
214 TUGboat, Volume 30 (2009), No. 2

A TikZ tutorial: Generating graphics in the
spirit of TEX

Andrew Mertz & William Slough

Abstract

TikZ is a system which can be used to specify graphics
of very high quality. For example, accurate place-
ment of picture elements, use of TEX fonts, ability to
incorporate mathematical typesetting, and the possi-
bility of introducing macros can be viewed as positive
factors of this system. The syntax uses an amal-
gamation of ideas from METAFONT, METAPOST,
PSTricks, and SVG, allowing its users to “program”
their desired graphics. The latest revision to TikZ
introduces many new features to an already feature-
packed system, as evidenced by its 560-page user
manual. Here, we present a tutorial overview of this
system, suitable for both beginning and intermediate
users of TikZ.

1 Introduction

PGF, an acronym for “portable graphics format”, is
a TEX macro package intended for the creation of
publication-quality graphics [16]. The use of PGF

requires its users to adopt a relatively low-level ap-
proach to the specification of a graphical image.
To sidestep the associated verboseness of this level,
a front-end named TikZ is also available for use.
The syntax of TikZ borrows ideas from METAFONT,
METAPOST, PSTricks, and SVG: its ultimate aim is
to simplify the task of specifying graphics.

Users seeking authoritative documentation of
TikZ are well advised to consult its thorough refer-
ence manual [15]. Those with an interest in discov-
ering the possibilities of this system may wish to
peruse the TEXample website [3], a repository with
many examples of graphics created with TikZ accom-
panied by the associated code. First-time users ready
to “take the plunge” with TikZ may benefit from
introductory-level information found in [11] and [18],
for example.

Our current purpose is to expand on our earlier
treatment of the use of TikZ. In the intervening years
since [11] appeared, a number of developments have
taken place. For example, many new capabilities —
such as the inclusion of a mathematics engine — are
now available within TikZ. Another interesting devel-
opment is the appearance of “third-party” packages
which extend TikZ to specialized domains, such as
the creation of combinatorial graphs or electrical
circuits. A third development is the appearance of
other software, such as dynamic geometry systems,
which can export in PGF and/or TikZ formats.

\documentclass{article}

...

\usepackage{tikz}

% Optional libraries:

\usetikzlibrary{arrows, automata}

...

\begin{document}

...

\begin{tikzpicture}

...

\end{tikzpicture}

...

\end{document}

Listing 1: Layout of a document which uses TikZ.

2 Some TikZ fundamentals

TikZ provides support for various input formats, in-
cluding plain TEX, LATEX, and ConTEXt. The re-
quirements for each of these are fairly similar, so we
focus on just one of these, LATEX, for simplicity.

Listing 1 illustrates the layout for a LATEX docu-
ment containing a number of TikZ-generated graph-
ics. In the preamble, the tikz package is specified,
optionally followed by one or more TikZ libraries.
Each graphic to be generated is specified within a
tikzpicture environment.

Exactly which libraries are needed depend ons
the requirements of the images being generated. For
the simplest diagrams, no library is required. Other
situations which utilize features from the various
TikZ libraries require their explicit mention. For
example, in listing 1, the arrows and automata li-
braries are referenced to gain access to a variety of
arrow tips and obtain the ability to draw finite-state
automata.

Specifications for the desired graphic appear
within the tikzpicture environment. One of the
simplest commands available is the \draw command
which, when coupled with the -- operator, joins
points with straight line segments. This syntax is
inspired by METAFONT and METAPOST. Figure 1
shows how a diamond can be drawn with a single
\draw command, joining the four points on the x and
y axes one unit from the origin. Since no dimensional
units are provided, the default, one centimeter, is
used. The cycle keyword is shorthand for the first
point on the path. The \fill command used here
fills the interior of a circle centered at (0, 0) with a
one point radius.

In this first example, Cartesian coordinates, il-
lustrated in Figure 2, have been used. An alternate
approach is to use polar coordinates, as shown in Fig-
ure 3. Angles are specified in degrees, although the
inclusion of an r suffix can be used to indicate radian

Andrew Mertz & William Slough



TUGboat, Volume 30 (2009), No. 2 215

\begin{tikzpicture}

\draw (1,0) -- (0,1)

-- (-1,0) -- (0,-1) -- cycle;

\fill (0,0) circle (1pt);

\end{tikzpicture}

Figure 1: Drawing a diamond with a closed path,
using points specified with the usual Cartesian
coordinate system. The origin is shown with a filled
circle.

x

y

b

a

P

Figure 2: Using Cartesian coordinates, the point P is
denoted (a, b).

measure. Thus, the point with Cartesian coordinates
(0,−1) can be denoted in TikZ in a number of ways:
(0,-1), (270:1), and (3/2 * pi r:1). In the last
case, in addition to specifying radian measure we are
making use of the arithmetic expression capabilities
within TikZ to compute the value of 3

2π.
A variety of options can influence the outcome

of the \draw command. These options control such
things as the pen color and width, whether or not
to fill or shade the interior, and what line style is
to be used — solid or dashed, for instance. These
options are enclosed within square brackets and serve
to modify the \draw command. Figure 4 provides
an example of three \draw commands with a few
options in effect. Multiple options, separated by
commas, may appear.

So far, we have seen how the TikZ -- operator
can be used to draw line segments. There are other
operators, including grid, circle, rectangle, and
arc, which can be used to draw other shapes. For
grid and rectangle, two opposing points of the
desired shape are given. A circle is obtained with
circle, which takes a center point and the radius;
an ellipse requires a center point and two radii. A
circular arc is specified by giving a starting point and

α

`

x

y

P

Figure 3: Using polar coordinates, the point P is
denoted (α : `).

three values: two angles and a radius. Starting from
the given point, an arc with the specified radius which
sweeps between the two angles is drawn. Figure 5
shows a few examples of these operators.

The \coordinate command provides a handy
mechanism to name a point. This is especially useful
if the point is to be referenced more than once, since
its definition is only needed once and referred to by
name thereafter. Even in cases where only a single
reference is needed, readability can be improved with
the introduction of names. The Cartesian point (a, b)
can be given the name P using the command

\coordinate (P) at (a, b);

Similarly,

\coordinate (P) at (α : `);

names a point with polar coordinates. Once the
coordinate P has been defined, it can appear in a
subsequent \draw command as (P), whereupon its
defined value is used. For example, the diamond of
Figure 1 can also be obtained with the code shown
in Listing 2:

\begin{tikzpicture}

% Define four points

\coordinate (P0) at (1,0);

\coordinate (P1) at (0,1);

\coordinate (P2) at (-1,0);

\coordinate (P3) at (0,-1);

% Draw the diamond

\draw (P0)--(P1)--(P2)--(P3)--cycle;

\end{tikzpicture}

Listing 2: Drawing a diamond using named points.

The \node command extends the idea of a co-
ordinate by associating shapes, such as circles and
rectangles, and labels with a specified location. For
example,

\node (N) at

(0,0) [draw, shape=circle] {$v_0$};

A TikZ tutorial: Generating graphics in the spirit of TEX



216 TUGboat, Volume 30 (2009), No. 2

\begin{tikzpicture}

\draw [thick, dotted]

(1,0) -- (0,1) -- (-1,0) -- (0,-1) -- cycle;

\draw [ultra thick]

(0:1.5) -- (90:1.5) -- (180:1.5) -- (270:1.5) -- cycle;

\draw [dashed, thick, color=gray]

(0 r:2) -- (pi/2 r:2) -- (pi r:2) -- (3/2 * pi r:2) -- cycle;

\end{tikzpicture}

Figure 4: Drawing diamonds using Cartesian and polar coordinates, using angles
specified with degrees and radians. Options to \draw have been introduced to change
the style of the line segments.

\begin{tikzpicture}[scale=2/3]

\draw (0,0) grid (4,4);

\draw (2,2) circle (2);

\draw (2,2) circle (1 and 2);

\draw (0,0) rectangle (4,-1);

\draw (0,4) arc (90:270:2);

\fill (0,0) circle (3pt);

\end{tikzpicture}

Figure 5: A sampling of TikZ path operators. As before, the origin is shown with
a small filled circle. The scale option applied to the entire environment is used to
resize the image.

defines a node named N which is to be placed at the
origin along with a surrounding circular shape and
an interior label of v0. Like a coordinate, its name
(in this case, N) can appear in subsequent commands.
Since nodes have associated shape information, lines
drawn between them don’t extend to the center point,
but stop at the perimeter of the shape.

If multiple nodes are defined within a graphic,
it is convenient to use the \tikzstyle command to
provide options which apply to all defined nodes. For
example,

\tikzstyle{every node}=

[draw,shape=circle]

indicates all subsequent nodes are to be drawn with
a circular shape. This would allow our previous
command to be abbreviated as:

\node (N) at (0,0) {$v_0$};

A complete example with nodes is shown in Figure 6.
Another capability of TikZ is the \foreach com-

mand, which provides a way to introduce looping
actions. Listing 3 shows yet another way to obtain
the diamond figure. A loop with four iterations,
one for each edge of the diamond, is established. A
subtlety with the parsing involved in this example
requires curly braces to be used in order to group
the expression corresponding to the mathematical
entity (i+ 1)π

2 .

\begin{tikzpicture}

\foreach \i in {0,...,3}

{

\draw (\i * pi/2 r:1) --

({(\i + 1) * pi/2} r:1);

}

\end{tikzpicture}

Listing 3: Drawing a diamond with a \foreach loop.
Each iteration draws one edge of the diamond.

3 The mathematical engine

TikZ has access to a mathematical engine which
provides arithmetic and relational operators, as well
as a host of mathematical functions one typically
encounters in a traditional programming language.
The math engine can also be used independently of
TikZ.

The arithmetic and relational operators are +,
-, *, /, ^, <, ==, and >, which may appear within
infix expressions in the usual manner. Here are the
functions the TikZ mathematical engine supports, as
of version 2.0:

mod max min abs round floor

ceil exp ln pow sqrt veclen

pi r rad deg sin cos

tan sec cosec cot asin acos

atan rnd rand

Andrew Mertz & William Slough



TUGboat, Volume 30 (2009), No. 2 217

\begin{tikzpicture}

% Default actions for each node

\tikzstyle{every node}=[draw, shape=circle];

% Define and draw five nodes

\node (v0) at (0:0) {$v_0$};

\node (v1) at (0:2) {$v_1$};

\node (v2) at (90:2) {$v_2$};

\node (v3) at (180:2) {$v_3$};

\node (v4) at (270:2) {$v_4$};

% Draw radial edges

\draw (v0) -- (v1) (v0) -- (v2)

(v0) -- (v3) (v0) -- (v4);

\end{tikzpicture}

v0 v1

v2

v3

v4

Figure 6: Using nodes.

A B

C

Figure 7: A 30–60–90 triangle.

As shown earlier, coordinates can be specified
using arithmetic. For example:

\draw (0,0) -- (360.0 / 7.0 * 3.0 : 1);

Coordinates can also be defined in terms of math-
ematical functions. For example, Figure 7 shows a
30–60–90 triangle where one of the coordinates has
been defined as follows:

\coordinate [label=right:$C$] (C) at

(1, {sqrt(3)});

Note that curly braces distinguish the case where
parentheses are used mathematically and the case
where they denote a named coordinate.

Points can also be computed in terms of other
points. Basic calculations involving coordinates such
as addition, subtraction, and scaling can be per-
formed. For such coordinate calculations, the calc

library is required:

\usetikzlibrary{calc}

The desired coordinate calculations are then enclosed
within $ symbols. Examples of these types of calcu-
lations are illustrated in Figure 8.

Coordinate calculations can also be used to com-
pute points that are partway between two points.
The coordinate calculation

($(A)!0.25!(B)$)

becomes the point that is 25% of the way along the
segment from A to B. Figure 9 shows examples of

coordinate calculations being used to compute the
medians of a triangle.

It is sometimes useful to be able to compute
the distance between two points. Although TikZ
does not currently have a direct way to do this,
it is possible with the let operation and veclen

function. The let operation allows coordinates to be
defined that are available for just one path. Figure 10
demonstrates a simple use of the let operation; note
that the macros used to name points must begin
with a p. The let operation also allows extraction
of the x and y components of a point. An example of
this feature is given in Figure 11, which also uses the
function veclen to compute the distance between
two points.

For example, the centroid of the triangle of Fig-
ure 9 can be determined by finding the point of
intersection of any two of its medians. This point,
labeled D below, can be obtained with the following
TikZ statement:

\coordinate (D) at

(intersection of

A--Aprime and C--Cprime);

A

B

C

A′

B′

C ′

D

4 A few TikZ libraries

Libraries, optionally loaded in the preamble section
of a LATEX document, extend the capabilities of TikZ
and simplify some kinds of tasks. There are cur-
rently more than a dozen different libraries available,
providing users with tools to create specific types of
diagrams, such as finite-state automata, calendars,

A TikZ tutorial: Generating graphics in the spirit of TEX



218 TUGboat, Volume 30 (2009), No. 2

\begin{tikzpicture}

\draw[help lines] (0,0) grid (4,2);

\coordinate[label=below:$A$] (A) at (2, 1);

% Three points determined from a reference point

\coordinate[label=above:$B$] (B) at ($2*(A)$);

\coordinate[label=above:$C$] (C) at ($(A) + (-1,1)$);

\coordinate[label=below:$D$] (D) at ($(A) - (-1,1)$);

% Mark each point with a filled circle

\fill (A) circle (2pt) (B) circle (2pt)

(C) circle (2pt) (D) circle (2pt);

\end{tikzpicture}

A

BC

D

Figure 8: Using coordinate calculations.

\begin{tikzpicture}

% Three vertices of a triangle

\coordinate[label=below left:$A$] (A) at (0,0);

\coordinate[label=right:$B$] (B) at (3,1);

\coordinate[label=above:$C$] (C) at (1,4);

% Find the midpoints

\coordinate[label=above right:$A’$] (Aprime) at ($(B)!0.5!(C)$);

\coordinate[label=above left:$B’$] (Bprime) at ($(A)!0.5!(C)$);

\coordinate[label=below:$C’$] (Cprime) at ($(A)!0.5!(B)$);

% Draw the triangle and its three medians

\draw (A) -- (B) -- (C) -- cycle

(A) -- (Aprime) (B) -- (Bprime) (C) -- (Cprime);

\end{tikzpicture}

A

B

C

A′

B′

C ′

Figure 9: Using coordinate calculations to determine the medians of a triangle.

\begin{tikzpicture}

\draw[help lines] (0,0) grid (2,2);

\draw let \p1=(0,0), \p2=(1,2), \p3=(2,0) in

(\p1) -- (\p2) -- (\p3);

\end{tikzpicture}

Figure 10: A simple use of the let operation.

\begin{tikzpicture}

\coordinate [label=below:$A$] (A) at (0.5,0.75);

\coordinate [label=above:$B$] (B) at (1,1.85);

\draw (A) -- (B);

\draw (A) let \p1 = ($(B) - (A)$) in circle ({veclen(\x1,\y1)});

\end{tikzpicture}

A

B

Figure 11: Using let to compute the distance between two coordinates.

mind maps, Petri nets, and entity-relationship dia-
grams. There is even one a bit more whimsical in
nature, which typesets a do-it-yourself pattern for a
dodecahedron, where the twelve faces can be given
arbitrary content. In this section, we examine two
of these libraries: automata and mindmap.

The automata library is used to create diagrams

of finite-state automata and Turing machines. The
details of one such automaton is given in Figure 12.

For each state of an automaton, the following
attributes need to be specified: where on the page
it should appear, what text is needed for the state
name, and whether or not it is an initial and/or an
accepting state. For the current example, this infor-

Andrew Mertz & William Slough



TUGboat, Volume 30 (2009), No. 2 219

\usetikzlibrary{automata, positioning}

...

\begin{tikzpicture}[>=latex, shorten >=1pt,

node distance=0.75in, on grid, auto]

% Vertices of automaton

\node[state, initial] (q0) {$q_0$};

\node[state] (q1) [right=of q0] {$q_1$};

\node[state, accepting] (q2) [right=of q1] {$q_2$};

\node[state] (q3) [above=of q1] {$q_3$};

% Edges of automaton

\path[->] (q0) edge [loop below] node {0} (q0)

(q0) edge node {1} (q1)

(q1) edge [loop above] node {1} (q1)

(q1) edge [bend left] node {0} (q2)

(q2) edge [bend left] node {0} (q1)

(q2) edge [bend right] node[swap] {1} (q3)

(q3) edge [bend right] node[swap] {1} (q0)

(q3) edge [loop above] node {0} (q3);

\end{tikzpicture}

q0start q1 q2

q3

0

1

1

0

0

11

0

Figure 12: A finite automaton drawn with the TikZ automata library.

mation is provided as a sequence of \node commands.
Information about initial and accepting states is pro-
vided as options to this command; the text appears
as an argument. Layout on the page is grid based:
the positions of states of the automaton are indicated
relative to the location of others.

Each edge of the automaton has a source and
destination node, but also requires additional infor-
mation about typesetting the figure. In particular,
edges can be drawn as a straight edge or with a bend;
also, the edge label can appear on either “side” of its
associated edge. (Imagine “driving” along an edge
in the indicated direction. The edge label is either
on your left or your right.)

Referring again to Figure 12, note that edge
information is given in one extended \path command.
By default, edges are drawn as straight edges, but
this behavior can be modified with bend options.
The swap option changes the default position of the
edge label, from left to right.

Options provided to the tikzpicture environ-
ment specify such things as the type of arrowhead
desired, the spacing of nodes on the grid, and the
amount of space to leave between an arrowhead and
a circular state.

The high-quality output made possible by the
automata library can be used in conjunction with
other software concerned with formal languages and
automata theory. One such system is JFLAP [13],
which allows users to draw and simulate automata.
The creation of state diagrams with JFLAP is easily
accomplished with mouse and keyboard interactions.
We have implemented a translation utility [9] which

converts automata stored in the JFLAP file format to
TikZ format, providing an avenue for typeset output
while freeing the user from knowing the underlying
TikZ language details.

The mindmap library provides support for draw-
ing hierarchical structures consisting of multicolored,
filled shapes with text and annotations. Figure 13
shows an example of a diagram created with this
library.

In our example, there is one root node, bicycle,
with three children: tandem bicycle, mountain bicy-
cle, and road bicycle. The latter child, in turn, has
two children of its own. Observe how this hierarchi-
cal information is conveyed within the TikZ code:
one root, with three children, and two further child
nodes. The grow option provides an angle indicating
where the child node should appear relative to its
parent. For this example, we scaled the entire dia-
gram by 65% to adjust the size of the circles. For this
to be done correctly, the transform shape option
is a crucial requirement.

5 CircuiTikZ

CircuiTikZ [12] is intended for drawing electrical
networks and is based on TikZ, as the name implies.
It is inspired by circuit-macros [1], a system based
on the m4 macro language.∗ However, unlike that
system, all processing is performed within the context
of TikZ, so circuits can be edited directly in the TEX
source document.

∗ As an aside, circuit-macros is capable of producing
PGF output.

A TikZ tutorial: Generating graphics in the spirit of TEX



220 TUGboat, Volume 30 (2009), No. 2

\usetikzlibrary{mindmap}

...

\begin{tikzpicture}[scale=0.65]

\path[mindmap, concept color=black, text=white, transform shape]

node[concept] {bicycle}

child[grow=230, concept color=blue!80!black] {

node[concept]{road bicycle}

child[grow=-120] {

node[concept]{time trial bicycle}

}

child[grow=-60] {

node[concept]{road racing bicycle}

}

}

child[grow=180, concept color=red!80!black] {

node[concept]{mountain bicycle}

}

child[grow=120, concept color=red!80!black] {

node[concept]{tandem bicycle}

};

\end{tikzpicture}

bicycle

road bicycle

time trial
bicycle

road racing
bicycle

mountain
bicycle

tandem
bicycle

Figure 13: Example output of the mindmap library.

R1

+−

Figure 14: A sampling of circuit symbols available
from CircuiTikZ.

Figure 14 shows some of the symbols which
are available within CircuiTikZ. Symbols for both
American and European electrical conventions are
available.

Figure 15 shows how one might draw a diagram
for an RLC circuit. As can be seen, its specification
uses Cartesian coordinates and a sequence of \draw
commands. Most of these commands specify a start-
ing and ending point, along with a symbol (such
as a resistor) to draw midway between these two
points. Observe how electrical connections are not
explicitly described as filled circles, but instead use
the option *-* to indicate the connections at both
ends. The grid was included as an aid to understand
how the diagram was constructed. The origin for
this diagram appears at the lower left corner.

6 Combinatorial graphs via tkz-graph

Combinatorial graphs, as opposed to graphs of func-
tions, are the structures studied in the branch of
mathematics known as graph theory. Drawing such
graphs is an application made-to-order for TikZ.
However, several other packages, tkz-graph and
tkz-berge [8], are specialized for this task and pro-
vide simplifications.

Figure 16 provides a glimpse of the possibilities
with the tkz-berge package. This package, named
in honor of the mathematician Claude Berge, is pri-
marily intended for drawing the well-known graphs
in the field. Rather than explore the details of this
package, we instead turn our attention to tkz-graph

which can be used to draw arbitrary graphs.
Figure 17 illustrates a five-vertex graph drawn in

three different styles. One attractive feature of this
package is that it is very easy to switch from one style
to another, primarily by stating the desired style as
an option. As a minor complication, when vertex
labels appear outside their respective vertices, as in
the middle graph of Figure 17, additional information
about relative location must be supplied.

Figure 18 provides the details needed to draw
this graph in the “normal” style, information con-
veyed in the \GraphInit command. Mathematically,
it is unimportant where each vertex appears on the
page. However, in order to draw the graph, a location
is needed for each of the vertices. Of the various ways
allowed to specify these locations, we have chosen to
use a Cartesian coordinate system. Each \Vertex

Andrew Mertz & William Slough



TUGboat, Volume 30 (2009), No. 2 221

\usepackage[american]{circuitikz}

...

\begin{circuitikz}

\draw [help lines] (0,0) grid (6,4);

\draw (0,0) to [V=V] (0,4);

\draw (0,4) to (6,4);

\draw (1,4) node[above] {$I \rightarrow$};

\draw (6,4) to [C=C] (6,0);

\draw (4,4) to [L=L, *-*] (4,0);

\draw (2,4) to [R=R, *-*] (2,0);

\draw (6,0) to (0,0);

\end{circuitikz}

+
−V

I →

CLR

Figure 15: An RLC circuit drawn with CircuiTikZ.

Figure 16: A brief gallery of graphs drawn by tkz-berge. Images created by Alain Matthes.

A B

CD

E

A B

CD

E

Figure 17: An undirected graph drawn with tkz-graph in three different styles: normal, classic, and simple.

command introduces a desired location and a vertex
name. Each edge of the graph is specified with an
\Edge command.

To change the drawing so vertex labels are omit-
ted simply requires a modification to the GraphInit

command:

\GraphInit{vstyle=Simple}

To change the appearance of the graph so ver-
tex labels appear next to their respective vertices,
two changes are required. First, the vertex style is
changed:

\GraphInit{vstyle=Classic}

To specify each label position, another option is
included in each Vertex command. So, for example,
since vertex C is in the northeast corner relative to
its vertex, we use a specification of 45◦:

\Vertex[x=4, y=4, Lpos=45] {C}

A small syntactic detail is worth noting here: in
TikZ, commands are terminated with a semicolon,
but no semicolons are required with tkz-graph.

The addition of just one line to our example,

\tikzset{EdgeStyle/.style={post}}

yields a directed graph, as shown in Figure 19. In-
cluding the label option to each Edge command pro-
vides a way to describe a weighted, directed graph,
as illustrated in Figure 20.

7 Two-dimensional constructions
via tkz-2d

The tkz-2d package [7] is a collection of macros
intended to simplify the construction of diagrams in
a two dimensional Cartesian coordinate system. It
has particular strengths in the realm of geometric
constructions, as it provides higher level abstractions

A TikZ tutorial: Generating graphics in the spirit of TEX



222 TUGboat, Volume 30 (2009), No. 2

\usepackage{tkz-graph}

...

\begin{tikzpicture}

% Initialize tkz-graph

\GraphInit[vstyle=Normal]

% Vertices

\Vertex[x=0, y=0] {A}

\Vertex[x=4, y=0] {B}

\Vertex[x=4, y=4] {C}

\Vertex[x=0, y=4] {D}

\Vertex[x=2, y=2] {E}

% Edges

\Edge(A)(B) \Edge(B)(C)

\Edge(C)(D) \Edge(D)(A)

\Edge(A)(E) \Edge(E)(B)

\end{tikzpicture}

A B

CD

E

Figure 18: Undirected graph drawn with tkz-graph.

\usepackage{tkz-graph}

\usetikzlibrary{arrows}

...

\begin{tikzpicture}

% Initialize tkz-graph

\GraphInit[vstyle=Normal]

\tikzset{EdgeStyle/.style={post}}

% Vertices

... same as above ...

\end{tikzpicture}
A B

CD

E

Figure 19: A directed graph drawn with tkz-graph.

\usepackage{tkz-graph}

\usetikzlibrary{arrows}

...

\begin{tikzpicture}

% Initialize tkz-graph

\GraphInit[vstyle=Normal]

\tikzset{EdgeStyle/.style={post}}

% Vertices

\Vertex[x=0, y=0] {A}

\Vertex[x=4, y=0] {B}

\Vertex[x=4, y=4] {C}

\Vertex[x=0, y=4] {D}

\Vertex[x=2, y=2] {E}

% Edges

\Edge[label=$10$](A)(B) \Edge[label=$5$](B)(C)

\Edge[label=$20$](C)(D) \Edge[label=$8$](D)(A)

\Edge[label=$30$](A)(E) \Edge[label=$16$](E)(B)

\end{tikzpicture}

A B

CD

E

10

5

20

8

30 16

Figure 20: A directed graph drawn with tkz-graph.

Andrew Mertz & William Slough



TUGboat, Volume 30 (2009), No. 2 223

Figure 21: A brief gallery of pictures drawn by tkz-2d. Images created by Alain Matthes.

\begin{tikzpicture}

% Initialize tkz-2d

\tkzInit

% Define and label two points, A and B, and a segment joining them

\tkzPoint[pos=left](1,1){A}

\tkzPoint[pos=right](4,2){B}

\tkzSegment[style=thick](A/B)

% Construct two circles, each with radius AB

\tkzCircle(A,B)

\tkzCircle(B,A)

% Find and label the intersection points

% C and D of the two circles

\tkzInterCC(A,A,B)(B,B,A){C}{D}

\tkzDrawPoint[pos=above left](C)

\tkzDrawPoint(D)

% Draw the remaining sides of the equilateral triangle

\tkzPolySeg(A,C,B)

% Draw a perpendicular bisector

\tkzMidPoint(A,B){E}

\tkzSegment[style=dashed](C/D)

% Mark the 90 degree angle

\tkzRightAngle(A/E/C)

\end{tikzpicture}

A

B

C

D

E

Figure 22: A construction due to Euclid, expressed with tkz-2d.

compared to those available to the TikZ user. The
illustrations shown in Figure 21 provide a glimpse of
the possibilities afforded by this package.

For an example of tkz-2d, we consider a geomet-
ric construction due to Euclid. In this construction,
a line segment is given and the goal is to construct
an equilateral triangle, one side of which is the given
segment. A similar construction appears as a tutorial
in the TikZ manual, although we feel the approach
made possible by tkz-2d is more natural.

Figure 22 provides the full details of the con-

struction. We begin by introducing two points, spec-
ifying the position and label information, using the
\tkzPoint command. The two circles are drawn with
the \tkzCircle command, given the center and im-
plied radius. The most complicated statement shown
here is \tkzInterCC which computes the intersection
points of the two circles, storing their coordinates in
C and D. The remainder of the construction follows
easily from tkz-2d primitives.

A second example of the tkz-2d package is
shown in Figure 23. Observe that the starred form

A TikZ tutorial: Generating graphics in the spirit of TEX



224 TUGboat, Volume 30 (2009), No. 2

\begin{tikzpicture}[scale=1/2] % scaled to half-size

% Initialize tkz-2d

\tkzInit

% Define three points of a 3-4-5 right triangle

\tkzPoint*(0,0){C}

\tkzPoint*(4,0){A}

\tkzPoint*(0,3){B}

% Draw the three sides of the triangle

\tkzPolygon(C,A,B)

% Create a 4 by 4 grid and move it down

\begin{scope}[yshift=-4cm]

\tkzGrid(0,0)(4,4)

\end{scope}

% Create a 3 by 3 grid and move it left

\begin{scope}[xshift=-3cm]

\tkzGrid(0,0)(3,3)

\end{scope}

% Create a 5 by 5 grid for the hypotenuse

\begin{scope}[yshift=3cm, rotate=-atan(3/4)]

\tkzGrid(0,0)(5,5)

\end{scope}

\end{tikzpicture}

Figure 23: An illustration of the Pythagorean theorem drawn with tkz-2d.

of the \tkzPoint command used here causes a point
to be defined, but no corresponding label is drawn.
Another interesting aspect of this example is the use
of the TikZ scope environment to limit the effect of
the shift and rotation operations applied to each of
the three grids.

A few comments about these examples. Like
tkz-graph, semicolons are not needed to terminate
commands. Unlike TikZ, the use of spaces to separate
arguments within tkz-2d commands is not allowed,
an unfortunate requirement in our opinion. Finally,
it is possible to blend “pure” TikZ commands with
tkz-2d commands.

8 GeoGebra and TikZ

GeoGebra [4] is a software system intended for mathe-
matics education. Although not limited to geometry,
GeoGebra is an example of an interactive geometry
system. In these systems, geometric constructions
can be performed using fundamental objects such as
points, lines and circles. After the construction is
complete, it can be modified by dragging points or
moving sliders, while preserving the key geometric
relationships that defined the construction.

Figure 24 shows a GeoGebra session involving
the geometric construction considered in Section 7.
In contrast to specifying such a construction with

Figure 24: Screen image of a GeoGebra session.

TikZ commands, this construction was driven by the
menus provided by the GUI presented by GeoGebra,
involving construction choices such as “circle with
center through point”, “intersect two objects”, and
“segment between two points”. In brief, GeoGebra
provides for geometric constructions in a menu-driven
approach, unlike the language-based approaches of
TikZ and tkz-2d.

A relatively new feature of GeoGebra is its abil-
ity to export to the PGF/TikZ format. Once a con-

Andrew Mertz & William Slough



TUGboat, Volume 30 (2009), No. 2 225

struction is complete, it can be exported to TikZ
format with a simple menu choice. The resulting
tikzpicture environment can be placed in a TEX
document. This feature provides an avenue for pro-
ducing high quality graphics output without the
overhead of learning TikZ language details. There
are currently four different output formats supported:
LATEX, plain TEX, ConTEXt, and the LATEX beamer

class. (See [10] and [17], for example, for information
about Beamer.) With the beamer format, the geo-
metric construction is formatted for a “play-by-play”
presentation, since pauses are inserted after each key
construction step.

The GeoGebra software is free — it is open source
and licensed under the GNU General Public License.
Since it is based on Java, it runs on many different
computer systems.

9 PDF and SVG output

For many users of TikZ, the overall aim is to generate
several desired graphics, merging them with text to
produce one document. However, there are situations
where one simply wants to generate a collection of
graphics images in PDF format, one per file.

Stand-alone PDF can be generated through the
use of the preview package [5] and pdftk, the PDF

toolkit [14], free software licensed under the GNU

GPL and available for many computer systems. A
schematic of the work flow needed to produce stand-
alone PDF is shown in Figure 25.

With an appropriately constructed LATEX file,
pdflatex will generate a PDF file, where each page
consists of a tightly cropped image obtained from a
tikzpicture environment. The PDF toolkit has a
“burst” mode which can then be used to obtain the
desired files, one image per file.

Listing 4 illustrates how to use the preview

package for this purpose. For some situations, pro-
ducing tightly cropped graphics is a bit too aggres-
sive. However, the preview package conveniently
allows the amount of cropping to be specified. In
this example, we have specified a two point margin
around the edges of the graphic by setting the length
\PreviewBorder.

SVG [6], scalable vector graphics, is a format
intended for use on the World Wide Web, in large
measure due to its ability to obtain scalable graphical
rendering within a browser. One of the supported
output formats of PGF, and therefore TikZ, is SVG.
Unfortunately, as is explained in the TikZ manual,
there are some serious restrictions on the types of
TikZ pictures which can be converted.

Happily, there are alternate routes for producing
SVG output which do not suffer from these restric-

\documentclass{article}

% Use TikZ and any associated libraries

\usepackage{tikz}

\usetikzlibrary{arrows, automata}

\usepackage[tightpage, active]{preview}

\setlength{\PreviewBorder}{2pt}

\PreviewEnvironment{tikzpicture}

\begin{document}

\begin{tikzpicture} % First picture

...

\end{tikzpicture}

\begin{tikzpicture} % Second picture

...

\end{tikzpicture}

... % Other pictures

\end{document}

Listing 4: Using the preview package to generate
tightly-cropped graphics images, one per page.

tions. In fact the technique, shown in Figure 26, is
very similar to that for the production of stand-alone
PDF. The key difference lies in the conversion of PDF

to SVG, which can be accomplished with pdf2svg

[2], a free utility.

10 Summary

TikZ is a very capable system which integrates vector
graphics with TEX. Since its inception roughly four
years ago, it has continued to evolve, gaining new
capabilities and features. Moreover, a variety of
other programs which can export to TikZ and/or PGF

formats provides some evidence of its acceptance and
popularity in the TEX world. Although not shown
in our examples, TikZ’s support for color allows for
very compelling graphics, especially in conjunction
with Beamer documents.

For some specialized domains, such as graph the-
ory and theory of computing, there are relatively sim-
ple techniques which utilize TikZ to produce graphics
that meet or exceed the quality of figures found in
textbooks and journals in those areas.

References

[1] Dwight Aplevich. M4 macros for electric
circuit diagams in LATEX documents. http:

//mirror.ctan.org/graphics/circuit_macros/

doc/CMman.pdf.

[2] David Barton. pdf2svg. http://www.

cityinthesky.co.uk/pdf2svg.html.

[3] Kjell Magne Fauske. TEXample.net: Ample
resources for TEX users. http://www.texample.

net/.

A TikZ tutorial: Generating graphics in the spirit of TEX



226 TUGboat, Volume 30 (2009), No. 2

LATEX
file

Use
preview

package

pdflatex
PDF

file

one
cropped
image
per page

pdftk
(burst)

PDF

file #2

PDF

file #1

one
cropped
image
per file

PDF
file #3

Figure 25: Processing a LATEX file to obtain stand-alone PDF output.

LATEX
file

Use
preview

package

pdflatex
PDF

file

one
cropped
image
per page

pdftk
(burst)

PDF

file #2

PDF

file #1

PDF

file #3

pdf2svg

pdf2svg

pdf2svg

SVG

file #1

SVG

file #2

SVG

file #3

Figure 26: Processing a LATEX file to obtain stand-alone SVG output.

[4] Markus Hohenwarter. GeoGebra. http:

//www.geogebra.org/cms/.

[5] David Kastrup. The preview package for LATEX.
http://mirror.ctan.org/macros/latex/

contrib/preview/.

[6] Chris Lilley and Doug Schepers. W3C for the SVG
working group. http://www.w3.org/Graphics/

SVG/.

[7] Alain Matthes. tkz-2d. http://altermundus.fr/

pages/download.html.

[8] Alain Matthes. tkz-graph and tkz-berge.
http://altermundus.com/pages/tikz.html.

[9] Andrew Mertz and William Slough. jflap2tikz.
http://mirror.ctan.org/graphics/jflap2tikz.

[10] Andrew Mertz and William Slough. Beamer by
example. TUGboat, 26:68–73, 2005.

[11] Andrew Mertz and William Slough. Graphics with
PGF and TikZ. TUGboat, 28:91–99, 2007.

[12] Massimo Redaelli. CircuiTikZ. http:

//home.dei.polimi.it/mredaelli/circuitikz/.

[13] Susan H. Rodger. JFLAP. http://www.jflap.

org/.

[14] Sid Stewart. pdftk. http://www.accesspdf.com/

pdftk/.

[15] Till Tantau. PGF & TikZ. http://mirror.

ctan.org/graphics/pgf/base/doc/generic/pgf/

pgfmanual.pdf.

[16] Till Tantau. PGF and TikZ — graphic systems for
TEX. http://sourceforge.net/projects/pgf/.

[17] Till Tantau. User’s guide to the beamer class.
http://latex-beamer.sourceforge.net.

[18] Zofia Walczac. Graphics in LATEX using TikZ.
TUGboat, 20:176–179, 2008.

� Andrew Mertz & William Slough
Department of Mathematics and

Computer Science
Eastern Illinois University
Charleston, IL 61920
aemertz (at) eiu dot edu,

waslough (at) eiu dot edu

Andrew Mertz & William Slough


