
272 TUGboat, Volume 30 (2009), No. 2

TEX as an eBook reader

Kaveh Bazargan

Abstract

An important advantage of eBook readers is their
ability to modify text size and page orientation for
the most comfortable reading configuration. The
eBook reader has to reformat the text on the fly and
with minimum delay. Current eBook readers (e.g.
Stanza on the iPhone) can do this reformatting, but
cannot deal with complicated text such as mathe-
matics. We have been experimenting with using TEX
as the formatting engine. Of course it can handle
complex mathematics, but it also creates the best
line breaks of any eBook reader. We will report our
experiments with using TEX as an ebook reader on
the iPhone.

1 Problems in the eBook world

1.1 Format wars

There is a ‘format war’ going on in the world of
eBooks. Several formats are proprietary, and several
openly specified. This has produced confusion for
the publishers, as they don’t know which format to
distribute their books on, and don’t know whether
or not they will have to redistribute in the future,
in other formats. The XML format was originally
envisaged for just this sort of format war. By using a
single format which embodies all the logical structure
and the content of the document, any other format,
e.g. PDF, can be created automatically.

ePub is a comprehensive XML format for eBooks.
In particular it supports MathML for mathematical
text. So the ideal scenario would be that an eBook
is saved in only one format, namely ePub, and an
eBook reader would render this on the fly and present
a readable view. We’ll come back to this after dis-
cussing the workflow in our company.

1.2 Ugly output

One of the most compelling features of eBooks is
that they can reflow the text to the user’s taste. But
the line breaking engine on these small devices is
not that sophisticated, and the output does not look
professionally typeset. For example, eBook readers
on the iPhone show lots of bad breaks and large word
gaps when the font size is increased. Again, we will
come back to this.

2 Evolution of the workflow
at River Valley Technologies

The main activity at our company is typesetting
mathematical text. To explain most simply, we need

to go from a TEX file submitted by the author, to a
PDF file. Before the need for generation of XML, this
was a straightforward process. We would put the TEX
file into style, typeset it, proofread, etc. A few years
ago, publishers started requesting XML, and rightly
so. As we deal with mathematical material, we
needed to use MathML in order to keep the structure
for future re-use of XML.

But here is a problem with XML. It is easy to
produce a file that parses and validates, but it is
not easy to check the content. Checking the PDF,
on the other hand is simple — it is called reading
the document, or proofreading it. We had to find
a way of guaranteeing the fidelity of the XML and
PDF. The only solution we could think of was an
automated way of generating the PDF from the XML.
But this was a non-trivial task. XML deals only with
content and logical structure. It does not deal with
visual style, placement of figures, hyphenation, etc.
There are other anomalies. For instance an XML file
might list all figures at the top of the file, but the
PDF will have them in the order that they appear.

Here is the workflow we came up with:

Author TEX → Structured TEX →
XML → Slave TEX → PDF

The structured TEX is not for typesetting, but sim-
ply uses TEX as markup for tagging elements; for in-
stance \firstname{John} or \journalyear{1985}.
This file is then transformed automatically into the
XML. The program we use for this is a highly con-
figured version of TEX4ht, written by the late Eitan
Gurari. But for the purposes of the present discus-
sion, it is the stages from the XML onwards that are
important.

The XML file is transformed to a TEX file using
XSLT. This is what we call a ‘slave’ TEX file which
is not normally looked at. It is simply created in
order to produce the final PDF file. The important
point is that the translation of the XML to PDF is
done with 100% automation. And the intermediate
TEX file is not modified in any way, but simply run
through TEX to produce the final PDF.

So we have two fully automated processes, one
going from a TEX file to an XML file, and one from the
XML to a second TEX file. The filters for these two
processes were written independently, and checked
rigorously. So let us suppose a proofreader is com-
paring the output from the author file and that from
the final TEX file, and checks that the mathematical
symbols match. It is then almost certain that the
XML also matches. So the method gives us a high
degree of confidence in the content of the XML.

Kaveh Bazargan



TUGboat, Volume 30 (2009), No. 2 273

3 Back to eBooks

So how does all this relate to eBooks? Well, we said
in the section about ‘format wars’ that ideally ePub
should be the one and only format, and it should be
rendered on the fly by the eBook reader. So we need
a rendering engine that renders ePub in near-real
time. Well, our XML → Slave TEX → PDF is just
such an engine. So we decided to try to implement
this on an eBook reader. The only device which was
accessible to us and had a software development kit
available was the iPhone from Apple.

So there are two elements to the full process —
transforming XML to TEX, and typesetting the TEX.
The second seemed the most challenging and we
sought the help of Jonathan Kew. Within a short
time he managed to port the full TEX program to the
iPhone. We decided to created a DVI file rather than
a PDF, for speed and for compact file size. Jonathan
also wrote a DVI reader for the device. The program
runs very quickly indeed, and turning the iPhone on
its side instantly reformats the output to the new
page aspect ratio.

The transformation from ePub to the slave TEX
has not yet been done, but it seems to be the easier
part of the problem.

3.1 Quality of output

Regarding the ‘ugly output’ referred to above, we
compared our output through TEX for a purely tex-
tual file, to the output from the other eBook readers
on the iPhone and we think TEX does much better.
Of course TEXies should not be surprised by this.
We all know that the line breaking algorithm of TEX
is the best!

4 Conclusions

Our automated workflow, from XML to PDF, can be
modified and applied to eBook readers. The output
looks good with good spacing and hyphenation, and
only one format, ePub, need be produced by the
publisher.

5 Acknowledgements

I am merely the ‘Steve Jobs’ of our company, others
do the clever work and I take to the stage and take the
credit! Here the main credit must go to Jonathan
Kew who did the work reported here. Credit of
course also to Radhakrishnan CV for discussions on
the overall concept.

� Kaveh Bazargan
River Valley Technologies
kaveh (at) river-valley dot com

http://www.river-valley.com

TEX as an eBook reader


	Problems in the eBook world
	Format wars
	Ugly output

	Evolution of the workflow at River Valley Technologies
	Back to eBooks
	Quality of output

	Conclusions
	Acknowledgements

