11) are gathered in the table. The figure shows that DL = A and

Eg = 10 puts Easter on April 9.

draw_dbl_circle(.9diamil,diaml,coll1[i]);
endfor;

The circles in the other columns are obtained
similarly.

4.7 Labeling the points

For the labels of columns 1, 111 and VI, we first build
special strings which will be used later to typeset
the labels. These strings are stored in the following
variables:

string col[][]st;

4.7.1 Preparing the labels

Labels in the first column are defined as follows.
We go through every secular part from 0 to 84 and

Denis Roegel

find the position to which it belongs, using the for-
mulee found earlier. There are two cases, either the
string was not yet defined (in which case unknown
coll[p]lst is true and we assign its first value, or
it was already defined, and we append a new value
with a comma in between. The comma will be useful
later, when the string is analyzed.

vardef define_col_one_labels=
save p;
for i=0 upto 84:
p:=1+(9+31i) mod 19;
if unknown coll[p]lst:
coll[plst=decimal(i);
else:
coll[plst
:=coll[plst & "," & decimal(i);

TUGboat, Volume 30 (2009), No. 1

fi;
endfor;
enddef;

Labels in the third and sixth columns are de-
fined similarly:

vardef define_col_three_labels=
save p;
for i=0 upto 99:
p:=1+(15+12i) mod 19;
if unknown col3[plst:
col3[p]lst=decimal(i);

else:
col3[plst
:=col3[plst & "," & decimal(i);
fi;
endfor;
enddef;

In the sixth column, we use the value of the
Gauss constant M and the computation is only done
for values of the secular part between 15 and 84,
since earlier centuries lead to a constant value of M.

vardef define_col_six_labels=

save p,M;

for i=15 upto 84:
M:=(15+i-floor(i/4)

-floor((8i+13)/25)) mod 30;
p:=1+(M+21) mod 30;
if unknown col6[plst:
col6[p]lst=decimal(i);

else:
col6[plst
:=col6[plst & "," & decimal(i);
fi;
endfor;
enddef;

4.7.2 Column I

Once the strings for the labels have been defined,
these strings can be processed and the labels can be
drawn. The macro processing the labels in columns 1
and I1T is col_one_three_f. This macro, as well as
col_six_f, first counts the number of elements in
the list parameter and stores it in n. It does so
by analyzing the comma-separated string 1ist with
scantokens, which evaluates a string as if it were
normal METAPOST code.

vardef col_one_three_f (expr list,l,c)=
save n,i;n=0;
for $=scantokens(list):
n:=n+1;
endfor;
i=0;
for $=scantokens(list):
i:=i+1;
label (textext (if c=3: (tddec $)
else: decimal $ fi)

101

scaled .6,
col[c][1]

+((if c=3: 2.5u
else: 2u
£i,0)
rotated

(180-(i-1)*360/n)));
endfor;
enddef;

Now, the labels are drawn with:

for i=1 upto 19:
col_one_three_f(coll[ilst,i,1);
endfor;
label(textext("I"),col1[1]-(0,10u));
label (textext ("S") scaled 1.5,
col1[19]1+(col1[19]-col1[18]));

4.7.3 Column III

The labels of column 111 are drawn using the same
macro as for column I:

for i=1 upto 19:
col_one_three_f(col3[i]lst,i,3);
endfor;
label (textext ("III"),co0l3[1]1-(0,10u));
label(textext ("A") scaled 1.5,
c013[19]+(col3[19]-col3[18]));

4.7.4 Column IV

The labels in column 1v are drawn using the macro
gn_epactl seen above.
It should be noted that some of the values here
are written twice, but this causes no harm.
pair GNE;
for i:=1 upto 37:
GNE:=whateverpair;
GNE=gn_epactl(i);
label.rt(gstring(xpart(GNE)),
col4[ypart (GNE)]);
endfor;

4.7.5 Column VI

The labels in the circles of column VI are drawn
by processing the strings col6[]st which were pre-
pared above. The postprocessing is done using the
macro col_six_f:
vardef col_six_f (expr list,l)=
save n,i;n=0;
for $=scantokens(list):
n:=n+1;
endfor;
i=0;
for $=scantokens(list):
i:=i+1;
if n>1:
If there is more than one value, the extreme
values are put at 2u below and above the center,

An introduction to nomography: Garrigues’ nomogram for the computation of Easter

102

and the other values (if any) are spread evenly in-
between:
label (textext(decimal $) scaled .7,
col6a[l]
+(0,-2u+(i-1)*(4u/(n-1))));
else:
If there is only one value, it is centered; there
is only one such case:

label (textext(decimal $) scaled .7,
col6al[ll);
fi;
endfor;
enddef;
The labels are then drawn with:
for i=1 upto 30:
col_six_f(col6[ilst,i);
endfor;
label(textext ("VI"),co0l6[1]-(0,10u));
label (textext ("S") scaled 1.5,
col6[30]1+2(col16[30]-co0l6[29]));

4.7.6 Column VII

In this column, we merely output the value of the
epact.
for i:=1 upto 30:
label.rt(ep_st((24-i) mod 30),col7[il);
endfor;
label (textext ("VII"),col7[1]-(0,20u));
label.rt(textext ("Epact:") rotated 90,
col7[1]1-(0,10u));

4.7.7 Column VIII

In this column, there are labels for the Julian calen-
dar on the left, and labels for the Gregorian calendar
on the right. In the first case, there are always three
values of S in each circle, and the labels can be pro-
duced by a simple loop.
for i=1 upto 7:
for j=1 upto 3:
vi=((4+1i) mod 7)+(j-1)*T7;
label (textext(decimal(v)) scaled .5,
col8[i]-(col_shift_eight_a,0)
+((0,1.4u)
rotated ((j-1)*120)));
endfor;
endfor;

For the Gregorian calendar, there are some ir-
regularities, and we have decided to explicit each
line of the labels. The following lines could be pa-
rameterized, but it’s not worth it.

secular_year(1,1) (16,20,24);
secular_year(1,2) (28,32,36,40);
secular_year(1,3) (44,48,52,56);
secular_year(1,4) (60,64,68,72);
secular_year(1,5) (76,80,84);

Denis Roegel

TUGboat, Volume 30 (2009), No. 1

secular_year(2,1) (17,21);
secular_year(2,2) (25,29,33,37);
secular_year(2,3) (41,45,49,53);
secular_year(2,4) (57,61,65,69) ;
secular_year(2,5) (73,77,81) ;

The macro secular_year is defined as follows.
It distributes all lines evenly, since there are always
five of them:

vardef secular_year(expr i,j) (text sec)=
save vd;
% vertical shift of the first line
vd=4u;
label (textext (sval(sec) (decimal))
scaled .5,
col8[2i-1]+(10u,vd-(j-1)*.5vd));
enddef;

The sval macro builds a string with space-
separated values:

vardef sval(text sec) (text f)=
save s;string s;
for $=sec:
if unknown s:
s=f §;
else:
s:i=s & " " & f$;
fi;
endfor;
s
enddef;

4.7.8 Column IX

In this column, we show all dominical letters result-
ing from the combination of the two parts of the
year.

for i=1 upto 13:

label.rt(textext (DL(1+(3+i) mod 7)),
col9[il);

endfor;

label (textext ("IX"),co0l9[1]1-(0,10u));

label.rt(textext("Dom. L.") rotated 90,

col9[1]-(0,10u));

4.7.9 Column X

The labels in column X fit in rounded rectangles.
In order to produce these “rectangles’, we use the
rboxes package and draw a rectangular box with
rounded corners. There are seven boxes, rbl to rb7:

rbr=rbox_radius;

rbox_radius:=15pt;

for i=1 upto 7:
rboxit.rb[i]("");
rb[i].c=col10[i];
rb[i] .dx=9u;rb[i] .dy=3.3u;
unfill bpath(rb[i]);
drawboxes(rb[i]);

TUGboat, Volume 30 (2009), No. 1

endfor;
rbox_radius:=rbr;

Once the boxes are drawn, their contents can
be added. Each box has three lines, the upper and
lower ones extend on the whole width, and the mid-
dle one is split in two parts, one left of the center,
and the other one right of the center.

The upper and lower lines are produced with
the yn (year number) macro, whose first parameter
is the point number, and whose second parameter is
the line number within the label, the first line being
here at the top. The middle line is produced with
yn_left and yn_right.

yn(1,1)(3,8,14,25,31);
yn_left (1) (36,42);
yn_right (1) (53,59);
yn(1,3)(64,70,81,87,92,98);

Then, we have the three macros for setting a
year.

yn puts the labels at symmetric positions in the
two cases in which it is called.

vardef yn(expr i,j) (text y)=
save vd;
% vertical shift of the first line
vd=2u;
label(textext(sval(y) (tddec)) scaled .5,
col10[i]+(0,vd-(j-1)*vd));
enddef;

yn_left and yn_right just put the label at
symmetric positions on the left and right of the cen-
tral point selected by i:

def yn_left(expr i) (text y)=
label.rt(textext(sval(y) (tddec)) scaled .5,
col10[i]1+(-10u,0));
enddef;

def yn_right(expr i) (text y)=
label.lft(
textext(sval(y) (tddec)) scaled .5,
col10[i]+(10u,0));
enddef;

4.7.10 Column XI

In this column, we output the seven dominical let-
ters.

for i=1 upto 7:
label.ulft(textext (DL(1+(10-i) mod 7)),
coll1[il);
endfor;
label (textext ("XI")
rotated (angle(s1r0-s810)-90),
.6[col11[8],c0l11[711);

103

4.8 Drawing the Easter grid

Once the various slices of the Easter grid have been
defined, the grid can be drawn easily. We first draw
the slots, then the labels.

4.8.1 The slots

The Easter slots are drawn with the following macro:

vardef draw_easter_table_slices=
save oldpen;
oldpen=savepen;
% divisions between slices:
for i=1 upto 8:
draw s[i]10--s[i]15;
endfor;
% external boundary:
draw s815--s810--s110--s115--cycle;
% internal divisions:
for i=1 upto 7:
for j=1 upto 4:
draw s[ilr[jl--s[i+1]11[j];
endfor;
endfor;
% March/April divisions:
pickup pencircle scaled 2pt;
draw s813--s7r3--s713--s6r3--s613--
sbr3--s514--s4r4--s414--s3ré--
s314--s2r4--s214--s1r4;
pickup oldpen;
enddef;

4.8.2 Easter grid labels

For the labels inside the Easter grid, we first define
an auxiliary macro. This macro takes a slice number
x and a position y within the slice, and puts the label
lab in the middle of the corresponding slot:

def label_easter_slot(expr x,y,lab)=
label(lab, .5[s[x]rly],s[x+111[y+111);
enddef;

Now, the main macro filling the Easter grid
slots is the following. We first fill every slot with
the appropriate number, and add a special case for
April 25th (Eg = 25, G > 11 and DL = C):

vardef draw_easter_table_labels=
save laban,march,april,note,sl,j;
string march,april,note;
% 35 dates from March 22 till April 25
for i=1 upto 35:
sl:=1+(7-(i mod 7)) mod 7;
j:=4-floor((i-1)/7);
label_easter_slot(sl,j,
textext (if i=35:"25 (a)"

else:
decimal (if i>10:
i-10
else:
i+21

An introduction to nomography: Garrigues’ nomogram for the computation of Easter

104
fi)
fi)
if i<8:
scaled .7
fi);
endfor;

Then, we need to add two braces, as well as the
footnote. This is done as follows:
laban=angle(s810-s815) ;
march="$\underbrace{\kern" &
decimal (arclength(s813--s815)-5) &
"bp}_{\hbox{MARCH}}$";
april="$\underbrace{\kern" &
decimal (arclength(s810--s813)-5) &
"bp}_{\hbox{APRIL}}$";
note="\footnotesize "&
"\parbox{4cm}{\raggedright "&
"Note (a)...}";
label (textext (march) rotated laban,
.5[s813,s815]
+3u*unitvector ((s810-s815)
rotated -90));
label(textext(april) rotated laban,
.5[s810,s813]
+3u*unitvector ((s810-s815)
rotated -90));
label (textext(note) ,C+35u*right);
enddef;

5 Conclusion

We have eventually completed the analysis and re-
construction of Garrigues’s nomogram. To some ex-
tent, the reconstruction was straightforward, and
could have been achieved without a deep under-
standing of the nomogram, only by a mere observa-
tion. However, a good reconstruction almost always
benefits from an initial analysis, and is useful if the
structure has to be explained. Such conclusions had
already been made in a previous work on a complex
drawing in descriptive geometry (Roegel, 2007).

6 Acknowledgements

It is a pleasure to thank Damien Wyart who, many
years ago, drew our attention to Garrigues’ article
and led us to redraw this nomogram.

References

Bien, Reinhold. “Gauf and Beyond: The Making
of Faster Algorithms ”. Archive for history of
exact sciences 58(5), 439-452, 2004.

Dershowitz, Nachum, and E. M. Reingold.
Calendrical calculations. Cambridge:
Cambridge University Press, 2008. 3'4
edition.

Denis Roegel

TUGDboat, Volume 30 (2009), No. 1

d’Ocagne, Maurice. Traité de nomographie :
Etude générale de la représentation graphique
cotée des équations a un nombre quelconque
de variables, applications pratiques. Paris:
Gauthier-Villars, 1921. 2°¢ edition (first edition
in 1899).

Garrigues, Damien. “Généralisation de la formule
pascale de Gauss: Nomogramme du Calendrier
perpétuel”. Annales francaises de chronométrie
pages 47-60, 1939.

Gauss, Karl Friedrich. “Berechnung des
Osterfestes”. Monatliche Correspondenz
zur Beforderung der Erd- und Himmels-Kunde,
herausgegeben vom Freiherrn Franz Xavier G.
von Zach 2, 121-130, 1800. In: (Gauss, 1973),
volume 6, pages 73-79.

Gauss, Karl Friedrich. “Berichtigung zu dem
Aufsatze: Berechnung des Osterfestes. Mon.
Corr. 1800 Aug, S. 121”. Zeitschrift fir
Astronomie und verwandte Wissenschaften,
herausgegeben von B. von Lindenau und J. G.
F. Bohnenberger 1, 158, 1816. Correction of
(Gauss, 1800). In: (Gauss, 1973), volume 11/1,
page 201. Notes by Alfred Loewy.

Gauss, Karl Friedrich. Werke. New York: G. Olms,
1973. Reprint of the 1863-1933 edition.

Goossens, Michel, F. Mittelbach, S. Rahtz,

D. Roegel, and H. Voss. The BTEX Graphics
Companion, Second Edition. Boston:
Addison-Wesley, 2008.

Hobby, John. “METAPOST: A User’s Manual”.
2008. Updated version of the original manual;
available at http://tug.org/docs/metapost/
mpman . pdf.

Knuth, Donald Ervin. Fundamental Algorithms,
volume 1 of The Art of Computer
Programming. Reading, Massachusetts:
Addison-Wesley, 1997.

Roegel, Denis. “The missing new moon of A.D.
16399 and other anomalies of the Gregorian
calendar”. 2004. Unpublished.

Roegel, Denis. “A complex drawing in descriptive
geometry”. TUGboat 28(2), 218-228, 2007.

¢ Denis Roegel
LORIA —BP 239
54506 Vandoeuvre-lés-Nancy cedex,
France
roegel (at) loria dot fr
http://www.loria.fr/"roegel

TUGDboat, Volume 30 (2009), No. 1

IXTEX3 News

Issue 1, February 2009

Welcome to IATEX3

Momentum is again starting to build behind the
ETEX3 project. For the last few releases of TEX Live,
the experimental programming foundation for KTEX3
has been available under the name expl3. Despite large
warnings that the code would probably change in the
future, we wanted to show that there was progress
being made, no matter how slowly. Since then, some
people have looked at the code, provided feedback,
and — most importantly — actually tried using it.
Although it is yet early days, we believe that the ideas
behind the code are sound and there are only ‘cosmetic
improvements’ that need to be made before expl3 is
ready for the IMTEX package author masses.

What currently exists

The current IMTEX3 code consists of two main branches:

the expl3 modules that define the underlying program-
ming environment, and the ‘xpackages’, which are a
suite of packages that are written with the expl3 pro-
gramming interface and provide some higher-level func-
tionality for what will one day become KTEX3 proper.
Both expl3 and parts of the xpackages are designed to
be used on top of INTEX 2¢, so new packages can take
advantage of the new features while still allowing to be
used alongside many of the vast number of BTEX 2
packages on CTAN.

What's happening now

In preparation for a minor overhaul of the expl3 code,
we are writing a comprehensive test suite for each
module. These tests allow us to make implementation
changes and then test if the code still works as before.
They are also highlighting any minor shortcomings or
omissions in the code. As the tests are being written,
our assumptions about what should be called what and
the underlying naming conventions for the functions
and datatypes are being questioned, challenged, and
noted for further rumination.

At the time of writing, we are approximately half-
way through writing the test suite. Once this task is
complete, which we plan for the first half of 2009, we
will be ready to make changes without worrying about
breaking anything.

105

What's happening soon

So what do we want to change? The current expl3
codebase has portions that date to the pre-ITEX 2¢
days, while other modules have been more recently
conceived. It is quite apparent when reading through
the sources that some unification and tidying up would
improve the simplicity and consistency of the code. In
many cases, such changes will mean nothing more than
a tweak or a rename.

Beyond these minor changes, we are also re-thinking
the exact notation behind the way functions are de-
fined. There are currently a handful of different types
of arguments that functions may be passed (from an
untouched single token to a complete expansion of a
token list) and we’re not entirely happy with how the
original choices have evolved now that the system has
grown somewhat. We have received good feedback from
several people on ways that we could improve the ar-
gument syntax, and as part of the upcoming changes
to the expl3 packages we hope to address the problems
that we currently perceive in the present syntax.

What's happening later

After the changes discussed above are finished, we

will begin freezing the core interface of the expl3 mod-
ules, and we hope that more package authors will be
interested in using the new ideas to write their own
code. While the core functions will then remain un-
changed, more features and new modules will be added
as IWTREX3 starts to grow.

Some new and/or experimental packages will be
changing to use the expl3 programming interface,
including breqgn, mathtools, empheq, fontspec, and
unicode-math. (Which is one reason for the lack of
progress in these latter two in recent times.) There will
also be a version of the siunitx package written in expl3,
in parallel to the current XTEX 2¢ version. These devel-
opments will provide improvements to everyday IXTEX
users who haven’t even heard of the IXTEX3 Project.

Looking towards the long term, KTEX3 as a doc-
ument preparation system needs to be written almost
from scratch. A high-level user syntax needs to be de-
signed and scores of packages will be used as inspiration
for the ‘out-of-the-box’ default document templates.
IATEX 2¢ has stood up to the test of time — some fif-
teen years and still going strong — and it is now time
to write a successor that will survive another score.

IATEX3 News, and the IATEX software, are brought to you by the IATEX3 Project Team; Copyright 2009, all rights reserved.

106

IXTEX3 News

Issue 2, June 2009

TEX Live and the expl3 code

TEX Live 2009 is almost upon us, and the IXTEX3 team
have been readying a new release of the experimen-

tal INTEX3 code for this. Very dramatic changes have
occurred since the last public release of the code in
TEX Live 2008; no backwards compatibility has been
maintained (as warned in the beginning of the docu-
mentation) but we believe the changes made are all
much for the better. Almost every single part of expl3
has been scrutinized, resulting in a far more coherent
code base.

The expl3 code is now considered to be much more
stable than it was before; a comprehensive test suite
has been written that helps to ensure that we don’t
make any mistakes as we change things in the future.
In the process of writing the test suite, many minor
bugs were fixed; we recommend such test suites for all
similar developmental projects! Some small underlying
changes are still expected in the expl3 code, but major,
disruptive, changes aren’t planned.

Planned updates

Until now, the last update to CTAN of the expl3 bundle
was for TEX Live 2008. Now that work on the code

is happening on a semi-steady basis, we plan to keep
updates rolling out to CTAN more frequently. This will
allow anyone who wishes to experiment with the new
code to use the TEX Live or MiKTEX updaters to in-
stall a recent version without having to ‘check out’ the
SVN repository and install the packages manually.

New members

We didn’t say anything about it in the last status up-
date, but Joseph Wright and Will Robertson are now
members of the IXTEX Team. They have been working
fairly exclusively on the expl3 code.

It’s worth repeating that IXTEX 2¢ is essentially
frozen in order to prevent any backwards compatibility
problems. As desirable as it is to benefit from the new
features offered by new engines XeTEX and LuaTgX, we
cannot risk the stability of production servers running
older versions of IXTEX 2¢ which will inevitably end up
processing documents written into the future.

ITEX3 will not be inheriting the same restraints, so
stay tuned.

TUGDboat, Volume 30 (2009), No. 1

Some specifics

Morten Hggholm will be presenting the recent changes
in much more detail at TuG 2009. Here are some quick
specifics for those interested. New code written and
broad changes made to the expl3 modules:

More logical function names Many function
names that were hold-outs from the TEX naming sys-
tem have been changed to fit into the more logical
scheme of expl3; e.g., \def :Npn and \let:NN are now
\cs_set:Npn and \cs_set_eq:NN.

Defining functions and conditionals Much thought
was put into new ways to define functions and condi-
tionals with a minimum of code. See \cs_set:Nn and
\prg_set_conditional:Nnn.

Smart comparisons Comparisons can be made
much more easily now, with familiar notation such
as \intexpr_compare_p:n{ #1+3 != \1_tmpa_int }.

Data from variables A new function argument spec-
ifier V has been added for extracting information from
variables of different types, without needing to know
the underlying variable structure. Some other tidy-ups
on the argument specifiers offered, partially as a result
of the addition of this new one.

13msg New module to deal with communication be-
tween IATEX3 code and the user (info messages, warn-
ings, and errors), including message filtering partially
inspired by the silence package.

The next six months

Having overhauled the expl3 code, we now plan to per-
form an analogous process with the foundations of the
xpackages. These are the higher-level packages that
will provide the basic needs such as control of the page
layout and rich document-level interaction with the
user. As the groundwork for this layer of the document
processing matures, we will be able to start building
more packages for a N TEX3 kernel; these packages will
also be usable on top of KTEX 2¢ and serve as broadly
customisable templates for future document design.

As gaps in the functionality offered by expl3 are
found (in some cases, we know that they exist already),
the programming layer will be extended to support our
needs. In other cases, wrappers around TEX functions
that can be more usefully handled at a higher level will
be written.

INTEX3 News, and the IATEX software, are brought to you by the INTEX3 Project Team; Copyright 2009, all rights reserved.

TUGboat, Volume 30 (2009), No. 1

KETEX3 programming: External perspectives
Joseph Wright

Abstract

The current experimental INTEX3 packages provide
a new, documented programming interface for TEX.
The key ideas implemented in this new interface are
highlighted in this article.

1 Introduction

Modifying the behaviour of IATEX 2¢ often requires
a combination of user macros, internal IXTEX macro
and TEX primitives. This makes even trivial modifi-
cations of document layout potentially difficult, even
for the experienced IATEX user. The differing syntax
used by TEX primitives and the IATEX kernel only
add to the confusion here.

The first step to develop a new IATEX kernel is
therefore to address how the underlying system is
programmed. Rather than the current mix of ¥TEX
and TEX macros, the experimental KXTEX3 system
provides its own consistent interface to all of the
functions needed to control TEX. A key part of this
work is to ensure that everything is documented, so
that IMTEX users can work efficiently without needing
to be familiar with the internal nature of the kernel
or with plain TEX.

The current kernel also suffers from the mix-
ing of design commands with structural code. Thus
changing a layout element often requires modifying
a kernel code block (or loading a package which pro-
vides an interface to achieve this). The second chal-
lenge for IXTEX3 is therefore separation of the basic
tools of the kernel from the design of documents.

This short overview article highlights the key
developments to date in I#TEX3. It is based on
my own experience working with the new tools for
writing packages, and a talk given recently to the
UK TgX Users Group.

2 The components of BTEX3

Currently, the experimental ITEX3 packages are
designed to be used “on top of” TEX 2¢. This avoids
needing to wait for the entire kernel to be finished
before testing what is written.

The most developed part of the code is the
expl3 (“experimental BTEX3”) bundle, the core of the
new kernel providing the new programming interface.
The new language is fully documented in the file
source3.pdf, which contains some notes for the
experienced (I4)TEX programmer.

Built on top of expl3 is the xparse package. This
is meant to be a “bridge” between the internal and

107

user parts of the new kernel. The xparse package
is used to create new user macros, in a much more
controlled way than is possible using \newcommand.

More experimental than xparse are various other
“xpackages”. These are designed to explore new ap-
proaches to layout and document design for IXTEX3.

The most complete part of ITEX3 is the expl3
bundle. The rest of this article is focussed mainly
on the new internal syntax introduced in expl3.

3 A new internal syntax

KTEX3 does not use @ as a “letter” for defining inter-
nal macros. Instead, the symbols _ and : are used
in internal macro names to provide structure. In
contrast to the plain TEX format and the BTEX 2¢
kernel, these extra letters are used only between parts
of a macro name (no strange vowel replacement).
XTEX3 separates macros which do something
(functions) from ones which only store data. The
general form of an internal function in KTEX3 is
\(module)_{function) : {arg-spec).

e The (module) prefix is applied to almost all
macros. For a package, it will typically be the
package name; the kernel is split into a number
of modules, each with its own name.

e The name of the (function) should give a good
description of what it does: this may contain
one or more _ characters to divide the name

into logical units.

e The concept of the (arg-spec) is potentially con-
fusing to existing (I#)TEX programmers. This
argument specifier describes the arguments ex-
pected by the function. In most cases, each
argument is represented by a single letter. The
letter, including its case, conveys information
about the type of argument required. The use of
the (arg-spec) is illustrated later in this article.

3.1 Primitives renamed

All of the TEX primitives are given new names by
expl3, although many are not intended to be used
outside of the IATEX3 kernel. Instead, a number of
IXTEX wrappers for primitives are provided, so that
the argument syntax is consistent.
At the most basic level, the \fi primitive be-
comes \fi:, indicating no arguments are required.
A more complex example is \ifdefined (an
e-TEX primitive), which becomes \if _cs_exist:N.
\if_cs_exist:N \Macro_One
% Do Stuff
\fi:
Here, the (arg-spec) contains one letter, showing that
only one argument is required. This argument is of

KTEX3 programming: External perspectives

108

type N, meaning that it should be a single token not
surrounded by braces.

3.2 Example kernel functions

Renaming primitives helps to keep the new syntax
consistent, but does not show why the argument
specifier is useful. This is perhaps best seen by
looking at some of the functions provided by expl3.
By using the argument specifier, the new kernel
provides families of related functions which avoid the
need for complex \expandafter runs. For example,
the TEX primitive \let can only be used with a
macro name and a single token; no braces. In I TEXS,
the family of \let-like macros contains:
\cs_set_eq:NN \Macro_One \Macro_Two
\cs_set_eq:Nc \Macro_One {Macro_Two}
\cs_set_eq:cN {Macro_One} \Macro_Two
\cs_set_eq:cc {Macro_One} {Macro_Two}

where an argument specified as c is to be given in
braces and should expand to a csname. This is much
clearer than the equivalent plain TEX constructions;
taking \cs_set_eq:Nc as an example:

\expandafter\let\expandafter\Macro_0One
\csname Macro_Two\endcsname

The specifiers n (no expansion), o (expand once)
and x (\edef-like full expansion) allow large families
of related functions to be created easily, so that
using the results is simplified. Thus we can create a
macro \Macro_0One:nn, then create \Macro_0One:no,
\Macro_0One:xn and so on very rapidly. Later, we
will see how the v and V argument specifiers add
even more power to this concept.

The argument specifier concept also makes test-
ing much easier. As an example, the new kernel
provides three tests related to the \@ifundefined
macro:

\cs_if_exist:cT {csname} {true}
\cs_if_exist:cF {csname} {false}
\cs_if_exist:cTF {csname} {true} {false}

In all three cases, the first argument will be converted
to a csname (the c¢ specifier). The first two functions
then require one more argument, either T or F. As
might be expected, these are executed if the test is
true or false, respectively. The third function (ending
:cTF) has both a true and false branch. By providing
tests with the choice of T, F and TF arguments, empty
groups in code can be avoided and meaning is much
more obvious.

4 Data storage

In IXTEX3, macros which carry out some process are
called functions, and all contain an argument speci-
fier. Macros used for storage are handled separately,

Joseph Wright

TUGDboat, Volume 30 (2009), No. 1

to help to make code cleaner and easier to read. To
further aid the programmer, expl3 defines several
new data types:

token lists (t1),
comma lists (clist),

property lists (prop),
sequences (seq),

in addition to the existing types, which are renamed:

e boolean switches (bool),
e counters (int),
e skips (skip),

and so on.

The name “token list” may cause confusion, and
so some background is useful. TEX works with to-
kens and lists of tokens, rather than characters. It
provides two ways to store these token lists: within
macros and as token registers (toks). ITEX3 retains
the name “toks” for the later, and adopts the name
“token lists” (tl) for macros used to store tokens. In
most circumstances, the tl data type is more conve-
nient for storing token lists.

The other new variable types are all essentially
lists of items separated by a special token. The na-
ture of the separator determines the type of variable
and what functions apply. For example, a comma
list is, as you might expect, a set of tokens separated
by commas.

These are all created explicitly as either local or
global, according to a prefix \1_ or \g_. For example,
a local tl may be named:

\1_mymodule_myname_t1
while a global tl looks like this:
\g_mymodule_myname_t1

The other variable types follow the same pattern,
with the appropriate type identified in the variable
name.

As well as the new data types, expl3 provides
a range of functions for manipulating data. Often,
these had to be coded by hand when using ITEX 2¢.
For example, \t1_elt_count:N is available to count
the number of elements (often characters) in a token
list.

5 Expanding variables

When coding in (I2)TEX, the need to access data in
variables is made more complicated by the different
possibilities for recovering information later. For
example, if three macros are defined as
\def\tempa{Some text}

\def\tempb{\tempa}
\def\tempc{\tempb}

TUGboat, Volume 30 (2009), No. 1

then there are two likely scenarios for using the
information in \tempc:

e Use of the value that \tempc contains (in this
case \tempb);

e Exhaustive expansion of \tempc to use the un-
expandable token list it represents (in this case
“Some text”).

The situation is further complicated as macros do
not need an accessor function, whereas other TEX
variables (toks, counts, skips) do. This leads to the
need for carefully-constructed \expandafter runs in
(IMTEX, in order to get the content needed.

To avoid this, IXTEX3 provides two argument
specifiers which will always return the content of
a variable. The V specifier requires the name of a
variable, and returns the content. For example, if we
define two variables, one of type t1 and the other of
type toks,

\toks_set:Nn \1l_my_toks { Text \mymacro }
\tl_set:Nn \l_my_tl { Text \mymacro }

and pass them to some function \foo_bar:V,

\foo_bar:V \1_my_toks
\foo_bar:V \1l_my_tl

both sets of input will result in “Text \mymacro”
being passed as the argument to the “underlying”
function (explained below) \foo_bar:n. The V spec-
ifier can be applied to any I#TEX3 variable: this
means that the programmer does not have to worry
about how data is stored at a TEX level. A function
using a V specifier will always receive the content of
the variable passed.

The second “variable” specifier is v. This con-
verts its argument to a csname, then recovers the
content of the resulting variable and passes the con-
tent. Thus we might use a \foo_bar:v as:

\foo_bar:v { 1l_my_toks }
\foo_bar:v { 1_my_tl }

with the same result as the previous example.

The two variable specifiers are very powerful.
By using them, the programmer can almost entirely
avoid the need to worry about the order of expansion
when using stored information.

In I¥TEX3, functions which differ only in the
argument specifier should carry out the same under-
lying operation: the only difference should be the
processing of arguments prior to applying the func-
tion. Normally, the “underlying” function will act
without argument expansion (taking n or N type argu-
ments). Thus \foo_bar:c will normally be defined
as expanding a csname and passing it to \foo_bar:N.

109

6 Other key features

The new kernel will require the e-TEX extensions.
Thus, those new primitives are always available when
working with IXTEX3. For example, \unexpanded is
part of the expansion module, as \exp_not:n.

Boolean switches in TEX and ETEX 2¢ use the
\iftrue and \iffalse primitives. This can lead to
problems nesting (! Incomplete \if...). To avoid
this, ITEX3 does not create switches in the same way.
This means that all of the switches use exclusively
ITEX syntax, and require an “access” function.
\bool_if:NT \1l_example_bool { true code }
\bool_if:NF \1l_example_bool { false code }
\bool_if :NTF \1l_example_bool { true code }

{ false code }

One of the most useful features of the new coding
syntax is the treatment of white space. The literal
space character () is ignored inside code blocks,
meaning that the text can be laid out to aid ease
of reading. When a space is required in the output,
a tilde (7) can be used. In this context, ~ is not a
“hard” space, but a character with category code 10.
The ability to finish lines without worrying about
omitting or including % is highly welcome!

7 Conclusions

The current KTEX3 modules provide a new and pow-
erful programming language for TEX. The full details
of the language are collected in one place, and the
language is much more logical than the current mix
of TEX and KTEX 2¢. I¥TEX3 is therefore ready for
serious use by (I4)TEX programmers.

At this stage, the document level of I4TEX3 is
much less defined. It seems likely that good separa-
tion of programming and document design will be
made available. The new code syntax means that a
number of ideas currently implemented as indepen-
dent packages will need to be re-implemented either
in the new kernel or as supported tools.

My own experience with IXTEX3 convinces me
that the kernel team need outsiders to use the code.
The team has done a very good job so far, but ev-
eryone will bring new approaches to using the code.
With the involvement of the wider TEX community,
TEX3 has the potential to be a major step forward

for TEX.

¢ Joseph Wright
2, Dowthorpe End
Earls Barton
Northampton NN6 ONH
United Kingdom
joseph dot wright (at)
morningstar2 dot co dot uk

KTEX3 programming: External perspectives

110

Macros

Implementing key—value input: An
introduction

Joseph Wright and Christian Feuersdnger

Abstract

The key—value system is justly popular as it greatly
simplifies controlling packages for the user. Unfortu-
nately, that ease of use is not transferred into setting
up key—value systems for authors of pre-packaged
TEX code. This article describes how to implement
key—value controls for both TEX and X TEX authors,
including a brief overview of how the underlying sys-
tem works. As well as the original keyval package,
the various extended keyval-based packages are cov-
ered, looking at the relative advantages of each sys-
tem. Looking beyond keyval-based systems, an over-
view of the pgfkeys package is also given.

1 Introduction

The key—value method uses a comma-separated list
of (key)=(value) to set one or more (key)s. The code
applied when a (key) is given can undertake a range
of processing on the (value). Almost every (I2)TEX
user will have come across the power of the this
method for providing control values. The interface is
increasingly widespread in controlling package and
class behaviour. It offers a much cleaner method
for managing large numbers of options or control
values than defining multiple single-use macros and
complex optional arguments.

The original keyval package (Carlisle, 1999) pro-
vides a core of functionality. This has been extended
by xkeyval (Adriaens, 2008), kvoptions (Oberdiek,
2009a) and kvsetkeys (Oberdiek, 2009b), providing
additional tools for the developer, and making key—
value input available for IXTEX package and class
options.

Unfortunately, the ease of key—value input for
the user has not translated into easy development
of new uses of key—value syntax in package con-
trol. Many (even experienced) (IA)TEX code authors
struggle to make a start with implementing key—
value methods. This article aims to make key—value
input more accessible. The major use of key—value
syntax is controlling IXTEX packages and classes,
and this is reflected in the focus here. However, all
of the key—value implementations are compatible to
some extent with plain TEX. A short section on use
with plain TEX is included here, and as far as possi-
ble all of the examples use only plain TEX macros.

Joseph Wright and Christian Feuersdnger

TUGDboat, Volume 30 (2009), No. 1

Throughout the article, “package” is used to refer
to a KTEX package, IXTEX class or other file using
key—value input.

The pgfkeys system implements a key—value in-
terface in a somewhat different manner from the
various keyval-derived packages. As a result, it has
unique strengths. Due to the differing approaches
of the keyval-based systems and pgfkeys, the latter
is covered in its own section. Many of the concepts
from the keyval package and its derivatives apply
to pgfkeys, and so the general introduction is useful
even for users who have already decided on pgfkeys.

The various packages discussed have a range
of features not covered in this article: in order to
remain accessible, only the most widely-applicable
concepts are discussed. Some simplifications have
also been made where these will not impede the
more advanced user. More detail can of course be
found in the various package documentation. There
is also a TUGboat article covering the design and
some of the more advanced features of xkeyval (Adri-
aens and Kern, 2005).

2 How key—value works

There are two parts to using the key—value system:
defining keys, and assigning values to keys. When
using the keyval package itself, these tasks are han-
dled by the macros \define@key and \setkeys, re-
spectively.

The key in key—value input is the “name” of a
data item. The model used by keyval divides keys
into families: groups of keys that can be processed
together. The \define@key macro is used to define
keys. This requires three pieces of information: the
key name, the family to which the key belongs, and a
handler for the key. Consider a package fam defining
a key key, which simply prints the value given:

\define@key{fam}{key}{#1}

As can be seen, \define@key takes three arguments,
(family), (key) and (handler). The (handler) re-
ceives the value given for the key as macro argument
#1, and can consist of any TEX code appropriate to
process the value assigned to the key (the part after
the equals sign).

How does \define@key work? A new macro
\(prefiz)@(family)@(key) is defined, with expansion
(handler). So in the example above, the following
would achieve the same effect:

\def\KVOfam@key#1{#1}

Here, the prefix is a code added to the beginning of
the key name, and acts as a family of families. The
prefix is fixed with the value KV: only xkeyval allows
this to be varied.

TUGDboat, Volume 30 (2009), No. 1

The \setkeys macro is then used to set key
values, the second part of the key—value concept.
The input to \setkeys is a comma-separated list:
each comma-separated (key)=(value) pair is there-
fore processed in turn. Unlike the majority of TEX
macros, this process ignores spaces between key—
value pairs:

\setkeys{fam}{

key one=value 1 ,

key two=value2
}
consists of two key—value pairs “key one=value 1”
and “key two=value2”. Notice that both the key
name and the value can contain spaces. Braces must
be used to protect literal “,” and “=” characters
inside \setkeys:
\setkeys{fam}{

key three={valuel,value2},

key four={some=stuff}
}

For each pair found, \setkeys then attempts
to separate the data into a key and a value, de-
limited by an equals sign. If there is no equals
sign, an error will normally be raised. Assuming a
value is found (even an empty one, if there is noth-
ing after “=”), \setkeys looks for a macro of the
form \(prefiz)@(family)@(key) to handle the input.
If such a macro exists, it is executed with the value
as argument #1. If no macro is found, the key is
regarded as undefined, and an error is raised. In the
example earlier, the result of the \setkeys opera-
tion is to supply the key macro for key one with
“value 1”7, and that for key two with “value2”.

\setkeys passes the value to the processing
macro as is. Thus macro names, etc., can be used
without worrying about expansion in the process.

3 Defining keys

As outlined in the previous section, a key is de-
fined by creating a suitably-named macro. However,
defining every key using \def or \newcommand would
add considerably to the effort of using key—value in-
put. All of the packages discussed here provide more
convenient methods.

3.1 Using the keyval package

The \define@key macro for key definition is the
only method that the original keyval package pro-
vides. However, this is the most powerful method
for defining a key: the developer is completely free
to code any handler required. One particularly com-
mon process is to store the value in a macro to be
used later:

\define@key{fam}{key}{\def\fam@data{#1}}

111

This stores the value given for key in \fam@data.
The definition of the storage macro does not occur
until the key is used for the first time. Thus if the
macro must be defined even if the key has not been
used, an additional line is necessary:
\def\fam@data{initial}
\def ine@key{fam}{key}{/%

\def\fam@data{#1}%
}

Setting the key key will then redefine \fam@data to
contain whatever value is passed to the key. Notice
that here the key family has been used as the start
of the storage macro name.

As was explained in Section 2, keys must have
a value (even if this is empty). It is possible to
specify a default value for a key, which is then used
if the user does not supply one (this does not mean
that the key is defined before it is first used!). A
default value is supplied as an optional argument to
the \define@key macro, which following the IATEX
convention appears in square brackets:
\def ine@key{fam}{key} [default] {/

\def\fam@data{#1}%

}
This means that
\setkeys{fam}{key}
is interpreted as though the user had written
\setkeys{fam}{key=default}

The handler macro receives the default value in ex-
actly the same way as user-supplied data.

Using the “raw” \define@key macro rapidly
becomes awkward when a large number of similar
keys are required. Package authors can of course
write short-cut macros to make the process easier.
However, the other key—value packages seek to ad-
dress this issue by making one or more common key
definitions available directly.

3.2 Using kvsetkeys

Using kvsetkeys adds several “low-level” functions to
keyval; those related to setting keys will be addressed
later. kvsetkeys does not add any methods for pro-
cessing known key names, and indeed relies on the
explicit loading of keyval to define keys. It does,
however, add a customised handler for key names
which have not been defined.

When using the kvsetkeys package, a handler
for unknown keys in a family is created using the
macro \kv@set@family@handler. This allows data
input for arbitrary key names, or perhaps simply a
customised warning or error message. The name of
the key used is available as #1. A simple warning
could be given by:

Implementing key—value input: An introduction

112

\kv@set@family@handler{fam}{/
\wlog{Warning: key ‘#1°
unknown by package fam}
}
A more complex example might be to use the input
to define a new macro. The value given for the key
(if any) is available as #2. For example,
\kv@set@family@handler{fam}{%
\expandafter\def\csname
famQuser@#1\endcsname{#21}7
}
creates a new internal macro including the name of
the unknown key to store the given value. Notice
that the definition includes a marker that this is a
user-provided key name (\fam@user@), as no check
has been made for an existing definition.

3.3 Using kvoptions

As the package name indicates, kvoptions helps
IXTEX developers use key—value input for package
and class options. However, as we will see later,
there is no fundamental difference between defining
keys and defining key—value package options.

The kvoptions package makes life easier for the
author by allowing the family value to be defined
once, and then used in all subsequent key definitions.
It also automatically generates various macros for
the package author:

\SetupKeyvalOptions{

family = fam,

prefix = fam@
}
This defines the family as fam, and prefixes all new
storage macros with \fam@. This does not affect
the key prefix, used for the key macros themselves,
which still start with \KV@. ... Usually, the (prefiz)
given here will be simply (fam)@, as this means all
storage macros are defined as \fam@.... The rest
of this section assumes this convention is used, and
that the setup above applies. If no data has been
supplied using \SetupKeyvalOptions, the family
and macro prefix are taken from the name of the
current package.

The kvoptions package provides macros for
defining new keys (or options):

e \DeclareBoolOption;
e \DeclareComplementaryOption;
e \DeclareStringQOption.

The names of the macros are a good guide to the
general method key type they produce. kvoptions
also provides methods applicable only to package
options: these are discussed later.
\DeclareBoolOption creates a true/false key.
Giving the key name alone is the same as giving it

Joseph Wright and Christian Feuersdnger

TUGDboat, Volume 30 (2009), No. 1

with the true value. A new switch is created which
is named \1if(fam)@(key), which works in the same
way as though created using \newif.
\DeclareBoolOption{active}
% Other code
\iffam@active

% Do stuff
\else

% Do nothing
\fi
\DeclareComplementaryOption creates a comple-
mentary key to an existing Boolean key. The most
common example might be setting draft versus final:
\DeclareBoolOption{final}
\DeclareComplementaryOption

{draft}{final}
% Other code
\iffam@final

% Do final stuff
\else

% Do draft stuff
\fi
In this way, the same switch may be set by keys with
differing names.

\DeclareStringOption creates a new storage
macro, to hold the data provided as the key value.
This is similar to the \define@key method for sav-
ing to a macro given earlier.
\DeclareStringOption{key}

stores the value given in the macro \fam@key. An
initial value can be provided for the option, so that
\fam@key will be defined under all circumstances.
This uses a ITEX optional argument;
\DeclareStringOption[initial]l{key}
has a similar result to
\def\fam@data{initial}
\def ine@key{fam}{key}{/%

\def\fam@key{#1}%
}
so that \fam@key will expand to “initial”, until the
key is set to an explicit value.

3.4 Extended keyval: xkeyval

The xkeyval package extends the key—value system
further than any of the other packages. As a result,
it has a much richer (and more complex) command
syntax. The first point to note is that, unlike the
other packages discussed, xkeyval allows the devel-
oper to alter the key prefix. This is achieved by
adding an optional argument to \define@key:

\def ine@key{fam}{key{#1}

\def ine@key [pre]{fam}{key}{#1}

The first command defines \KV@fam@key as the key-
handling macro; the second defines \pre@fam@key.

TUGDboat, Volume 30 (2009), No. 1

If no explicit key prefix is given, the value KV is
used. Of course, altering the key prefix means that
\setkeys also needs to be modified to accommo-
date it. To set the two keys above, the appropriate
\setkeys commands would be

\setkeys{fam}{key=input}
\setkeys [pre] {fam}{key=input}

Notice that, in contrast to kvoptions, there is no
method to pre-set the family, etc. As a result, when
defining a large number of keys it is often convenient
to first create customised definition macros:

\def\fam@define@key{\define@key{fam}}
\def\fam@def ine@mykey
{\define@key [pre]l{fam}}

As is the case with kvoptions, xkeyval provides
an extended set of key definition types:

\def ine@key;
\define@boolkey;
\define@boolkeys;
\def ine@cmdkey;
\def ine@cmdkeys;
\define@choicekey.

The extended version of \define@key has already
been discussed. The concept of key prefix applies to
all of the other key types, although the remaining
examples all use the default KV prefix. If the prefix
is given, it is always the first, optional, argument to
the definition macro.

The \define@boolkey macro creates a single
Boolean key. The key definition requires a function,
even though this may be blank. To allow the key
name alone to be used as equivalent to key=true,
a default value is needed. This follows the IATEX
convention of appearing in square brackets, but is
not the first argument given: instead, it follows the
key name, for example,

\define@boolkey{opt}{key} [true]l{}

creates a new switch \ifKV@fam@key, and a key-
processing macro \KV@fam@key with no customised
function attached: the \if is simply set appropri-
ately. The name of the new switch can be altered
using a second option argument to specify the macro
prefix. This again appears in square brackets, be-
tween the family and key names:

\def ine@boolkey{opt} [fam@]
{key} [truel{}

creates the switch \iffam@key, and is functionally
equivalent to the \DeclareBoolOption macro from
kvoptions.

Several Boolean keys can be created in one go
using \define@boolkeys. Here, no custom function

113

is needed (or indeed permitted). A default value is
still needed to allow use of the key name alone:
\define@boolkeys{opt} [fam@]

{key,key two,key threel}[true]

Using \define@cmdkey creates a storage macro
for the value given, along with a processing macro.
This can become somewhat complicated, and so
some examples are needed.
\define@cmdkey{fam}{key}{}

creates a new key macro \KV@fam@key, which will
store the input in \cmdKV@fam@key. The name of
the storage macro can be altered by adding a macro
prefix argument, as with Boolean keys:
\def ine@cmdkey{fam} [fam@] {key}{}
The name of the key macro is unchanged, but the
storage macro is now called \fam@key. Notice that
both examples include a final processing argument:
in these examples this is blank as storage of the in-
put alone is required. A default can be given for a
command key, as an optional argument after the key
name:
\def ine@cmdkey{fam} [fam@] {key}

[default]{}

The \define@cmdkeys macro allows the cre-
ation of several keys at one go, using a comma-
separated list. Only one default is available for all
of the commands, and a custom function cannot be
given. In many cases, this will not be an issue as the
stored value is the aim of the key. For example, to
create three command keys key, key two and key
three:

\define@cmdkeys{fam} [fam@]

{key,key two,key three}
For large numbers of storage keys, this method is
preferable to multiple calls to \def ine@cmdkey.

Finally, \define@choicekey allows creation of
a key with a limited number of valid input values
from an arbitrary list. This key type has several op-
tional arguments which make it somewhat difficult
to set up without experimentation. At the most ba-
sic, the value is checked by xkeyval and is then passed
to key handler function:
\define@choicekey{fam}{key}

{vall,val2,val3}

{You chose: #1}
Here, the key key can take only the values vall,
val2 and val3. The * modifier makes the compari-
son by \define@choicekey case-insensitive.
\define@choicekey*{fam}{key}

{vall,Val2,VAL3}

{You chose: #1}
will match key=vall, key=Vall, etc. In these ex-
amples, the processing macro simply displays the

Implementing key—value input: An introduction

114

user’s choice. Further processing of keywords is pos-
sible in this argument, for example to set several
switches based on a keyword. Adding the + modi-
fier to \define@choicekey makes a second handler
available for items not on the list:
\def ine@choicekey+*{fam}{key}
{vall,val2,val3}
{You chose: #1}
{\wlog{Invalid choice ‘#1’: you
must put ‘key=vall’, ‘key=val2’
or ‘key=val3’}),
}
Here, valid choices act as in the previous example.
Any other value will use the second handler, which
in this case simply writes a warning to the log.
The macros outlined above all have more ex-
tended syntax, with additional optional arguments.
This more complex area has been covered by the
authors of xkeyval (Adriaens and Kern, 2005).

4 Setting keys: user interface

As described in Section 2, the keyval package sets
key values using the \setkeys macro. The same is
true for kvoptions and xkeyval (the latter overloads
its own modified version of the macro). In contrast,
kvsetkeys uses the \kvsetkeys macro; this is de-
signed to be more robust than \setkeys as defined
by keyval, and to cope better with altered catcodes
for “,” and “=".

The \kvsetkeys macro can also set keys from
the other packages, provided they use the key pre-
fix KV. Thus the only keys that cannot be set by
\kvsetkeys are those produced using xkeyval with
a non-standard key prefix. In the following dis-
cussion, \setkeys could therefore be replaced by
\kvsetkeys.

The \setkeys macro needs to know the family
(and potentially prefix) to which keys belong. Of-
ten, and especially when developing a package, a
user macro which already contains this information
is desirable. The usual method is to define a custom
setup macro:

\def\famsetup#1{\setkeys{fam}{#1}}

An optional key—value argument to user macros
is often defined, so that settings apply only to that
instance of the macro. Provided the processing of
the macro occurs inside a group, this is easy to
achieve (using ITEX for convenience):
\newcommand*{\mycmd} [2] []1{%

% #1 is the optional keyval argument
% #2 is a mandatory argument
\begingroup

\setkeys{fam}{#11}%

% Do stuff with #2

\endgroup}

Joseph Wright and Christian Feuersdnger

TUGDboat, Volume 30 (2009), No. 1

4.1 \kvsetkeys versus \setkeys

Using \kvsetkeys adds three major refinements to
the keyval \setkeys macro. Firstly, \kvsetkeys re-
liably sets keys when the catcodes for “,” and “=”
are non-standard. This is important when using
packages that make the equals sign active, for exam-
ple the turkish option of babel. The xkeyval version
of \setkeys also handles these cases correctly.

Secondly, both \kvsetkeys and \setkeys re-
move some braces from value input. \kvsetkeys
aims to be more predictable. It removes only one set
of curly braces, whereas \setkeys may remove one
or two sets of braces, depending on circumstances.

Finally, \kvsetkeys supports the unknown key
handler. This will be many authors’ motivation to
use kvsetkeys: handling unknown keys otherwise re-
quires adding custom low-level code.

5 ITEX package and class options

The preceding sections apply to using key—value
methods in a wide variety of situations. One of the
most common aims of authors considering key—value
input is to use it for processing ITEX package or
class options. This has particular points to con-
sider, and therefore specialised macros have been
made available for this area.

Any key defined when processing occurs is avail-
able as an option. This means that options can be
created using \define@key or any of the higher-level
macros listed here. It also means that any key—value
option is also a valid key. This may not always be
desirable, and is considered further in Section 6.1.

Before using key—value options, the careful de-
veloper should know the limitations of the system.
Before package options are passed to the key—value
system, they are processed by IATEX. The kernel re-
moves all unprotected spaces from the input, which
means that key names’ spaces will be rendered use-
less. Secondly, unlike direct use of \setkeys, the
kernel will expand the input. This means that some
keys should mot be given as options to a package.

Although patches exist to deal with these prob-
lems, these are not generally useful: the patches
must be loaded before input of the package or class
requiring them! This leaves the package author with
two options. The first approach is to abandon key—
value load-time options, with a setup macro used
only after loading the package. More commonly, the
options can be designed to minimise the impact of
the problem. Design steps to achieve this include:

e Avoiding any key names containing spaces;

e For keys which will receive values containing
spaces, initially defining the key to gobble the

TUGDboat, Volume 30 (2009), No. 1

value with a warning, then redefining it after

processing options to the real meaning (see Sec-

tion 6.1);

e For keys that will require a single macro, re-
quiring the csname rather than the macro it-
self, then using \csname...\endcsname in the
implementation.

To allow key—value syntax to be used in package
options, the standard IXTEX method for handling
option input has to be modified. This can be done
directly, but copy—pasting code is not normally con-
sidered good programming. xkeyval and kvoptions
both provide suitable macro definitions.

5.1 Using kvoptions

When using kvoptions, option processing takes place
using the \ProcessKeyvalOptions macro. This has
to be supplied with the family of keys to be pro-
cessed:

\ProcessKeyvalOptions{fam}

To make handling certain styles of option easier,
kvoptions provides two key-defining macros which
are very focussed on package options. Options act-
ing in the normal ITEX manner are created by the
\DeclareVoidOption macro. The key is to be used
alone, but if a value is given it is ignored with a
warning. As this is essentially a standard BTEX op-
tion, the normal need to provide an action exists:
\DeclareVoidOption{old}{%

\PackageInfo{fam}{You gave the ‘old’ option}j,
}

\DeclareDefaultOption is used to process
unknown options, in the manner of the KTEX
kernel \DeclareOption* macro. The result is
that \CurrentOptionKey stores the current key
name, with \CurrentOptionValue holding any
value which was given, or \relax if there is no
value.

\DeclareDefaultOption{/
\PackageInfo{fam}{%
You gave the ‘\CurrentOptionKey’ option,
with value ‘\CurrentOptionValue’
Yh
}

5.2 Using xkeyval

The \ProcessOptionsX macro is used to process
xkeyval options. As might be expected, this takes
an optional prefix and mandatory family argument.
The family has to be given in angle brackets, for
example
\ProcessOptionsX<fam>

Loading xkeyval provides \DeclareOptionX for
handling package options which may have no value.

115

Values can be accepted, and are available as #1.

This macro does not require a key family, although

one can be given as an optional argument, again in

angle brackets.

\DeclareOptionX<fam>{letter}{/
\PassOptionsToPackage{geometry}

{letter}y
}

\DeclareOptionX<fam>{date}
{\renewcommand*{\date}{#1}}

The \DeclareOptionX* macro works like the
kernel’s \DeclareOption* macro, but no error is
raised if the option is in (key)=(value) format. In
contrast to kvoptions, the entire unknown input (key,
plus potentially an equals sign and a value) is stored
as \CurrentOption.

\DeclareOptionX*{%
\PackageWarning{fam}
{“\CurrentOption’ invalid}}

6 Additional considerations
6.1 Redefining and disabling keys

Keys can be (re)defined at any point using any of the
key-defining macros discussed here. Thus keys can
be defined to only give a warning, then redefined
later to carry out a function. This is particularly
useful for INTEX package options, where the key may
not be appropriate at load time but may be later.
Conversely, some keys are appropriate only be-
fore some action (such as loading a file) takes place.
Disabling a key simply requires that the key is de-
fined to do nothing:
\define@key{fam}{key}{\wlog{Key ‘key’ ignored}}
If a key (re)definition occurs inside a group (such as
\begingroup ... \endgroup or {...}), the definition
applies only inside that group. There is no \global
prefix to \define@key, and so to ensure that a key
is globally disabled, the low-level TEX \gdef must
be used:
\gdef\KVOfam@key#1{\wlog{Key ‘key’ ignoredl}}
Both kvoptions and xkeyval provide high level
methods for disabling keys. kvoptions defines the
\DisableKeyvalOption macro, which requires only
the family and key name:
\DisableKeyvalOption{fam}{key}
This macro takes an optional argument which can
be used to control the result of attempting to use a
disabled key (warning, error, ignore, etc.). The use
of the optional argument is illustrated in Section 7.
xkeyval provides the similar \disable@keys:
\disable@keys{fam}{key}

In this case, the macro can accept the usual xkeyval
optional argument for the key prefix.

Implementing key—value input: An introduction

116

6.2 Setting one key from another

There are occasions when the setting of one key af-
fects another. Usually, this can be accommodated
using \setkeys within \define@key (or a deriva-
tive, if using xkeyval):
\define@key{fam}{key}{#1}
\define@key{fam}{key two}{%

You said: \setkeys{fam}{key=#11}J,
}

If two keys should function in an identical man-
ner, it is sometimes easier to \let one to the defi-
nition of the other. Be careful about default values:
only the key defined using \define@key will have
one using this method! This issue can be avoided
by first declaring the keys as normal, then carrying
out the \let.

\define@key{fam}{key} [default] {#1}
\define@key{fam}{key twol}[default]{}
\expandafter\let\csname

KVefam@key two\endcsname\KV@famQkey
gives two identical keys, key and key two, with the
same default.

The use of these methods to allow alternative
spellings for setting a key, to set a storage macro
and a TEX \if..., are illustrated in Section 7.

6.3 Interaction between the different
key—value packages

The xkeyval, kvoptions and kvsetkeys packages all use
unique macro names (both user and internal). All
three can therefore be loaded without issue. Pro-
vided the standard key prefix KV is used, the keys
generated are also cross-compatible.

Neither kvoptions nor kvsetkeys define any of
the macros from the keyval package itself. This
means that they require keyval, and that they do
not affect its functions. xkeyval works differently,
using its own definition of the core keyval macros,
and under XTEX prevents subsequent loading of the
keyval package. xkeyval aims to make these changes
backward-compatible; however, under certain cir-
cumstances some macros may behave differently.
The latest version of xkeyval fixes a number of dif-
ferences in behaviour between keyval and xkeyval.

The following short IMTEX document can be
used as a test to show the differences in behaviour
between older versions of xkeyval and the keyval
package. With keyval or the latest version of xkeyval
this document compiles correctly. However, older
versions of xkeyval give errors.
\documentclass{article}

\usepackage{keyval}
%\usepackage{xkeyvall}
\makeatletter

Joseph Wright and Christian Feuersdnger

TUGDboat, Volume 30 (2009), No. 1

\define@key{w}{cmd}
{\def\test##1{#1}}
\makeatother
\setkeys{w}{cmd={--#1--}3}
\begin{document}
[\test{ee}]
\end{document}

It is therefore strongly recommended that any pack-
age using key—value should be tested with xkeyval
loaded, even if it is not being used. In this way,
if other packages load xkeyval problems should be
avoided.

6.4 Using key—value with plain TEX

All of the key—value packages are compatible to some
extent with plain TEX. Both kvoptions and kvsetkeys
are designed to auto-detect whether TEX or KTEX
is in use. A minimal set of IATEX macros are defined
only if they are not otherwise available. Thus both
can be used directly in plain TEX.

\input kvoptions.sty

\input kvsetkeys.sty

The xkeyval bundle is designed in a modular
fashion. The file xkeyval.sty contains the ETEX
code (including processing code for package op-
tions), whereas the code for defining and setting
keys is contained in xkeyval.tex. As plain TEX
users need only the latter, using xkeyval is simply:

\input xkeyval

The keyval package itself is not designed for use
with plain TEX. It therefore requires a small but
non-zero number of IXTEX macros. These are con-
veniently provided by miniltx.

\input miniltx

\input keyval.sty

The file keyval.sty is also loaded by kvoptions,
which ensures that the necessary macros are defined.

7 Putting it all together: a short example

The various methods outlined above will be suffi-
cient for many people implementing a key—value in-
terface. However, putting everything together can
still be challenging. A short, and not entirely triv-
ial, example will illustrate the steps needed.
Consider the following situation. You have been
asked by an inexperienced ITEX user to produce
a small package providing one user macro, \xmph,
which will act as an enhanced version of \emph. As
well as italic, it should be able to make its argu-
ment bold, coloured or a combination of all of these.
This should be controllable on loading the package,
or during the document. Finally, a de-activation
setting is requested, so that \xmph acts exactly like

TUGDboat, Volume 30 (2009), No. 1

\emph. This latter setting should be available only
in the preamble, so that it will apply to the entire
document body.

Looking at the problem, you first decide to call
the package xmph, and to use the xmph@ prefix for
internal macros. The settings requested all look rel-
atively easy to handle using the kvoptions package,
so you choose that for key—value support. You de-
cide on the following options/settings:

e inactive, a key with no value, which can be
given only in the preamble;

e useitalic, a Boolean option for making the
text italic;

e usebold and usecolour, two more Boolean op-
tions with obvious meanings

e colour, a string option to set the colour to use
when the usecolour option is true.

You also anticipate that US users would prefer the
option names usecolor and color, and so you de-
cide to implement them as well.

As well as the \xmph macro, you decide to create
a document body setup macro \xmphsetup. Both
\xmph and \xmphsetup will take a single, mandatory
argument. This keeps everything easy to explain,
and means there is not too much work to do with
arguments and so on.

With the design decisions made, you can write
the package. The options and so on come first.
Most of the keys are defined using high-level kvop-
tions macros, although two low-level methods are
used. Initial settings for the package are set up by a
\setkeys instruction before processing any package
options.

\NeedsTeXFormat{LaTeX2e}
\ProvidesPackage{xmph}
[2008/03/17 v1.0 Extended emph]
\RequirePackage{color,kvoptions}
\SetupKeyvalOptions{
family=xmph,
prefix=xmph@}
\DeclareBoolOption{useitalic}
\DeclareBoolOption{usebold}
\DeclareBoolOption{usecolour}
\DeclareBoolOption{usecolor}
\let\KV@xmphQusecolor
\KV@xmph@usecolour
\DeclareStringOption{colour}
\def ine@key{xmph}{color}
{\setkeys{xmph}{colour=#13}}
\DeclareVoidOption{inactivel}{/
\PackageInfo{xmph}
{Package inactivel}’,
\AtEndOfPackage{\let\xmph\emphl}y,

117

}
\setkeys{xmph}{useitalic,colour=red}
\ProcessKeyvalOptions{xmph}
\def ine@key{xmph}{inactive}
{\PackageInfo{xmph}
{Package inactive}
\let\zmph\emph
}
\AtBeginDocument{
\DisableKeyvalOption[
action=warning,
package=xmph]
{xmph}{inactive}
}
\newcommand*{\xmphsetup}
{\setkeys{xmph}/,
}

The user macros are then defined; by keeping
the two parts separate, it will be easier to alter the
method for managing the keys, if needed. Later,
we will see how this enables switching from keyval-
based keys to pgfkeys without altering the core of
the package at all.

\newcommand*{\xmph} [1] {7

\xmph@emph{\xmph@bold{%
{\xmph@colourtext{#1}}}}%

}

\newcommand*{\xmph@emph}{%
\ifxmph@useitalic \expandafter\emph
\else \expandafter\@firstofone
\fi}

\newcommand*{\xmph@bold}{%
\ifxmphQusebold \expandafter\textbf
\else \expandafter\@firstofone
\fi}

\newcommand*{\xmph@colourtext}{/,
\ifxmph@usecolour \expandafter\textcolor
\else \expandafter\@secondoftwo
\fi
{\xmph@colour}}

The actions of the new package are shown by
the following short example IXTEX file. The use of
the disabled key inactive will result in a warning
entry in the log.

\documentclass{article}
\usepackage [
usecolour,
usebold] {xmph}
\begin{document}
Some text \xmph{text}
\xmphsetup{
usecolor=false,
usebold=false,

Implementing key—value input: An introduction

118

useitalic=falsel}},
\xmph{more text}
\xmphsetup{inactive}
\end{document}

8 A different approach: pgfkeys

All of the packages discussed so far are built on
the keyval approach. Keys are part of families, and
further subdivision (at least beyond altering the
key prefix) is not readily achieved. An alternative
approach is taken by the pgfkeys package (Tantau,
2008). This package uses the (key)=(value) input
format, but the underlying implementation is not
derived from keyval; the pgfkeys package therefore
uses a unique key management model. Thus, while
for the user pgfkeys and keyval are very similar,
for the developer they require different approaches.
However, many of the ideas of keys with differing
behaviours carry through from the earlier discus-
sion.

8.1 How key—value works with pgfkeys

In principle, pgfkeys works in the same ways as de-
scribed in Section 2: there are two parts of the key—
value system, defining keys and assigning values to
keys. However, pgfkeys requires just one command
for both parts: the \pgfkeys macro.

The definition requires the use of special suf-
fixes, the so-called key handlers. Here, the term
handler is used slightly differently than in the other
packages. For example, the statement

\pgfkeys{/path/key/.code={#1}}

defines a key named /path/key. The .code state-
ment defines a macro which expands to the TEX
code in the arguments (in our case, the TEX code is
simply the argument itself, “#1”). Hence, using the
key will just print its value:

\pgfkeys{/path/key=value}

yields “value”. The /path plays a similar role to
(prefix) and (family) for keyval and friends: it asso-
ciates key with a sub-tree.

As with the key—value syntax in Section 2,
spaces in key and path names are allowed, and
spaces between keys and their values and different
keys are ignored. Also, literal “,” and “=” charac-
ters need to be protected by braces:

\pgfkeys{
/path/key three={valuel,value2},
/path/keyfour={some=stuff}

}

In contrast to keyval and friends, pgfkeys uses
a different concept to manage key prefixes and key
suffixes: the key tree.

Joseph Wright and Christian Feuersdnger

TUGDboat, Volume 30 (2009), No. 1

8.2 The key tree

In the pgfkeys model, keys are organised hierar-
chically, similar to the Unix file system; subdivi-
sions are generated using slashes. For example,
/path/sub/key is a key named key, which belongs
to the subtree /path/sub which is in turn located
inside /path. The slash “/” defines the tree’s root.
A statement like

\pgfkeys{
/path/sub/key = value,
/path/key two = value2
}

sets both of these keys, showing that keys belonging
to different subtrees can be set in one statement.

It is not necessary to fully qualify keys: a de-
fault path is considered for every key without a full
path. For example,

\pgfkeys{

key = value of key,

key two = value of key two,

sub/key three = value3
}
will search for key, key two and sub/key three
in the current default path. Default paths can be
set using a change directory command, using the
.cd handler which will be discussed below. The ini-
tial setting is “/”, which means any unqualified key
name like key will be changed to /key implicitly.

8.3 Using pgfkeys

In contrast to the keyval approach, pgfkeys uses a sin-
gle macro to define and set keys, namely \pgfkeys.
At its heart, pgfkeys works with three different types
of keys: keys which store their values directly, com-
mand keys and keys which are handled. Key defini-
tions, assignments and other key types are composed
of these three building blocks.

Key type 1: direct keys

Direct keys simply store their values as charac-
ter sequences. A pgfkeys direct key is thus simi-
lar to a xkeyval command key (one defined using
\define@cmdkey). For example,

\pgfkeys{/path/key/.initial = value}

defines the key /path/key and assigns value. After
this, the value can be changed with assignments:
\pgfkeys{/path/key = new value}

Direct keys are stored in a way which is not di-
rectly accessible to end users. Instead, the command
\pgfkeysgetvalue is used to get a direct key’s cur-
rent value into a (temporary) macro. For example,
the statement

\pgfkeysgetvalue{/path/key}{\macro}

TUGDboat, Volume 30 (2009), No. 1

will get the current value of /path/key and copy
it into \macro. The macro will be (re-)defined if
necessary without affecting the stored key’s value.
Putting these things together, direct keys can
be used as in the following example. The code
\pgfkeys{/path/key/.initial = value}
\pgfkeysgetvalue{/path/key}{\macro}
After definition: ‘‘\macro’’.

\pgfkeys{/path/key = new value}
\pgfkeysgetvalue{/path/key}{\macro}
After setting: ‘‘\macro’’

will define /path/key with an initial value, copy the
value to \macro and typeset the result. Afterwards,
it changes the current value, copies the new value to
\macro and typesets it again. Here’s the output:

After definition: ‘‘value’’.

After setting: ‘‘new value’’.

Key type 2: command keys

The second type of pgfkeys-keys are command keys.
Here, pgfkeys uses a slightly different terminology
than keyval. Command keys with pgfkeys are very
similar to the keys defined by \define@key: they
are TEX commands with (usually) one argument
replacing “#1” with the assigned value. So, what
pgfkeys calls a “command key” is a “key handler” in
the terminology of keyval and friends.

The usual way to define command keys is to
append /.code={(TgX code)} to the key’s name.
Thus,

\pgfkeys{/path/cmd key/.code = {(value=#1)3}}

defines a command key /path/cmd key which type-
sets “(value={(its wvalue)})” whenever it is as-
signed. For example, the listing

\pgfkeys{/path/cmd key/.code = {(value=#1)}}
\pgfkeys{/path/cmd key=cmd value}

yields “(value=cmd value)”.

As with direct keys, command keys are stored
in a manner which is not directly accessible by end
users. In fact, pgfkeys creates a temporary macro
with \def and stores this macro into a direct key
/path/cmd key/.@cmd whenever it creates a new
command key.

So, command keys are TEX macros which oper-
ate on some input argument (the value) using “#1”.
Useful examples of command keys are
\pgfkeys{/path/store key/.code =

{\def\myPkgOption{#1}

}

to store the input into a macro \myPkgOption or
\pgfkeys{/path/call key/.code = {\call{#1}}}

119

to invoke another macro \call{#1} with the value.
These keys can be used with
\pgfkeys{
/path/store key = value,
/path/call key = value2
}

Since some processing methods are generally
useful, pgfkeys provides easier ways to assign them.
For example, our example of a command key which
simply stores its value into a macro can equivalently
be defined using
\pgfkeys{

/path/store key/.store in=

\myPkgOption
}

The suffix .store in, and also the suffix .code, are
key handlers, the third type of pgfkeys options.

Key type 3: handled keys

The third type of pgfkeys-keys are handled keys.! If
\pgfkeys encounters a key which is neither a direct
option nor a command key, it splits the key into key
path (everything up to the last “/”) and key name
(everything after the last “/”). Then, pgfkeys looks
in the special /handlers/ subtree for a key called
key name. This is then passed both the current path
and the value given. For example,

\pgfkeys{/path/cmd key/.code = {(value=#1)}}

is a handled key with key name .code and key path
/path/cmd key because

1. there is no direct key /path/cmd key/.code;
2. there is no command option by this name;
3. there is a command key /handlers/.code.

The predefined handler .code creates a new com-
mand key named according to the current key’s path
(in our case, /path/cmd key).

So, key handlers take a key path and a value
as input and perform some kind of action with it.
They can define new key types (for example storage
keys, Boolean keys or choice keys as we will see in
the next section), they can check whether a key is
defined, they can change default paths and more.
Much of the strength of the pgfkeys package comes
from its key handlers.

8.4 Predefined key handlers

pgfkeys provides many predefined key handlers, most
of which are used to define more or less special com-
mand keys. Here are some common key handlers:

1 Again, pgfkeys uses a slightly different terminology. Its
handled keys are not to be mistaken with the “handlers” de-
fined by \define@key; those are called “command keys” in
pgfkeys.

Implementing key—value input: An introduction

120

.cd A “change directory” command:
\pgfkeys{/path/.cd,A=a,B=b}

sets the default path to /path and will thus set
/path/A=a and /path/B=b. We will later see that
the command \pgfqgkeys also changes the default
path, thus

\pgfakeys{/path}{A=a,B=b}
will also set /path/A=a and /path/B=b.

.default={(value)} Determines a value to be used
if no “=” sign is given:
\pgfkeys{/path/A/.default=true}
\pgfkeys{/path/A}

is the same as if we had written
\pgfkeys{/path/A=true}

.code={(code)} Defines a new command key which
expands to the value of . code. The resulting com-
mand key takes one argument.

.is if={(TgX-Boolean)} Creates a new Boolean
key which sets a TEX Boolean to either true or
false:

\newif\ifcoloured
\pgfkeys{

/path/coloured/.is if = coloured
}
% set \colouredtrue:
\pgfkeys{/path/coloured=true}
% set \colouredfalse:
\pgfkeys{/path/coloured=false}

An error message is raised if the supplied value
is neither true nor false. pgfkeys does not call
\newif automatically, and the leading “if” must
not be included in the argument of .is if, i.e.
coloured/.is if=ifcoloured would be wrong.

.is choice Creates a new choice key, with the avail-
able choices given as subkeys of the current one:

\pgfkeys{
/path/op/.is choice,
/path/op/plus/.code={+},
/path/op/minus/.code={-},
/path/op/nop/.code={nothing}

}

% invokes /path/op/plus

\pgfkeys{/path/op=plus}

An error results if the user gives an unknown

choice.

.store in={(\macro)} Defines a command key that
simply stores its value into a macro:
\pgfkeys{/path/key/.store in=

\keyvalue}

\pgfkeys{/path/key=my value}
Result is ‘\keyvalue’

Joseph Wright and Christian Feuersdnger

TUGDboat, Volume 30 (2009), No. 1

Expands to “Result is ‘my value’”. Such a
key is very similar to a direct key, see above.
.style Creates a new style key, which contains a list
of other options. Whenever a style key is set, it
sets all of its options:
\pgfkeys{
/text/readable/.style=
{font=large,color=pink},
/text/unreadable/.style=
{font=small,color=black}
}
\pgfkeys{/text/readable}

will set the additional options /text/font=large
and /text/color=pink (using the default path
since they have no full path).

.append style Appends more options to an already
existing style key. Given the example above,
\pgfkeys{

/text/readable/.append style=
{underlined=true}}

has the same effect as writing
\pgfkeys{/text/readable/.style=
{font=large,color=pink,
underlined=truel}}

Since style keys can be defined and changed easily,
they provide much flexibility for package users.

8.5 pgfkeys in action —an example

We will now realise our example IWTEX package of
Section 7 with pgfkeys. We use the same option
names and the same user interface, with one excep-
tion: pgfkeys does not support KTEX package op-
tions (although see Section 8.6). Any configuration
has to be done with \xmphsetup.

We do not need to change our implementa-
tion for \xmph and we can keep its helper macros
\xmph@bold, \xmph@emph and \xmph@colourtext
as well. We only need to change the option declara-
tion, which is shown in the following listing.

\NeedsTeXFormat{LaTeX2e}
\ProvidesPackage{xmph}

[2009/03/17 v1.0 Extended emph]
\RequirePackage{color,pgfkeys}
\newif\ifxmph@useitalic
\newif\ifxmph@usebold
\newif\ifxmph@usecolour
\pgfkeys{

/xmph/.cd,

useitalic/.is if = xmph@useitalic,

usebold/.is if = xmph@usebold,

usecolour/.is if = xmph@usecolour,
usecolor/.is if = xmph@usecolour,
useitalic/.default = true,

TUGDboat, Volume 30 (2009), No. 1

usebold/.default = true,
usecolour/.default = true,
usecolor/.style = {usecolour=#1},
colour/.store in = \xmph@colour,
color/.style = {colour=#1},
inactive/.code = {%
\let\xmph\emph
\PackageInfo{xmph}
{Package inactivel}
}
}
\pgfkeys{
/xmph/ .cd,
useitalic,
colour = red
}
\newcommand*{\xmphsetup}{/%
\pgfqkeys{/xmphl}’
}
\AtBeginDocument{
\pgfkeys{
/xmph/inactive/.code = {%
\PackageInfo{xmph}{%
Option ‘inactive’ only
available in preamble
Y
}
}
}

The command \pgfqgkeys occurring in the last list-
ing is a variant of \pgfkeys which sets the default
path directly, without a .cd statement. The com-
mand

\pgfakeys{/xmph}{
colored = false,
bold = true

}

thus uses /xmph as its default path.

8.6 pgfkeys for BKTEX package options

The pgfkeys package does not include any native
functionality for processing KTEX package and class
options. However, the pgfopts package (Wright,
2008) adds this ability, using a modified copy of the
functionality in kvoptions.

The pgfopts package provides only a single user
macro, \ProcessPgfOptions. Keys are created us-
ing the pgfkeys interface discussed above, and can
then be used as package (or class) options using the
\ProcessPgfOptions macro. The requirement to
have no spaces in the key names for this to work
remains exactly the same as for xkeyval or kvoptions
processing of options.

121

9 Conclusions

There are a number of methods for the author want-
ing to make a start using key—value input. The
pgfkeys package has much to recommend it. The in-
terface has been well designed, and it is very strong
in handling a wide range of situations (well illus-
trated in the user documentation). For large-scale
projects in particular, the tree concept makes option
management much easier. By loading pgfopts, BTEX
option processing is also possible with pgfkeys.

For users who wish to handle IXTEX package op-
tions using key—value input, most authors will want
to load either kvoptions or xkeyval, rather than cod-
ing the option handler directly. Both handle the core
issue of providing key—value package options well.
Each packages has some advantages, depending on
the job at hand.

xkeyval provides a rich set of macros for defining
almost every possible type of key. The additional
graduation of keys made available by the variable
prefix is welcome. The package has a very large
number of features which have not been discussed
here. However, the package has been criticised for
modifying keyval internals. More importantly for
many, it suffers from the very problem of complex
optional arguments that the key—value method is
supposed to avoid.

On the other hand, kvoptions provides a smaller,
but more focussed, set of additional key types. The
input syntax is much less complex than that of xkey-
val, and the provision of \SetupKeyvalOptions is
particularly welcome. Using the kvoptions method
does make it more likely that ambitious package
authors will have to become familiar creating cus-
tomised functions with \define@key. However,
the clearer syntax make kvoptions a better choice
for rapidly making progress with using key—value
input.

10 Acknowledgments

Thanks to Didier Verna and Morten Hggholm for
helpful suggestions when drafting this manuscript,
and Will Robertson for the example of the keyval
versus xkeyval problem.

References

Adriaens, Hendri. “The xkeyval package”. Available
from CTAN, macros/latex/contrib/xkeyval,
2008.

Adriaens, Hendri, and U. Kern. “xkeyval —new de-
velopments and mechanisms in key processing”.
TUGboat 25(2), 194-199, 2005.

Implementing key—value input: An introduction

122

Carlisle, David. “The keyval package”. Part of the
graphics bundle, available from CTAN, macros/
latex/required/tools, 1999.

Oberdiek, Heiko. “The kvoptions package”. Part
of the oberdiek bundle, available from CTAN,
macros/latex/contrib/oberdiek, 2009a.

Oberdiek, Heiko. “The kvsetkeys package”. Part
of the oberdiek bundle, available from CTAN,
macros/latex/contrib/oberdiek, 2009b.

Tantau, Till. “pgfkeys”. Part of the TikZ and PGF
bundle, available from CTAN, graphics/pgf,
2008.

Wright, Joseph. “pgfopts—KTEX package options
with pgfkeys”. Available from CTAN, macros/
latex/contrib/pgfopts, 2008.

Joseph Wright and Christian Feuersdnger

TUGDboat, Volume 30 (2009), No. 1

o Joseph Wright

Morning Star

2, Dowthorpe End

Earls Barton

Northampton NN6 ONH

United Kingdom

joseph dot wright (at)
morningstar2 dot co dot uk

Christian Feuersanger

Institute for Numerical Simulation

Wegelerstrafle 6

53115 Bonn

Germany

ludewich (at) users dot
sourceforge dot net

TUGDboat, Volume 30 (2009), No. 1

Current typesetting position in pdfTEX
Vit Zyka
Abstract

Among the relatively little-known pdfTEX extensions
is a possibility of obtaining the current typesetting
position. It can be used later for placing objects.
This article gives a description of related primitives
and shows an example of usage.

1 Motivation

TEX proceeds sequentially when building a page. It
places an object (box, char, rule, space) next to
another one and it shifts the current typesetting
point. If we need to stack up several objects (e.g.
color background, stamps) we have to proceed in
four steps: 1. remember a current position, 2. move
to the required position, 3. place the object here,
and 4. return back to the starting position. The
current typesetting point must not be influenced
when processing these four steps. This does not limit
us in most cases but it is a bit unwieldy.

We face a worse case when placing/scaling of the
object depends on two or even more points. Imagine
a color background or a frame surrounding several
paragraphs with nonzero vertical stretchability be-
tween, or drawing a diagram with an arrow between
cells, or connecting two words inside a paragraph by
line. For all these applications we need to remem-
ber the typesetting points for later drawing of the
dependent object. Classical TEX has no instrument
for these tasks. The only way used to be a coopera-
tion with a specific driver (e.g. via PostScript opera-
tors), which makes the document driver-dependent.
PAfTEX has a more straightforward and portable
solution — it provides new primitives for obtaining a
current typesetting position.

2 New primitives

There are three new primitives for working with the
current position. The first is \pdfsavepos, which
saves a mark in the main vertical list. After the page
formatting, during \shipout operation, the mark
is processed and the absolute typesetting position
is saved in relation to the left bottom page corner.
Afterwards, this (x,y) position can be read by prim-
itives \pdflastxpos and \pdflastypos. Each of
them returns an integer value representing the dis-
tance in scaled points (sp).

First published in Zpravodaj 17:2 (2007), pp. 67-72, as
“Pouzivame pdfTEX V: aktudlni pozice sazby”; translation
by the author. Reprinted with permission.

123

Since \pdfsavepos is processed at \shipout
time, when typesetting is done, we need to write the
position values to a file, then read and use them in
the next TEX run.

This usage is not simple and therefore we will
show it in an example. Our goal will be to connect
two words inside a paragraph by a line.

3 Example: Drawing a line inside
a paragraph

Let us solve this task: draw a line from place A to
place B. The places are to besmmarked by writing
\posMark{place_label} anywhere on a single page,
even inside a paragraphs” The two marks could be
used to draw a line/between them. The example
illustrating the idea is shown inside this paragraph.
It was typeset by the following code:

1Let us solve this task:
2{\it draw a line\posMark{A} ...
3... to draw a line\posMark{B} between ...

How does it work? Let us start our description
with helping macros.! First we need to draw a line.
Let’s make that line be gray and 2bp wide. Low
level PDF or PostScript operators solve this simple
drawing, so we can avoid loading large vector drawing
packages such as TikZ or PSTricks. The main output
drivers pdfTEX and Dvips are distinguished by the
\ifpdf macro:

4 \ifpdf

5 % 1,2=start x y; 3,4=stop x y <bp unit>
6 \def\Line#1,#2--#3,#4{%

7 \pdfliteral page

8 {0.7 G2 w#l #2 m #3 #4 1 S }}

o \else

10 \def\Line#1,#2--#3,#4{),

11 \special{" 0.7 setgray 2 setlinewidth
12 #1 #2 moveto #3 #4 lineto stroke }}
13 \fi

The next macro cuts off the unit p¢ from a dimension:

14 {\catcode‘\p=12 \catcode‘\t=12
15 \gdef\removePT#1pt{#1}}

Our last helping action is conversion from sp units
to bp, which is a base unit in PDF or PostScript:

16 % l=identificator 2=number <sp>

17 \def\defBPfromSP#1#2{J,

15 \bgroup

19 \dimenO=#2sp

20 \dimen0=.013837\dimen0

21 \dimen0=72\dimen0

22 \expandafter\xdef\csname#1\endcsname{Y,

1 We use IATEX packages or macros for commands not
closely related to our topic: eso-pic, ifpdf, afterpage and
\InputIfFileExists.

Current typesetting position in pdfTEX

124

23 \expandafter\removePT\the\dimenO }%
24 \egroup}

Now we are prepared to proceed to our topic—
the current typesetting position. As we mentioned
before, the position is not known until \shipout
and thus it has to be saved to an auxiliary file. We
name this file with the main file name and a .pos
extension. The following macros open this file for
writing at the document beginning and close it at
the document end:

25 \newwrite\posHandle

26 \def\posFile{\jobname.pos }

27

2s \def\posOpen{\openout\posHandle=\posFile}
20 \def\posClose{\closeout\posHandle}

30

31 \AtBeginDocument{\posLoad\posOpen}

32 \AtEndDocument{\posClose}

The user macro \posMark writes the position to the
file. It uses all three new pdfTEX primitives:

33 \def\posMark#1{/, 1=place_label

34+ \pdfsavepos

35 \write\posHandle{}

36 \string\posDef\string{#1\string}/,
37 \string{\the\pdflastxpos\string}
38 \string{\the\pdflastypos\string}}}

After the first BTEX run the following file is created:

30 \posDef{A}{10597449}{27447688}
10 \posDef{B}{24506216}{25133596}

This file is loaded by the \posLoad call at line 31:

41 \def\posLoad{\InputIfFileExists{\posFile}{}{}}

Loading the .pos file only if it exists avoids an error
in the first ITEX pass.

The task of the internal \posDef macro, which
is passed the label name and the (z,y) position, is
to create two macros \pos-x-sp-place_label and
\pos-y-sp-place_label with the values in sp and
corresponding macros \pos-x-bp-place_label and
\pos-y-bp-place_label in bp:

42 %, 1=place_label 2=x-pos 3=y-pos

43 \def \posDef#1#2#3{/,

44 \expandafter

45 \def\csname pos-x-sp-#1\endcsname{#2}%
16 \posDefXbp{#1}%

47 \expandafter

48 \def\csname pos-y-sp-#1\endcsname{#3}%
490 \posDefYbp{#1}}

Unit conversion is done by:

50 \def\posDefXbp#1% 1=place_label
51 {\defBPfromSP{pos-x-bp-#1}{\posGetX{#1}}}

Vit Zyka

TUGDboat, Volume 30 (2009), No. 1

52 \def\posDefYbp#1/ 1=place_label
53 {\defBPfromSP{pos-y-bp-#1}{\posGetY{#1}}}

Macro calling is simplified by these definitions:

54 \def\posGetXY#1{\expandafter’ 1=full_label
55 \ifx\csname #1\endcsname\relaxO

56 \else\csname #1\endcsname\fi}

57 \def\posGetX#1{\posGetXY{pos-x-sp-#11}}

58 \def\posGetY#1{\posGetXY{pos-y-sp-#13}}

50 \def\posGetXbp#1{\posGetXY{pos-x-bp-#1}}
60 \def\posGetYbp#1{\posGetXY{pos-y-bp-#1}}

These previously defined absolute coordinates
enter the macro for the line drawing. Its suitable
placement is inside \shipout, when the base coordi-
nate system is on. This is simplified by the package
eso-pic:

61% 1,2=start x y; 3,4=stop x y <bp unit>
62 \def\AbsLine#1,#2--#3,#4{Y,

63 \AddToShipoutPicture{%
64 \AtPageLowerLeft{\Line#1,#2--#3,#4}}}

And finally, we have the top-level drawing macro
\AbsLineFromTwoMarks with the place labels as ar-
guments:

65 /% l1=place_label_A 2=place_label_B

66 \def\AbsLineFromTwoMarks#1#2{/,

67 \AbsLine (\posGetXbp{#1}, \posGetYbp{#1}--%
68 \posGetXbp{#2},\posGetYbp{#2})}

Now we can see that adding the next two lines after
our illustrative paragraph will draw the line:

69 \AbsLineFromTwoMarks{A}{B}
70 \afterpage{\ClearShipoutPicture}

The last line avoids repeating the drawing on every
subsequent page.

4 Conclusion

The current typesetting position is a useful pdfTEX
extension. It works in both PDF output and DVI
output from pdfTEX. Many graphical tricks such
as framing word(s)/sentence(s)/paragraph(s) or sur-
rounding them by backgrounds, emphasizing page
parts by a vertical line in the margin, visualization
of page elements relationship, and tabular cell place-
ment can benefit from it. Here is a list of some
ETEX packages that utilize this feature: changebar,
marginnote, t-angles, pdfsync, tabularht. Con-
TEXt employs it throughout.

[Editor’s note: This is one of a series of articles
by Dr. Zyka on pdfTEX primitives. We hope to
reprint other installments in future issues.]

o Vit Zyka
TYPOkvitek
Prague, Czech Republic
vit dot zyka (at) seznam dot cz

TUGDboat, Volume 30 (2009), No. 1

Letters

In response to “mathematical formulse”
Kaihsu Tai

I welcome Massimo Guiggiani and Lapo Mori’s help-
ful style guide “Suggestions on how not to mishan-
dle mathematical formulee” [1]. However, there are a
few points which the authors might have got wrong.

At §5.2, the authors said “walk at most 2 km
north” is the “correct form”. But in fact the correct
form, as specified by §6.1.1 of the excellent NIST ad-
vice [4], is that “Unit symbols are printed in roman
(upright) type regardless of the type used in the sur-
rounding text”, giving “walk at most 2 km north”.
This can perhaps be achieved by
walk \emph{at most $2"\mathrm{km}$ north}.

The NIST guide also advised (§10.5.3) “digits
should be separated into groups of three, count-
ing from the decimal marker towards the left and
right, by the use of a thin, fixed space.” Example:
“43 279.168 29”. This should apply even in the En-
glish language.

At §5.4, the authors said that “round brackets
can be used in tables and graphs when units ap-
pear next to a symbol of the corresponding physical
quantity instead of the numeric value to which they
refer”. However, this is inferior to the NIST sugges-
tion (§7.1): “to eliminate the possibility of misun-
derstanding, an axis of a graph or the heading of a
column of a table can be labeled ‘t/°C’ instead of
‘t (°C)’ or ‘Temperature (°C).” Similarly, an axis or
column heading can be labeled ‘E/(V/m)’ instead
of ‘E (V/m)’ or ‘Electric field strength (V/m).””
There is a mnemonic rationale to this: Let’s say
we see a number “36.8” under the heading “7/s”.
This stands for the (incorrect) formula “7/s = 36.8”,
which can be converted into the correct expression
T =36.8 s.

While I still have the gentle readers’ attention,
may I mention a few more items. First, the inter-
national standard IEC 80000-13 [2] introduces bi-

125

nary prefixes. So now we should speak of “two
mebioctets” (2 Mio) rather than “two megabytes”.
(“Mebi-" is exactly 229, not 10° “mega-"; the byte
has not always been defined as 8 bits.)

Second, we should use the correct SI unit “giga-
gram” (1 Gg) rather than the “megaton” (“1 Mt”)
when measuring things like greenhouse gas emission
(the horror of “1 MtCOy”!) or explosive energy in
TNT equivalents.

Third, I would like to start a trend of using
ISO 4217 [3] currency codes with SI prefixes; for ex-
ample, “38 kEUR”. This is convenient and avoids
creating a new currency symbol (and a new typo-
graphical problem) whenever a new currency is in-
troduced (a recent example being the euro).

References

[1] Massimo Guiggiani and Lapo Mori. Suggestions
on how not to mishandle mathematical formulae.
TUGboat, 29(2):255-263, 2008.

[2] International Electrotechnical =~ Commission.
IEC 80000-13:2008 Quantities and units —
Part 13: Information science and technology.
Geneve, Switzerland, 2008.

[3] International Organization for Standardization.
ISO 4217:2008 Codes for the representation of
currencies and funds. Geneve, Switzerland,
2008.

[4] Ambler Thompson and Barry N. Taylor. NIST
Special Publication 811: Guide for the Use of
the International System of Units (SI). National
Institute of Standards and Technology, Gaithers-
burg, Maryland, USA, 2008.

¢ Kaihsu Tai
Department of Biochemistry
University of Oxford
South Parks Road
Oxford OX1 3QU
Great Britain
k (at) kauha dot eu
http://kauha.eu/

126

In response to Kaihsu Tai

Massimo Guiggiani and Lapo F. Mori

The authors would like to thank Kaihsu Tai for his
comments (Tai, 2009) on our paper about mathemat-
ical formulee (Guiggiani and Mori, 2008). We also
would like to thank Claudio Beccari for his comments
and suggestions (Beccari, 2009).

In particular we agree that the correct form for
writing unit symbols is always in upright roman. The
example given in §5.2 should however be achieved
with

walk \emph{at most $2~\mathrm{km}$} north

since the word “north” was, and should remain, out-
side the emphasis.

We also agree that in the English language digits
should be separated into groups of three by the use
of a thin fixed space. This is clearly required by
ISO 31-0 (1992) and NIST Special Publication 811
(2008). In our article we were, however, noticing that
the babel package separates groups of three digits
by a space or a comma according to the current
language. In particular when the English language
is selected, the variable \thousandsep is defined as
a comma. This probably comes from the widespread
usage in the English language of a comma. This
behavior, which should be avoided, is sometimes even
required by manuals of style (American Psychological
Association, 2001).

We do not agree with the suggestion of divid-
ing physical quantities by their units, although this
follows NIST Special Publication 811 (2008). This
form is not widely used and is not required or even
suggested by the ISO standards. We believe that a
reader would find it far easier to understand that
v (m/s) indicates a physical quantity named v ex-
pressed in meters per second, rather than v/(m/s).
In the second case the reader could be confused by
the notation and interpret it as a dimensionless phys-
ical quantity vs/m.

As noted by Tai, ISO 4217 (2008) requires the
use of the SI prefixes with the international three-
letter currency codes. We believe that this should be
strictly followed by documents focused on currencies
but not necessarily by less specialized documents.
New currencies are not created that often and, when
this happens, their symbol becomes quickly available

TUGDboat, Volume 30 (2009), No. 1

in most word processing applications. For instance
we believe that in non-financial documents it is better
to use the Euro sign € defined by the European Com-
mission (1997), instead of the three-letter currency
code EUR. The use of SI prefixes with monetary
units is still very uncommon.

In the end, we would like to remind that the
focus of our paper was on gross mistakes, too of-
ten found in scientific writings, which may severely
impair readability.

Bibliography

American Psychological Association. Publication
Manual of the American Psychological Association.
5th edition, 2001.

Beccari, C. “Private communication”. 2009.

European Commission. Communication from the
Commission — The use of the Euro symbol. 1997.

ISO 31-0. Quantities and units — Part 0: General
principles. International Organization for Stan-
dardization, Geneva, 3'¢ edition, 1992.

ISO 4217. Codes for the representation of currencies
and funds. International Organization for Stan-
dardization, Geneva, 7" edition, 2008.

NIST Special Publication 811. Guide for the Use of
the International System of Units (SI). National
Institute of Standards and Technology, Gaithers-
burg, MD, USA, 2008.

Guiggiani, M., and L. F. Mori. “Suggestions on how
not to mishandle mathematical formulee”. TUG-
boat 29(2), 255-263, 2008.

Tai, K. “In response to ‘mathematical formulae’”.
TUGboat 30(1), 20009.

¢ Massimo Guiggiani
Dipartimento di
Ingegneria Meccanica,
Nucleare e della Produzione
Universita di Pisa
Pisa, Italy
guiggiani (at) ing dot unipi dot it

o Lapo F. Mori
Dipartimento di
Ingegneria Meccanica,
Nucleare e della Produzione
Universita di Pisa
Pisa, Italy
lapo dot mori (at) ing dot unipi dot it

TUGDboat, Volume 30 (2009), No. 1

%@’ The Treasure Chest

This is a list of selected new packages posted to

CTAN (http://www.ctan.org) from June 2008—June

2009, with descriptions based on the announcements
and edited for brevity.

Entries are listed alphabetically within CTAN
directories. A few entries which the editors subjec-
tively believed to be of especially wide interest or
otherwise notable are starred; of course, this is not
intended to slight the other contributions.

We hope this column and its companions will
help to make CTAN a more accessible resource to the
TEX community. Comments are welcome, as always.

¢ Karl Berry
http://tug.org/ctan.html

biblio
chembst in biblio/bibtex/contrib
BIBTEX style files for chemistry journals.

dviware

dviasm in dviware
Script for disassembling and reassembling DVI files,
including adding preprint numbers and watermarks.

fonts

boisik in fonts
A Metafont font inspired by Baskerville.
dozenal in fonts
Fonts and macros for typesetting documents in base
12 (Dozenal).
*gentium in fonts
TrueType fonts from SIL, pdfTEX files for many
encodings (agr, t2a, ec/T1, texnansi, 17x, gx, t5),
and support files for ConTEXt.
inconsolata in fonts
Original monospace font with ETEX support for
several encodings.
junicode in fonts
TrueType font for medievalists with many Open-
Type features.
libris in fonts
Sans-serif family similar to the well-known Lydian.
phaistos in fonts/archaic
All symbols from the Disc of Phaistos (produced
via punches in clay, probably around 1700 BCE).
pigpen in fonts
Font and macros for Pigpen (masonic) ciphers.

127

shuffle in fonts
A symbol for the shuffle product.

tolkienfonts in fonts
Virtual fonts for writing English, Quenya, and Sin-
darin with various free Tolkien-world fonts.

graphics

* asymptote in graphics
Vector graphics language for technical drawing, in-
spired by MetaPost but with a C++-like syntax.

autoarea in graphics/pictex/addons
Have PiCTEX recognize lines and arcs in determin-
ing bounding boxes.

bclogo in graphics/pstricks/contrib
PSTricks macros for colorful boxes with a title and
logo.

circuitikz in graphics/pgf/contrib
Drawing electrical circuits with PGF/TikZ.
jpgfdraw in graphics
Graphics application written in Java providing in-
tegration with a variety of TEX packages as well as
basic drawing capabilities.

metago in graphics/metapost/contrib/macros
MetaPost package for Go game positions.

psbao in graphics/pstricks/contrib
PSTricks macros for drawing Bao (game) diagrams.

pst-bezier in graphics/pstricks/contrib
PSTricks macros for drawing a Bezier curve with
full control.

pst-bspline in graphics/pstricks/contrib
Draws uniform Bspline curves and interpolations.
pst-gantt in graphics/pstricks/contrib
PSTricks macros for drawing Gantt charts.
pst-sigsys in graphics/pstricks/contrib
PSTricks macros for disciplines related to signal
processing.
pst-support in graphics/pstricks/contrib
Support for PSTricks in Distiller and TEXnicCenter.
schemabloc in graphics/pgf/contrib
PGF/TikZ macros for block diagrams.
tikz-inet in graphics/pgf/contrib
TikZ macros and shapes for interaction nets.
tikz-timing in graphics/pgf/contrib
Generating timing diagrams with TikZ.
vaucanson-g in graphics/pstricks/contrib
PSTricks macros for automata.
*xetex-pstricks in graphics
Configuration files to use PSTricks with X{TEX.

info

amslatex/primer in info
Getting up and running with AMSETEX.

info/amslatex/primer

128

Aro-Bend in info/challenges
Collection of the TEX macro programming chal-
lenges “Around the Bend”, by Michael Downes.
Doc-PiCTeX.txt in info/pictex
Concise reference information on PiICTEX.
*first-latex-doc in info
Guide to trying out KTEX for the first time, using
mathematical documents.
intro-scientific in info
Introduction to typesetting scientific or mathemat-
ical documents using ETEX.
latex-course in info
A KETEX course as a Beamer slide presentation, based
on the German tex-kurs.
*latex—-doc-ptr in info
Pointers to major IATEX guides in most areas.
*latexcheat in macros/latex/contrib
Single-sheet I#TEX reference.
lnotes in info
Introduction to (I4)TEX in Chinese.
lshort-chinese in info/lshort
Chinese translation of the 1short document.
lshort-mongol in info/lshort/mongolian
Mongolian translation of the 1short document.
*Math_into_LaTeX-4 in info
George Gratzer’s series of video presentations in-
troducing ETEX.
mpman-ru in info/metapost/doc/russian
Russian translation of the MetaPost user manual.
pstdoc in info
PSTricks help system using Python.

language

casyl in language
Cree/Inuktitut in Canadian Aboriginal Syllabics.
dehyph-exptl in language/hyphenation
Experimental hyphenation patterns for German, cov-
ering traditional and reformed orthography.
hyph-utf8 in language
TEX hyphenation patterns converted to UTF-8 while
retaining compatibility with previous patterns.
georgian in language
Georgian language support for (I4)TEX.
lithuanian in language
Lithuanian language support: hyphenation, babel,
fonts, and more.

macros/generic

encxvlna in macros/generic
Insert nonbreakable spaces required by Czech and
Slovak typographical rules, based on encTEX.
tex-ewd in macros/generic
Typeset calculational proofs and programs in Dijk-
stra’s “guarded command language”.

info/challenges/Aro-Bend

TUGDboat, Volume 30 (2009), No. 1

macros/latex/contrib

alterqcm in macros/latex/contrib
Creating multiple choice questionnaires.
analogclock in macros/latex/contrib
A ticking analog clock for pdfIATEX documents and
presentations.
arsclassica in macros/latex/contrib
Reproduces the look of the Italian guide ‘The art
of writing with ATEX’.
asyfig in macros/latex/contrib
Support for standalone .asy figure files.
beamerposter in macros/latex/contrib
Create custom-sized IXTEX posters, e.g., double DIN-
A0 size in landscape or portrait orientation. Poster
fonts can be scaled.
bezos in macros/latex/contrib
New subdocs style sharing . aux files between parts.
blowup in macros/latex/contrib
Scale all pages of a document up or down, similar
to plain TEX’s \magnification.
calctable in macros/latex/contrib
Typeset accounting and other tables with automatic
sum and percentage computations.
chletter in macros/latex/contrib
Typesetting letters and small documents according
to Swiss rules.
codedoc in macros/latex/contrib
Produce BTEX code and documentation in a single
file with ordinary EXTEX syntax.
collref in macros/latex/contrib
Merge blocks of references into one \bibitem.
cpssp in macros/latex/contrib
Draw protein secondary structures.
csbulletin in macros/latex/contrib
Zpravodaj (CSTUG bulletin) article style.
diagmac2 in macros/latex/contrib
Reynolds diagram macros supporting any line slope.
drac in macros/latex/contrib
Declare “robust active characters”, an active char-
acter which can be used in moving arguments.
eanl3isbn in macros/latex/contrib
Generate ISBN barcodes in EAN13 format, as used
after January 1, 2007.
easylist in macros/latex/contrib
Creating customizable lists of numbered items with
a single active character.
elsarticle in macros/latex/contrib
Document class for articles submitted to Elsevier.
eltex in macros/latex/contrib
Draw electric circuit diagrams according to IEC 617.
emptypage in macros/latex/contrib

Suppress page numbers and headings on empty pages.

eukdate in macros/latex/contrib
Change \today to the UK format, including week-
day, as in ‘Friday, 25 June 2008’.

TUGDboat, Volume 30 (2009), No. 1

exp-testopt in macros/latex/contrib
Expandable \@testopt.
figbas in macros/latex/contrib
Mini-fonts for figured-bass music notation.
forarray in macros/latex/contrib
Process lists and arrays in BTEX, including nesting.
gmdoc-enhance in macros/latex/contrib
Enhancements for gmdoc.
gmverse in macros/latex/contrib
Typesetting (short) poems.
getfiledate in macros/latex/contrib
Fetch and format the last modification time of a
local file.
greekdates in macros/latex/contrib
Support ancient Greek names of days, months, etc.

*grid in macros/latex/contrib

Grid-based typesetting in double-column documents.

hypdvips in macros/latex/contrib
Improve hyperref support with the Dvips driver.

javadoc in macros/latex/contrib
Document source code.

inlinedef in macros/latex/contrib
Selective expansion within a definition.

ionumbers in macros/latex/contrib
Restyle numbers in math mode.

isomath in macros/latex/contrib
Typeset math according to ISO 31.

liturg in macros/latex/contrib
Typeset Catholic liturgical texts, particularly Missal
and Breviary texts.

logical-markup-utils in macros/latex/contrib
Language-dependent inline quotes and dashes.

macqassign in macros/latex/contrib
Typeset Macquarie University assignments.

makebarcode in macros/latex/contrib
Produce various 2/5 and Code 39 barcodes, using
only \vrule.

metalogo in macros/latex/contrib
Expose spacing parameters for TEX logos, so they
can be optimized for different fonts.

minibox in macros/latex/contrib
Boxes allowing manual line breaks and shrinking to
the maximum natural line width.

modref in macros/latex/contrib
Customize cross-references in I4TEX.
multiobjective in macros/latex/contrib
Provide operators used in fields related to multiob-
jective optimization.
nicetext in macros/latex/contrib
Minimal markup syntax for simple wiki-style text.
pagecont in macros/latex/contrib
Page numbering continuation between documents.

pdfcomment in macros/latex/contrib
Friendly interface to PDF annotations.

129

pdfmarginpar in macros/latex/contrib
Improved \marginpar with read-only PDF annota-
tions.

*pdfx in macros/latex/contrib
PDF/X-1a and PDF/A-1b support for pdfTEX.

pgfopts in macros/latex/contrib
Extends pgfkeys to handle I¥TEX class and package
options, much as kvoptions extends keyval.

*pstool in macros/latex/contrib
Optimized conversion of PSTricks figures to PDF,
with psfrag support.

psu-thesis in macros/latex/contrib
Thesis package for Penn State University.

rcs-multi in macros/latex/contrib
Typesetting RCS or CVS keywords, with support
for multi-file documents.

sageep in macros/latex/contrib
ITEX style for papers at the Environmental and
Engineering Geophysical Society’s Annual Meeting.

*silence in macros/latex/contrib
Selective filtering of error messages and warnings.

siunitx in macros/latex/contrib
A comprehensive (SI) units package.

steinmetz in macros/latex/contrib
Produce the electrotechnics Steinmetz notation.

svn-prov in macros/latex/contrib
Variants of \ProvidesPackage, etc., with informa-
tion automatically determined from Subversion.

syllogism in macros/latex/contrib
Typeset syllogisms and syllogistic-style arguments.

tabularcalc in macros/latex/contrib
Automatic calculation of values in a numeric table.

tabularew in macros/latex/contrib
Handle centering of multicolumn headings.

tdclock in macros/latex/contrib
A ticking digital clock for pdfI*TEX documents and
presentations.

tdsfrmath in macros/latex/contrib
Facilitate use of KTEX for French math teachers.

termlist in macros/latex/contrib

Label any kind of term with an increasing sequence

of numbers, as with equation numbers.
theoremref in macros/latex/contrib

Automatically typeset theorem names in references.
tkz-doc in macros/latex/contrib

Documentation macros for tkz-* packages.
tkz-linknodes in macros/latex/contrib

Based on PGF/TikZ, provides for linking elements

of amsmath environments such as \align.

todonotes in macros/latex/contrib
Let authors mark things to do in a XTEX document.

totcount in macros/latex/contrib
Compute and display the last value of counters (sec-
tions, pages, etc.).

macros/latex/contrib/totcount

130

tufte-latex in macros/latex/contrib
Document classes inspired by the books and work
of Edward Tufte.
ucdavisthesis in macros/latex/contrib
Thesis/dissertation class for UC Davis.
ulgda in macros/latex/contrib
Support for the field of qualitative data analysis.
verbatimbox in macros/latex/contrib
Store verbatim text in a KTEX box, for use in places
where the verbatim environment is not allowed.
vwcol in macros/latex/contrib
Typesetting multicolumn paragraph text with dif-
ferent column widths on a single page.
xstring in macros/latex/contrib
String manipulation: tests, substrings, substitutions,
length, and more.
yagusylo in macros/latex/contrib
An extended pifont, with macros for obtaining one
glyph, drawing lines and filling, list environments.
zwgetfdate in macros/latex/contrib
Fetch dates of used packages and files for macros.
zwpagelayout in macros/latex/contrib
Page layout, cropmarks, and reflected pages.

macros/latex/exptl

biblatex-apa in macros/latex/exptl/
biblatex-contrib
APA citation and reference style for biblatex.
biblatex-chem in macros/latex/exptl/
biblatex-contrib
Experimental chemistry styles for biblatex.
biblatex-chicago-notes-df in macros/latex/exptl/
biblatex-contrib
Chicago “notes & bibliography” style files.
biblatex-historian in macros/latex/exptl/
biblatex-contrib
A biblatex style based on the Turabian Manual.
biblatex-jura in macros/latex/exptl/
biblatex-contrib
A biblatex style for German legal literature.
biblatex-nature in macros/latex/exptl/
biblatex-contrib
A biblatex style for Nature.
biblatex-zeitschrift in macros/latex/exptl/
biblatex-contrib
A biblatex style for Historische Zeitschrift.
cfr-1m in macros/latex/exptl
Enhanced support for GUST’s Latin Modern fonts.
keys3 in macros/latex/exptl
Key management for BTEX3.

macros/luatex

luainputenc in macros/luatex/latex
Standard inputenc package adapted for LuaTgX.

macros/latex/contrib/tufte-latex

TUGDboat, Volume 30 (2009), No. 1

luamcallbacks in macros/luatex/generic
Register multiple functions in LuaTEX callback.
* luamplib in macros/luatex/generic
Use MetaPost natively from LuaTgX.
* luaotfload in macros/luatex/generic
OpenType font loading for (I)TEX, with syntax
similar to XgTEX.
luatextra in macros/luatex/generic
Core additional functionality for LuaTgX.

macros/xetex

harvardkyoto in macros/xetex/generic
Harvard/Kyoto input mapping for X4TEX Unicode
Devanagari (0900-097F).
fontwrap in macros/xetex/latex
Bind fonts to Unicode blocks, for automatic font
tagging of multilingual text.
mathspec in macros/xetex/latex
Typeset math in XfqKTEX using any text font.
*polyglossia in macros/latex/contrib
Multilingual XgKTEX, with over 50 languages.
xecjk in macros/xetex/latex
Typeset Chinese/Japanese/Korean with XgETEX.
xecolour in macros/xetex/latex
Defines many colors for use in X{IEX, including in
bidirectional text.
xelibertine in macros/xetex/latex
Support the OpenType font Libertine.
xepersian in macros/xetex/latex
Typeset Persian and Arabic with XgI¥TEX.
xetexfontinfo in macros/xetex/plain
Query fonts for their supported features.

support

acroreloadpdf in support
JavaScript to add reload support to Adobe Reader,
under Unix-ish systems.
ctanify in support
Prepare a IMTEX package for upload to CTAN.
ctantools in support
Search BTEX packages on CTAN from the command
line.
firefox_ctan_plugins in support
CTAN search plugins for Firefox.
fragmaster in support
Produce PDF from EPS with psfrag substitutions
applied.
meper in support
Java program for editing and previewing MetaPost.
texdirflatten in support
Perl script that recursively follows a ETEX docu-
ment, outputting all graphics and other files into a
single directory.
texloganalyser in support
Perl script to display selected parts of a BTEX log.

TUGDboat, Volume 30 (2009), No. 1

ArsTgXnica #5-7 (2008—09)

Editor’s note: ArsTgXnicais the journal of GJT, the

Ttalian TEX user group (http://www.guit.sssup.

it/).
ArsTEXnica #5, April 2008

GIANLUCA PIGNALBERI, Editoriale [From the
editor]; p.3
A short overview of the present issue.

MassiMmo GUIGGIANT and LaPO F. MORI,
Consigli su come non maltrattare le formule
matematiche [How to avoid abusing mathematical
formulae]; pp.5-14

[Published in TUGboat 29:2.]

MASSIMILIANO DoOMINICI, Introduzione a XqITEX
[Introduction to XATEX]; pp. 1526

Unicode and smart font technologies are the
current de facto standard in digital typography. This
article should explain how they can be incorporated,
with XHTEX, in a TEX-based typesetting system.

CLAUDIO BECCARI, Macroistruzioni con argomenti
delimitati [Macros with delimited arguments;
pp.27-34

The macro package commonly known as ATEX
does not describe any means for defining macros
with delimited arguments; furthermore it offers a
very small number of them to the user. By means
of the primitive commands of the TEX interpreter it
is easy to define macros with delimited arguments
that may be used also while using the other KTEX
macros. This kind of macros may be very useful in
some instances, particularly when writing class or
package files, where they make it easy to identify
the function that any argument plays in the macro
expansion. The subject is described with the aid of
a practical problem: the Lecture Log.

ENRICO GREGORIO, HyPlain, pit lingue insieme
anche in Plain [HyPlain, several languages
together under Plain]; pp.35-42

We describe a system for enabling hyphenation
in several languages under Plain TEX, along with
an interface to define the used languages and their
conventions.

ArsTEXnica #6, October 2008

GIANLUCA PIGNALBERI and MASSIMILIANO
Dowinicr, Editoriale [From the editor]; pp.3—4
A short note about the fifth meeting of the

Italian TEX user group (GJIT).

131

KrLAus HOPPNER, A short introduction to
MetaPost; pp.5-9

MetaPost is strongly related to Knuth’s original
Metafont. It uses nearly the same graphics language
and syntax, but instead of bitmap fonts it produces
PostScript output. So it can be used to create high
quality graphics. In MetaPost, points and paths may
be described by a set of linear equations that are
solved by the program. Thus, MetaPost becomes
unique among other tools like PSTricks or commercial
applications (e.g., CorelDraw).

Additionally, the PostScript subset created by
MetaPost can be interpreted by pdfTEX. So Meta-
Post figures can be directly included with e.g., the
standard IATEX graphics package, while normal EPS
images have to be converted first to be usable with

pdflTEX.

AGoSTINO DE MARCO, Gestione avanzata delle
figure in IATEX: 'annotazione di illustrazioni e
grafici con psfrag/PSTricks e PGF/TikZ [Advanced
graphics handling under ITEX: annotation of
figures and graphs with psfrag/PSTricks and
PGF/TikZ]; pp.10-27

This article shows how the combination of INTEX
with the package PSTricks or with PGF/TikZ can be
used to produce advanced, nice-looking illustrations
and plots. This subject is dealt with at a technical
level biased towards intermediate/advanced users.
The aim of the work is presenting a number of exam-
ples of how a figure, that is a bitmapped or vector
image, might be annotated according to the typo-
graphic style of the main ITEX document and of the
displayed math.

ROBERTO GIACOMELLI, Una tabella che fa calcoli
[A computing table]; pp.28-36

One of main advantages of IXTEX is an easy
markup syntax of the text. The user is able to build
up the informative content of the document without
worrying about how it will appear on the page.

This paper aims at testing this remarkable char-
acteristic of WTEX, both for the author’s productivity
and the quality of his work, building, with particular
attention to the syntax project, a new environment of
type table for invoices, expense notes and liquidation.

The linguistic aspects will be first discussed,
taking into account a testing carried out on a group
of users working in the business sector. Then the
complete code of the new environment called calctab,
will be proposed, starting with the list of the powerful
IXTEX packages it is based upon, and the numeric
TEX capability.

In the end some hints about methods will be

132

given in order to spread BTEX more widely in busi-
ness and professional offices.

LAapPO F. MoRI, Gestire la bibliografia con KTEX
[Managing bibliographies with WTEX]; pp.37-51
[Published in this issue of TUGboat.]

LORENZO PANTIERI, Introduzione allo stile
ClassicThesis [Introduction to the ClassicThesis
style]; pp.52-66

The purpose of this work is to provide the Italian
IXTEX users some tools to write documents using the
ClassicThesis style, by André Miede, inspired by
Robert Bringhurst’s masterpiece The Elements of
Typographic Style (1992).

This aim is pursued by introducing my personal
reworking of the style documentation (Miede, 2007)
and analyzing the typical problems faced during the
writing of an academic or professional publication,
especially in the Italian language, while showing the
solutions I think better.

NORBERT PREINING, TEX Live 2008 and the TEX
Live Manager; pp.67-75
[See abstract in Die TEXnische Komédie 2009/2.]

GIANLUCA PIGNALBERI and ENRICO BiINI, I TEX
e grammatiche (la faccia triste dell’informatica)
[MTEX and grammars]; pp. 76-85

Grammars, syntax diagrams and automata are
computer science’s basic topics; thanks to them our
computers can do what they do. KTEX has to be able
to typeset them. In this paper we’ll give an overview
of which tools we can use to add those elements to
our documents.

AGosTINO DE MARCO and MASSIMILIANO
DowMminici, longmedal: un pacchetto per
medaglioni divisi su pili pagine [longmedal: a
package for floating framed boxes spanning several
pages]; pp.86-92

Some textbooks organize different kinds of ad-
vanced or secondary material in framed boxes, possi-
bly spanning several pages. The longmedal package
aims at providing an easy interface to reproduce such
objects in a KTEX document.

JEAN-MICHEL HUFFLEN, Specifying translated
works in bibliographies; pp.93-97

First we recall the layout recommended within
a bibliography for a translation of a document. Then
we explain why entries for translated works cannot
be specified nicely if we use BIBTEX. A solution is
proposed for future implementation in MIBIBTEX.

TUGDboat, Volume 30 (2009), No. 1

ArsTEXnica #7, April 2009

GIANLUCA PIGNALBERI, Editoriale [From the
editor]; p.3
Overview of this issue.

GIANLUCA PIGNALBERI and MASSIMILIANO
Dowminict, Intervista eSamizdat Simone Guagnelli
[Interview with eSamizdat founder Simone
Guagnelli]; pp.4-7

Usually TEX is linked to the typesetting of sci-
entific texts, where a considerable use of formulae,
and mathematical notation in general, is required.
Yet it may prove a useful tool also in different kinds
of publications, as shown in this interview with Si-
mone Guagnelli, editor and founder, together with
Alessandro Catalano, of eSamizdat.

GIOVANNI MAsScHIO, TEX per i ciechi e per gli
ipovedenti [TEX for blind and vision-impaired
people]; pp.8-12

We present here a number of reasons to choose
an existing way to code mathematics, suitable for
blind people, avoiding creating new methods.

CLAUDIO BECCARI, Il formato archiviabile dei file
PDF [The archive format for PDF files]; pp.13-24

Archiving electronic documents requires a spe-
cial format called PDF/A-1 by the ISO regulation
19005-1. This paper shows how to obtain this result
with the main and subsidiary programs of the TEX
system. Some difficulties that are encountered in
this process will be also highlighted; some solutions
to the above problems will be suggested.

CLAUDIO BECCARI, GEORGE KAMEL, Typesetting
Coptic liturgy in Bohairic; pp.25-31

This paper describes what the authors have done
in order to typeset some Coptic texts with IXTEX,
mainly in the Bohairic variant used in liturgy. This
implied the creation of suitable fonts, the macros for
typesetting special liturgical symbols, the hyphen-
ation patterns necessary to typeset with the Coptic
alphabet and the rules used by the Bohairic variant.

RiccarDO Nisi, 11 PostScript in BTEX [PostScript
in BTEX]; p.32

PSTricks, along with its links to PostScript, gave
me the chance to take an interest in this language,
searching for further occasions to integrate it with
KTEX, and enrich its application scope.

[Received from Massimiliano Dominici
and Gianluca Pignalberi.

TUGDboat, Volume 30 (2009), No. 1

Baskerville 10.1, May 2009

Editor’s note: Baskerville is the journal of the UK-
TEX Users’ Group (http://uk.tug.org).

JONATHAN WEBLEY, Editorial and survey; p.2
Welcome to the revived Baskerville, and results
of the survey regarding publication formats.

JONATHAN WEBLEY, Events; pp.3-4

Announcement of various events in 2009: Ba-
choTEX, Mathematics and Fiction (Knuth being one
of the contributors, speaking on Surreal Numbers),
EuroTEX and TUG meetings, and the UKUUG (UK
Unix and Open Systems User Group) summer con-
ference.

JONATHAN WEBLEY, The Hound; p.4
A “somewhat easy”, cryptic crossword; solution
on p.7.

JONATHAN WEBLEY, Currency symbols in KTEX;
pp. 56

Commands for generating a wide variety of cur-
rency symbols.

JoNATHAN WEBLEY, Wikibooks; pp.6-8
Background and TEX support in wikis and wiki-

books, focusing on the IHTEX wikibook at http:

//en.wikibooks.org/wiki/LaTeX.

FEutypon 21, October 2008

Editor’s note: FEutypon is the journal of the Greek
TEX Friends (http://www.eutypon.gr).

CLAauDIO BECCARI, The CB Greek fonts; pp.1-13

This paper takes its origin from the documenta-
tion accompanying a revision of the CB Greek fonts
completed on 1st January 2008, but it goes into
deeper detail with comments on many font features
that are commonly overlooked. It tells the story of
the CB Greek fonts and describes the new features
associated with this new distribution. (Article in
English.)

DimvrTrios FiLippou, A discussion with Claudio
Beccari, TEXie and book lover; pp.15-26

Claudio Beccari reveals how he got involved with
TEX, how he started creating Greek fonts with META-
FONT, and his ultimate love for books. (Article in
English without abstract.)

133

ARTEMIOS G. VOYI1ATZIS, Typesetting a diploma
thesis with XqKTEX; pp.27-34

Writing a diploma thesis, at undergraduate or
graduate level, is a painful exercise. Particularly
in the field of theoretical and applied sciences, the
choice of a suitable tool for the presentation of the
thesis is an essential —and often irreversible — point
in the process of thesis writing. This article presents
the author’s experiences in writing theses with BTEX,
TEX 2¢ and more recently with X{qI4TEX. The au-
thor of this article hopes his experiences to be of some
help for other theses writers in the Greek academic
world. (Article in Greek with English abstract.)

Eria Kouwi, Stories in print at the museum of
the newspaper Chaniotika Nea; pp.35—-39

The Museum of Typography of the newspaper
Chaniotika Nea has been in operation in Chania
(Crete, Greece) since 2005. Founder and soul of the
museum is the publisher and editor of the newspaper,
Giannis Garedakis, who during his 40-year career
had the opportunity to experience the evolution of
20th century typography. The museum, unique in
Greece, is attracting many visitors, and aspires to
expand with new exhibits. (Article in Greek with
English abstract.)

Divrtrios Fiuippou, Is TEX dying?; pp.41-49

Some statistics show that the interest for TEX
and other similar systems of electronic typesetting
is on the decline. The postings on the newsgroup
comp. text.tex showed a peak in 2002 and are de-
creasing ever since. The publication of new books on
TEX and similar systems has almost ceased. A sim-
ple statistical analysis shows that within few years
TEX will be dead. Only a radical change —a new
successor — will renew the interest for electronic type-
setting based on TEX. (Article in Greek with English
abstract.)

APOSTOLOS SYROPOULOS, OpenType fonts: a
short presentation; pp.51-56

OpenType fonts are not a recent technological
development, yet it is not well known what they
really are, what their relationship is to other font
formats, or what their advantages are in comparison
to other font formats lile TrueType and Typel. It
would not be an exaggeration to say that the Open-
Type format is just a superset of the Typel and
TrueType formats. (Article in Greek with English
abstract.)

[Received from Apostolos Syropoulos]

134

Die TgXnische Komddie 2008/2—2009/2

Editor’s note: Die TEXnische Komédie is the jour-
nal of DANTE e.V., the German-language TEX user
group (http://www.dante.de).

DTK 2008,/2

CHRISTINE ROMER, PSTricks for linguistic texts

PSTricks offers to all areas of linguistics the
option to illustrate the relevant phenomena according
to the usual “factual” practice. Many ways to new
concepts of rich visualization are opened. The use
of macros in the PSTricks family is advantageous
compared to that of single linguistic packages. When
a package, like pst-jtree, is particularly designed
for linguistics the act of writing is clearly minimized
because of specific shortcuts. Hopefully this article
with its examples of use can motivate bringing into
the PSTricks family further linguistic packages.

DoMINIK WASSENHOVEN, Managing your
bibliography with BIBETEX (part one)

This article gives an overview of the IATEX pack-
age BIBIATEX in two parts. Part one focuses on how
to use BIBIATEX, with an emphasis on the differ-
ences and the advantages as compared with standard
Bi1BTEX. Part two, which will be published in the
next edition of DTK, shows how to create your own
styles for both citations, and bibliographies. As
BIBIXTEX provides a wealth of opportunities, no
attempt is made to give an all-comprehensive intro-
duction. Please refer to the package documentation.

MICHAEL STOTZEL, A web based data base
for central template management with IXTEX
connection

Writing letters in perfect form with IMTEX is no
mystery. But what to do when one wants centrally
managed templates which are filled-in with distinct
data from a data base? A central web server with
PHP and MySQL can help out with this cumbersome
task.

DTK 2008/3

ULRIKE FISCHER, First steps with XqIATEX

The following article gives a brief (at least it was
brief at the beginning) introduction to using XATEX
with the BTEX format (“XgETEX").

UWE ZIEGENHAGEN, Document management with
ITEX and Subversion

Version control systems provide quite a num-
ber of advantages to programmers and authors in
their daily work. Collaboration in a team is sim-
plified drastically, as the laborious and error-prone

TUGDboat, Volume 30 (2009), No. 1

exchange of files via FTP or e-mail is dropped. Older
versions of a file can be restored without problems,
and joining different versions is simplified. Another
advantage that should not be underestimated is the
possibility to create backups “in passing”. Subver-
sion is a modern version control system running on
all common platforms and requiring not much time
to become acquainted with configuring and using
it. This article describes the usage of Subversion
with IMTEX. It will be explained how to install and
configure it on Windows and Linux systems. Finally,
some packages will be discussed which facilitate a
convenient integration of information provided by
subversion into KTEX.

DTK 2008 /4

DoMINIK WASSENHOVEN, Managing your
bibliography with BIBXTEX (part two)

In part two of this introduction to the BIBRTEX
package, an example from the humanities is chosen
to illustrate how to create your own citation and
bibliography styles. As BIBXTEX provides a wealth
of opportunities, no attempt is made to give an
all-comprehensive introduction. Please refer to the
package documentation. The article is based on
BIBIXTEX 0.7, while version 0.8 has been released in
the meantime.

UWE SIART, An introduction to BIBTEX for
managing your bibliographies

Although BIBTEX has been available for man-
aging your bibliography for many years, using it
still causes trouble for most ATEX users. I con-
stantly receive BIBTEX databases containing severe
syntax errors. Drawing from the kind of errors I
have come across, users seem not to have attained
even a basic understanding of how BIBTEX works.
This article provides a brief practical introduction
to the BIBTEX system, urging new users to drop a
document-related approach of managing your bibli-
ography in favour of a more generally-minded one,
while advanced BIBTEX users can revise their general
command of the system.

DTK 2009/1

STANISLAV JAN SARMAN, DEK shorthand script
with METAFONT and KTEX

This article presents Text2DEK, a METAFONT
and KTEX-based web application which reproduces
German text as “Verkehrsschrift” shorthand notes.
By using the example of “DEK” stenography is out-
lined and afterwards it is described how to model
in METAFONT shorthand characters that intercon-
nect, giving shorthand glyphs for words (stenemes?),

TUGboat, Volume 30 (2009), No. 1

which is described in a meta language that imple-
ments them in METAFONT as characters. A delin-
eation of the system architecture and an abstract of
shorthand history and systems completes the article.

[See also the author’s article in TUGboat 29:3.]

HAN THE THANH, TrueType fonts for pdfTEX
[Published in this issue of TUGboat.|

PHiLipp H. POLL and MICHAEL NIEDERMAIR,
The “Linux Libertine” font and XHTEX

The article shows in a historical digest how the
font “Linux Libertine” evolved, which thoughts, ideas,
etc., were integrated, and its potential when used in
XATEX.
UWE ZIEGENHAGEN, Conference management
with IATEX

To organise events like conferences, congresses,
or workshops requires a whole set of bills, lists of
participants, name badges, and other documents.
IXTEX provides for all these sorts of document types
suitable class files, and via the package datatool,
by Nicola Talbot, access to CSV (comma separated
values) files is made possible. This article uses a
fictitious example to describe the various packages
and their interrelation.

DoMINIK WAGENFUHR, Compilation of periodicals
with IATEX

IXTEX can set many documents. In particular, of
course, scientific papers, but letters or presentations
are also no problem. This article will show that it
even can compile a PDF magazine and, above all,
how recurring problems can be solved.

ADELHEID GROSS, The package todonotes

Some time ago the idea came up of presenting a
continuing series of smaller (I4)TEX packages which
either could be helpful or just for fun. This article
will deliver an insight into the scope of application
the use of KTEX brings.

GERD NEUGEBAUER, Fooling with TEX logos
in HTML

Although TEX and friends can produce almost
perfect results in the print area they could not make
their breakthrough on the Web. So still many sites
exist created with HTML. Writing about TEX, au-
tomatically the question arises how to set the logo
best. This article will give some answers to this.

DTK 2009/2

NORBERT PREINING, TEX Live 2008 and TEX Live
Manager

TEX Live 2008 was the first release of TEX Live
that came with a new program called TEX Live Man-
ager, or tlmgr for short. TEX Live Manager takes

135

care of some tasks hitherto covered by texconfig,
which itself has never been available for Windows.
It also brings a number of new features to TEX Live,
including a long-standing demand for continuous on-
line updates of the entire TEX distribution. This
article presents the new TEX Live installer called
TEX Live Manager, and describes some more news
in TEX Live 2008.

RoLF NIEPRASCHK, Installing TEX Live on Linux

In additon to Norbert Preining’s article on TEX
Live in this issue of DTK, this article describes how
to install TEX Live on Linux. It also gives some
advice on how to use this TEX distribution. The
author deals with openSUSE in particular, but as
Linux/Unix platforms are very much the same, his
presentation can be drawn upon by users of other
platforms as well.

STEFAN KoTTwITZ, TEX Live on netbooks under
Ubuntu Linux

Netbooks, or mini notebooks, equipped with up-
to-date hardware are becoming ever more popular,
as they are quite portable, yet performing sufficiently
for working with (I&)TEX efficiently. Most models
are shipped with the now obsolete operating system
Windows XP. So, this article deals with Ubuntu
Linux and TEX Live 2008 as a dual boot system,
offering a Free alternative.

UWE ZIEGENHAGEN, Counting words in M TEX
documents

In most word processors, it is quite easy to have
the number of words and paragraphs counted. Some
IMTEX editors such as Kile also offer this feature
on mouse-click. However, apart from Kile and its
brethren we rely on external tools for this, some of
which will be presented in this article.

HERBERT Vo0ss, Converting colour graphics
to grayscale

In most cases, a document containing pictures
in colour will be printed in black and white, only.
Depending on the printing process you might like
to convert colour pictures to grayscale in advance
as this task is better not left to the printer (and his
software).

RoLF NIEPRASCHK, Additional cutting edge

If a document is printed on professional printing
machines, it can be a problem when the page has
a color area which runs to (bleeds off) the border
of the document. In such a case the color border
should be a little bit greater to be sure that when
the pages are trimmed, there are no white lines.

[Received from Herbert Vof.|

136

MAPS 36-37 (2008)

MAPS is the publication of NTG, the Dutch language
TEX user group (http://www.ntg.nl).

MAPS 36 (Spring 2008)

TAaco HOEKWATER, Redactioneel [From the
editor]; p.1
Overview.

Taco HOEKWATER, TUG conference 2008; p. 2

Announcement of the TUG annual meeting for
2008 in Cork, Ireland.

WILFRED VAN ROOIJEN, Typesetting CJK and
other exotic characters using WTEX and XqETEX;
pp- 3-12

This paper tries to illustrate some of the partic-
ulars of typesetting CJK characters using several fla-
vors of INTEX. Special attention is given to Japanese.
A short introduction is given about the nature of
the character scripts and the special demands those
alphabets put on character and font encodings. Type-
setting Japanese using p(te)TEX, WTEX, Lambda,
and XqITEX is discussed. Special attention is paid
to XqI4TEX, and the possibilities of including anno-
tation markup and vertical typesetting of Japanese
text using XfqKTEX. It will be shown that although
typesetting vertical material is possible with XgTEX
v0.997, more development work will be needed in
this area to create a dependable vertical typesetting
system.

JELLE HUISMAN, Met XATEX meertalig [Going
multilingual with XgTEX]; pp. 13-17

This article is an adaptation of the lecture I
gave at the NTG spring meeting of 8 June 2007. This
article begins with a little background information
about languages, scripts, and fonts. The second part
of the article gives some examples of multilingual use
of TEX, using XH{TEX.

[Translation of Dutch abstract.]

PIET vAN O0sTRUM, What is it about all those
*TEXs; pp. 18-21

This short article describes the different ‘layers’
in a TEX system, the differences between TEX engines,
extensions, macro packages, and distributions. I hope
to take away some of the confusion that people new
to TEX and less technically inclined people have when
they are confronted with terms like ‘pdftex’, ‘texlive’,
‘tetex’, ‘miktex’, ‘pdflatex’ and so on.

ULRIK VIETH, Book Review: Fonts and Encodings;
pp. 22-23
[Published in TUGboat 29:2.]

TUGDboat, Volume 30 (2009), No. 1

Luic1 ScARrSO, On reading Fonts and Encodings;
p-24
Stated briefly: “Should I buy this book?” Yes!

HANs HAGEN, Latin Modern Nederlands [Support
for Dutch in Latin Modern]; pp.25-26

This article discusses how some typical Dutch
language related typesetting issues are dealt with in
Latin Modern by means of the language and script
tags.

ADITYA MAHAJAN, Theorems in ConTEXt;
pp- 27-32

This article explains some of the recent advance-
ments in ConTEXt enumeration mechanism that han-
dles most of the requirements of theorem-like con-
structions.

HANS VAN DER MEER, Exam papers; pp.33-38
Exam is a module for consistent production and
maintenance of student examinations. Provided for
are various types of questions such as with long and
small answers, yes/no questions and multiple choice.

ROLAND SMITH, Revision control for TEX
documents; pp.39-42

Revision control is the management of multiple
versions of the same unit of information. Originating
in formalized processes in engineering, it was first
automated for managing source code for computer
software. Since TEX documents are like source code,
they lend themselves well to being managed by a
revision control system. Systems like RCS and git
are very suitable for single writers working on their
own projects. More elaborate systems like CVS and
Subversion are more suited for groups cooperating
on projects. It takes more effort to master them.
For most single users, git is the best alternative for
multi-file projects, followed by RCS for working on

single TEX files.

HANs HAGEN, The luafication of TEX and
ConTEXt; pp.43-50
[Published in TUGboat 29:2.]

FrRANS GOODIIN, DHZ boek [Do-it-yourself book];
pp-H51-52

It is becoming easier to produce a book, while
for publishers it is less interesting to invest in new
authors. Publishing on your own looks natural, but
if you want to do it beautifully, it is a challenge.

DavE WALDEN, Notes on self-publishing;;
pp. 5364

This note summarizes what I have learned about
self-publishing.

TUGDboat, Volume 30 (2009), No. 1

TAcO HOEKWATER, ConTEXt conference 2008;
p- 65

Announcement of the ConTEXt annual meeting
for 2008 in Bohinj, Slovenia.

TAco HOEKWATER and HANS HAGEN, MetaPost
library project; pp.66-68

This paper documents the target and implemen-
tation milestones of the MetaPost library project
(MPlib). [Related material was published in TUG-
boat 29:3.]

TAcO HOEKWATER and HANS HAGEN, The
MetaPost library; pp.69-81
[Published in TUGboat 29:3.]

HaNs HAGEN and TACO HOEKWATER and
VOLKER SCHAA, Reshaping Euler; pp.82-84
[Published in TUGboat 29:2.]

HANS VAN DER MEER, Blocks and arrows with
MetaPost; pp.85-89

Typesetting of blocks and arrows in ConTEXt
with MetaPost.

MAPS 37 (Fall 2008)

TAcO HOEKWATER, Redactioneel [From the
editor]; p.1
Overview.

Taco HOEKWATER, TUG conference 2009; p. 2
Announcement of the TUG annual meeting for
2009 at the University of Notre Dame, Indiana, USA.

Hans HAGEN, The TEX-Lua mix; pp.3-11
[Published in TUGboat 29:3.]

MoJcA MIKLAVEC and ARTHUR REUTENAUER,
Putting the Cork back in the bottle; pp.12-16
[Published in TUGboat 29:3.]

TACcO HOEKWATER, PDF genereren voor e-readers
[PDF generation for e-readers]; pp. 17-24

Notudoc is a commercial Internet application
that ConTEXt uses for the on-the-fly generation of
PDF documents, for the e-readers from IREX Tech-
nologies, and more. This article gives a look behind
the scenes.

[Translation of Dutch abstract.]

HANS HAGEN, Dealing with XML in ConTEXt
MKIV; pp.25-39

The tree-based method of handling XML in
MEKIV.

WIiLLI EGGER, Printing labels with ConTEXt;
pp. 4547

Sometimes one needs to print a single label
which will be glued onto a package, a large enve-
lope or for the identification of a box. In certain

137

situations one wants to produce a series of identi-
cal labels or one needs to typeset whole databases
of addresses. ConTEXt offers the possibility of us-
ing an XY -arranging procedure to print on each of
the labels being present on a sheet. Here a possi-
ble approach is presented for labels of the size 105 x
42.3mm, i.e. 14 labels on an A4 sheet. It is shown how
to print a single label but also how to get multiple
copies of the same content and how to prepare sheets
of labels containing the addresses of a database.

HANS VAN DER MEER, CD and DVD covers in
ConTgXt; pp.48-54

Production of CD and DVD covers in several
variations using ConTEXt.

TAacO HOEKWATER and HANS HAGEN, Punk from
Metafont to MetaPost; pp.55-58

To make Knuth’s punk font usable with Con-
TEXt MKIV, it had to be converted from Metafont
to MetaPost input. This article highlights the most
important changes that had to be made in the con-
version process.

HaNs HAGEN and TACO HOEKWATER, How
to convince Don and Hermann to use LuaTgX;
pp- 59-66

Using the newly randomized punk font.

Hans HAGEN, The Punk module; pp.67-69
The Punk module in ConTEXt.

JONATHAN KEW, TEXworks: Lowering the barrier
to entry; pp.70-72
[Published in TUGboat 29:3.]

NORBERT PREINING, TEX Live 2008 and the TEX
Live Manager; pp. 73-89

TEX Live 2008 has been released recently, and
the DVDs are ready to go gold. This is the first
release of TEX Live shipping the TEX Live Manager,
tlmgr for short. Besides taking over some of the
tasks from texconfig (which has never been available
for Windows) it finally brings many new features to
the TEX Live world, most importantly the option for
dynamic updates. This article will present the new
TEX Live Installer, the TEX Live Manager, and at
the end lists other changes in TEX Live 2008.

TACO HOEKWATER, EuroTEX conference 2008;
p- 90

Announcement of the EuroTEX (and ConTEXt)
2009 meeting in The Hague, The Netherlands.

[Received from Wybo Dekker]

138

The PracTgX Journal 2008-2—2008-3

The PracTgX Journal is an online publication of the
TEX Users Group. Its web site is http://tug.org/
pracjourn. All articles are available there.

The PracTgX Journal 2008-2, August 2007
Issue theme: Class and style packages.

LANCE CARNES, From the Editor
FroMm THE READERS, Feedback

THE EDITORS, News from Around: TUG 2008;
User group news; Math font videos

THE EDITORS, Class & Style— An introduction

WENTAO ZHENG, Go game positions with
MetaPost

This article introduces a method of drawing Go
game positions with MetaPost. It begins with how
the Go game is modeled in the MetaPost language,
then explains the detailed implementation, and ends
with some examples of Go game positions.

Lars MADSEN, Page styles on steroids (or,
memoir makes page styling easy)

Designing a page style has long been a pain for
novice users. Some parts are easy, others need good
ETEX knowledge. In this article we will present the
Memoir way of dealing with page styles including
new code added to the recent version of Memoir,
that will reduce the pain to a mild annoyance. We
will end the article with a series of common scenarios
and how to solve these.

LANCE CARNES, Opinion: Enduring BTEX
documents

The title of this opinion piece may seem a little
strange. After all, if I keep my document source
files safely stored away, and have a IATEX system to
format them, they should always work, right? Well,
sometimes. More often than not, though, a set of
IATEX files more than a few years old will probably
not format the same today as they did in the original
edition.

DaviD WALDEN, Travels in TEX Land: A bigger
experiment with ConTEXt

In this column in each issue I muse on my wan-
derings around the TEX world. In my column in the
2007-2 issue (http://tug.org/pracjourn/2007-2/
walden/) I tried a small experiment with using Con-
TEXt. In this issue I describe an additional, quite
extensive, effort to use ConTEXt — to create a picture
book for a “slide show” I was involved in creating a
number of years ago.

TUGDboat, Volume 30 (2009), No. 1

THE EDITORS, Ask Nelly: How do I center only
the last line of a paragraph? How do I get the first
and last entry of each index page in its header?

THE EDITORS, Distractions: Fun packages—
sudoku solvers

The PracTgX Journal 2008-3,
December 2008

Issue theme: IXTEX and TEX on the Web.

LANCE CARNES AND PAUL BLAGA, From the
Editor

FroM THE READERS, Feedback

THE EDITORS, News from Around: What is new
in IATEX; User group news— three print journal
releases

GEORGE GRATZER, A gentle learning curve for
ETEX

Is there an easy way to get started in IATEX? I
suggest that there is.

TomAs MORALES DE LUNA, Writing posters in
ETEX

IXMTEX is an excellent editor for the creation of
poster presentations. When writing a poster with
IXTEX, several options are available. Here we would
like to present some of these options and in partic-
ular the aOposter class and Brian Amberg’s poster
template. We shall introduce the basics as well as
some useful packages and techniques to make your
poster look nice. You can even choose to write your
poster sequentially or up from different text blocks
positioned absolutely or relatively within the page.

PauL A. THOMPSON, Clinical trials management
on the Internet —1I. Using IXTEX and SAS to
produce customized forms

In clinical trials, forms are used to gather data
which is then entered into a database. Paper-based
forms are still the standard for data collection, due
to portability, stability, and storage considerations.
In producing forms, SI (a SAS product which works
with the Internet) is used to facilitate the entry of
information about participants in a clinical trial over
the Internet. Using IATEX, the forms are then pro-
cessed to produce a .pdf file. The .pdf is returned
to the requesting party using a return page on the
web browser. The entire process takes about 20 sec-
onds. The system allows highly customized forms to
be produced, in which values are inserted into ap-
propriate locations on the forms. IATEX is important
due to its superior scripting capabilities, while SAS
provides a very flexible database from which to pull
information to be inserted into the forms, as well

TUGDboat, Volume 30 (2009), No. 1

as providing a method for scripting up the entire
transaction. The code required for the process and
general approach is outlined.

PauL A. THOMPSON, Clinical trials management
on the Internet —II. Using ITEX, PostScript, and
SAS to produce barcode label sheets

In clinical trials, it is often necessary to print
labels with barcodes to identify samples. The avail-
ability of open-source tools for barcode management
is still somewhat limited. Until recently, no BTEX
tools existed for the manipulation and encoding of
barcodes. Using direct PostScript, barcodes can be
defined for strings to be printed on labels. Using
IAMTEX, the labels can be queued up into appropriate
sizes for specific label sheets, and tnen converted into
.pdf files. Using SAS, the label sheets can be ordered
in a web environment, queued up into appropriate
files, and returned to users in a printable file.

TiM ARNOLD, plasTEX: Converting IMTEX
documents to other markup languages

This article introduces plasTEX, a software pack-
age for converting IXTEX documents to other markup
languages. It begins with usage details including
examples of how to create HTML and DocBook XML
from IATEX sources. Then, it describes development
details: how plasTEX works and how developers can
use it to create or extend a publishing workflow in a
production setting. Finally, it ends with some exam-
ples of customizing the parser and renderer as well
as suggestions of how others can contribute to this
open source project.

DAvID WALDEN, Travels in TEX Land: A sidebar
for a book

In this column in each issue I muse on my wan-
derings around the TEX world. In this issue I describe
a small effort to typeset a sidebar for a book project.

THE EDITORS, Book reviews: More Math into
BTEX, Tout ce que vous avez toujours voulu savoir
sur WTEX sans jamais oser le demander

English translation of the second book’s title:
Everything you always wanted to know about BTEX
but were afraid to ask.

THE EDITORS, BTEX & TEX web sites

THE EDITORS, Ask Nelly: How do I replace one
overlay with another on a Beamer slide? How do I
typeset ancient Greek quotations

THE EDITORS, Distractions: Writing recipes with

BTEX

139

TgXemplares 8 (2006)

Editor’s note: TgXemplares is the publication of
CervanTEX, the Spanish TEX user group (http://

WWW.cervantex.es).

ATOPOS, What and why ITEX; pp.4-9

[Translation of the introduction: “In the guise
of an appeal”.]

Anyone who comes here with no knowledge of
the matter I'll address, and who, however, is con-
fusedly attracted by the implications of the title of
this paper, might feel let down by the discovery that
my contribution has nothing to do with the promo-
tion of some magic product with erogenous powers
hitherto unknown about a certain part of our fleshy
bodily constitution. Or perhaps, on the contrary,
will feel, against any predictions, gladly surprised at
the corroboration that the computer program I will
present — yes, that’s what’s at stake —is capable of
eliciting an intense and lasting intellectual pleasure,
that has little to envy from those other pleasures
that he might have been thinking of when entering
the room.

What is, then, this “I#TEX” that makes it to
your booklets? How does this puzzling entity relate
to those other entities, no less puzzling, known us
“the humanities”?

[The article includes a section 2: WTEX and its
family: of writers and printers; and a section 3: The
linguistic model and the visual metaphor. A more
historical and conceptual than technical discussion
of BTEX, citing sources from Turing to Wittgen-
stein.|

JAVIER BEZ0Os, Word hyphenation; pp.10-19

Word hyphenation is an orthographic problem
that still raises problems, both theoretical and prac-
tical. This article analyzes possible criteria for hy-
phenation in Spanish, with a set of rules, and after-
wards studies the way in which such rules can be
implemented in TEX. Among other things, consid-
ered are the 1999 and, especially, the 2005 rules of
the Real Academica Espatiola, with comments about
their requirements.

The article is divided in two parts. The first
is devoted to the analysis of the rules and their
relationship to the first two criteria. The second
part presents the rest of the criteria, commentary
on some sources, a brief history of the patterns, and
a discussion of their current implementation.

[Compiled by Federico Garcia]

140

Zpravodaj 16(2—-4)—18(4), 2006—2008

Editor’s note: Zpravodaj is the bulletin of (FITUG,
the TEX user group for the Czech and Slovak lan-
guages (http://www.cstug.cz).

Zpravodaj 16(2—4), 2006

Ton OTTEN and HANS HAGEN, PRAGMA ADE,
Exkurze do ConTEXtu, Geskd verze [ConTEXt, an
excursion, Czech version; translated from English
by Vit Zyka, Jan Busa, Jit{ Hrbek, Martina Plach4a
and Petr Tesaiik]; pp. 57224

This issue presents a Czech translation of the
manual available at http://www.pragma-ade.com/
general/manuals/mp-cb-en.pdf.

Zpravodaj 17(1), 2007

JaroMIR KUBEN, Dopis predsedy (GTUGu
[Opening letter from the GFTUG President];

pp-1-2

PETR TESARIK, S &eStinou a slovenstinou do
Babylénu [Czech and Slovak languages into the
Babel package]; pp. 2-11

This article is one of the (JTUG grant results
which presents a new Czech and Slovak implementa-
tion for the Babel package according to the (gETEX
requirements.

ZDENEK WAGNER, Babylén mluv{ hindsky [Babel
speaks Hindi]; pp. 12-20

Babel provides a unified interface for creation of
multilingual documents. Unfortunately none of the
Indic languages is currently supported. Typesetting
in Indic languages is based on specialised packages.
The most advanced of them is Velthuis Devanagart
for TEX because it already provides Hindi captions
as well as a macro for a European style date. A
language definition file for plugging Hindi into Babel
has therefore been recently developed.

The second part of the paper explains differences
between Unicode and Velthuis transliteration. This
is important for understanding the tool that can con-
vert Hindi and Sanskrit documents from Microsoft
Word and OpenOffice.org into TEX via an XSLT 2.0
processor and a Perl script as well as a method of
making the PDF files searchable.

Finally the paper discusses some possibilities of
further development, mainly the advantages offered
by XH{IEX and by forthcoming integration of Lua
into pdf TEX.

Source code and notes are available on the au-
thor’s web page, http://icebearsoft.euweb.cz/
tex/.

TUGDboat, Volume 30 (2009), No. 1

ZDENEK WAGNER, Babylén v TEX Live 2007
[Babel in TEX Live 2007]; pp. 21-23

With the inclusion of X{TEX into TEX Live the
structure of the language.dat file has been changed
slightly. Due to this fact the new Czech and Slovak
module, which is not yet distributed with official
Babel, cannot be installed smoothly. The article
introduces an installation package of the new module
not only for TEX Live but also for other well known
TEX distributions. Functionality of XqI4TEX is also
preserved.

PETR BREZINA, Abecedni fazeni a sestavovani
rejstiiku vyhradné pomoci makrojazyka TEXu
[Alphabetical sorting and creation of indexes
exclusively by means of the TEX language];
pp- 23-30

The article presents the macro package index for
creation of indexes. An important part of this pack-
age is the TEX macro “sort” for alphabetical sorting.
It uses a four-pass sorting algorithm which can be
accommodated to different languages via a sorting
table. Its memory requirements are independent of
the length of the list of entries to be sorted. The
treatment of page numbers in index entries is sophis-
ticated. The package index is available, including
French documentation, on the author’s home page,
http://www.volny.cz/petr-brezina/.

PAVEL STR{Z, Proménné zdhlav{ a zapati [Variable
headings and footings]; pp. 31-59

This article deals with the typesetting of head-
ings and footings. It describes basic opportunities
and ways to typeset them. It uses the standard
package fancyhdr in nearly all examples. It shows
the ways how to prepare variable objects which are
usually page dependent. In case variable objects
have additional dependencies themselves, the article
introduces a method which generates a part or whole
of a TEX document using PHP and MySQL tools.

ZDENEK WAGNER, Marrakés 2006, kratka reportédz
[Brief Report on the 27th TUG annual meeting];
pp. 60—64

Zpravodaj 17(2), 2007

JaroMmfr KUBEN, Uvodnicek piedsedy [Welcome to
the issue by the GSTUG President]; pp. 65-66

VIT ZYKA, Pouzivdme pdfTEX V: aktudlni pozice
sazby [Using pdf TEX V: Current typesetting
position]; pp. 6772

[Published in this issue of TUGboat.]
ROBERT MAR{K, Vklddani JavaScripti pdfIATEXem
prakticky [Inserting JavaScripts with pdf KTEX in
practice]; pp. 72-83

TUGDboat, Volume 30 (2009), No. 1

This article describes a few possibilities of us-
ing the JavaScript language available in the Adobe
Reader browser to enhance possibilities and effects
in the PDF files created by pdfIATEX. Among other
things, we briefly describe the technical background
of some related IXTEX packages available on CTAN.

An accompanying file is available at http://
user.mendelu.cz/marik/latex/testjs.zip.

JozeF RiHA and PAVEL STRIZ, Prezentaény
software pre INTEX [Presentation software for
BTEX]; pp. 84-95

The article is an introduction to the preparation
of presentations. In the first part, it gives informa-
tion about the general problems of preparing presen-
tations. In the second part it points out the TEX
classes Slides and Prosper, plus the Foil TEX package.
In the next part it briefly mentions the existence
of the packages UwmSlide and TEXPower. The last-
discussed package is Beamer. The Beamer package
is a fully featured tool for creating presentations in
TEX and this will be discussed in another issue in
more detail. In the last part, the authors mention
a few tips and hints for better presentations and
recommend Internet sources for given topics.

Jozer RiHA and PAVEL STR{Z, Priprava posteru
[Scientific poster preparation]; pp. 95-103

The article is an introduction to the preparation
of scientific posters. In the first part, it deals with
the definition, specification and sizes of posters. It
points to proper TEX programmes and packages,
dealing mainly with AOposter, Sciposter, Poster and
Epssplit. It also briefly mentions non-TEX tools, such
as OpenOffice.org Impress, Microsoft PowerPoint
and its templates plus suitable software products.
In the second part, it discusses printing and the
price of posters. The last part gives Internet links to
some real-world galleries of posters and some other
recommended sources.

Joser TKADLEC, Opakovani operaci a relaci pii
zlomu fadku [Repeating operations and relations
at line breaks]; pp. 103-105

Two solutions for repeating of operations and
relations in line breaks are presented, depending
on whether the relation or operation is given by a
command or by a character.

Zapis z Valné hromady (ST'UGu ze dne 17. 11.
2007, Brno [Report from the GFTUG general
assembly of 17 November 2007]; pp. 106-107

Zprava o ¢innosti GGTUGu [Report on FTUG
Activities]; pp. 107-109

Podporované projekty [Supported projects by
GTUG]; pp. 109-112

141

Zpravodaj 18(1-2), 2008

JAROMIR KUBEN, ZDENEK WAGNER Uvodnik a
Opravenka [Introduction and erratal; pp. 1-2

KAREL PfSkA, Testovdni LM-fonti s ohledem na
¢eskou a slovenskou sazbu [Latin Modern fonts
testing with regard to Czechoslovak typesetting
requirements|; pp. 3-43

This extended article presents grant results with
the author’s major findings and results. It makes
recommendations for changes to the LM-font creators
after performing comparisons of fonts such as CM,
LM, CS and EC in the Type 1 format. The article also
makes comparisons based on metric and graphical
data. The tested parameters were the widths of the
letters, kernings, differences in LM, CS and CM fonts,
and finally the technical quality of the glyphs.

The tools used during the testing were FontForge
and also MetaTypel. The testing scripts were done
in .bat and AWK and are published on the author’s
websites. The author proposes some changes to im-
prove the actual state of the fonts, commenting on
this in depth, including illustrations and tables.

They also presented their thoughts on the cre-
ation of a new OpenType font and rewriting testing
scripts in LuaTEX. Some findings were presented at
BachoTEX 2006, EuroTEX 2006 and the EuroBacho-
TEX 2007 conferences and their proceedings have
been published. The author’s notes can be found on
http://www-hep2.fzu.cz/~piska/.

LuB0OS PRCHAL and PAVEL SCHLESINGER, Poster v
TEXu [Posters in TEX]; pp. 44-55

The creation of a poster in this article is done
using the AOposter class. It includes examples of
packages such as multicol, color, fancybox, graphics,
epsf, picinpar and psfrag. In the next section of the
article the authors discuss the settings for the layout
of the poster. In the last section the authors present
a template for a poster to be created with AOposter.
Two real-world posters are inserted in the conclusion.
A style-sheet for a poster can be downloaded from
http://www.karlin.mff.cuni.cz/~antoch/.

LuBoS PRCHAL and PAVEL SCHLESINGER,
Prezentace v TEXu [Presentations in TEX];
pp. 5663

In this article, the authors share their knowledge,
notes and experience with the Beamer presentation
class. The article includes installation notes and the
first steps in Beamer, the pause command, <+->, +
and - options, generating a title page and a table of
contents. It also explains how to change the design of
a presentation by setting \usex*theme{value} and
\setbeamer*{element}{value}. In the conclusion

142

of the article, the authors recommend the Beamer
user’s guide and a few Internet resources for further
reading. The Beamer template of the authors is
published independently on their website. A style-
sheet for a Beamer presentation can be downloaded
from http://www.karlin.mff.cuni.cz/~antoch/.

PAVEL STR{Z and MICHAL POLASEK, Ukézky
prezentaci [Examples of presentations]; pp. 63-75

In the first part, the article presents a simple
presentation created both with the PDFSlide and
PDFScreen packages and with the Beamer class. In
the second part, the article discusses the Beamer
class in a real-world presentation in more detail. It
starts with the creation of METAPOST graphics. Af-
ter that it comments on some settings of the Beamer
deisgn, generating a title page and a section table
of contents. Next follows an example of \alert and
\convertMPtoPDF commands. The generated output
is a PDF file. This file is converted for printing pur-
poses using the pdfpages package. At the conclusion
of the article a selection of individually named title
pages is prepared with printed materials which are
to be given to the members of the committee, e.g.,
before a thesis defense.

ROMAN PLCH and PETRA SARMANOVA,
Interaktivni 3D grafika v HTML a PDF
dokumentech [Interactive 3D Graphics in
HTML and PDF Documents|; pp. 76-92

The paper presents the authors’ experience with
including interactive 3D objects into HTML and PDF
documents, starting with modifying 3D graphics in
Maple by means of the library JavaViewLib, followed
by its export into the MPL or JVX format and fin-
ishing with web integration. In the second part, the
authors describe exporting Maple 3D graphics into
the VRML format, then its conversion to U3D with
the use of Deep Exploration, and finish with its em-
bedding into a PDF document by means of pdfTEX
and the movielb package. This procedure preserves
the possibility of the user’s interaction with 3D ob-
jects even in the final PDF document without the
necessity of the local installation of Maple or other
graphical programs.

ZDENEK HLAVKA, Velkovyroba tabulek pomoci
AWK [Large-scale production of tables in AWK];
pp- 93-95

This short article demonstrates the capabilities
of AWK when producing KTEX tables and formatting
them in large quantities.

Prvni oznameni a informace k TEXperience 2008
[Invitation to the TEXperience 2008 conference];
p- 96

TUGDboat, Volume 30 (2009), No. 1

Zpravodaj 18(3), 2008

Sbornik z TEXperience 2008 [From the TEXperience
2008 Conference Committee and About the Venue
of the Conference]; pp. 97-101

Program TgXperience 2008 [The Scientific and
Social Programmes of the TEXperience 2008 Confer-
ence]; pp. 102-103

JIRT RYBICKA, Typografie a TEX [TEX and
typography]; pp. 104-109

Computer typesetting is a very widespread ap-
plication commonly used with personal computers.
It is necessary to handle appropriate programs but
it is also very important to apply typographic rules.
This paper deals with the question of how to solve
this problem in TEX and its formats? Quo vadis

typography in TEX?

JAN PRICHYSTAL, Inovace a rozsifeni systému
TEXonWeb [Innovation and enhancement of the
system TEXonWeb]; pp. 110-115

[Published in this issue of TUGboat.]

PETR S0JKA and MICHAL RUZICKA, Publikovani
z jednoho zdroje v odlisnych forméatech pro razna
vystupni zafizeni [Parallel electronic publications];
pp. 116-129

TEX is traditionally used as an authoring tool for
the paper publishing of scientific texts and textbooks.
Parallel electronic publications that are meant for on-
screen viewing and web delivery are also demanded
by readers for many reasons today. This paper dis-
cusses the ways to single-source author publishing
from a TEX source file, and it shows examples of sev-
eral textbooks published by this approach. Special
attention is given to the web document generation
either to HTML or XHTML markup with a notation
translated to MathML. Also discussed is a person-
alised automated document generation for a digital
library project DML-CZ, http://dml.cz/.

PETR OLSAK, DocBy. TEX — dokumentovan{
zdrojovych texti TEXem [DocBy. TEX —
Documenting source code with TEX]; pp. 130-141
DocBy. TEX (web site http://wuw.olsak.net/
docbytex.html) is a TEX macro software product
which gives the possibility of documenting source
code written in various programming languages, for
example written in C. You can include parts of your
source code into your documentation. All occur-
rences of documented words in your included source
code are automatically made active links if encTEX
and pdfTEX are active. To make PDF ourput, you
need no more than pdfTEX with encTEX. The table

TUGDboat, Volume 30 (2009), No. 1

of contents and the index are also created automat-
ically. The sorting of the words in the index is
implemented at the TEX macro level.

ToMAS HALA, Znackovaci styl pro rychlou
sazbu bibliografickych citaci [Markup style for
fast typesetting of bibliographic references];
pp- 142-150

The paper deals with the typesetting of bibli-
ographic references. The introduction covers some
important methods of styles and the systems for
processing and typesetting bibliographic references.
Basic problems of the proceedings in typesetting are
dealt with. No one method alone is suitable for the
typesetting of proceedings. A basic style and some
extensions focus on designing cross references. So-
phisticated database methods use up a lot of time
while the database is being prepared and it can only
be used once. In conclusion a new style for faster
markup and typesetting is created.

The input conditions are: (a) no database usage,
(b) a simple interface for authors and/or typesetters,
(c) complete markup in WTEX macros, (d) extendable
and modifiable when necessary, (e) the result does
not need detailed proof.

The style bib.sty, http://konvoj.cz/styly/
biblio/2.30/bib.sty, contains macros for the most
frequently used types of bibliographic references and
for elements of references. Some additional macros
are described and electronic documents are also in-
cluded.

PETRA TALANDOVA, Moznosti tabulkové sazby
[Typesetting possibilities for tables]; pp. 151-160

This paper deals with the typesetting of tables.
It briefly describes packages prepared for tables and
for the modification of individual characteristics of
tables. Selected packages that can contribute most
to the typesetting are described, and an analysis
of their compatibility is done. Almost all chosen
packages work together and extend the possibilities
of typesetting. Examples of typesetting with and
without these packages show the potential of table
typesetting.

ZDENEK WAGNER, BTEX v saze¢ské praxi [WTEX
in the typographer’s profession]; pp. 161-174

TEX is known mainly in the academic world
and is used for writing technical publications. Many
people are aware of the possibility of creating high-
quality typesetting with TEX. However, these days
when programs with graphical user interfaces hiding
important information prevail, it is difficult to find
instructions on how to prepare with TEX a file for
a phototypesetter or a digital printer. The article
demonstrates the methods of using I¥TEX in prac-

143

tice. A few macro packages that prepare leaflets and
invitation cards are discussed. Also the typesetting
of books including their covers.

Author’s notes on his ITEX packages are avail-
able on http://icebearsoft.euweb.cz/tex/.

Sbohem TEXperience 2008! Bud vitédna
TEXperience 2009! [Good-bye TEXperience 2008
and welcome to TEXperience 2009!]; p. 175

Zpravodaj 18(4), 2008

ZDENEK WAGNER, Uvodnik [From the editor];
p. 177

ViT ZYKA, Piiprava dokumenti pro formatovani
[Document preparation for typesetting];
pp. 178-199

In this article we express the general principles
of a good document and we pose the requirements
for their editing, processing and visualisation. Based
on these requirements we show that an appropri-
ate format is a structurally-marked document. We
explain what structure marking is and describe its
features. Finally we mention the tools for manipu-
lating structure-marked documents and we sketch
the ways they are formatted by TEX.

Vit ZvkaA, Cléanek a logo ConTEXtem: tutoridly
[Article and logo by ConTEXt: Tutorials];
pp-200-211

In this tutorial we show how to create a technical
article using ConTEXt. The resulting text will be
a shortened version of the real article, and so it
will contain most of the elements of this kind of
document.

In the second tutorial we show how to create a
PDF vector figure by ConTEXt. The figure is rather
primitive but illustrative. Although the drawing uses
METRAPOST, its language description is not our goal.
We are focusing on a step-by-step demonstration of
ConTEXt infrastructure for this kind of work.

Tutorials are available on author’s website http:
//www.zyka.net/7id=typography&lang=en.

PETR BREZINA, Zrcadlova sazba [Parallel
typesetting]; pp. 212-226

The article presents an efficient solution to the
problem of typesetting two texts in parallel on facing
pages in bilingual editions. The solution assumes
that the two texts are saved separately in two files
and that they are divided into small sections, as the
Bible is divided into verses. This division makes
it possible to synchronize the texts automatically.
Each of the two texts can have its own footnotes,
illustrations and other insertions as if it were an
ordinary document, but the texts are broken into

144

individual pages simultaneously in such a way that
each odd page contains the same sections as the
corresponding even page. The presented macros

are available on the author’s web site, http://www.

volny.cz/petr-brezina/.

PETR BREZINA, Sazba trojjazy¢né knihy
[Typesetting of a trilingual book]; pp. 227-236

TEX has an insertion mechanism that makes it
possible to handle several texts simultaneously. It
can be used in preparation of multilingual books. In
this article, the author describes how he has type-
set a Latin-Greek-Czech edition of The Dream of
Scipio where each double page contains the text si-
multaneously in the three languages. The described
macros are available on the author’s home page,
http://www.volny.cz/petr-brezina/.

TUG
Institutional
Members

IBM Corporation,
T J Watson Research Center,
Yorktown, New York

Institute for Defense Analyses,
Center for Communications

TUGDboat, Volume 30 (2009), No. 1

ViT ZYKA, Postiehy ze setkdni TEXperience 2008 a
ConTEXt 2008 [Impressions from the TEXperience
2008 conference and ConTEXt meeting 2008];

pp. 237-242

Pozvanka na TEXperience 2009, EuroTEX 2009
a tieti setkani uzivatelu ConTEXt, TUG 2009
[Invitations to TEXperience 2009, EuroTEX 2009
and TUG 2009]; pp. 243-247

[Received from Pavel Stiiz.]

Princeton University,
Department of Mathematics,
Princeton, New Jersey

Springer-Verlag Heidelberg,
Heidelberg, Germany

American Mathematical Society,
Providence, Rhode Island

Aware Software, Inc.,
Midland Park, New Jersey

Banca d’Italia, Roma, [ltaly

Center for Computing Sciences,
Bowie, Maryland

Certicom Corp.,
Mississauga, Ontario, Canada

CSTUG, Praha, Czech Republic

Florida State University,

School of Computational Science
and Information Technology,
Tallahassee, Florida

Research, Princeton, New Jersey

MacKichan Software, Inc.,
Washington/New Mexico, USA

Marquette University,
Department of Mathematics,
Statistics and Computer Science,
Milwaukee, Wisconsin

Masaryk University, Faculty of
Informatics, Brno, Czech Republic

Moravian College, Department
of Mathematics and Computer
Science, Bethlehem, Pennsylvania

MOSEK ApS, Copenhagen,
Denmark

New York University,
Academic Computing Facility,
New York, New York

Stanford University,
Computer Science Department,
Stanford, California

Stockholm University, Department
of Mathematics, Stockholm, Sweden

University College, Cork,
Computer Centre, Cork, Ireland

University of Delaware,
Computing and Network Services,
Newark, Delaware

Université Laval,
Ste-Foy, Québec, Canada

University of Oslo,
Institute of Informatics,
Blindern, Oslo, Norway

TUGboat, Volume 30 (2009), No. 1

TUG Business

TUG 2009 election report
TUG 2009 election report

Nominations for TUG President and the Board of
Directors in 2009 have been received and validated.
Because there is a single nomination for the office of
President, and because there are fewer nominations
for Board of Directors than there are open seats,
there will be no requirement for a ballot this election.

For President, Karl Berry was nominated. As
there were no other nominees, he is duly elected and
will serve for another two years.

For the Board of Directors, the following in-
dividuals were nominated: Jonathan Fine, Steve
Grathwohl, Jim Hefferon, Klaus Hoppner, Steve Pe-
ter, David Walden. As there were fewer nomina-
tions than open positions, all the nominees are duly
elected.

Terms for both President and members of the
Board of Directors will begin with the Annual Meet-
ing at the University of Notre Dame. Congratula-
tions to all.

Board members Dick Koch, Martha Kummerer
and Arthur Ogawa have decided to step down at the
end of their terms. On behalf of the Board, I wish to
thank them for their service, and for their continued
participation through July.

Statements for all the candidates, both for Presi-
dent and for the Board, are appended (in alphabetical
order). They are also available online at http://
www.tug.org/election, along with announcements
and results of previous elections.

¢ Barbara Beeton
for the Elections Committee

145

Karl Berry

Biography:

I have served as TUG president since 2003 and was
a board member for two terms prior to that. During my
term as president, we’ve enacted new initiatives, expand-
ing the scope of the special member and institutional
memberships. We’ve also partnered with Addison-Wesley
for online book sales, with Bigelow&Holmes for mak-
ing the Lucida fonts available through TUG and with
Adobe making the Utopia typeface family freely available,
among others.

As president, I coordinate the formal and informal
meetings of the Board, provide direction and oversight
to the Executive Director, and monitor TUG’s financial
transactions. I also serve on the conference committee,
and thus have been one of the principal organizers for all
TUG-sponsored conferences since 2004, both the annual
meetings and the Practical TEX conferences, including
web site and program creation, coordination of publicity,
and so forth.

I have been on the TUG technical council for many
years. I co-sponsored the creation of the TEX Develop-
ment Fund in 2002, and am one of the primary system
administrators and webmasters for the TUG servers. I'm
also one of the production staff for the TUGboat journal.

On the TEX development side, I’'m currently editor
of TEX Live, the largest free software TEX distribution,
and thus coordinate with other TEX projects around the
world, such as CTAN, ETEX, and pdfTEX. I developed
and still maintain Web2c (Unix TEX) and its basic library
Kpathsea, a freely redistributable library for path search-
ing, Eplain (a macro package extending plain TEX), GNU
Texinfo, and many other projects. I am also a co-author
of TEX for the Impatient, an early comprehensive book
on TEX, now freely available. I first encountered and
installed TEX in 1982, as a college undergraduate.

Personal statement:

I believe TUG can best serve its members and the
general TEX community by working in partnership with
the other TEX user groups worldwide, and sponsoring
projects and conferences that will increase interest in
and use of TEX. I've been fortunate enough to be able
to work essentially full time, pro bono, on TUG and TEX
activities the past several years, and plan to continue
doing so if re-elected.

TUG 2009 election report

146

Jonathan Fine

L

I work for the Open University (the UK’s leading
provider of distance education) as a TEX expert for print
media. I'm also halfway through a two-year project on
putting mathematics on web pages.

In 2006-7 I set up MathTran, which now provides
typesetting of TEX-notation formulas to images as a
public web service, serving about a million images a
month.

MathTran shows the value of TEX as a web service,
which I'd like to extend to whole documents. Installing
and configuring TEX can be slow and difficult. Using
TEX through a web browser will help beginners.

Part of my math-on-web project is a page where
students can interactively create a TEX-notation formula,
say for putting on a web page or in a word-processor
document.

I have a doctorate in Mathematics and although
not my career I still have research interests. I have been
using TEX for over 20 years, and joined TUG in 1989. For
the past two years I've been Chair of the UK TEX Users
Group, and have recently been re-elected for another two
years.

The past three years have seen UK TUG come out
of a long period of inactivity and decline. The credit
for this of course belongs to the Committee and the
members, and not simply myself. We’ve organised three
successful meetings, adopted a new constitution, and set
up a website with links to UK TEX resources.

As a board member I would bring to TUG a focus on
a key core community, namely those who write material
with lots of mathematics. I have a particular interest
in providing help and support, particularly through web
pages.

TUG, by virtue of TEX being a typesetting program,
rightly has a focus on print media. But to flourish we
must also use new media effectively. The Open University
faces the same challenge, and my experience there will
help TUG.

You can comment on this statement, and read the

comments of others, at http://jonathanfine.wordpress.

com/2009/01/31/tug-board-election/.

TUG has a special responsibility, to publicise TEX
and related fonts, programs, documentation and other
resources.

I’d like TUG to offer more to institutional members.
In particular, we should help them share user support ex-
perience and resources. Supporting TEX can be daunting
without outside help.

When I joined TUG there were over 150 institutional
members. There are now just 27. The loss I feel the most
is the Library of Congress.

TUG 2009 election report

TUGboat, Volume 30 (2009), No. 1

Steve Grathwohl

Biography:

I have used TEX since 1986, first as a hobby, and
then “professionally” after I joined Duke University Press
in 1983 on the staff of the Duke Mathematical Journal.
Eventually I supervised the production of the journal
(for both print and online incarnations), and I wrote and
maintained the class files for typesetting. Since 2005
I have been responsible for loading content for our 35
journals onto multiple platforms as well as being TEXnical
liaison for Duke to Project Euclid, a hosting service for
over 50 independent mathematics journals. My current
work involves a significant amount of work with XML
content and metadata schemas as well as being the in-
house TEX specialist.

Personal statement:

TEX has proved to be an astoundingly robust piece of
software, and the continuing development of projects like
I¥TEX3, LuaTEX and XHgTEXhelps insure TeX’s vitality
into the future. I would like to see the TUG board
continue to support these and others (like TEX Gyre and
TEXworks) that contribute to a 21st-century TEX.

Jim Hefferon

I have enjoyed working on the Board, trying to
promote the interests of TEX and friends. In the future I
would like to continue to do so, trying to balance fiscal
prudence with taking the opportunities that arise.

Klaus Hoppner

Biography:
I got a PhD in Physics in 1997. After some post-
doctoral fellowships I have been working working in the

TUGboat, Volume 30 (2009), No. 1

Control Systems group of an accelerator center in Darm-
stadt, Germany, since 2002. My first contact to IMTEX
was in 1991, using it frequently since then.

I was preparing the CTAN snapshot on CD, dis-
tributed to the members of many user groups, from 1999
until 2002. I was heavily involved in the organization of
several DANTE conferences and EuroTEX 2005. Since
2000, I am a member of the DANTE board, acting as
president since 2006.

Personal statement:

In the years since Karl Berry’s presidency the coop-
eration of TUG and European user groups improved a
lot. My candidacy is in the hopes of helping to continue
this trend. Projects like TEX Live and CTAN owe their
success to the work of active volunteers, but also to the
support and cooperation of the user groups.

Steve Peter

Biography:

I am a linguist and publisher originally from Illinois,
but now living in New Jersey. I first encountered TEX
as a technical writer documenting Mathematica. Now
I use TEX and friends (these days, lots of ConTEXt)
for a majority of my publishing work, and occasionally
consult on it. I am especially interested in multilingual
typography and finding a sane way to typeset all of those
crazy symbolisms linguists create. As if that weren’t bad
enough, I've recently begun studying typeface design.

I got involved in TUG via translations for TUGboat,
where I also work on the production team. This past year,
I was on the organizing committee for PracTEX San Fran-
cisco, co-edited the TUG 2004 conference pre-proceedings,
and was appointed to the TUG Board (thanks, Karl!).
Working with and for the community has been so reward-
ing that I've decided to run for a regular term on the
board.

Personal statement:

The future of TEX and TUG lies in communication
and working together to promote and sustain the amazing
typographic quality associated with TEX and friends. I
am especially interested in having TUG support various
projects (technical and artistic) that will serve to bolster
TEX and TUG’s visibility in the world at large.

147

David Walden

Biography:

I was supposed to be studying math as an under-
graduate at San Francisco State College; but, from my
junior year I was hacking on the school’s IBM 1620 com-
puter. While working as a computer programmer at
MIT’s Lincoln Laboratory, I did the course work for a
master’s degree in computer science at MIT. Most of
my career was at Bolt Beranek and Newman Inc. (BBN)
in Cambridge, Massachusetts, where I was, in turn, a
computer programmer, technical manager, and general
manager. At BBN, I had the good fortune to be part of
BBN’s small ARPANET development team. Later I was
involved in a variety of high tech professional services
and product businesses, working in a variety of roles
(technical, operations, business, and customer oriented).

Throughout my business career and now during my
so-called retirement years, I have always done consider-
able writing and editing. This led to my involvement
since the late 1990s with TEX, becoming a member of
TUG and now as a TUG volunteer. I have served as a
member of the TUG Board for the last three years and
also served in the role of Treasurer (I know bookkeeping
from my business career). I have used KTEX to write
three published books and numerous articles. 1 have
contributed to The PracTEX Journal since its inception,
I founded TUG’s Interview Corner, and I have helped
behind the scenes with the TUGboat web site.

You can learn more about me at:
http://www.walden-family.com and http://tug.org/
interviews/interview-files/dave-walden.html.

Personal statement:
I am interested in continuing to serve on the TUG
Board for three reasons:

1. To more explicitly serve the community that has
so generously served me via comp.text.tex, CTAN,
TUGDboat, etc.

2. As a way of helping maintain the viability for years
to come of TEX and the TEX world, entities I would
call “national treasures” except for their world wide
nature.

3. Because rubbing shoulders more closely with various
TUG members will help me learn more about TEX
faster.

As a TUG Board member, my frame of mind has
been to get things done quickly and pragmatically with
enough generality so evolution is possible.

TUG 2009 election report

148

TEX Development Fund 2009 report
TEX Development Fund committee

In TUGboat 28:3 (September 2007), we presented a
roadmap for future TEX development, focusing on
three major projects: the LuaTgX extension, the
TEX Gyre fonts, and the TEXworks front end. Since
then, considerable progress has been made on all
three. We have also supported additional projects.

Major projects

LuaTgX (http://luatex.org): MetaPost has been
rewritten as a library as of MetaPost 1.100, thus
greatly facilitating graphics support in LuaTEX. The
next major task is enhanced math support; the
proposal is available online at http://tug.org/tc/
devfund/luamath08.pdf. Arabic support in the col-
lateral Oriental TEX project sponsored by Dr. Idris
Hamid at Colorado State University is also ongoing.
TEX Gyre (http://gust.org.pl/projects/
e-foundry/tex-gyre): new releases with additional
glyphs and other features continue apace. As noted
elsewhere in this issue, the Gyre project is now on
firm legal footing: URW++ has made the base 35
PostScript fonts available under the LPPL.
TEXworks (http://tug.org/texworks): TEX
Live 2009 is expected to contain a TEXworks binary
for Windows, with binaries for other systems avail-
able from the TEXworks web site. Development and
documentation support continue, with other contrib-
utors joining Jonathan Kew, the principal author.
The following smaller projects, some completed
and some ongoing, have also been supported recently.

SVG output in MetaPost

Applicant: Taco Hoekwater, The Netherlands,
http://tug.org/metapost.
Amount: US$1500; acceptance date: 28 Nov 2008.
Implement SVG output as a backend in Meta-
Post version 1.200. This project was co-sponsored
by a generous contribution to TUG made by David
Crossland.

Bulaq Press Arabic font development

Applicant: Khaled Hosny, Egypt.
Amount: US$1000; acceptance date: 5 Nov 2008.
Bulaq Press, established in Cairo in 1820, has
developed one of the most widely used Arabic type-
faces that has been a standard in Arabic printing for
more than 150 years. However, no fully conformant
digitized version of that typeface is available; only a
few proprietary fonts come close.
This project aims to digitize the Bulaq (Amiriya)
Press typeface in the form of an OpenType font that

TEX Development Fund committee

TUGDboat, Volume 30 (2009), No. 1

implements all contextual features of the original
typeface as well. Also, the project will work on ex-
tending it to cover other languages using the Arabic
script. Finally, the project will consider writing any
macro packages or support files needed to use the
font in Arabic-capable TEX engines such as X{TEX
and LuaTgX.

Free (libre) font initiative

Applicant: David Crossland, Great Britain,
http://tug.org/fonts/librefontfund.html.
Amount: US$500; date: 3 Sep 2008.

A project to collect and create free (libre) fonts
and tools, and make them widely available for general
use. TUG is also contributing administrative support
to this project. A report from January 2009 is avail-
able at http://tug.org/tc/devfund/fontfund09.
pdf.

Obyknovennaya Novaya font development

Applicant: Basil Solomykov, Russia.
Amount: US$1000; date: 7 Aug 2008.

The Obyknovennaya Novaya (“Ordinary New
Face”) typeface was widely used in the former USSR
for scientific and technical publications, as well as for
textbooks. The current implementation is in Meta-
font (http://litwr.boom.ru/obnov.html); the au-
thor aims to provide an outline version as well.

Inconsolata

Applicant: Raph Levien, USA, http://levien.com/
type/myfonts/inconsolata.html.
Amount: US$1000; acceptance date: 30 Nov 2005.

The Inconsolata design is nearly final at this
writing, and has been available from the web page
above for some time. (I2)TEX support has also been
written, and is available from http://mirror.ctan.
org/fonts/inconsolata.

— sk — —
The TEX Development Fund was created by the TEX
Users Group in 2003, under the aegis of the TUG
Technical Council, to foster growth of TEX-related
technical projects.

As always, we remain most appreciative of the
ongoing support from individuals and institutions,
which have made the recent grants possible. Contri-
butions are always welcome!

For application information, the complete list
of projects, and more, please see the web site.

¢ TEX Development Fund committee
http://tug.org/tc/devfund

TUGDboat, Volume 30 (2009), No. 1

TUG Business

TUG financial statements for 2008
David Walden, TUG treasurer

The financial statements for 2008 have been reviewed
by the TUG board but have not been audited. They
may change slightly when the final 2008 tax return
is filed. As a US tax-exempt organization, TUG’s
annual information returns are publicly available on
our web site: http://www.tug.org/tax-exempt.

Revenue (income) highlights

Membership dues revenue was slightly up from 2007
to 2008 (at the end of December 2008 we had 1,549
paid members); conference income was substantially
down; and interest income was down somewhat.
Product sales income was down; contributions in-
come was up about $1,500. Altogether, revenue
decreased 9 percent from 2007 to 2008.

Cost of Goods Sold and Expenses highlights

Payroll, office expenses, and TUGboat production
and mailing continue to be the major expense items
in 2008.

The production and shipping expense of the
2008 TEX Collection software includes $1,400 for 1600
DVD’s, $350 for 1500 mailers, and $2,161 for postage
and labor. The ‘Postage/Delivery —Members’ item
is the mailing cost for individual TUGboat issues
sent from the office, instead of the bulk mailing house;
this expense was down in 2008 from 2007 on account
of the timing and contents of the first TUGboat issue
in the respective years. Direct TUGboat expenses
were up in 2008 from 2007 because two issues were
larger than usual (the first issue was a EuroTEX
proceedings) and included color.

Overall, expenses are up about $8K in 2008
because of a modest cost-of-living increase in pay-
roll, overhead (credit card and bank charges), and a
significant increase in contributions made by TUG.

149

The bottom line

Subtracting ‘Cost of Goods Sold’ from ‘Income’, gross
profit is down from 2007 to 2008. As expenses are
up about $8K, the net income for 2008 is a loss of
about $8K, compared to a profit of about $15K in
2007. This is pretty much as budgeted. The year
2007 was the first year of an increase in fees, and the
annual conference in San Diego made an unusually
large profit. Thus, for 2008 (and 2009) we budgeted
no increase in fees, essentially spreading the 2007
surplus over 2008 (and 2009).

Often we have a prior year adjustment that takes
place early in the year to compensate for something
that had to be estimated at the time the books were
closed at year end; however, at this time there are
no known prior year adjustments for 2008.

Balance sheet highlights

TUG’s end-of-year asset level is essentially the same
from 2007 to 2008.

The ‘Committed Funds’ come to TUG specifi-
cally for designated projects: the INXTEX project, the
TEX Development fund, and so forth. They have
been allocated accordingly and are disbursed as the
projects progress. TUG charges no overhead for ad-
ministering these funds.

‘Prepaid Member Income’ is member dues that
were paid in 2008 for 2009 and beyond. Most of
this liability (the 2009 portion) was converted to
‘Membership Dues’ for 2009 on January 2009. The
payroll liabilities are for 2008 state and federal taxes
due January 15, 2009.

Because of the large decrease in year-to-year
profit, the Total Equity is also down significantly.

Summary

TUG remained financially solid as we entered 2009,
such that we again budgeted no fee increase for 2009,
continuing to use the carry over surplus from 2007.
This cannot go on indefinitely.

TUG continues to work closely with the other
TEX user groups and ad hoc committees on many
activities to benefit the TEX community.

150

TUG 12/31/2008 (versus 2007) Balance Sheet

Dec 31, 08 Dec 31, 07
ASSETS
Current Assets
Total Checking/Savings 162,709 160,490
Accounts Receivable 95 254
Other Current Assets 1,315 1,327
Total Current Assets 164,119 162,071
Fixed Assets 2,396 3,726
TOTAL ASSETS 166,515 165,797
LIABILITIES & EQUITY
Liabilities
Committed Funds 33,569 24,413
Prepaid member income 2,905 4,075
Payroll Liabilities 1,096 1,080
Total Current Liabilities 37,570 29,568
TOTAL LIABILITIES 37,570 29,568
Equity
Unrestricted 136,230 120,820
Net Income -7,285 15,409
Total Equity 128,945 136,229
TOTAL LIABILITIES & EQUITY 166,515 165,797

TUGDboat, Volume 30 (2009), No. 1

TUG 2008 (versus 2007) Revenue and Expenses

Ordinary Income/Expense

Income
Membership Dues
Product Sales
Contributions Income
Annual Conference
Interest Income
Advertising Income

Total Income

Cost of Goods Sold
TUGboat Prod/Mailing
Software Production/Mailing
Postage/Delivery - Members

Conf Expense, office + overhead

JMM supplies/shipping

Member Renewal

Copy/Printing for members
Total COGS

Gross Profit

Expense
Contributions made by TUG
Office Overhead
Payroll Exp
Professional Fees
Depreciation Expense

Total Expense

Net Ordinary Income

Other Income/Expense
Other Income
Prior year adjust
Total Other Income
Net Other Income

Net Income

Jan - Dec 08 Jan - Dec 07
103,171 101,956
5,809 7,667
6,987 5,423
-1,339 6,827
5,341 5,901
405 230
120,374 128,004
31,401 25,130
3,911 1,111
3,164 6,296
1,036 1,164
829
408 335
30 55
40,779 34,091
79,595 93,913
10,525 5,750
12,595 11,653
62,200 59,863
230 200
1,330 1,498
86,880 78,964
-7,285 14,949
0 459
0 459
0 459
-7,285 15,408

TUGDboat, Volume 30 (2009), No. 1 151

Calendar
2009 Sep 9 Workshop on mathematical content in
electronic media, Open University, Milton
May 15— “Marking Time”: A traveling juried Keynes, UK. groups.google.com/
Aug 15 exhibition of books by members group/uk-math-content-2009/web/home
of the Guild of Book Workers. Sep 15—-18 ACM Symposium on Document

Minnesota Center for Book Arts,
Minneapolis. Sites and dates are listed at
palimpsest.stanford.edu/byorg/gbw

Jun 24-27 DANTE: Exhibitor at LinuxTag, Berlin,

Engineering, Munich, Germany.
www.documentengineering.org

Sep 25 “A Short History of Printing”: lecture by
Frank Romano, Museum of Printing,

Germany. www.dante.de North Andover, Massachusetts.

Jul 5-25 Wells College Book Arts Center, www.museumofprinting.org/txp/Events
Summer Institute, Aurora, New York. Sep 30— XML-in-Practice 2009, Arlington, Virginia.
www.wells.edu/bkarts/sunmer2009. htn Oct 1 www.idealliance.org/conferences_and_events

Jul 8-9 Workshop:. Tonards a Digital Oct 1618 American Printing History Association’s
Mathematics Library (DML 2009), 34" annual conference, “The Book
Grand Bend, Ontario, Canada. Beautiful”, Newport, Rhode Island.
www.fi.muni.cz/"sojka/dm1-2009.html www.printinghistory.org/htm/
Jul 14-19 TypeCon 2009: “Rhythm”, Atlanta, conference/2009/CFP-2009.htm
Georgia. www.typecon. com Oct 16—-18 The Seventh International
Conference on the Book,
TUG 2009 University of Edir{burgh, Scotland.
University of Notre Dame, Notre Dame, Indiana booksandpublishing.com/conference-2009
Jul 28—=31 The 30 annual meeting of the TEX Oct 17 GulT meeting 2009 (Gruppo

utilizzatori Italiani di TEX), Pisa, Italy.

Users Group. tug.org/tug2009
Www.guit.sssup.it/guitmeeting/2009

Aug 3-7 SIGGRAPH 2009, “Network Your Oct 26-30 Association Typographique Internationale
Senses”, New Orleans, Louisiana. (ATypl) annual conference, “The
www.siggraph.org/s2009 Heart of the Letter”, Mexico City.

Aug 7-9 UKUUG Summer Conference www.atypl.org
2009, UKs Unix & Open Systems Oct 26— “Late letterpress: The work of Desmond
User Group, Birmingham, UK. Nov 13 Jeffrey”, exhibition, with a talk on
ukuug.org/events/summer2009 Oct 27, St Bride Library, London,

Aug 11-14 Balisage: The Markup Conference, England. stbride.org/events

Montréal, Québec. www.balisage.net Oct 29-31 Guild of Book Workers, Standards

Aug 31— BuroTEX 2009 and 3rd ConTEXt of Excellence Annual Seminar,

. San Francisco, California.
Sep 4 meeting, “Educational Uses of TEX”, . ’
Den Haag, The Netherlands. palimpsest.stanford.edu/byorg/gbw

www.ntg.nl/EuroTeX2009 Nov 21 Journée GUTenberg & Assemblée
générale, Centre FIAP, Paris, France.

Sep 1-4 Book history workshop, Ecole de www.gutenberg.eu.org/manifestations

I'institut d’histoire du livre,

Lyon, France. ihl.enssib.fr Dec 7 “Marking Time”: A traveling juried

Feb 19 exhibition of books by members of
the Guild of Book Workers. Allen
Library, University of Washington,
Seattle. Sites and dates are listed at
palimpsest.stanford.edu/byorg/gbw

Sep 6— “Marking Time”: A traveling juried
Nov 23 exhibition of books by members of the
Guild of Book Workers. San Francisco
Public Library, San Francisco,
California. Sites and dates are listed at
palimpsest.stanford.edu/byorg/gbw

Status as of 15 June 2009

For additional information on TUG-sponsored events listed here, contact the TUG office
(41 503 223-9994, fax: +1 206 203-3960, e-mail: office@tug.org). For events sponsored
by other organizations, please use the contact address provided.

An updated version of this calendar is online at www.tug.org/calendar.

152

TUGDboat, Volume 30 (2009), No. 1

TEX Consultants

The information here comes from the consultants
themselves. We do not include information we know
to be false, but we cannot check out any of the
information; we are transmitting it to you as it was
given to us and do not promise it is correct. Also, this
is not an official endorsement of the people listed here.
We provide this list to enable you to contact service
providers and decide for yourself whether to hire one.

TUG also provides an online list of consultants
at http://tug.org/consultants.html. If you'd
like to be listed, please see that web page.

To place a larger ad in TUGboat, please see
http://tug.org/TUGboat/advertising.html.

Dangerous Curve

PO Box 532281

Los Angeles, CA 90053

+1 213-617-8483

Email: typesetting (at) dangerouscurve.org

Web: http://dangerouscurve.org/tex.html
We are your macro specialists for TEX or IATEX fine
typography specs beyond those of the average IATEX
macro package. If you use XfTEX, we are your
microtypography specialists. We take special care to
typeset mathematics well.

Not that picky? We also handle most of your
typical TEX and IATEX typesetting needs.

We have been typesetting in the commercial and
academic worlds since 1979.

Our team includes Masters-level computer scientists,
journeyman typographers, graphic designers,
letterform/font designers, artists, and a co-author of a

TEX book.

Martinez, Merce Aicart

Tarragona 102 4° 2¢

08015 Barcelona, Spain

+34 932267827

Email: m.aicart (at) ono.com

Web: http://www.edilatex.com
We provide, at reasonable low cost, TEX and IATEX
typesetting services to authors or publishers world-
wide. We have been in business since the beginning of
1990. For more information visit our web site.

Peter, Steve

New Jersey, USA

+1 732 287-5392

Email: speter (at) mac.com
Specializing in foreign language, linguistic, and
technical typesetting using TEX, IATEX, and ConTEX®,
I have typeset books for Oxford University Press,
Routledge, and Kluwer, and have helped numerous
authors turn rough manuscripts, some with dozens of

languages, into beautiful camera-ready copy. I have
extensive experience in editing, proofreading, and
writing documentation. I also tweak and design fonts.
I have an MA in Linguistics from Harvard University
and live in the New York metro area.

Shanmugam, R.
No.38/1 (New No. 65), Veerapandian Nagar, Ist St.
Choolaimedu, Chennai-600094, Tamilnadu, India
491 9841061058
Email: rshanmugam (at) yahoo.com
As a Consultant I provide consultation, technical
training, and full service support to the individuals,
authors, corporates, typesetters, publishers,
organizations, institutions, etc. and I also
support to leading BPO/KPO/ITES/Publishing
companies in implementing latest technologies
with high level of automation in the field
of Typesetting/Prepress/Composition,
ePublishing, XML2PAGE, WEBTechnology,
DataConversion, Digitization, Cross-media
publishing, etc. I have sound knowledge in creating
Macros/Styles/Templates/Scripts and Conversions
with automation using latest softwares in industry.

Sievers, Martin

Im Treff 8, 54296 Trier, Germany

+49 651 81009-780

Email: info (at) schoenerpublizieren.com

Web: http://www.schoenerpublizieren.com
As a mathematician I offer TEX and IATEX services
and consulting for the whole academic sector and
everybody looking for a high-quality output. From
setting up entire book projects to last-minute help,
from creating citation styles to typesetting your math,
tables or graphics —just contact me with information
on your project.

Veytsman, Boris

46871 Antioch PL

Sterling, VA 20164

+1 703 915-2406

Email: borisv (at) lk.net

Web: http://www.borisv.lk.net
TEX and IATEX consulting, training and seminars.
Integration with databases, automated document
preparation, custom IATEX packages, conversions and
much more. I have about fourteen years of experience
in TEX and twenty-seven years of experience in
teaching & training. I have authored several packages
on CTAN, published papers in TEX related journals,
and conducted several workshops on TEX and related
subjects.

TUGBOAT Volume 30 (2009), No. 1

Introductory
4 Barbara Beeton / Editorial comments
* typography and TUGboat news
3 Karl Berry / From the President
e TUG at the JMM; Google Summer of Code; interviews; The PracTEX Journal; conferences
35 David Crossland / The Open Font Library
e announcement of a web site collecting redistributable and modifiable fonts
4 Patrick Daly / Helmut Kopka, 1932-2009
¢ the first author of A Guide to IATEX, in memoriam
20 Peter Flynn / Typographers’ Inn
e The electronic book; Breaking the mold; RIOTING TYPOGRAPHERS; Periodic table of typefaces
105 IATEX Project Team / IATEX3 news, issues 1-2
» IATEX3 news installments: what exists, what’s coming
36 Lapo Mori / Managing bibliographies with IATEX
e survey of bibliography support, including natbib and biblatex
12 David Perry / Ancient TEX: Using XHTEX to support classical and medieval studies
 Unicode, OpenType, and XHIEX, with a focus on usage in classics
18 Jan Prichystal / TEXonWeb
* a customizable, secure web application for running (I&)TEX
Intermediate
127 Karl Berry / The treasure chest
* new CTAN packages from June 2008 through June 2009
32 Han Thé Thanh / A closer look at TrueType fonts and pdfTEX
* using TrueType directly with pdfTEX, with care for glyph names and encodings
107 Joseph Wright / WTEX3 programming: External perspectives
» summary of key ideas in the INTEX3 programming interface
110 Joseph Wright and Christian Feuersdnger / Implementing key—value input: An introduction
* tutorial on using keyval, kvoptions, xkeyval, pgfkeys, both IATEX and plain TEX
64 Wentao Zheng / Supporting layout routines in MetaPost
« approaches to (semi-)automatically laying out objects in MetaPost
123 Vit Zyka / Current typesetting position in pdfTEX
* description and example usage of pdfTEX extensions for obtaining the current position on the page
Intermediate Plus
58 John Bowman and Orest Shardt / generation of interactive three-dimensional output, embeddable in PDF
» Asymptote: Lifting TEX to three dimensions
6 Jin-Hwan Cho / DVI specials for PDF generation
« concise description of DVI specials used in DVIPDFMx
74 Denis Roegel / MetaPost macros for drawing Chinese and Japanese abaci
e drawing abaci and illustrating their operation
69 Peter Wilson / Glisterings
* Reprise; pdfIATEX and MetaPost; Spidrons
Advanced
49 Jean-Michel Hufflen / Managing languages within MIBIBTEX
* specifying natural languages in bibliographies to ConTEXt and IATEX
88 Denis Roegel / An introduction to nomography: Garrigues’ nomogram for the computation of Easter
* background of Easter calculations and reproduction in MetaPost
80 Denis Roegel / Spheres, great circles and parallels
 drawing correct spheres and their components with MetaPost
22 Ulrik Vieth / OpenType Math Illuminated
¢ detailed comparison of OpenType and TEX math font parameters
Contents of publications from other TEX groups
131 ArsTgXnica: Issues 5-7 (2008-2009); Baskerville: Issue 10.1 (2009);
Die TgXnische Komddie: Issues 2008/2-2009/2; Eutypon: Issue 21 (October 2008);
MAPS: Issues 36-37 (2008); The PracTgX Journal: Issues 2008-2-2008-3; TEXemplares: Issue 8 (2006);
Zpravodaj: Issues 16(2)-18(4) (2006—2008)
Reports and notices

125 Kaihsu Tai / In response to “mathematical formulae”

126 Massimo Guiggiani and Lapo Mori / In response to Kaihsu Tai

144 Institutional members

145 Barbara Beeton / TUG 2009 election report

148 TEX Development Fund committee / TEX Development Fund 2009 report
149 David Walden / TUG financial statements for 2008

151 Calendar

152 TgX consulting and production services

General Delivery

Software & Tools

Typography

Fonts

Bibliographies

Graphics

IATEX

Macros

Letters

Hints & Tricks
Abstracts

TUG Business

News

Advertisements

12
18

20

22
32
35

36
49

o8
64
69
74
80
88

105
107

110

123

125
126

127

131
133
134
133
136
138
139
140

144
145
148
149
151

152

TUGBoOAT
Volume 30, Number 1 / 2009

From the president / Karl Berry
Editorial comments / Barbara Beeton

Helmut Kopka, 1932-2009; Eitan Gurari, 1947-2009; A short history of type
Helmut Kopka, 1932-2009 / Patrick Daly

DVI specials for PDF generation / Jin-Hwan Cho
Ancient TEX: Using XHTEX to support classical and medieval studies / David Perry
TeEXonWeb / Jan Prichystal

Typographers’ Inn / Peter Flynn

OpenType math illuminated / Ulrik Vieth
A closer look at TrueType fonts and pdfTEX / Han Thé Thanh
The Open Font Library / Dave Crossland
Managing bibliographies with IATEX / Lapo Mori
Managing languages within MIBIBTEX / Jean-Michel Hufflen
Asymptote: Lifting TEX to three dimensions / John Bowman and Orest Shardt
Supporting layout routines in MetaPost / Wentao Zheng
Glisterings: Reprise; MetaPost and pdfI4TEX; Spidrons / Peter Wilson
MetaPost macros for drawing Chinese and Japanese abaci / Denis Roegel
Spheres, great circles and parallels / Denis Roegel
An introduction to nomography: Garrigues’ nomogram for the computation of Easter
/ Denis Roegel
IATEX3 news, issues 1-2 / IATEX Project Team
IATEX3 programming: External perspectives / Joseph Wright
Implementing key—value input: An introduction / Joseph Wright
and Christian Feuersianger
Current typesetting position in pdfTEX / Vit Zyka

In response to “mathematical formulse” / Kaihsu Tai
In response to Kaihsu Tai / Massimo Guiggiani and Lapo Mori

The treasure chest / Karl Berry

ArsTgXnica: Contents of issues 57 (2008-2009)
Baskerville: Contents of issue 10.1 (2009)

Die TpXnische Komddie: Contents of issues 2008/2-2009/2
Eutypon: Contents of issue 21 (2008)

MAPS: Contents of issue 36-37 (2008)

The PracTEX Journal: Contents of issues 2008-2-2008-3
TEXemplares: Contents of issue 8 (2006)

Zpravodaj: Contents of issues 16(2)—-18(4) (2006-2008)

TUG institutional members

TUG 2009 election report / Barbara Beeton

TEX Development Fund 2009 report / TEX Development Fund committee
TUG financial statements for 2009 / David Walden

Calendar

TEX consulting and production services

TUGBOAT Volume 30 (2009), No. 1

Introductory
4 Barbara Beeton / Editorial comments
* typography and TUGboat news
3 Karl Berry / From the President
e TUG at the JMM; Google Summer of Code; interviews; The PracTEX Journal; conferences
35 David Crossland / The Open Font Library
e announcement of a web site collecting redistributable and modifiable fonts
4 Patrick Daly / Helmut Kopka, 1932-2009
¢ the first author of A Guide to IATEX, in memoriam
20 Peter Flynn / Typographers’ Inn
e The electronic book; Breaking the mold; RIOTING TYPOGRAPHERS; Periodic table of typefaces
105 IATEX Project Team / IATEX3 news, issues 1-2
* IATEX3 news installments: what exists, what’s coming
36 Lapo Mori / Managing bibliographies with IATEX
« survey of bibliography support, including natbib and biblatex
12 David Perry / Ancient TEX: Using XHTEX to support classical and medieval studies
 Unicode, OpenType, and XHIEX, with a focus on usage in classics
18 Jan Prichystal / TEXonWeb
* a customizable, secure web application for running (I&)TEX
Intermediate
127 Karl Berry / The treasure chest
* new CTAN packages from June 2008 through June 2009
32 Han Thé Thanh / A closer look at TrueType fonts and pdfTEX
* using TrueType directly with pdfTEX, with care for glyph names and encodings
107 Joseph Wright / WTEX3 programming: External perspectives
» summary of key ideas in the INTEX3 programming interface
110 Joseph Wright and Christian Feuersdnger / Implementing key—value input: An introduction
* tutorial on using keyval, kvoptions, xkeyval, pgfkeys, both IATEX and plain TEX
64 Wentao Zheng / Supporting layout routines in MetaPost
e approaches to (semi-)automatically laying out objects in MetaPost
123 Vit Zyka / Current typesetting position in pdfTEX
* description and example usage of pdfTEX extensions for obtaining the current position on the page
Intermediate Plus
58 John Bowman and Orest Shardt / generation of interactive three-dimensional output, embeddable in PDF
» Asymptote: Lifting TEX to three dimensions
6 Jin-Hwan Cho / DVI specials for PDF generation
« concise description of DVI specials used in DVIPDFMx
74 Denis Roegel / MetaPost macros for drawing Chinese and Japanese abaci
e drawing abaci and illustrating their operation
69 Peter Wilson / Glisterings
* Reprise; pdfIATEX and MetaPost; Spidrons
Advanced
49 Jean-Michel Hufflen / Managing languages within MIBIBTEX
« specifying natural languages in bibliographies to ConTEXt and IATEX
88 Denis Roegel / An introduction to nomography: Garrigues’ nomogram for the computation of Easter
* background of Easter calculations and reproduction in MetaPost
80 Denis Roegel / Spheres, great circles and parallels
 drawing correct spheres and their components with MetaPost
22 Ulrik Vieth / OpenType Math Illuminated
¢ detailed comparison of OpenType and TEX math font parameters
Contents of publications from other TEX groups
131 ArsTgXnica: Issues 5-7 (2008-2009); Baskerville: Issue 10.1 (2009);
Die TEXnische Komddie: Issues 2008/2-2009/2; Eutypon: Issue 21 (October 2008);
MAPS: Issues 36-37 (2008); The PracTgX Journal: Issues 2008-2-2008-3; TEXemplares: Issue 8 (2006);
Zpravodaj: Issues 16(2)-18(4) (2006-2008)
Reports and notices

125 Kaihsu Tai / In response to “mathematical formulse”

126 Massimo Guiggiani and Lapo Mori / In response to Kaihsu Tai

144 Institutional members

145 Barbara Beeton / TUG 2009 election report

148 TEX Development Fund committee / TEX Development Fund 2009 report
149 David Walden / TUG financial statements for 2008

151 Calendar

152 TgX consulting and production services

