
TUGboat, Volume 30 (2009), No. 2 183

LuaTEX: Halfway to version 1

Hans Hagen

Abstract

We’re close to releasing version 0.50 of LuaTEX. In
this article I give an overview of what has happened
so far, what is currently being done and where we
expect to end up.

1 Introduction

We are about halfway into the LuaTEX project now.
At the time of writing this document we are only
a few days away from version 0.40 (the BachoTEX
cq. TEX Live version) and around EuroTEX 2009
we will release version 0.50. Starting with version
0.30 (which we released around the conference of the
Korean TEX User group meeting) all one-decimal
releases are supported and usable for (controlled)
production work. We have always stated that all
interfaces may change until they are documented to
be stable, and we expect to document the first stable
parts in version 0.50. Currently we plan to release
version 1.00 sometime in 2012, 30 years after TEX82,
with 0.60 and 0.70 in 2010, 0.80 and 0.90 in 2011.
But of course it might turn out different.

In this update we assume that the reader knows
what LuaTEX is and what it does.

2 Design principles

We started this project because we wanted an ex-
tensible engine. We chose Lua as the glue language.
We do not regret this choice as it permitted us to
open up TEX’s internals reasonably well. There have
been a few extensions to TEX itself, and there will
be a few more, but none of them are fundamental in
the sense that they influence typesetting. Extending
TEX in that area is up to the macro package writer,
who can use the Lua language combined with TEX
macros.

In a similar fashion we made some decisions
about Lua libraries that are included. What we have
now is what you will get. Future versions of LuaTEX
will have the ability to load additional libraries but
these will not be part of the core distribution. There
is simply too much choice and we do not want to
enter endless discussions about what is best. More
flexibility would also add a burden on maintenance
that we do not want. Portability has always been a
virtue of TEX and we want to keep it that way.

3 Lua scripting

Before 0.40 there could be multiple instances of the
Lua interpreter active at the same time, but we have
now decided to limit the number of instances to just

one. The reason is simple: sharing all functional-
ity among multiple Lua interpreter instances does
more bad than good and Lua has enough possibil-
ities to create namespaces anyway. The new limit
also simplifies the internal source code, which is a
good thing. While the \directlua command is now
sort of frozen, we might extend the functionality of
\latelua, especially in relation to what is possible in
the backend. Both commands still accept a number
but this now refers to an index in a user-definable
name table that will be shown when an error occurs.

4 Input and output

The current LuaTEX release permits multiple in-
stances of kpse which can be handy if you mix, for
instance, a macro package and MPlib, as both have
their own ‘progname’ (and engine) namespace. How-
ever, right from the start it has been possible to bring
most input under Lua control and one can overload
the usual kpse mechanisms. This is what we do in
ConTEXt (and probably only there).

Logging, etc., is also under Lua control. There
is no support for writing to TEX’s opened output
channels except for the log and the terminal. We
are investigating limited write control to numbered
channels but this has a very low priority.

Reading from zip files and sockets has been
available for a while now.

Among the first things that have been imple-
mented is a mechanism for managing category codes
(\catcode) although this is not really needed for
practical usage as we aim at full compatibility. It
just makes printing back to TEX from Lua a bit more
comfortable.

5 Interface to TEX

Registers can always be accessed from Lua by number
and (when defined at the TEX end) also by name.
When writing to a register grouping is honored. Most
internal registers can be accessed (mostly read-only).
Box registers can be manipulated but users need to
be aware of potential memory management issues.

There will be provisions to use the primitives
related to setting codes (lowercase codes and such).
Some of this functionality will be available in version
0.50.

6 Fonts

The internal font model has been extended to the
full Unicode range. There are readers for OpenType,
Type 1, and traditional TEX fonts. Users can create
virtual fonts on the fly and have complete control
over what goes into TEX. Font specific features can

LuaTEX: Halfway to version 1



184 TUGboat, Volume 30 (2009), No. 2

either be mapped onto the traditional ligature and
kerning mechanisms or be implemented in Lua.

We use code from FontForge that has been
stripped to get a smaller code base. Using the Font-
Forge code has the advantage that we get a similar
view on the fonts in LuaTEX as in this editor which
makes debugging easier and developing fonts more
convenient.

The interface is already rather stable but some
of the keys in loaded tables might change. Almost
all of the font interface will be stable in version 0.50.

7 Tokens

It is possible to intercept tokenization. Once inter-
cepted, a token table can be manipulated before
being piped back into LuaTEX. We still support
Omega’s translation processes but that might be-
come obsolete at some point.

Future versions of LuaTEX might use Lua’s so-
called “user data” concept but the interface will
mostly be the same. Therefore this subsystem will
not be frozen yet in version 0.50.

8 Nodes

Users have access to the node lists in various stages.
This interface has already been quite stable for some
time but some cleanup might still take place. Cur-
rently the node memory maintenance is still explicit,
but eventually we will make releasing unused nodes
automatic.

We have plans for keeping more extensive in-
formation within a paragraph (initial whatsit) so
that one can build alternative paragraph builders
in Lua. There will be a vertical packer (in addition
to the horizontal packer) and we will open up the
page builder (inserts etc.). The basic interface will
be stable in version 0.50.

9 Attributes

This new kid on the block is now available for most
subsystems but we might change some of its default
behaviour. As of 0.40 you can also use negative values
for attributes. The original idea of using negative
values for special purposes has been abandoned as
we consider a secondary (faster and more efficient)
limited variant. The basic principles will be stable
around version 0.50, but we reserve the freedom to
change some aspects of attributes until we reach
version 1.00.

10 Hyphenation

In LuaTEX we have clearly separated hyphenation,
ligature building and kerning. Managing patterns as
well as hyphenation is reimplemented from scratch

but uses the same principles as traditional TEX. Pat-
terns can be loaded at run time and exceptions are
quite efficient now. There are a few extensions, like
embedded discretionaries in exceptions and pre- as
well as posthyphens.

On the agenda is fixing some ‘hyphenchar’ re-
lated issues and future releases might deal with com-
pound words as well. There are some known limita-
tions that we hope to have solved in version 0.50.

11 Images

Image handling is part of the backend. This part of
the pdfTEX code has been rewritten and can now be
controlled from Lua. There are already a few more
options than in pdfTEX (simple transformations).
The image code will also be integrated in the virtual
font handler.

12 Paragraph building

The paragraph builder has been rewritten in C code
(soon to be converted back to CWEB). There is a
callback related to the builder so it is possible to
overload the default line breaker by one written in
Lua.

There are no further short-term revisions on the
agenda, apart from writing an advanced (third order)
Arabic routine for the Oriental TEX project.

Future releases may provide a bit more control
over \parshapes and multiple paragraph shapes.

13 MetaPost

The closely related MPlib project has resulted in a
MetaPost library that is included in LuaTEX. There
can be multiple instances active at the same time
and MetaPost processing is very fast. Conversion to
PDF is to be done with Lua.

On the to-do list is a bit more interoperability
(pre- and postscript tables) and this will make it into
release 0.50 (maybe even in version 0.40 already).

14 Mathematics

Version 0.50 will have a stable version of Unicode
math support. Math is backward compatible but
provides solutions for dealing with OpenType math
fonts. We provide math lists in their intermediate
form (noads) so that it is possible to manipulate
math in great detail.

The relevant math parameters are reorganized
according to what OpenType math provides (we use
the Cambria font as our reference). Parameters are
grouped by style. Future versions of LuaTEX will
build upon this base to provide a simple mechanism
for switching style sets and font families in-formula.

Hans Hagen



TUGboat, Volume 30 (2009), No. 2 185

There are new primitives for placing accents
(top and bottom variants and extensible characters),
creating radicals, and making delimiters. Math char-
acters are permitted in text mode.

There will be an additional alignment mecha-
nism analogous to what MathML provides. Expect
more.

15 Page building

Not much work has been done on opening up the
page builder although we do have access to the in-
termediate lists. This is unlikely to happen before
0.50.

16 Going CWEB

After releasing version 0.50 around EuroTEX 2009
there will be a period of relative silence. Apart from
bug fixes and (private) experiments there will be no
release for a while. At the time of the 0.50 release
the LuaTEX source code will probably be in plain C
completely. After that is done, we will concentrate
hard on consolidating and upgrading the code base
back into CWEB.

17 Cleanup

Cleanup of code is a continuous process. Cleanup is
needed because we deal with a merge of traditional
TEX, ε-TEX extensions, pdfTEX functionality and
some Omega (Aleph) code.

Compatibility is a prerequisite, with the excep-
tion of logging and rather special ligature reconstruc-
tion code.

We also use the opportunity to slowly move
away from all the global variables that are used in
the Pascal version.

18 Alignments

We do have some ideas about opening up alignments,
but it has a low priority and it will not happen before
the 0.50 release.

19 Error handling

Once all code is converted to CWEB, we will look into
error handling and recovery. It has no high priority
as it is easier to deal with after the conversion to
CWEB.

20 Backend

The backend code will be rewritten stepwise. The
image related code has already been redone, and
currently everything related to positioning and direc-
tions is redesigned and made more consistent. Some
bugs in the Aleph code (inherited from Omega) have
been removed and we are trying to come up with a

consistent way of dealing with directions. Conceptu-
ally this is somewhat messy because much direction-
ality is delegated to the backend.

We are experimenting with positioning (preroll)
and better literal injection. Currently we still use
the somewhat fuzzy pdfTEX methods that evolved
over time (direct, page and normal injection) but we
will come up with a clearer model.

Accuracy of the output (PDF) will be improved
and character extension (hz) will be done more effi-
ciently. Experimental code seems to work okay. This
will become available from release 0.40 and onwards
and further cleanup will take place when the CWEB

code is there, as much of the PDF backend code is
already C code.

21 ConTEXt MkIV

When we started with LuaTEX we decided to use a
branch of ConTEXt for testing as it involves quite
drastic changes, many rewrites, a tight connection
with binary versions, etc.

As a result for some time we now have two ver-
sions of ConTEXt: MkII and MkIV, where the former
targets pdfTEX and X ETEX, and the latter exclu-
sively uses LuaTEX. Although the user interface is
downward compatible the code base starts to diverge
more and more. Therefore at the last ConTEXt meet-
ing it was decided to freeze the current version of
MkII and only apply bug fixes and an occasional
simple extension.

This policy change opened the road to rather
drastic splitting of the code, also because full com-
patibility between MkII and MkIV is not required.
Around LuaTEX version 0.40 the new, currently still
experimental, document structure related code will
be merged into the regular MkIV version. This might
have some impact as it opens up new possibilities.

22 Future

In the future, MkIV will try to create (more) clearly
separated layers of functionality so that it will be-
come possible to make subsets of ConTEXt for special
purposes. This is done under the name MetaTEX.
Think of layering like:

• I/O, catcodes, callback management, helpers
• input regimes, characters, filtering
• nodes, attributes and noads
• user interface
• languages, scripts, fonts and math
• spacing, par building and page construction
• XML, graphics, MetaPost, job management, and

structure (huge impact)
• modules, styles, specific features
• tools

LuaTEX: Halfway to version 1



186 TUGboat, Volume 30 (2009), No. 2

23 Fonts: future

At this moment MkIV is already quite capable of
dealing with OpenType fonts. The driving force
behind this is the Oriental TEX project which brings
along some very complex and feature rich Arabic
font technology. Much time has gone into reverse
engineering the specification and behaviour of how
these fonts behave in Uniscribe (which we use as our
reference for Arabic).

Dealing with the huge CJK fonts is less a font
issue and more a matter of node list processing.
Around the annual meeting of the Korean User
Group we got much of the machinery working, thanks
to discussions on the spot and on the mailing list.

24 Math: future

Between LuaTEX versions 0.30 and 0.40 the math
machinery was opened up (stage one). In order to
test this new functionality, MkIV’s math subsystem
(that was then already partially Unicode aware) had
to be adapted.

First of all Unicode permits us to use only one
math family and so MkIV now does that. The im-
plementation uses Microsoft’s Cambria Math font
as a benchmark. It creates virtual fonts from the
other (old and new) math fonts so they appear to
match up to Cambria Math. Because the TEX Gyre
math project is not yet up to speed MkIV currently
uses virtual variants of these fonts that are created
at run time. The missing pieces in for instance Latin
Modern and friends are compensated for by means
of virtual characters.

Because it is now possible to parse the interme-
diate noad lists MkIV can do some manipulations
before the formula is typeset. This is for instance

used for alphabet remapping, forcing sizes, and spac-
ing around punctuation.

Although MkIV already supports most of the
math that users expect there is still room for im-
provement once there is even more control over the
machinery. This is possible because MkIV is not
bound to downward compatibility.

As with all other LuaTEX related MkIV code,
it is expected that we will have to rewrite most
of the current code a few times as we proceed, so
MkIV math support is not yet stable either. We
can take such drastic measures because MkIV is
still experimental and because users are willing to
do frequent synchronous updating of macros and
engine. In the process we hope to get away from all
ad-hoc boxing and kerning and whatever solutions
for creating constructs, by using the new accent,
delimiter, and radical primitives.

25 Tracing and testing

Whenever possible we add tracing and visualization
features to ConTEXt because the progress reports
and articles need them. Recent extensions concerned
tracing math and tracing OpenType processing.

The OpenType tracing options are a great help
in stepwise reaching the goals of the Oriental TEX
project. This project gave the LuaTEX project its
initial boost and aims at high quality right-to-left
typesetting. In the process complex (test) fonts are
made which, combined with the tracing mentioned,
help us to reveal the secrets of OpenType.

� Hans Hagen
Pragma ADE
The Netherlands
http://luatex.org

Hans Hagen


