
110 TUGboat, Volume 30 (2009), No. 1

Macros

Implementing key–value input: An
introduction

Joseph Wright and Christian Feuersänger

Abstract

The key–value system is justly popular as it greatly
simplifies controlling packages for the user. Unfortu-
nately, that ease of use is not transferred into setting
up key–value systems for authors of pre-packaged
TEX code. This article describes how to implement
key–value controls for both TEX and LATEX authors,
including a brief overview of how the underlying sys-
tem works. As well as the original keyval package,
the various extended keyval-based packages are cov-
ered, looking at the relative advantages of each sys-
tem. Looking beyond keyval-based systems, an over-
view of the pgfkeys package is also given.

1 Introduction

The key–value method uses a comma-separated list
of 〈key〉=〈value〉 to set one or more 〈key〉s. The code
applied when a 〈key〉 is given can undertake a range
of processing on the 〈value〉. Almost every (LA)TEX
user will have come across the power of the this
method for providing control values. The interface is
increasingly widespread in controlling package and
class behaviour. It offers a much cleaner method
for managing large numbers of options or control
values than defining multiple single-use macros and
complex optional arguments.

The original keyval package (Carlisle, 1999) pro-
vides a core of functionality. This has been extended
by xkeyval (Adriaens, 2008), kvoptions (Oberdiek,
2009a) and kvsetkeys (Oberdiek, 2009b), providing
additional tools for the developer, and making key–
value input available for LATEX package and class
options.

Unfortunately, the ease of key–value input for
the user has not translated into easy development
of new uses of key–value syntax in package con-
trol. Many (even experienced) (LA)TEX code authors
struggle to make a start with implementing key–
value methods. This article aims to make key–value
input more accessible. The major use of key–value
syntax is controlling LATEX packages and classes,
and this is reflected in the focus here. However, all
of the key–value implementations are compatible to
some extent with plain TEX. A short section on use
with plain TEX is included here, and as far as possi-
ble all of the examples use only plain TEX macros.

Throughout the article, “package” is used to refer
to a LATEX package, LATEX class or other file using
key–value input.

The pgfkeys system implements a key–value in-
terface in a somewhat different manner from the
various keyval-derived packages. As a result, it has
unique strengths. Due to the differing approaches
of the keyval-based systems and pgfkeys, the latter
is covered in its own section. Many of the concepts
from the keyval package and its derivatives apply
to pgfkeys, and so the general introduction is useful
even for users who have already decided on pgfkeys.

The various packages discussed have a range
of features not covered in this article: in order to
remain accessible, only the most widely-applicable
concepts are discussed. Some simplifications have
also been made where these will not impede the
more advanced user. More detail can of course be
found in the various package documentation. There
is also a TUGboat article covering the design and
some of the more advanced features of xkeyval (Adri-
aens and Kern, 2005).

2 How key–value works

There are two parts to using the key–value system:
defining keys, and assigning values to keys. When
using the keyval package itself, these tasks are han-
dled by the macros \define@key and \setkeys, re-
spectively.

The key in key–value input is the “name” of a
data item. The model used by keyval divides keys
into families: groups of keys that can be processed
together. The \define@key macro is used to define
keys. This requires three pieces of information: the
key name, the family to which the key belongs, and a
handler for the key. Consider a package fam defining
a key key, which simply prints the value given:

\define@key{fam}{key}{#1}

As can be seen, \define@key takes three arguments,
〈family〉, 〈key〉 and 〈handler〉. The 〈handler〉 re-
ceives the value given for the key as macro argument
#1, and can consist of any TEX code appropriate to
process the value assigned to the key (the part after
the equals sign).

How does \define@key work? A new macro
\〈prefix 〉@〈family〉@〈key〉 is defined, with expansion
〈handler〉. So in the example above, the following
would achieve the same effect:

\def\KV@fam@key#1{#1}

Here, the prefix is a code added to the beginning of
the key name, and acts as a family of families. The
prefix is fixed with the value KV: only xkeyval allows
this to be varied.

Joseph Wright and Christian Feuersänger

TUGboat, Volume 30 (2009), No. 1 111

The \setkeys macro is then used to set key
values, the second part of the key–value concept.
The input to \setkeys is a comma-separated list:
each comma-separated 〈key〉=〈value〉 pair is there-
fore processed in turn. Unlike the majority of TEX
macros, this process ignores spaces between key–
value pairs:
\setkeys{fam}{

key one=value 1 ,

key two=value2

}

consists of two key–value pairs “key one=value 1”
and “key two=value2”. Notice that both the key
name and the value can contain spaces. Braces must
be used to protect literal “,” and “=” characters
inside \setkeys:
\setkeys{fam}{

key three={value1,value2},

key four={some=stuff}

}

For each pair found, \setkeys then attempts
to separate the data into a key and a value, de-
limited by an equals sign. If there is no equals
sign, an error will normally be raised. Assuming a
value is found (even an empty one, if there is noth-
ing after “=”), \setkeys looks for a macro of the
form \〈prefix 〉@〈family〉@〈key〉 to handle the input.
If such a macro exists, it is executed with the value
as argument #1. If no macro is found, the key is
regarded as undefined, and an error is raised. In the
example earlier, the result of the \setkeys opera-
tion is to supply the key macro for key one with
“value 1”, and that for key two with “value2”.

\setkeys passes the value to the processing
macro as is. Thus macro names, etc., can be used
without worrying about expansion in the process.

3 Defining keys

As outlined in the previous section, a key is de-
fined by creating a suitably-named macro. However,
defining every key using \def or \newcommand would
add considerably to the effort of using key–value in-
put. All of the packages discussed here provide more
convenient methods.

3.1 Using the keyval package

The \define@key macro for key definition is the
only method that the original keyval package pro-
vides. However, this is the most powerful method
for defining a key: the developer is completely free
to code any handler required. One particularly com-
mon process is to store the value in a macro to be
used later:
\define@key{fam}{key}{\def\fam@data{#1}}

This stores the value given for key in \fam@data.
The definition of the storage macro does not occur
until the key is used for the first time. Thus if the
macro must be defined even if the key has not been
used, an additional line is necessary:
\def\fam@data{initial}

\define@key{fam}{key}{%

\def\fam@data{#1}%

}

Setting the key key will then redefine \fam@data to
contain whatever value is passed to the key. Notice
that here the key family has been used as the start
of the storage macro name.

As was explained in Section 2, keys must have
a value (even if this is empty). It is possible to
specify a default value for a key, which is then used
if the user does not supply one (this does not mean
that the key is defined before it is first used!). A
default value is supplied as an optional argument to
the \define@key macro, which following the LATEX
convention appears in square brackets:
\define@key{fam}{key}[default]{%

\def\fam@data{#1}%

}

This means that
\setkeys{fam}{key}

is interpreted as though the user had written
\setkeys{fam}{key=default}

The handler macro receives the default value in ex-
actly the same way as user-supplied data.

Using the “raw” \define@key macro rapidly
becomes awkward when a large number of similar
keys are required. Package authors can of course
write short-cut macros to make the process easier.
However, the other key–value packages seek to ad-
dress this issue by making one or more common key
definitions available directly.

3.2 Using kvsetkeys

Using kvsetkeys adds several “low-level” functions to
keyval; those related to setting keys will be addressed
later. kvsetkeys does not add any methods for pro-
cessing known key names, and indeed relies on the
explicit loading of keyval to define keys. It does,
however, add a customised handler for key names
which have not been defined.

When using the kvsetkeys package, a handler
for unknown keys in a family is created using the
macro \kv@set@family@handler. This allows data
input for arbitrary key names, or perhaps simply a
customised warning or error message. The name of
the key used is available as #1. A simple warning
could be given by:

Implementing key–value input: An introduction

112 TUGboat, Volume 30 (2009), No. 1

\kv@set@family@handler{fam}{%

\wlog{Warning: key ‘#1’

unknown by package fam}

}

A more complex example might be to use the input
to define a new macro. The value given for the key
(if any) is available as #2. For example,
\kv@set@family@handler{fam}{%

\expandafter\def\csname

fam@user@#1\endcsname{#2}%

}

creates a new internal macro including the name of
the unknown key to store the given value. Notice
that the definition includes a marker that this is a
user-provided key name (\fam@user@), as no check
has been made for an existing definition.

3.3 Using kvoptions

As the package name indicates, kvoptions helps
LATEX developers use key–value input for package
and class options. However, as we will see later,
there is no fundamental difference between defining
keys and defining key–value package options.

The kvoptions package makes life easier for the
author by allowing the family value to be defined
once, and then used in all subsequent key definitions.
It also automatically generates various macros for
the package author:
\SetupKeyvalOptions{

family = fam,

prefix = fam@

}

This defines the family as fam, and prefixes all new
storage macros with \fam@. This does not affect
the key prefix, used for the key macros themselves,
which still start with \KV@.... Usually, the 〈prefix 〉
given here will be simply 〈fam〉@, as this means all
storage macros are defined as \fam@.... The rest
of this section assumes this convention is used, and
that the setup above applies. If no data has been
supplied using \SetupKeyvalOptions, the family
and macro prefix are taken from the name of the
current package.

The kvoptions package provides macros for
defining new keys (or options):
• \DeclareBoolOption;
• \DeclareComplementaryOption;
• \DeclareStringOption.

The names of the macros are a good guide to the
general method key type they produce. kvoptions
also provides methods applicable only to package
options: these are discussed later.

\DeclareBoolOption creates a true/false key.
Giving the key name alone is the same as giving it

with the true value. A new switch is created which
is named \if〈fam〉@〈key〉, which works in the same
way as though created using \newif.
\DeclareBoolOption{active}

% Other code

\iffam@active

% Do stuff

\else

% Do nothing

\fi

\DeclareComplementaryOption creates a comple-
mentary key to an existing Boolean key. The most
common example might be setting draft versus final:
\DeclareBoolOption{final}

\DeclareComplementaryOption

{draft}{final}

% Other code

\iffam@final

% Do final stuff

\else

% Do draft stuff

\fi

In this way, the same switch may be set by keys with
differing names.

\DeclareStringOption creates a new storage
macro, to hold the data provided as the key value.
This is similar to the \define@key method for sav-
ing to a macro given earlier.
\DeclareStringOption{key}

stores the value given in the macro \fam@key. An
initial value can be provided for the option, so that
\fam@key will be defined under all circumstances.
This uses a LATEX optional argument;
\DeclareStringOption[initial]{key}

has a similar result to
\def\fam@data{initial}

\define@key{fam}{key}{%

\def\fam@key{#1}%

}

so that \fam@key will expand to “initial”, until the
key is set to an explicit value.

3.4 Extended keyval: xkeyval

The xkeyval package extends the key–value system
further than any of the other packages. As a result,
it has a much richer (and more complex) command
syntax. The first point to note is that, unlike the
other packages discussed, xkeyval allows the devel-
oper to alter the key prefix. This is achieved by
adding an optional argument to \define@key:
\define@key{fam}{key}{#1}

\define@key[pre]{fam}{key}{#1}

The first command defines \KV@fam@key as the key-
handling macro; the second defines \pre@fam@key.

Joseph Wright and Christian Feuersänger

TUGboat, Volume 30 (2009), No. 1 113

If no explicit key prefix is given, the value KV is
used. Of course, altering the key prefix means that
\setkeys also needs to be modified to accommo-
date it. To set the two keys above, the appropriate
\setkeys commands would be

\setkeys{fam}{key=input}

\setkeys[pre]{fam}{key=input}

Notice that, in contrast to kvoptions, there is no
method to pre-set the family, etc. As a result, when
defining a large number of keys it is often convenient
to first create customised definition macros:

\def\fam@define@key{\define@key{fam}}

\def\fam@define@mykey

{\define@key[pre]{fam}}

As is the case with kvoptions, xkeyval provides
an extended set of key definition types:

• \define@key;
• \define@boolkey;
• \define@boolkeys;
• \define@cmdkey;
• \define@cmdkeys;
• \define@choicekey.

The extended version of \define@key has already
been discussed. The concept of key prefix applies to
all of the other key types, although the remaining
examples all use the default KV prefix. If the prefix
is given, it is always the first, optional, argument to
the definition macro.

The \define@boolkey macro creates a single
Boolean key. The key definition requires a function,
even though this may be blank. To allow the key
name alone to be used as equivalent to key=true,
a default value is needed. This follows the LATEX
convention of appearing in square brackets, but is
not the first argument given: instead, it follows the
key name, for example,

\define@boolkey{opt}{key}[true]{}

creates a new switch \ifKV@fam@key, and a key-
processing macro \KV@fam@key with no customised
function attached: the \if is simply set appropri-
ately. The name of the new switch can be altered
using a second option argument to specify the macro
prefix. This again appears in square brackets, be-
tween the family and key names:

\define@boolkey{opt}[fam@]

{key}[true]{}

creates the switch \iffam@key, and is functionally
equivalent to the \DeclareBoolOption macro from
kvoptions.

Several Boolean keys can be created in one go
using \define@boolkeys. Here, no custom function

is needed (or indeed permitted). A default value is
still needed to allow use of the key name alone:
\define@boolkeys{opt}[fam@]

{key,key two,key three}[true]

Using \define@cmdkey creates a storage macro
for the value given, along with a processing macro.
This can become somewhat complicated, and so
some examples are needed.
\define@cmdkey{fam}{key}{}

creates a new key macro \KV@fam@key, which will
store the input in \cmdKV@fam@key. The name of
the storage macro can be altered by adding a macro
prefix argument, as with Boolean keys:
\define@cmdkey{fam}[fam@]{key}{}

The name of the key macro is unchanged, but the
storage macro is now called \fam@key. Notice that
both examples include a final processing argument:
in these examples this is blank as storage of the in-
put alone is required. A default can be given for a
command key, as an optional argument after the key
name:
\define@cmdkey{fam}[fam@]{key}

[default]{}

The \define@cmdkeys macro allows the cre-
ation of several keys at one go, using a comma-
separated list. Only one default is available for all
of the commands, and a custom function cannot be
given. In many cases, this will not be an issue as the
stored value is the aim of the key. For example, to
create three command keys key, key two and key
three:
\define@cmdkeys{fam}[fam@]

{key,key two,key three}

For large numbers of storage keys, this method is
preferable to multiple calls to \define@cmdkey.

Finally, \define@choicekey allows creation of
a key with a limited number of valid input values
from an arbitrary list. This key type has several op-
tional arguments which make it somewhat difficult
to set up without experimentation. At the most ba-
sic, the value is checked by xkeyval and is then passed
to key handler function:
\define@choicekey{fam}{key}

{val1,val2,val3}

{You chose: #1}

Here, the key key can take only the values val1,
val2 and val3. The * modifier makes the compari-
son by \define@choicekey case-insensitive.
\define@choicekey*{fam}{key}

{val1,Val2,VAL3}

{You chose: #1}

will match key=val1, key=Val1, etc. In these ex-
amples, the processing macro simply displays the

Implementing key–value input: An introduction

114 TUGboat, Volume 30 (2009), No. 1

user’s choice. Further processing of keywords is pos-
sible in this argument, for example to set several
switches based on a keyword. Adding the + modi-
fier to \define@choicekey makes a second handler
available for items not on the list:
\define@choicekey+*{fam}{key}

{val1,val2,val3}

{You chose: #1}

{\wlog{Invalid choice ‘#1’: you

must put ‘key=val1’, ‘key=val2’

or ‘key=val3’}%

}

Here, valid choices act as in the previous example.
Any other value will use the second handler, which
in this case simply writes a warning to the log.

The macros outlined above all have more ex-
tended syntax, with additional optional arguments.
This more complex area has been covered by the
authors of xkeyval (Adriaens and Kern, 2005).

4 Setting keys: user interface

As described in Section 2, the keyval package sets
key values using the \setkeys macro. The same is
true for kvoptions and xkeyval (the latter overloads
its own modified version of the macro). In contrast,
kvsetkeys uses the \kvsetkeys macro; this is de-
signed to be more robust than \setkeys as defined
by keyval, and to cope better with altered catcodes
for “,” and “=”.

The \kvsetkeys macro can also set keys from
the other packages, provided they use the key pre-
fix KV. Thus the only keys that cannot be set by
\kvsetkeys are those produced using xkeyval with
a non-standard key prefix. In the following dis-
cussion, \setkeys could therefore be replaced by
\kvsetkeys.

The \setkeys macro needs to know the family
(and potentially prefix) to which keys belong. Of-
ten, and especially when developing a package, a
user macro which already contains this information
is desirable. The usual method is to define a custom
setup macro:
\def\famsetup#1{\setkeys{fam}{#1}}

An optional key–value argument to user macros
is often defined, so that settings apply only to that
instance of the macro. Provided the processing of
the macro occurs inside a group, this is easy to
achieve (using LATEX for convenience):
\newcommand*{\mycmd}[2][]{%

% #1 is the optional keyval argument

% #2 is a mandatory argument

\begingroup

\setkeys{fam}{#1}%

% Do stuff with #2

\endgroup}

4.1 \kvsetkeys versus \setkeys

Using \kvsetkeys adds three major refinements to
the keyval \setkeys macro. Firstly, \kvsetkeys re-
liably sets keys when the catcodes for “,” and “=”
are non-standard. This is important when using
packages that make the equals sign active, for exam-
ple the turkish option of babel. The xkeyval version
of \setkeys also handles these cases correctly.

Secondly, both \kvsetkeys and \setkeys re-
move some braces from value input. \kvsetkeys
aims to be more predictable. It removes only one set
of curly braces, whereas \setkeys may remove one
or two sets of braces, depending on circumstances.

Finally, \kvsetkeys supports the unknown key
handler. This will be many authors’ motivation to
use kvsetkeys: handling unknown keys otherwise re-
quires adding custom low-level code.

5 LATEX package and class options

The preceding sections apply to using key–value
methods in a wide variety of situations. One of the
most common aims of authors considering key–value
input is to use it for processing LATEX package or
class options. This has particular points to con-
sider, and therefore specialised macros have been
made available for this area.

Any key defined when processing occurs is avail-
able as an option. This means that options can be
created using \define@key or any of the higher-level
macros listed here. It also means that any key–value
option is also a valid key. This may not always be
desirable, and is considered further in Section 6.1.

Before using key–value options, the careful de-
veloper should know the limitations of the system.
Before package options are passed to the key–value
system, they are processed by LATEX. The kernel re-
moves all unprotected spaces from the input, which
means that key names’ spaces will be rendered use-
less. Secondly, unlike direct use of \setkeys, the
kernel will expand the input. This means that some
keys should not be given as options to a package.

Although patches exist to deal with these prob-
lems, these are not generally useful: the patches
must be loaded before input of the package or class
requiring them! This leaves the package author with
two options. The first approach is to abandon key–
value load-time options, with a setup macro used
only after loading the package. More commonly, the
options can be designed to minimise the impact of
the problem. Design steps to achieve this include:

• Avoiding any key names containing spaces;

• For keys which will receive values containing
spaces, initially defining the key to gobble the

Joseph Wright and Christian Feuersänger

TUGboat, Volume 30 (2009), No. 1 115

value with a warning, then redefining it after
processing options to the real meaning (see Sec-
tion 6.1);
• For keys that will require a single macro, re-

quiring the csname rather than the macro it-
self, then using \csname . . . \endcsname in the
implementation.
To allow key–value syntax to be used in package

options, the standard LATEX method for handling
option input has to be modified. This can be done
directly, but copy–pasting code is not normally con-
sidered good programming. xkeyval and kvoptions
both provide suitable macro definitions.

5.1 Using kvoptions

When using kvoptions, option processing takes place
using the \ProcessKeyvalOptions macro. This has
to be supplied with the family of keys to be pro-
cessed:
\ProcessKeyvalOptions{fam}

To make handling certain styles of option easier,
kvoptions provides two key-defining macros which
are very focussed on package options. Options act-
ing in the normal LATEX manner are created by the
\DeclareVoidOption macro. The key is to be used
alone, but if a value is given it is ignored with a
warning. As this is essentially a standard LATEX op-
tion, the normal need to provide an action exists:
\DeclareVoidOption{old}{%

\PackageInfo{fam}{You gave the ‘old’ option}%

}

\DeclareDefaultOption is used to process
unknown options, in the manner of the LATEX
kernel \DeclareOption* macro. The result is
that \CurrentOptionKey stores the current key
name, with \CurrentOptionValue holding any
value which was given, or \relax if there is no
value.
\DeclareDefaultOption{%

\PackageInfo{fam}{%

You gave the ‘\CurrentOptionKey’ option,

with value ‘\CurrentOptionValue’

}%

}

5.2 Using xkeyval

The \ProcessOptionsX macro is used to process
xkeyval options. As might be expected, this takes
an optional prefix and mandatory family argument.
The family has to be given in angle brackets, for
example
\ProcessOptionsX<fam>

Loading xkeyval provides \DeclareOptionX for
handling package options which may have no value.

Values can be accepted, and are available as #1.
This macro does not require a key family, although
one can be given as an optional argument, again in
angle brackets.
\DeclareOptionX<fam>{letter}{%

\PassOptionsToPackage{geometry}

{letter}%

}

\DeclareOptionX<fam>{date}

{\renewcommand*{\date}{#1}}

The \DeclareOptionX* macro works like the
kernel’s \DeclareOption* macro, but no error is
raised if the option is in 〈key〉=〈value〉 format. In
contrast to kvoptions, the entire unknown input (key,
plus potentially an equals sign and a value) is stored
as \CurrentOption.
\DeclareOptionX*{%

\PackageWarning{fam}

{‘\CurrentOption’ invalid}}

6 Additional considerations

6.1 Redefining and disabling keys

Keys can be (re)defined at any point using any of the
key-defining macros discussed here. Thus keys can
be defined to only give a warning, then redefined
later to carry out a function. This is particularly
useful for LATEX package options, where the key may
not be appropriate at load time but may be later.

Conversely, some keys are appropriate only be-
fore some action (such as loading a file) takes place.
Disabling a key simply requires that the key is de-
fined to do nothing:
\define@key{fam}{key}{\wlog{Key ‘key’ ignored}}

If a key (re)definition occurs inside a group (such as
\begingroup . . . \endgroup or {. . . }), the definition
applies only inside that group. There is no \global
prefix to \define@key, and so to ensure that a key
is globally disabled, the low-level TEX \gdef must
be used:
\gdef\KV@fam@key#1{\wlog{Key ‘key’ ignored}}

Both kvoptions and xkeyval provide high level
methods for disabling keys. kvoptions defines the
\DisableKeyvalOption macro, which requires only
the family and key name:
\DisableKeyvalOption{fam}{key}

This macro takes an optional argument which can
be used to control the result of attempting to use a
disabled key (warning, error, ignore, etc.). The use
of the optional argument is illustrated in Section 7.
xkeyval provides the similar \disable@keys:
\disable@keys{fam}{key}

In this case, the macro can accept the usual xkeyval
optional argument for the key prefix.

Implementing key–value input: An introduction

116 TUGboat, Volume 30 (2009), No. 1

6.2 Setting one key from another

There are occasions when the setting of one key af-
fects another. Usually, this can be accommodated
using \setkeys within \define@key (or a deriva-
tive, if using xkeyval):
\define@key{fam}{key}{#1}

\define@key{fam}{key two}{%

You said: \setkeys{fam}{key=#1}%

}

If two keys should function in an identical man-
ner, it is sometimes easier to \let one to the defi-
nition of the other. Be careful about default values:
only the key defined using \define@key will have
one using this method! This issue can be avoided
by first declaring the keys as normal, then carrying
out the \let.
\define@key{fam}{key}[default]{#1}

\define@key{fam}{key two}[default]{}

\expandafter\let\csname

KV@fam@key two\endcsname\KV@fam@key

gives two identical keys, key and key two, with the
same default.

The use of these methods to allow alternative
spellings for setting a key, to set a storage macro
and a TEX \if..., are illustrated in Section 7.

6.3 Interaction between the different
key–value packages

The xkeyval, kvoptions and kvsetkeys packages all use
unique macro names (both user and internal). All
three can therefore be loaded without issue. Pro-
vided the standard key prefix KV is used, the keys
generated are also cross-compatible.

Neither kvoptions nor kvsetkeys define any of
the macros from the keyval package itself. This
means that they require keyval, and that they do
not affect its functions. xkeyval works differently,
using its own definition of the core keyval macros,
and under LATEX prevents subsequent loading of the
keyval package. xkeyval aims to make these changes
backward-compatible; however, under certain cir-
cumstances some macros may behave differently.
The latest version of xkeyval fixes a number of dif-
ferences in behaviour between keyval and xkeyval.

The following short LATEX document can be
used as a test to show the differences in behaviour
between older versions of xkeyval and the keyval
package. With keyval or the latest version of xkeyval
this document compiles correctly. However, older
versions of xkeyval give errors.
\documentclass{article}

\usepackage{keyval}

%\usepackage{xkeyval}

\makeatletter

\define@key{w}{cmd}

{\def\test##1{#1}}

\makeatother

\setkeys{w}{cmd={--#1--}}

\begin{document}

[\test{ee}]

\end{document}

It is therefore strongly recommended that any pack-
age using key–value should be tested with xkeyval
loaded, even if it is not being used. In this way,
if other packages load xkeyval problems should be
avoided.

6.4 Using key–value with plain TEX

All of the key–value packages are compatible to some
extent with plain TEX. Both kvoptions and kvsetkeys
are designed to auto-detect whether TEX or LATEX
is in use. A minimal set of LATEX macros are defined
only if they are not otherwise available. Thus both
can be used directly in plain TEX.
\input kvoptions.sty

\input kvsetkeys.sty

The xkeyval bundle is designed in a modular
fashion. The file xkeyval.sty contains the LATEX
code (including processing code for package op-
tions), whereas the code for defining and setting
keys is contained in xkeyval.tex. As plain TEX
users need only the latter, using xkeyval is simply:
\input xkeyval

The keyval package itself is not designed for use
with plain TEX. It therefore requires a small but
non-zero number of LATEX macros. These are con-
veniently provided by miniltx.
\input miniltx

\input keyval.sty

The file keyval.sty is also loaded by kvoptions,
which ensures that the necessary macros are defined.

7 Putting it all together: a short example

The various methods outlined above will be suffi-
cient for many people implementing a key–value in-
terface. However, putting everything together can
still be challenging. A short, and not entirely triv-
ial, example will illustrate the steps needed.

Consider the following situation. You have been
asked by an inexperienced LATEX user to produce
a small package providing one user macro, \xmph,
which will act as an enhanced version of \emph. As
well as italic, it should be able to make its argu-
ment bold, coloured or a combination of all of these.
This should be controllable on loading the package,
or during the document. Finally, a de-activation
setting is requested, so that \xmph acts exactly like

Joseph Wright and Christian Feuersänger

TUGboat, Volume 30 (2009), No. 1 117

\emph. This latter setting should be available only
in the preamble, so that it will apply to the entire
document body.

Looking at the problem, you first decide to call
the package xmph, and to use the xmph@ prefix for
internal macros. The settings requested all look rel-
atively easy to handle using the kvoptions package,
so you choose that for key–value support. You de-
cide on the following options/settings:
• inactive, a key with no value, which can be

given only in the preamble;
• useitalic, a Boolean option for making the

text italic;
• usebold and usecolour, two more Boolean op-

tions with obvious meanings
• colour, a string option to set the colour to use

when the usecolour option is true.
You also anticipate that US users would prefer the
option names usecolor and color, and so you de-
cide to implement them as well.

As well as the \xmph macro, you decide to create
a document body setup macro \xmphsetup. Both
\xmph and \xmphsetup will take a single, mandatory
argument. This keeps everything easy to explain,
and means there is not too much work to do with
arguments and so on.

With the design decisions made, you can write
the package. The options and so on come first.
Most of the keys are defined using high-level kvop-
tions macros, although two low-level methods are
used. Initial settings for the package are set up by a
\setkeys instruction before processing any package
options.

\NeedsTeXFormat{LaTeX2e}

\ProvidesPackage{xmph}

[2008/03/17 v1.0 Extended emph]

\RequirePackage{color,kvoptions}

\SetupKeyvalOptions{

family=xmph,

prefix=xmph@}

\DeclareBoolOption{useitalic}

\DeclareBoolOption{usebold}

\DeclareBoolOption{usecolour}

\DeclareBoolOption{usecolor}

\let\KV@xmph@usecolor

\KV@xmph@usecolour

\DeclareStringOption{colour}

\define@key{xmph}{color}

{\setkeys{xmph}{colour=#1}}

\DeclareVoidOption{inactive}{%

\PackageInfo{xmph}

{Package inactive}%

\AtEndOfPackage{\let\xmph\emph}%

}

\setkeys{xmph}{useitalic,colour=red}

\ProcessKeyvalOptions{xmph}

\define@key{xmph}{inactive}

{\PackageInfo{xmph}

{Package inactive}

\let\xmph\emph

}

\AtBeginDocument{

\DisableKeyvalOption[

action=warning,

package=xmph]

{xmph}{inactive}

}

\newcommand*{\xmphsetup}

{\setkeys{xmph}%

}

The user macros are then defined; by keeping
the two parts separate, it will be easier to alter the
method for managing the keys, if needed. Later,
we will see how this enables switching from keyval-
based keys to pgfkeys without altering the core of
the package at all.

\newcommand*{\xmph}[1]{%

\xmph@emph{\xmph@bold{%

{\xmph@colourtext{#1}}}}%

}

\newcommand*{\xmph@emph}{%

\ifxmph@useitalic \expandafter\emph

\else \expandafter\@firstofone

\fi}

\newcommand*{\xmph@bold}{%

\ifxmph@usebold \expandafter\textbf

\else \expandafter\@firstofone

\fi}

\newcommand*{\xmph@colourtext}{%

\ifxmph@usecolour \expandafter\textcolor

\else \expandafter\@secondoftwo

\fi

{\xmph@colour}}

The actions of the new package are shown by
the following short example LATEX file. The use of
the disabled key inactive will result in a warning
entry in the log.
\documentclass{article}

\usepackage[

usecolour,

usebold]{xmph}

\begin{document}

Some text \xmph{text}

\xmphsetup{

usecolor=false,

usebold=false,

Implementing key–value input: An introduction

118 TUGboat, Volume 30 (2009), No. 1

useitalic=false}%

\xmph{more text}

\xmphsetup{inactive}

\end{document}

8 A different approach: pgfkeys

All of the packages discussed so far are built on
the keyval approach. Keys are part of families, and
further subdivision (at least beyond altering the
key prefix) is not readily achieved. An alternative
approach is taken by the pgfkeys package (Tantau,
2008). This package uses the 〈key〉=〈value〉 input
format, but the underlying implementation is not
derived from keyval; the pgfkeys package therefore
uses a unique key management model. Thus, while
for the user pgfkeys and keyval are very similar,
for the developer they require different approaches.
However, many of the ideas of keys with differing
behaviours carry through from the earlier discus-
sion.

8.1 How key–value works with pgfkeys

In principle, pgfkeys works in the same ways as de-
scribed in Section 2: there are two parts of the key–
value system, defining keys and assigning values to
keys. However, pgfkeys requires just one command
for both parts: the \pgfkeys macro.

The definition requires the use of special suf-
fixes, the so-called key handlers. Here, the term
handler is used slightly differently than in the other
packages. For example, the statement
\pgfkeys{/path/key/.code={#1}}

defines a key named /path/key. The .code state-
ment defines a macro which expands to the TEX
code in the arguments (in our case, the TEX code is
simply the argument itself, “#1”). Hence, using the
key will just print its value:
\pgfkeys{/path/key=value}

yields “value”. The /path plays a similar role to
〈prefix 〉 and 〈family〉 for keyval and friends: it asso-
ciates key with a sub-tree.

As with the key–value syntax in Section 2,
spaces in key and path names are allowed, and
spaces between keys and their values and different
keys are ignored. Also, literal “,” and “=” charac-
ters need to be protected by braces:
\pgfkeys{

/path/key three={value1,value2},

/path/keyfour={some=stuff}

}

In contrast to keyval and friends, pgfkeys uses
a different concept to manage key prefixes and key
suffixes: the key tree.

8.2 The key tree

In the pgfkeys model, keys are organised hierar-
chically, similar to the Unix file system; subdivi-
sions are generated using slashes. For example,
/path/sub/key is a key named key, which belongs
to the subtree /path/sub which is in turn located
inside /path. The slash “/” defines the tree’s root.
A statement like
\pgfkeys{

/path/sub/key = value,

/path/key two = value2

}

sets both of these keys, showing that keys belonging
to different subtrees can be set in one statement.

It is not necessary to fully qualify keys: a de-
fault path is considered for every key without a full
path. For example,
\pgfkeys{

key = value of key,

key two = value of key two,

sub/key three = value3

}

will search for key, key two and sub/key three
in the current default path. Default paths can be
set using a change directory command, using the
.cd handler which will be discussed below. The ini-
tial setting is “/”, which means any unqualified key
name like key will be changed to /key implicitly.

8.3 Using pgfkeys

In contrast to the keyval approach, pgfkeys uses a sin-
gle macro to define and set keys, namely \pgfkeys.
At its heart, pgfkeys works with three different types
of keys: keys which store their values directly, com-
mand keys and keys which are handled. Key defini-
tions, assignments and other key types are composed
of these three building blocks.

Key type 1: direct keys

Direct keys simply store their values as charac-
ter sequences. A pgfkeys direct key is thus simi-
lar to a xkeyval command key (one defined using
\define@cmdkey). For example,
\pgfkeys{/path/key/.initial = value}

defines the key /path/key and assigns value. After
this, the value can be changed with assignments:
\pgfkeys{/path/key = new value}

Direct keys are stored in a way which is not di-
rectly accessible to end users. Instead, the command
\pgfkeysgetvalue is used to get a direct key’s cur-
rent value into a (temporary) macro. For example,
the statement
\pgfkeysgetvalue{/path/key}{\macro}

Joseph Wright and Christian Feuersänger

TUGboat, Volume 30 (2009), No. 1 119

will get the current value of /path/key and copy
it into \macro. The macro will be (re-)defined if
necessary without affecting the stored key’s value.

Putting these things together, direct keys can
be used as in the following example. The code
\pgfkeys{/path/key/.initial = value}

\pgfkeysgetvalue{/path/key}{\macro}

After definition: ‘‘\macro’’.

\pgfkeys{/path/key = new value}

\pgfkeysgetvalue{/path/key}{\macro}

After setting: ‘‘\macro’’

will define /path/key with an initial value, copy the
value to \macro and typeset the result. Afterwards,
it changes the current value, copies the new value to
\macro and typesets it again. Here’s the output:

After definition: ‘‘value’’.

After setting: ‘‘new value’’.

Key type 2: command keys

The second type of pgfkeys-keys are command keys.
Here, pgfkeys uses a slightly different terminology
than keyval. Command keys with pgfkeys are very
similar to the keys defined by \define@key: they
are TEX commands with (usually) one argument
replacing “#1” with the assigned value. So, what
pgfkeys calls a “command key” is a “key handler” in
the terminology of keyval and friends.

The usual way to define command keys is to
append /.code={〈TEX code〉} to the key’s name.
Thus,

\pgfkeys{/path/cmd key/.code = {(value=#1)}}

defines a command key /path/cmd key which type-
sets “(value={〈its value〉})” whenever it is as-
signed. For example, the listing
\pgfkeys{/path/cmd key/.code = {(value=#1)}}

\pgfkeys{/path/cmd key=cmd value}

yields “(value=cmd value)”.
As with direct keys, command keys are stored

in a manner which is not directly accessible by end
users. In fact, pgfkeys creates a temporary macro
with \def and stores this macro into a direct key
/path/cmd key/.@cmd whenever it creates a new
command key.

So, command keys are TEX macros which oper-
ate on some input argument (the value) using “#1”.
Useful examples of command keys are
\pgfkeys{/path/store key/.code =

{\def\myPkgOption{#1}

}

to store the input into a macro \myPkgOption or
\pgfkeys{/path/call key/.code = {\call{#1}}}

to invoke another macro \call{#1} with the value.
These keys can be used with
\pgfkeys{

/path/store key = value,

/path/call key = value2

}

Since some processing methods are generally
useful, pgfkeys provides easier ways to assign them.
For example, our example of a command key which
simply stores its value into a macro can equivalently
be defined using
\pgfkeys{

/path/store key/.store in=

\myPkgOption

}

The suffix .store in, and also the suffix .code, are
key handlers, the third type of pgfkeys options.

Key type 3: handled keys

The third type of pgfkeys-keys are handled keys.1 If
\pgfkeys encounters a key which is neither a direct
option nor a command key, it splits the key into key
path (everything up to the last “/”) and key name
(everything after the last “/”). Then, pgfkeys looks
in the special /handlers/ subtree for a key called
key name. This is then passed both the current path
and the value given. For example,
\pgfkeys{/path/cmd key/.code = {(value=#1)}}

is a handled key with key name .code and key path
/path/cmd key because

1. there is no direct key /path/cmd key/.code;
2. there is no command option by this name;
3. there is a command key /handlers/.code.

The predefined handler .code creates a new com-
mand key named according to the current key’s path
(in our case, /path/cmd key).

So, key handlers take a key path and a value
as input and perform some kind of action with it.
They can define new key types (for example storage
keys, Boolean keys or choice keys as we will see in
the next section), they can check whether a key is
defined, they can change default paths and more.
Much of the strength of the pgfkeys package comes
from its key handlers.

8.4 Predefined key handlers

pgfkeys provides many predefined key handlers, most
of which are used to define more or less special com-
mand keys. Here are some common key handlers:

1 Again, pgfkeys uses a slightly different terminology. Its
handled keys are not to be mistaken with the “handlers” de-
fined by \define@key; those are called “command keys” in
pgfkeys.

Implementing key–value input: An introduction

120 TUGboat, Volume 30 (2009), No. 1

.cd A “change directory” command:
\pgfkeys{/path/.cd,A=a,B=b}

sets the default path to /path and will thus set
/path/A=a and /path/B=b. We will later see that
the command \pgfqkeys also changes the default
path, thus
\pgfqkeys{/path}{A=a,B=b}

will also set /path/A=a and /path/B=b.
.default={〈value〉} Determines a value to be used

if no “=” sign is given:
\pgfkeys{/path/A/.default=true}

\pgfkeys{/path/A}

is the same as if we had written
\pgfkeys{/path/A=true}

.code={〈code〉} Defines a new command key which
expands to the value of .code. The resulting com-
mand key takes one argument.

.is if={〈TEX-Boolean〉} Creates a new Boolean
key which sets a TEX Boolean to either true or
false:
\newif\ifcoloured

\pgfkeys{

/path/coloured/.is if = coloured

}

% set \colouredtrue:

\pgfkeys{/path/coloured=true}

% set \colouredfalse:

\pgfkeys{/path/coloured=false}

An error message is raised if the supplied value
is neither true nor false. pgfkeys does not call
\newif automatically, and the leading “if” must
not be included in the argument of .is if, i.e.
coloured/.is if=ifcoloured would be wrong.

.is choice Creates a new choice key, with the avail-
able choices given as subkeys of the current one:
\pgfkeys{

/path/op/.is choice,

/path/op/plus/.code={+},

/path/op/minus/.code={-},

/path/op/nop/.code={nothing}

}

% invokes /path/op/plus

\pgfkeys{/path/op=plus}

An error results if the user gives an unknown
choice.

.store in={〈\macro 〉} Defines a command key that
simply stores its value into a macro:
\pgfkeys{/path/key/.store in=

\keyvalue}

\pgfkeys{/path/key=my value}

Result is ‘\keyvalue’

Expands to “Result is ‘my value’”. Such a
key is very similar to a direct key, see above.

.style Creates a new style key, which contains a list
of other options. Whenever a style key is set, it
sets all of its options:
\pgfkeys{

/text/readable/.style=

{font=large,color=pink},

/text/unreadable/.style=

{font=small,color=black}

}

\pgfkeys{/text/readable}

will set the additional options /text/font=large
and /text/color=pink (using the default path
since they have no full path).

.append style Appends more options to an already
existing style key. Given the example above,
\pgfkeys{

/text/readable/.append style=

{underlined=true}}

has the same effect as writing
\pgfkeys{/text/readable/.style=

{font=large,color=pink,

underlined=true}}

Since style keys can be defined and changed easily,
they provide much flexibility for package users.

8.5 pgfkeys in action — an example

We will now realise our example LATEX package of
Section 7 with pgfkeys. We use the same option
names and the same user interface, with one excep-
tion: pgfkeys does not support LATEX package op-
tions (although see Section 8.6). Any configuration
has to be done with \xmphsetup.

We do not need to change our implementa-
tion for \xmph and we can keep its helper macros
\xmph@bold, \xmph@emph and \xmph@colourtext
as well. We only need to change the option declara-
tion, which is shown in the following listing.

\NeedsTeXFormat{LaTeX2e}

\ProvidesPackage{xmph}

[2009/03/17 v1.0 Extended emph]

\RequirePackage{color,pgfkeys}

\newif\ifxmph@useitalic

\newif\ifxmph@usebold

\newif\ifxmph@usecolour

\pgfkeys{

/xmph/.cd,

useitalic/.is if = xmph@useitalic,

usebold/.is if = xmph@usebold,

usecolour/.is if = xmph@usecolour,

usecolor/.is if = xmph@usecolour,

useitalic/.default = true,

Joseph Wright and Christian Feuersänger

TUGboat, Volume 30 (2009), No. 1 121

usebold/.default = true,

usecolour/.default = true,

usecolor/.style = {usecolour=#1},

colour/.store in = \xmph@colour,

color/.style = {colour=#1},

inactive/.code = {%

\let\xmph\emph

\PackageInfo{xmph}

{Package inactive}%

}

}

\pgfkeys{

/xmph/.cd,

useitalic,

colour = red

}

\newcommand*{\xmphsetup}{%

\pgfqkeys{/xmph}%

}

\AtBeginDocument{

\pgfkeys{

/xmph/inactive/.code = {%

\PackageInfo{xmph}{%

Option ‘inactive’ only

available in preamble

}%

}

}

}

The command \pgfqkeys occurring in the last list-
ing is a variant of \pgfkeys which sets the default
path directly, without a .cd statement. The com-
mand
\pgfqkeys{/xmph}{

colored = false,

bold = true

}

thus uses /xmph as its default path.

8.6 pgfkeys for LATEX package options

The pgfkeys package does not include any native
functionality for processing LATEX package and class
options. However, the pgfopts package (Wright,
2008) adds this ability, using a modified copy of the
functionality in kvoptions.

The pgfopts package provides only a single user
macro, \ProcessPgfOptions. Keys are created us-
ing the pgfkeys interface discussed above, and can
then be used as package (or class) options using the
\ProcessPgfOptions macro. The requirement to
have no spaces in the key names for this to work
remains exactly the same as for xkeyval or kvoptions
processing of options.

9 Conclusions

There are a number of methods for the author want-
ing to make a start using key–value input. The
pgfkeys package has much to recommend it. The in-
terface has been well designed, and it is very strong
in handling a wide range of situations (well illus-
trated in the user documentation). For large-scale
projects in particular, the tree concept makes option
management much easier. By loading pgfopts, LATEX
option processing is also possible with pgfkeys.

For users who wish to handle LATEX package op-
tions using key–value input, most authors will want
to load either kvoptions or xkeyval, rather than cod-
ing the option handler directly. Both handle the core
issue of providing key–value package options well.
Each packages has some advantages, depending on
the job at hand.

xkeyval provides a rich set of macros for defining
almost every possible type of key. The additional
graduation of keys made available by the variable
prefix is welcome. The package has a very large
number of features which have not been discussed
here. However, the package has been criticised for
modifying keyval internals. More importantly for
many, it suffers from the very problem of complex
optional arguments that the key–value method is
supposed to avoid.

On the other hand, kvoptions provides a smaller,
but more focussed, set of additional key types. The
input syntax is much less complex than that of xkey-
val, and the provision of \SetupKeyvalOptions is
particularly welcome. Using the kvoptions method
does make it more likely that ambitious package
authors will have to become familiar creating cus-
tomised functions with \define@key. However,
the clearer syntax make kvoptions a better choice
for rapidly making progress with using key–value
input.

10 Acknowledgments

Thanks to Didier Verna and Morten Høgholm for
helpful suggestions when drafting this manuscript,
and Will Robertson for the example of the keyval
versus xkeyval problem.

References

Adriaens, Hendri. “The xkeyval package”. Available
from CTAN, macros/latex/contrib/xkeyval,
2008.

Adriaens, Hendri, and U. Kern. “xkeyval — new de-
velopments and mechanisms in key processing”.
TUGboat 25(2), 194–199, 2005.

Implementing key–value input: An introduction

macros/latex/contrib/xkeyval

122 TUGboat, Volume 30 (2009), No. 1

Carlisle, David. “The keyval package”. Part of the
graphics bundle, available from CTAN, macros/
latex/required/tools, 1999.

Oberdiek, Heiko. “The kvoptions package”. Part
of the oberdiek bundle, available from CTAN,
macros/latex/contrib/oberdiek, 2009a.

Oberdiek, Heiko. “The kvsetkeys package”. Part
of the oberdiek bundle, available from CTAN,
macros/latex/contrib/oberdiek, 2009b.

Tantau, Till. “pgfkeys”. Part of the TikZ and pgf
bundle, available from CTAN, graphics/pgf,
2008.

Wright, Joseph. “pgfopts — LATEX package options
with pgfkeys”. Available from CTAN, macros/
latex/contrib/pgfopts, 2008.

� Joseph Wright
Morning Star
2, Dowthorpe End
Earls Barton
Northampton NN6 0NH
United Kingdom
joseph dot wright (at)

morningstar2 dot co dot uk

� Christian Feuersänger
Institute for Numerical Simulation
Wegelerstraße 6
53115 Bonn
Germany
ludewich (at) users dot

sourceforge dot net

Joseph Wright and Christian Feuersänger

macros/latex/required/tools
macros/latex/required/tools
macros/latex/contrib/oberdiek
macros/latex/contrib/oberdiek
graphics/pgf
macros/latex/contrib/pgfopts
macros/latex/contrib/pgfopts

	Introduction
	How key–value works
	Defining keys
	Using the keyval package
	Using kvsetkeys
	Using kvoptions
	Extended keyval: xkeyval

	Setting keys: user interface
	`kvsetkeys versus `setkeys

	LaTeX package and class options
	Using kvoptions
	Using xkeyval

	Additional considerations
	Redefining and disabling keys
	Setting one key from another
	Interaction between the different key–value packages
	Using key–value with plain TeX

	Putting it all together: a short example
	A different approach: pgfkeys
	How key–value works with pgfkeys
	The key tree
	Using pgfkeys
	Predefined key handlers
	pgfkeys in action—an example
	pgfkeys for LaTeX package options

	Conclusions
	Acknowledgments

