
TUGboat, Volume 30 (2009), No. 2 241

Plain TEX and OpenType

Hans Hagen

Abstract

This article demonstrates how you can use OpenType
fonts in plain LuaTEX, using a few generic modules
that ship with the ConTEXt distribution.

1 Running

For testing basic LuaTEX functionality it makes sense
to have a minimal system, and traditionally plain
TEX has been the most natural candidate. It is for
this reason that it had been on the agenda for a
while to provide basic OpenType font support for
plain TEX as well. Although the MkIV node mode
subsystem is not yet perfect, the time was right to
start experimenting with a subset of the MkIV code.

Using plain roughly comes down to the following.
First you need to generate a format:

luatex --ini --fmt=luatex.fmt luatex-plain.tex

This format has to be moved to a place where
it can be found by the kpse library. Since this can
differ per distribution there is no clear recipe for it,
but for TEX Live some path ending in web2c/luatex

is probably the right spot. After that you can run

luatex luatex-test.tex

This file lives under generic/context. When it
is run it is quite likely that you will get an error
message because the font name database cannot be
found. You can generate one with the following
command (which assumes that you have ConTEXt
installed):

mtxrun --usekpse --script fonts --names

The resulting file luatex-fonts-names.lua has to
be placed somewhere in your TEX tree so that it can
be found anytime. Beware: the --usekpse flag is
only used outside ConTEXt and provides very limited
functionality, just enough for this task. Again this
is a distribution specific issue so we will not dwell
upon it here.

The way fonts are defined is modelled after
X ETEX, as it makes no sense to support the some-
what more fancy ConTEXt way of doing things. Keep
in mind that although ConTEXt MkIV does support
the X ETEX syntax too, the preferred way there is to
use a more symbolic feature definition approach.

As this is an experimental setup, it might not al-
ways work out as expected. Around LuaTEX version
0.50 we expect the code to be more or less okay.

2 Implementation

The luatex-fonts.lua file is the first in a series
of basic functionality enhancements for LuaTEX de-

rived from the ConTEXt MkIV code base. Please
don’t pollute the luatex-* namespace with code
not coming from the ConTEXt development team as
we may add more files.

This file implements a basic font system for a
bare LuaTEX system. By default LuaTEX only knows
about the classic TFM fonts but it can read other font
formats and pass them to Lua. With some glue code
one can then construct a suitable TFM representation
that LuaTEX can work with. For more advanced font
support a bit more code is needed that needs to be
hooked into the callback mechanism.

This file is currently rather simple: it just loads
the Lua file with the same name. An example of a
luatex.tex file that is just the plain TEX format:

\catcode‘\{=1 % { is begin-group character

\catcode‘\}=2 % } is end-group character

\input plain

\everyjob\expandafter{\the\everyjob

\input luatex-fonts\relax}

\dump

We could load the Lua file in \everyjob but
maybe some day we will need more here.

When defining a font, in addition to the X ETEX
way, you can use two prefixes. A file: prefix forces
a file search, while a name: prefix will result in con-
sulting the names database. The font definitions
shown in figure 1 are all valid.

You can load maths fonts but as Plain TEX
is set up for Computer Modern (and as we don’t
adapt Plain TEX) loading Cambria does not give you
support for its math features automatically.

If you want access by name you need to generate
a font database, using:

mtxrun --script font --names

and put the resulting file in a spot where LuaTEX
can find it.

3 Remarks

The code loaded in luatex-fonts.lua does not
come out of thin air, but is mostly shared with Con-
TEXt; however, in that macro package we go beyond
what is provided in the plain variant. When using
this code you need to keep a few things in mind:

• This subsystem will be extended, improved etc.
at about the same pace as ConTEXt MkIV. How-
ever, because ConTEXt provides a rather high
level of integration not all features will be sup-
ported in the same quality. Use ConTEXt if you
want more goodies.

• There is no official API yet, which means that
using functions implemented here is at your own
risk, in the sense that names and namespaces

Plain TEX and OpenType



242 TUGboat, Volume 30 (2009), No. 2

\font\testa=file:lmroman10-regular at 12pt

\font\testb=file:lmroman12-regular:+liga; at 24pt

\font\testc=file:lmroman12-regular:mode=node;+liga; at 24pt

\font\testd=name:lmroman10bold at 12pt

\font\testh=cmr10

\font\testi=ptmr8t

\font\teste=[lmroman12-regular]:+liga at 30pt

\font\testf=[lmroman12-regular] at 40pt

\font\testj=adobesongstd-light % cid font

\font\testk=cambria(math) {\mathtest 123}

\font\testl=file:IranNastaliq.ttf:mode=node;script=arab;\

language=dflt;+calt;+ccmp;+init;+isol;+medi;+fina;+liga;\

+rlig;+kern;+mark;+mkmk at 14pt

Figure 1: Font definition examples in LuaTEX

might change. There will be a minimal API

defined once LuaTEX version 1.0 is out. Instead
of patching the files it’s better to overload func-
tions if needed.

• The modules are not stripped too much, which
makes it possible to benefit from improvements
in the code that take place in the perspective
of ConTEXt development. They might be split
a bit more in due time so the baseline might
become smaller.

• The code is maintained and tested by the Con-
TEXt development team. As such it might be
better suited for this macro package and integra-
tion in other systems might demand some ad-
ditional wrapping. The plain version discussed
here is the benchmark and should be treated as
a kind of black box.

• Problems can be reported to the team but as
we use ConTEXt MkIV as our baseline, you’d
better check if the problem is a general ConTEXt
problem too.

• The more high level support for features that is
provided in ConTEXt is not part of the code
loaded here as it makes no sense elsewhere.
Some experimental features are not part of this
code either but some might show up later.

• Math font support will be added but only in its
basic form once the Latin Modern and TEX Gyre
math fonts are available. Currently traditional
and OpenType math fonts can be loaded.

• At this moment the more nifty speedups are
not enabled because they work in tandem with
the alternative file handling that ConTEXt uses.

Maybe around LuaTEX 1.0 we will bring some
speedup into this code too (if it pays off at all).

• The code defines a few global tables. If this code
is used in a larger perspective then you can best
make sure that no conflicts occur. The Con-
TEXt package expects users to work in their own
namespace (userdata, thirddata, moduledata
or document). We give ourselves the freedom
to use any table at the global level but will not
use tables that are named after macro pack-
ages. Later, ConTEXt might operate in a more
controlled namespace but it has a low priority.

• There is some tracing code present but this is not
enabled and not supported as it integrates quite
tightly into ConTEXt. In case of problems you
can use ConTEXt for tracking down problems.

• Patching the original code in distributions is
dangerous as it might fix your problem but in-
troduce new ones for ConTEXt. So, best keep
the original code as it is and overload functions
and callbacks when needed. This is trivial in
Lua.

• Attributes are (automatically) taken from the
range 127–255 so you’d best not use these your-
self. Don’t count on an attribute number staying
the same and don’t mess with these attributes.

If this all sounds a bit strict, keep in mind that
it makes no sense for us to maintain multiple code
bases and we happen to use ConTEXt.

� Hans Hagen
Pragma ADE
The Netherlands
http://pragma-ade.org

Hans Hagen


