
E34 MAPS 39 Luigi Scarso

LuaTEX lunatic
And Now for Something Completely Different

– Monty Python, 1972
Abstract
luatex lunatic is an extension of the Lua language of luatex
to permit embedding of a Python interpreter.
A Python interpreter hosted in luatex allows macro pro-
grammers to use all modules from the Python standard li-
brary, allows importing of third modules, and permits the
use of existing bindings of shared libraries or the creation of
new bindings to shared libraries with the Python standard
module ctypes.
Some examples of such bindings, particularly in the area of
scientific graphics, are presented and discussed.
Intentionally the embedding of interpreter is limited to the
python-2.6 release and to a luatex release for the Linux op-
erating system (32 bit).

Keywords
Lua, Python, dynamic loading, ffi.

History
I met luatex sometime around November 2006, and
I started to play with it to explore the possibility of
typesetting xml documents in an alternative way than
the traditional approach based on xsl stylesheet plus xslt
processor.

My Vrst intention was to typeset a wikipedia xml
dump [4] which is compressed with bzip2; given that
I mainly use Python for my programming language, I
quickly found python-bz2 and then Gustavo Niemeyer’s
“personal laboratory” [15] where I have discovered Lu-
natic Python [14].

To avoid confusion, here Python means CPython, the
C implementation of the Python language [49]. There
are other implementations of the Python language: for
example Jython [41] and IronPython [37]. According to
[6] “the origin of the name (is) based on the television
series Monty Python’s Flying Circus.”

In March 2007 I started to investigate the possibility of
integrating Lunatic Python with luatex [57] and in Au-
gust 2007 I made the Vrst release of luatex-lunatic [20],
just around the birth of my second daughter Martina
(09/08/07, [33]).

During the 2nd ConTEXt meeting [21] I found that
luatex was stable enough to Vnalize the project, so I
remade all steps and some new examples too (ConTEXt
meetings are good places for these kinds of things).

Examples are now hosted at contextgarden [35] while
[20] remains for historical purposes.

Motivations & goals
TEX is synonymous with portability (it’s easy to im-
plement/adapt TEX the program) and stability (TEX the
language changes only to Vx errors).

We can summarize by saying that “typesetting in TEX
tends to be everywhere everytime.”

These characteristics are a bit unusual in today’s
scenario of software development: no one is surprised
if programs exist only for one single OS (and even for
a discontinued OS, given the virtualization technology)
and especially no one is surprised at a new release of
a program, which actually means bugs Vxed and new
features implemented (note that the converse is in some
sense negative: no release means program discontinued).

Of course, if we consider the LATEX-system, i.e. LATEX
and its most used packages, this is not frozen at all: just
see the near-daily announcements from CTAN. pdfTEX
also changes to follow pdf releases.

With luatex-lunatic I adopt this point of view:
LuaTEX or more speciVcally LuaTEX&ConTEXt-mkiv as a
tool for publishing content, with some extent to content
management. As a tool, it is no surprise if there are
“often” (for a TEX user) new releases, given that we can
have a LuaTEX update, or a ConTEXt-mkiv update, or a
Lua update, or a Python update, or a library update for
which the Python binding exists; and, of course, if made
with no “cum grano salis”, no surprise if this can become
quickly unmanageable.

The price to pay is the potential loss of stability:
the same document (with the same fonts and images)
processed with a new release can produce a diUerent
output.

With regard to portability, the LuaTEX team uses
libtool: GNU Libtool simpliVes the developer’s job by
encapsulating both the platform-speciVc dependencies,
and the user interface, in a single script. GNU Libtool is
designed so that the complete functionality of each host
type is available via a generic interface, but nasty quirks
are hidden from the programmer [39]), while in Lua and
Python support for dynamic loading is a feature of the
languages, i.e. there is a (Lua/Python) layer that hides
the details of binding.

LuaTEX lunatic EUROTEX 2009 E35

Thus stated, due to the lack of resources, I have
no plan in the immediate future to investigate any OS
other than Linux, so this article will cover this OS only;
or, stated in another way, there is a potential loss of
portability.

We can summarize saying that “typesetting in luatex-
lunatic is here and now”, where here stands for “a
speciVc OS” and now for “with this release”. Actually
here stands for “Linux 32 bit”, and now stands for luatex
-snapshot-0.42.0.tar.bz2 with ConTEXt-mkiv current
2008.07.17; probably both will already be old by the time
this is printed.

Another motivation has emerged during the develop-
ment of luatex-lunatic: the possibility to use ConTEXt-
mkiv as a sort of literate programming tool for a speciVc
context.

It is well known that CWEB is a way to tangle together
a program written in a speciVc programming language
(C) with its documentation written with a macro markup
language, TEX; luatex-lunatic and ConTEXt-mkiv can be
used to tangle together a program written in an (almost)
arbitrary programming language with its documenta-
tion written with a high level macro markup language,
ConTEXt-mkiv.

Put in another way: currently an application calls
TEX or LATEX (i.e. it creates a process) to obtain a
result from a tex snippet (for example to show a math
formula); instead luatex-lunatic with ConTEXt-mkiv calls
the application by dynamic loading (i.e. it does not create
a process) to obtain the result to insert into tex source.

For example one can use luatex-lunatic ConTEXt-
mkiv to typeset a math formula, and the binding for
the evaluation of the same formula (there are several
symbolic-math Python modules already available).

We will see more about this later, when we will talk
of Sage.

We want to Vnd the smallest set of patches of the luatex
codebase, or, better, we want to avoid:

1. constraints of any sort to the development team;
2. massive modiVcations of the code base;
3. radical modiVcation of the building process.

Lunatic Python
There is no better site than [14] to explain what is
Lunatic Python:

Lunatic Python is a two-way bridge between Python
and Lua, allowing these languages to intercommunicate.
Being two-way means that it allows Lua inside Python,
Python inside Lua, Lua inside Python inside Lua, Python
inside Lua inside Python, and so on.

. . .

The bridging mechanism consists of creating the
missing interpreter state inside the host interpreter. That
is, when you run the bridging system inside Python, a Lua
interpreter is created; when you run the system inside
Lua, a Python interpreter is created.

Once both interpreter states are available, these
interpreters are provided with the necessary tools to
interact freely with each other. The given tools offer not
only the ability of executing statements inside the alien
interpreter, but also to acquire individual objects and
interact with them inside the native state. This magic is
done by two special object types, which act by bridging
native object access to the alien interpreter state.

Almost every object which is passed between Python
and Lua is encapsulated in the language specific bridging
object type. The only types which are not encapsulated
are strings and numbers, which are converted to the
native equivalent objects.

Besides that, the Lua side also has special treatment
for encapsulated Python functions and methods. The
most obvious way to implement calling of Python objects
inside the Lua interpreter is to implement a __call
function in the bridging object metatable. Unfortunately
this mechanism is not supported in certain situations,
since some places test if the object type is a function,
which is not the case of the bridging object. To over-
whelm these problems, Python functions and methods are
automatically converted to native Lua function closures,
becoming accessible in every Lua context. Callable
object instances which are not functions nor methods, on
the other hand, will still use the metatable mechanism.
Luckily, they may also be converted in a native function
closure using the asfunc() function, if necessary.

According to [68], page 47, a closure is “a function plus all
it needs to access non-local variables correctly”; a non-local

variable “is neither a global variable nor a local variable”. For example
consider newCounter:

function newCounter()

local i = 0

return function()

i = i+1

return i

end

end

c1 = newCounter()

print(c1()) --> 1

print(c1()) --> 2

c2 = newCounter()

print(c2()) --> 1

print(c1()) --> 3

print(c2()) --> 2

i is a non-local variable; we see that there is no interference between
c1 and c2—they are two diUerent closures over the same function.

E36 MAPS 39 Luigi Scarso

It’s better to track a layout of installation of luatex-
lunatic on a Linux box.
Let’s set up a home directory:

HOMEDIR=/opt/luatex/luatex-lunatic
Next:

1. download and install python-2.6.1 (at least) from
[49]. Assuming $HOMEDIR/Python-2.6.1 as build
directory, let’s conVgure python-2.6.1 with

./configure
--prefix=/opt/luatex/luatex-lunatic
--enable-unicode=ucs4
--enable-shared

and install it. After installation we should end in
a “Filesystem Hierarchy Standard”-like Filesystem
(cf. [46], except for Python-2.6.1), i.e. something like
this:

$> cd $HOMEDIR && ls -1X
bin
include
lib
man
share
Python-2.6.1

It’s also convenient to extend the system path:

$> export PATH=
/opt/luatex/lunatic-python/bin:$PATH

so we will use the python interpreter in $HOMEDIR.
2. download luatex source code from [43]; we will

use luatex-snapshot-0.42.0, so let’s unpack it in
$HOMEDIR/luatex-snapshot-0.42.0 . For uniformity,
make a symbolic link

$> cd $HOMEDIR
$> ln -s luatex-snapshot-0.42.0 luatex

It’s convenient to have a stable ConTEXt minimals
distribution installed (cf. [23]) under $HOMEDIR, i.e.
$HOMEDIR/minimals, so that we will replace its lua-
tex with our luatex-lunatic. Remember to set up
the environment with

$> . $HOMEDIR/minimals/tex/setuptex

We don’t build it now, because build.sh needs to be
patched.

3. download luatex-lunatic from [3], revision 7, and put
it in lunatic-python, i.e.

$> cd $HOMEDIR
$> bzr branch lp:lunatic-python

We must modify setup.py to match luatex installa-
tion (here "<" stands for the original setup.py, ">"
stands for the modiVed one; it’s a diU Vle):

1c1
< #!/usr/bin/python

> #!/opt/luatex/luatex-lunatic/bin/python
14,16c14,16
< LUALIBS = ["lua5.1"]
< LUALIBDIR = []
< LUAINCDIR = glob.glob("/usr/include/lua*")

> LUALIBS = ["lua51"]
> LUALIBDIR = [’/opt/luatex/

luatex-lunatic/
luatex/build/texk/web2c’]

> LUAINCDIR = glob.glob("../
luatex/source/texk/web2c/luatexdir/lua51*")

48a49
>

When we build lunatic-python, we will end with a
python.so shared object that will be installed in the
$HOMEDIR/lib/python2.6/site-packages directory, so
it’s convenient to prepare a python.luawrapper like this
one:

loaded = false
func = package.loadlib(
"/opt/luatex/luatex-lunatic/lib/python2.6/
site-packages/python.so","luaopen_python")
if func then

func()
return

end
if not loaded then

error("unable to find python module")
end

Before building, we must resolve the dynamic loading
problem; again from [14]

. . .Unlike Python, Lua has no default path to its modules.
Thus, the default path of the real Lua module of Lunatic
Python is together with the Python module, and a
python.lua stub is provided. This stub must be placed
in a path accessible by the Lua require() mechanism, and
once imported it will locate the real module and load it.

Unfortunately, there’s a minor inconvenience for our
purposes regarding the Lua system which imports ex-
ternal shared objects. The hardcoded behavior of the

LuaTEX lunatic EUROTEX 2009 E37

loadlib() function is to load shared objects without
exporting their symbols. This is usually not a problem
in the Lua world, but we’re going a little beyond their
usual requirements here. We’re loading the Python
interpreter as a shared object, and the Python interpreter
may load its own external modules which are compiled
as shared objects as well, and these will want to link
back to the symbols in the Python interpreter. Luckily,
fixing this problem is easier than explaining the problem.
It’s just a matter of replacing the flag RTLD_NOW in the
loadlib.c file of the Lua distribution by the or’ed ver-
sion RTLD_NOW|RTLD_GLOBAL. This will avoid “undefined
symbol” errors which could eventually happen.

Modifying luatex/source/texk/web2c/
luatexdir/lua51/loadlib.c

is not diXcult:

69c69
< void *lib = dlopen(path, RTLD_NOW);

> void *lib = dlopen(path, RTLD_NOW|RTLD_GLOBAL);

(again "<" means original and ">" means modiVed).

According to dlopen(3) - Linux man page (see for example
[18]),

The function dlopen() loads the dynamic library file named by the
null-terminated string filename and returns an opaque “handle” for
the dynamic library. If filename is NULL, then the returned handle
is for the main program. If filename contains a slash (“/”), then it
is interpreted as a (relative or absolute) pathname. Otherwise, the
dynamic linker searches for the library as follows (see ld.so(8) for further
details):

@ (ELF only) If the executable file for the calling program contains a
DT_RPATH tag, and does not contain a DT_RUNPATH tag, then
the directories listed in the DT_RPATH tag are searched.

@ If the environment variable LD_LIBRARY_PATH is defined
to contain a colon-separated list of directories, then these are
searched. (As a security measure this variable is ignored for set-
user-ID and set-group-ID programs.)

@ (ELF only) If the executable file for the calling program contains
a DT_RUNPATH tag, then the directories listed in that tag are
searched.

@ The cache file /etc/ld.so.cache (maintained by ldconfig(8)) is
checked to see whether it contains an entry for filename.

@ The directories /lib and /usr/lib are searched (in that order).

If the library has dependencies on other shared libraries, then these
are also automatically loaded by the dynamic linker using the same
rules. (This process may occur recursively, if those libraries in turn
have dependencies, and so on.)

One of the following two values must be included in flag:

@ RTLD_LAZY
Perform lazy binding. Only resolve symbols as the code that refer-

ences them is executed. If the symbol is never referenced, then it is
never resolved. (Lazy binding is only performed for function refer-
ences; references to variables are always immediately bound when
the library is loaded.)

@ RTLD_NOW
If this value is specified, or the environment variable
LD_BIND_NOW is set to a non-empty string, all undefined sym-
bols in the library are resolved before dlopen() returns. If this can-
not be done, an error is returned.

Zero or more of the following values may also be ORed in flag:

@ RTLD_GLOBAL
The symbols defined by this library will be made available for sym-
bol resolution of subsequently loaded libraries.

@ RTLD_LOCAL
This is the converse of RTLD_GLOBAL, and the default if nei-
ther flag is specified. Symbols defined in this library are not made
available to resolve references in subsequently loaded libraries.

@ RTLD_NODELETE (since glibc 2.2)
Do not unload the library during dlclose(). Consequently, the
library’s static variables are not reinitialised if the library is re-
loaded with dlopen() at a later time. This flag is not specified in
POSIX.1-2001.

@ RTLD_NOLOAD (since glibc 2.2)
Don’t load the library. This can be used to test if the library is
already resident (dlopen() returns NULL if it is not, or the library’s
handle if it is resident). This flag can also be used to promote the
flags on a library that is already loaded. For example, a library that
was previously loaded with RTLD_LOCAL can be re-opened with
RTLD_NOLOAD | RTLD_GLOBAL. This flag is not specified in
POSIX.1-2001.

@ RTLD_DEEPBIND (since glibc 2.3.4)
Place the lookup scope of the symbols in this library ahead of the
global scope. This means that a self-contained library will use its
own symbols in preference to global symbols with the same name
contained in libraries that have already been loaded. This flag is
not specified in POSIX.1-2001.

If filename is a NULL pointer, then the returned handle is for the main
program. When given to dlsym(), this handle causes a search for a
symbol in the main program, followed by all shared libraries loaded at
program startup, and then all shared libraries loaded by dlopen() with
the flag RTLD_GLOBAL.

External references in the library are resolved using the libraries in
that library’s dependency list and any other libraries previously opened
with the RTLD_GLOBAL flag. If the executable was linked with
the flag “-rdynamic” (or, synonymously, “–export-dynamic”), then the
global symbols in the executable will also be used to resolve references
in a dynamically loaded library.

If the same library is loaded again with dlopen(), the same file
handle is returned. The dl library maintains reference counts for library
handles, so a dynamic library is not deallocated until dlclose() has been
called on it as many times as dlopen() has succeeded on it. The _init
routine, if present, is only called once. But a subsequent call with
RTLD_NOW may force symbol resolution for a library earlier loaded
with RTLD_LAZY.

If dlopen() fails for any reason, it returns NULL.
Nevertheless this is not enough: reference manual [66]
says (page 23):

Dynamic loading of .so and .dll Vles is disabled on
all platforms.

E38 MAPS 39 Luigi Scarso

So we must “enable” it and we must ensure that the
luatex executable is linked against libdl.so because
this contains the dlopen() symbol; also we must ensure
that all the Lua functions involved in a dlopen() call
must be resolved in the luatex-lunatic executable.

Assuming that we are always in $HOMEDIR, we must
modify
source/texk/web2c/luatexdir/am/liblua51.am
and source/texk/web2c/Makefile.in .
For
source/texk/web2c/luatexdir/am/liblua51.am:

12c12
< liblua51_a_CPPFLAGS += -DLUA_USE_POSIX

> liblua51_a_CPPFLAGS += -DLUA_USE_LINUX

while for source/texk/web2c/Makefile.in:

98c98
< @MINGW32_FALSE@am__append_14 = -DLUA_USE_POSIX

> @MINGW32_FALSE@am__append_14 = -DLUA_USE_LINUX
1674c1674
< $(CXXLINK) $(luatex_OBJECTS) $(luatex_LDADD)
$(LIBS)

> $(CXXLINK) $(luatex_OBJECTS) $(luatex_LDADD)
$(LIBS) -Wl,-E -uluaL_openlibs -fvisibility=hidd
en -fvisibility-inlines-hidden -ldl

The last patch is the most important, so let’s examine it
more closely. Essentially, we are modifying the linking
phase of building process of luatex (switch -Wl,-E) by
adding libdl (switch -ldl) because libdl contains the
symbol dlopen as stated before.

The switch -uluaL_openlibs tells the linker to con-
sider the symbol luaL_openlibs even if it’s not neces-
sary for building luatex-lunatic. In fact luaL_openlibs
is coded in lunatic-python/src/luainpython.c and it
needs to be resolved at runtime only when luatex-lunatic
wants to load the Python interpreter.

So, even if luaL_openlibs is a function coded in
$HOMEDIR/luatex/source/texk/web2c/luatexdir/lua51
/linit.c, it’s not used by luatex, so the linker discards
this symbol because it’s useless.

According to ld(1):

@ -u symbol
Force symbol to be entered in the output file as an undefined sym-
bol. Doing this may, for example, trigger linking of additional mod-
ules from standard libraries. -u may be repeated with different op-
tion arguments to enter additional undefined symbols. This option
is equivalent to the “EXTERN” linker script command.

It’s possible to examine how symbols are resolved runtime by
setting LD_DEBUG=all; for example

$> export LD_DEBUG=all;

$> luatex python.lua &>python.LD_DEBUG;

$> export LD_DEBUG=

Here we are assuming a correct Vnal luatex lunatic luatex and the
python.lua wrapper seen before.
The Vle python.LD_DEBUG will show something like this:

3736: symbol=luaL_openlibs;

lookup in file=./luatex-lunatic [0]

3736: binding file /opt/luatex/luatex-lunatic/

lib/python2.6/site-packages/python.so [0]

to ./luatex-lunatic [0]:

normal symbol ‘luaL_openlibs’

Without the -uluaL_openlibs linker Wag, we will see something like
this:

4033: symbol=luaL_openlibs;

lookup in file=./luatex-lunatic-0.42.0.-test [0]

4033: symbol=luaL_openlibs;

lookup in file=/lib/tls/i686/cmov/libm.so.6 [0]

4033: symbol=luaL_openlibs;

lookup in file=/lib/tls/i686/cmov/libdl.so.2 [0]

4033: symbol=luaL_openlibs;

lookup in file=/lib/libreadline.so.5 [0]

4033: symbol=luaL_openlibs;

lookup in file=/lib/libhistory.so.5 [0]

4033: symbol=luaL_openlibs;

lookup in file=/lib/libncurses.so.5 [0]

4033: symbol=luaL_openlibs;

lookup in file=/lib/tls/i686/cmov/libc.so.6 [0]

4033: symbol=luaL_openlibs;

lookup in file=/lib/ld-linux.so.2 [0]

4033: symbol=luaL_openlibs;

lookup in file=/opt/luatex/luatex-lunatic/lib/

python2.6/site-packages/python.so [0]

4033: symbol=luaL_openlibs;

lookup in file=/lib/tls/i686/cmov/libpthread.so.0 [0]

4033: symbol=luaL_openlibs;

lookup in file=/lib/tls/i686/cmov/libutil.so.1 [0]

4033: symbol=luaL_openlibs;

lookup in file=/lib/tls/i686/cmov/libc.so.6 [0]

4033: symbol=luaL_openlibs;

lookup in file=/lib/ld-linux.so.2 [0]

4033: /opt/luatex/luatex-lunatic/lib/python2.6/

site-packages/python.so:

error: symbol lookup error:

undefined symbol: luaL_openlibs (fatal)

4033:

4033: file=/opt/luatex/luatex-lunatic/lib/python2.6/

site-packages/python.so [0]; destroying link map

And near the bottom we can see this error: symbol lookup error:

undefined symbol: luaL_openlibs (fatal).

The last two switches, namely -fvisibility=hidden
and -fvisibility-inlines-hidden, are gcc switches
(not linker switches) and again they are related with

LuaTEX lunatic EUROTEX 2009 E39

symbols, more precisely with symbols collisions. Con-
sider this: in $HOMEDIR/luatex/source/libs/libpng
there is a libpng library (currently vers. 1.2.38). This
library, once compiled, will be merged by the linker
into the luatex executable, and hence into the luatex-
lunatic executable too. Now, we can build a Python
binding to another libpng library or, better, we can
import a Python module (e.g. PythonMagickWand, an
interface to ImageMagick R©, see [40]) that has a binding
to its own libpng library. In this situation, at runtime
the dynamic loader will resolve for the Python module
the symbols of libpng from luatex libpng, instead of
those from its own libpng. Now, we cannot guarantee
that these two libraries are the same, because we cannot
replace the libpng of luatex (see near the end of the
preceding section “Motivation & goals”) and, of course,
we cannot replace the libpng library from the Python
module with the one from luatex, because the last one
can be patched for luatex only. So, we have symbols
collisions (see [9]): almost for sure, a symbol collision
will cause a segmentation fault, and the program abort.

More information about this can be found starting from the
already cited [9], especially [69]. A good text is also [63].

A solution can be this: “hide” to the “outside” all symbols
that aren’t necessary for dynamic loading of shared
objects. For standard luatex, this means “hide all”: for
luatex-lunatic, this means “hide all but not symbols
from lua”, otherwise we will not be able to use loadlib.
It’s not so diXcult to “hide all”: just patch the build.sh
script of luatex sources by adding

28a29,36
> CFLAGS="-g -O2 -Wno-write-strings

-fvisibility=hidden"
> CXXFLAGS="$CFLAGS

-fvisibility-inlines-hidden"
> export CFLAGS
> export CXXFLAGS

The hardest part is to “unhide” the Lua part. We can
proceed in this manner: collect the result of the patched
build.sh in an out Vle:

$> cd $HOMEDIR/luatex; ./build.sh &> out

Then locate in out all the lines about Lua and remove
the -fvisibility=hidden Wag: for example

gcc -DHAVE_CONFIG_H -I.
-I../../../source/texk/web2c -I./..
-I/opt/luatex/luatex-lunatic/

luatex-snapshot-0.42.0/build/texk
-I/opt/luatex/luatex-lunatic/

luatex-snapshot-0.42.0/source/texk
-I../../../source/texk/web2c/luatexdir/lua51
-DLUA_USE_LINUX -g -O2
-Wno-write-strings
-fvisibility=hidden
-Wdeclaration-after-statement
-MT liblua51_a-lapi.o
-MD -MP -MF .deps/liblua51_a-lapi.Tpo
-c -o liblua51_a-lapi.o
‘test -f
’luatexdir/lua51/lapi.c’
|| echo
’../../../source/texk/web2c/’‘
luatexdir/lua51/lapi.c
mv -f .deps/liblua51_a-lapi.Tpo

.deps/liblua51_a-lapi.Po

will become

gcc -DHAVE_CONFIG_H -I.
-I../../../source/texk/web2c -I./..
-I/opt/luatex/luatex-lunatic/

luatex-snapshot-0.42.0/build/texk
-I/opt/luatex/luatex-lunatic/

luatex-snapshot-0.42.0/source/texk
-I../../../source/texk/web2c/luatexdir/lua51
-DLUA_USE_LINUX
-g -O2 -Wno-write-strings
-Wdeclaration-after-statement
-MT liblua51_a-lapi.o
-MD -MP -MF .deps/liblua51_a-lapi.Tpo
-c -o liblua51_a-lapi.o
‘test -f
’luatexdir/lua51/lapi.c’
|| echo
’../../../source/texk/web2c/
’‘luatexdir/lua51/lapi.c
mv -f .deps/liblua51_a-lapi.Tpo
.deps/liblua51_a-lapi.Po

After that, recompile luatex

/bin/bash ./libtool
--tag=CXX
--mode=link
./CXXLD.sh -g -O2
-Wno-write-strings
-fvisibility=hidden
-fvisibility-inlines-hidden
-o luatex
luatex-luatex.o
libluatex.a libff.a
libluamisc.a libzzip.a
libluasocket.a liblua51.a
/opt/luatex/luatex-lunatic/

E40 MAPS 39 Luigi Scarso

luatex-snapshot-0.42.0/build/libs/
libpng/libpng.a

/opt/luatex/luatex-lunatic/
luatex-snapshot-0.42.0/build/libs/
zlib/libz.a

/opt/luatex/luatex-lunatic/
luatex-snapshot-0.42.0/build/libs/
xpdf/libxpdf.a

/opt/luatex/luatex-lunatic/
luatex-snapshot-0.42.0/build/libs/
obsdcompat/libopenbsd-compat.a

libmd5.a libmplib.a
lib/lib.a
/opt/luatex/luatex-lunatic/

luatex-snapshot-0.42.0/build/texk/
kpathsea/libkpathsea.la

-lm -Wl,-E
-uluaL_openlibs
-fvisibility=hidden
-fvisibility-inlines-hidden
-ldl

Of course it’s better to edit a trick.sh from out (see
[34]) that will do all the work, paying the price of ~20
minutes of cut and paste for every new luatex release for
preparing this trick Vle.

After executing $HOMEDIR/luatex/trick.sh we will
have an unstripped luatex binary in $HOMEDIR/luatex
/build/texk/web2c so we are ready for the Vnal step.
It’s better not to strip it, because we can track problems
more easily.

4. we copy luatex into the bin directory of ConTEXt
minimals and remade formats:

$> cp $HOMEDIR/luatex/build/texk/web2c/luatex
$HOMEDIR/minimals/tex/texmf-linux/bin
$> context --make

And in the end we must build the lunatic-python
shared object:

$> cp $HOMEDIR/lunatic-python
$> python setup.py build && python setup.py
install

We can now make a simple test; let’s save this in test.tex:

\directlua{require "python";

sys = python.import("sys");

tex.print(tostring(sys.version_info))}

\bye

Next let’s run callgrind, a tool of valgrind (see [30]), to generate a call
graph [5]:

$> valgrind --tool=callgrind

--callgrind-out-file=test-%p.callgrind

--dump-instr=yes

luatex --fmt=plain --output-format=pdf test.tex

To see and analyze this call graph we can use kcachegrind [13]: see
appendix at page 53 for the graph centered at main function, with Min.
node cost=1% , Min. call cost=1% .

Examples
Image processing
ImageMagick. ImageMagick is “a software suite to create,
edit, and compose bitmap images. It can read, convert
and write images in a variety of formats (over 100)
including DPX, EXR, GIF, JPEG, JPEG-2000, PDF, PhotoCD,
PNG, PostScript, SVG, and TIFF. Use ImageMagick to
translate, Wip, mirror, rotate, scale, shear and transform
images, adjust image colors, apply various special eUects,
or draw text, lines, polygons, ellipses and Bézier curves.”
(See [40].) There are two bindings in Python, and
we choose the PythonMagickWand [48], a ctypes-based
wrapper for ImageMagick.

According to [50] ctypes is a foreign function library for
Python. It provides C compatible data types, and allows calling

functions in DLLs or shared libraries. It can be used to wrap these
libraries in pure Python. ctypes is included in Python.

This simple script create a 200×200 pixel image at 300dpi
with a shadow:

import PythonMagickWand as pmw
pmw.MagickWandGenesis()
wand = pmw.NewMagickWand()
background = pmw.NewPixelWand(0)
pmw.MagickNewImage(wand,200,200,background)
pmw.MagickSetImageResolution(wand,118.110,118.110)
pmw.MagickSetImageUnits(wand,

pmw.PixelsPerCentimeterResolution)
pmw.MagickShadowImage(wand,90,3,2,2)
pmw.MagickWriteImage(wand,"out.png")

i.e., something like this:

LuaTEX lunatic EUROTEX 2009 E41

Suppose we want to use it to generate a background for
text, i.e.

\startShadowtext%
\input tufte
\stopShadowtext%

Let’s now look at luatex lunatic and ConTEXt-mkiv in
action for the Vrst time:

\usetypescriptfile[type-gentium]
\usetypescript[gentium]
\setupbodyfont[gentium,10pt]
\setuppapersize[A6][A6]
\setuplayout[height=middle,topspace=1cm,
header={2\lineheight},footer=0pt,backspace=1cm,
margin=1cm,width=middle]

%%
%% lua layer
%%
\startluacode
function testimagemagick(box,t)
local w
local h
local d
local f
local res = 118.11023622047244094488 -- 300 dpi
local opacity = 25
local sigma = 15
local x = 10
local y = 10
w = math.floor((tex.wd[box]/65536)

/72.27*2.54*res)
h = math.floor(((tex.ht[box]/65536)+

(tex.dp[box]/65536))
/72.27*2.54*res)

f = string.format("%s.png",t)
--
-- Call the python interpreter
--
require("python")
pmw = python.import("PythonMagickWand")
wand = pmw.NewMagickWand()
background = pmw.NewPixelWand(0)
pmw.MagickNewImage(wand,w,h,background)
pmw.MagickSetImageResolution(wand,res,res)
pmw.MagickSetImageUnits(wand,

pmw.PixelsPerCentimeterResolution)
pmw.MagickShadowImage(wand,opacity,sigma,x,y)
pmw.MagickWriteImage(wand ,f)

end
\stopluacode
%%
%% TeX layer
%%

\def\testimagemagick[#1]{%
\getparameters[Imgk][#1]%
\ctxlua{%
testimagemagick(\csname Imgkbox\endcsname,

"\csname Imgkfilename\endcsname")}%
}
%%
%% ConTeXt layer
%%
\newcount\shdw
\long\def\startShadowtext#1\stopShadowtext{%
\bgroup%
\setbox0=\vbox{#1}%
\testimagemagick[box=0,

filename={shd-\the\shdw}]%
\defineoverlay[backg]%

[{\externalfigure[shd-\the\shdw.png]}]%
\framed[background=backg,

frame=off,offset=4pt]{\box0}%
\global\advance\shdw by 1%
\egroup%
}
\starttext
\startTEXpage%
\startShadowtext%
\input tufte
\stopShadowtext%
\stopTEXpage
\stoptext

As we can see, there is an almost one-to-one mapping
between Python code and Lua code, a good thing for a
small script.
And here is the result:

What about symbols collisions?

$> eu-readelf --all luatex &> luatex.dump

$> export LD_DEBUG=all;context test-imagemagick.tex &> test-

imagemagick.tex.LD_DEBUG; export LD_DEBUG=

If we search png_memcpy_check which is coded in $HOMEDIR/source

/libs/libpng/libpng-1.2.38/pngmem.c of luatex, we will Vnd that

E42 MAPS 39 Luigi Scarso

it’s bound to system libpng:

25749: symbol=png_memcpy_check;

lookup in file=luatex [0]

25749: symbol=png_memcpy_check;

lookup in file=/lib/tls/i686/cmov/libm.so.6 [0]

25749: symbol=png_memcpy_check;

lookup in file=/lib/tls/i686/cmov/libdl.so.2 [0]

:

: (62 lines after)

:

25749: symbol=png_memcpy_check;

lookup in file=/usr/lib/libpng12.so.0 [0]

25749: binding file /usr/lib/libpng12.so.0 [0]

to /usr/lib/libpng12.so.0 [0]:

normal symbol ‘png_memcpy_check’ [PNG12_0]

In fact if we search for png_memcpy_check in luatex.dump we see that
it’s hidden now:

Symbol table [40] ’.symtab’ contains 10087 entries:

9592 local symbols String table: [41] ’.strtab’

:

Num: Value Size Type

4837: 082022b0 27 FUNC

Bind Vis Ndx Name

LOCAL HIDDEN 13 png_memcpy_check

:

As a counterexample, suppose that we don’t use hidden Wags, so now
png_memcpy_check is visible:

Num: Value Size Type

2273: 08243050 27 FUNC

Bind Vis Ndx Name

GLOBAL DEFAULT 13 png_memcpy_check

Now we have a fatal error:

$> export LD_DEBUG=all;context test-imagemagick.tex &> test-

imagemagick.tex.LD_DEBUG; export LD_DEBUG=

:

MTXrun | fatal error, no return code, message: luatex: execu-

tion interrupted

:

and we see that png_memcpy_check is resolved in luatex:

24213: symbol=png_memcpy_check;

lookup in file=luatex [0]

24213: binding file /usr/lib/libpng12.so.0 [0]

to luatex [0]:

normal symbol ‘png_memcpy_check’ [PNG12_0]

so we have symbols collisions. In this case it can be hard to track the
guilty symbol; even in this case the fatal error can be given by another
symbols collision, not necessarily png_memcpy_check. Also note that
this code

\starttext

\externalfigure[out.png]

\stoptext

compiles right—of course, because there is no PythonImagickWand
involved and so no symbols collisions. So this kind of error can become
a nightmare.

Let’s continue with our gallery.

PIL – PythonImageLibrary. PIL (see [51]) is similar to
ImageMagick, but at least for png doesn’t require libpng,
so we are safe from symbol collisions.

\startluacode
function testPIL(imageorig,imagesepia)
require("python")
PIL_Image = python.import("PIL.Image")
PIL_ImageOps = python.import("PIL.ImageOps")
python.execute([[

def make_linear_ramp(white):
ramp = []
r, g, b = white
for i in range(255):

ramp.extend((r*i/255, g*i/255, b*i/255))
return ramp

]])
-- make sepia ramp
-- (tweak color as necessary)
sepia = python.eval

("make_linear_ramp((255, 240, 192))")
im = PIL_Image.open(imageorig)

-- convert to grayscale
if not(im.mode == "L")
then

im = im.convert("L")
end
-- optional: apply contrast
-- enhancement here, e.g.
im = PIL_ImageOps.autocontrast(im)
-- apply sepia palette
im.putpalette(sepia)
-- convert back to RGB
-- so we can save it as JPEG
-- (alternatively, save it in PNG or similar)
im = im.convert("RGB")
im.save(imagesepia)

end
\stopluacode

\def\SepiaImage#1#2{%
\ctxlua{testPIL("#1","#2")}%
\startcombination[1*2]
{\externalfigure[#1][width=512pt]}{\ss Orig.}
{\externalfigure[#2][width=512pt]}{\ss Sepia}
\stopcombination
}

LuaTEX lunatic EUROTEX 2009 E43

\starttext
\startTEXpage
%\SepiaImage{lena.jpg}{lena-sepia.jpg}
\SepiaImage{lena.png}{lena-sepia.png}
\stopTEXpage
\stoptext

Here is the result (sorry, Lena is too nice to show her
only in black and white):

Orig.

Sepia

The code shows how to deVne a Python function
inside a Lua function and how to call it. Note that we
must respect the Python indentation rules, so we can use
the multiline string of Lua [[..]].

Language adapter
Suppose we have a C library for a format of a Vle (i.e.
TIFF, PostScript) that we want to manage in the same
way as png, pdf, jpeg and jbig. One solution is to build a
quick binding with ctypes of Python, and then import it

in luatex-lunatic as a traditional Lua module. As an ex-
ample, let’s consider ghostscript [10], here in vers. 8.64.
It can be compiled as a shared library, and building a
testgs.py (see [35]#Ghostscript) binding is not diXcult
(see Vle base/gslib.c in source distribution). The key
here is to build a binding that Vts our needs, not a general
one.

\startluacode
function testgs(epsin,pdfout)
require("python")
gsmodule = python.import("testgs")
ghost = gsmodule.gs()
ghost.appendargs(’-q’)
ghost.appendargs(’-dNOPAUSE’)
ghost.appendargs(’-dEPSCrop’)
ghost.appendargs(’-sDEVICE=pdfwrite’)
ghost.InFile = epsin
ghost.OutFile = pdfout
ghost.run()

end
\stopluacode

\def\epstopdf#1#2{\ctxlua{testgs("#1","#2")}}
\def\EPSfigure[#1]{%lazy way to load eps
\epstopdf{#1.eps}{#1.pdf}%
\externalfigure[#1.pdf]}

\starttext
\startTEXpage
{\EPSfigure[golfer]}
{\ss golfer.eps}
\stopTEXpage
\stoptext

Here is the result:

golfer.eps

We can also use PostScript libraries: for example
barcode.ps [56], a PostScript barcode library:

\startluacode
function epstopdf(epsin,pdfout)
require("python")
gsmodule = python.import("testgs")
ghost = gsmodule.gs()
ghost.appendargs(’-q’)

E44 MAPS 39 Luigi Scarso

ghost.appendargs(’-dNOPAUSE’)
ghost.appendargs(’-dEPSCrop’)
ghost.appendargs(’-sDEVICE=pdfwrite’)
ghost.InFile = epsin
ghost.OutFile = pdfout
ghost.run()

end

function barcode(text,type,options,savefile)
require("python")
gsmodule = python.import("testgs")
barcode_string =
string.format("%%!\n100 100 moveto (%s) (%s)

%s barcode showpage",
text,options,type)

psfile = string.format("%s.ps",savefile)
epsfile = string.format("%s.eps",savefile)
pdffile = string.format("%s.pdf",savefile)
temp = io.open(psfile,’w’)
print(psfile)
temp:write(tostring(barcode_string),"\n")
temp:flush()
io.close(temp)
ghost = gsmodule.gs()
ghost.rawappendargs(’-q’)
ghost.rawappendargs(’-dNOPAUSE’)
ghost.rawappendargs(’-sDEVICE=epswrite’)
ghost.rawappendargs(

string.format(’-sOutputFile=%s’,epsfile))
ghost.rawappendargs(’barcode.ps’)
ghost.InFile= psfile
ghost.run()

end
\stopluacode

\def\epstopdf#1#2{\ctxlua{epstopdf("#1","#2")}}
\def\EPSfigure[#1]{%lazy way to load eps
\epstopdf{#1.eps}{#1.pdf}%
\externalfigure[#1.pdf]%
}

\def\PutBarcode[#1]{%
\getparameters[bc][#1]%
\ctxlua{barcode("\csname bctext\endcsname",

"\csname bctype\endcsname",
"\csname bcoptions\endcsname",
"\csname bcsavefile\endcsname")}%

\expanded{\EPSfigure
[\csname bcsavefile\endcsname]}%

}

\starttext
\startTEXpage
{\PutBarcode[text={CODE 39},type={code39},

options={includecheck includetext},
savefile={TEMP1}]}\\

{\ss code39}
\blank
{\PutBarcode[text={CONTEXT},type={code93},

options={includecheck includetext},
savefile={TEMP2}]}\\

{\ss code93}
\blank
{\PutBarcode[text={977147396801},type={ean13},

options={includetext},
savefile={TEMP3}]}\\

{\ss ean13}
\stopTEXpage
\stoptext

Of course one can implement a direct conversion into
ps->pdf, instead of ps->eps->pdf.
Here is the result:

For a beautiful book on PostScript see [58] (and its site
[42]) and also [2].

Scientific & math extensions
Sage. “Sage is a free open-source mathematics software
system licensed under the GPL. It combines the power
of many existing open-source packages into a common
Python-based interface. Mission: Creating a viable free
open source alternative to Magma, Maple, Mathematica
and Matlab.” [53]

Given that Sage comes with its own Python in-
terpreter, we must rebuild lunatic-python and adapt
python.lua accordingly; also sage is a command line
program, so we need a stub sagestub.py:

from sage.all_cmdline import *

Here is the ConTEXt-mkiv code:

\startluacode
function test_ode(graphout)
require("python")
pg = python.globals()
SAGESTUB = python.import("sagestub")
sage = SAGESTUB.sage
python.execute([[

def f_1(t,y,params):
return[y[1],

-y[0]-params[0]*y[1]*(y[0]**2-1)]
]])
python.execute([[
def j_1(t,y,params):

return [[0,1.0],
[-2.0*params[0]*y[0]*y[1]-1.0,
-params[0]*(y[0]*y[0]-1.0)], [0,0]]

]])

LuaTEX lunatic EUROTEX 2009 E45

T=sage.gsl.ode.ode_solver()
T.algorithm="rk8pd"
f_1 = pg.f_1
j_1 = pg.j_1
pg.T=T
python.execute("T.function=f_1")
T.jacobian=j_1
python.execute("T.ode_solve(y_0=[1,0],

t_span=[0,100],
params=[10],num_points=1000)")

python.execute(string.format(
"T.plot_solution(filename=’%s’)",
graphout))

end
\stopluacode

\def\TestODE#1{%
\ctxlua{test_ode("#1")}%
\startcombination[1*2]
{%
\vbox{\hsize=8cm
Consider solving the Van der Pol oscillator
$x’’(t) +ux’(t)(x(t)^2-1)+x(t)=0 $
between $t=0$ and $t= 100$.
As a first order system it is
$x’=y$
$y’=-x+uy(1-x^2)$
Let us take $u=10$ and use
initial conditions $(x,y)=(1,0)$ and use the
\emphsl{\hbox{Runge-Kutta} \hbox{Prince-Dormand}}
algorithm.
}%
}{\ss \ }
{\externalfigure[#1][width=9cm]}{\ss Result
for 1000 points}}

\starttext
\startTEXpage
\TestODE{ode1.pdf}
\stopTEXpage
\stoptext

As we can see, here we use the python.globals() Lua
function to communicate between the Python interpreter
and Lua, and this can generate a bit of useless redun-
dancy.

R. R “is a free software environment for statistical
computing and graphics” [52]. It has its own language,
but there is also a Python binding, rpy2 [27], that we
install in our $HOMEDIR.

It can be necessary to add these env. variabless

$>export R_HOME=/opt/luatex/luatex-lunatic/lib/R

$>export LD_PRELOAD=/opt/luatex/

luatex-lunatic/lib/R/lib/libR.so

Figure 1. Result of the Sage code, with sage-3.2.3-pentiumM-

ubuntu32bit-i686-Linux

For R we split the Python side in Lua in a pure Python
script test-R.py:

import rpy2.robjects as robjects
import rpy2.rinterface as rinterface
class density(object):

def __init__(self,samples,outpdf,w,h,kernel):
self.samples = samples
self.outpdf= outpdf
self.kernel = kernel
self.width=w
self.height=h

def run(self):
r = robjects.r
data = [int(k.strip())

for k in
file(self.samples,’r’).readlines()
]

x = robjects.IntVector(data)
r.pdf(file=self.outpdf,

width=self.width,
height=self.height)

z = r.density(x,kernel=self.kernel)
r.plot(z[0],z[1],xlab=’’,ylab=’’)
r[’dev.off’]()

if __name__ == ’__main__’ :
dens =
density(’u-random-int’,’test-001.pdf’,10,7,’o’)

dens.run()

E46 MAPS 39 Luigi Scarso

and import this into Lua:

\startluacode
function testR(samples,outpdf,w,h,kernel)
require("python")
pyR = python.import("test-R")
dens =
pyR.density(samples,outpdf,w,h,kernel)
dens.run()

end
\stopluacode

\def\plotdenstiy[#1]{%
\getparameters[R][#1]%
\expanded{\ctxlua{testR("\Rsamples",

"\Routpdf",
\Rwidth,
\Rheight,"\Rkernel")}}}

\setupbodyfont[sans,14pt]
\starttext
\startTEXpage
\plotdenstiy[samples={u-random-int},

outpdf={test-001.pdf},
width={10},height={7},
kernel={o}]

\setupcombinations[location=top]
\startcombination[1*2]
{\vbox{\hsize=400bp
This is a density plot of around {\tt 100 000}
random numbers between
0 and $2^{16}-1$ generated
from {\tt \hbox{/dev/urandom}}}}{}
{\externalfigure[test-001.pdf][width={400bp}]}{}
\stopcombination
\stopTEXpage
\stoptext

Note the conditional statement
if __name__ == ’__main__’ :
that permits to test the script with an ordinary Python
interpreter.

It’s worth noting that rpy2 is included in Sage too.

For more information about scientiVc computation with
Python see [61] and [62] (also with site [31]) and [54].

The example of Sage shows that in this case we can
think of luatex lunatic as an extension of Sage but
also that luatex lunatic is extended with Sage. This
is somehow similar to CWEB: code and description are
tangled together, but now there’s not a speciVc language
like C in CWEB (in fact we can do the same with
R). Eventually “untangled” is a matter of separation of

Figure 2. Result of the R code

Python code in a diUerent Vle from the source tex Vle.

By the way, it’s important to underline that CWEB is more
advanced than other (C) code documentation systems because

it embeds source code inside descriptive text rather than the reverse (as
is common practice in most programming languages). Documentation
can be not “linear”, a bit unusual for ordinary programmers, but it’s
a more eXcient and eUective description of complex systems. Here
we are talking about “linear” documentation, much like this article: a
linear sequence of text-and-code printed as they appear.

Of course some computations may require much more
time to be completed than the time of generation of the
respective document (and ConTEXt is also a multipass
system), so this approach is pretty ineXcient—we need a
set of macros that take care of intermediate results, i.e.
caching macros or multipass macros. For example, in
ConTEXt-mkiv we can say

\doifmode{*first}{%
% this code will be executed only at first pass
\Mymacro

}

so \Mymacro will be executed only at the Vrst pass; there
is also a Two Pass Data module core-two.mkiv that can
be used for this, but don’t forget that we also have Lua
and Python for our needs.

Graphs
In LuaTEX–ConTEXt-mkiv we already have a very pow-
erful tool for technical drawing: MetaPost. Simple
searching reveals for example METAGRAPH [32] or the
more generic LuaGRAPH [19], a Lua binding to graphviz
[38] with output also in MetaPost; both are capable of
drawing (un)directed graphs and/or networks. The next
two modules are more oriented to graph calculations.

LuaTEX lunatic EUROTEX 2009 E47

MetaPost is an example of “embedding” an interpreter in
LuaTEX at compilation time (see luaopen_mplib(L) in void lu-

ainterpreter(void) in $HOMEDIR/source/texk/web2c/luatexdir/lua

/luastuff.c). So hosting Python is not a new idea: the diUerence is
that the “embedding” is done at run time.

igraph. igraph “is a free software package for creating
and manipulating undirected and directed graphs. It in-
cludes implementations for classic graph theory problems
like minimum spanning trees and network Wow, and also
implements algorithms for some recent network analysis
methods, like community structure search. The eXcient
implementation of igraph allows it to handle graphs with
millions of vertices and edges. The rule of thumb is that
if your graph Vts into the physical memory then igraph
can handle it. [11]

To install igraph we must Vrst install pycairo, a Python
binding to cairo [1], a well known 2D graphics library: so we

gain another tool for generic drawing.

Figure 3. The result of the igraph code.

This time we coded the Python layer as a class:

import igraph
class spanningtree(object) :
def __init__(self,ofn):
self.ofn = ofn

def distance(self,p1, p2):
return ((p1[0]-p2[0]) ** 2

+ (p1[1]-p2[1]) ** 2) ** 0.5
def plotimage(self):
res = igraph.Graph.GRG(100,

0.2, return_coordinates=True)
g = res[0]
xs = res[1]
ys = res[2]
layout = igraph.Layout(zip(xs, ys))

weights = [self.distance(layout[edge.source],
layout[edge.target]) for edge in g.es]

max_weight = max(weights)
g.es["width"] = \
[6 - 5*weight/max_weight for weight in weights]
mst = g.spanning_tree(weights)

fig = igraph.Plot(target=self.ofn)
fig.add(g, layout=layout,

opacity=0.25,
vertex_label=None)

fig.add(mst,
layout=layout,
edge_color="blue",
vertex_label=None)

fig.save()
if __name__ == ’__main__’:

sp = spanningtree(’test-igraph.png’)
sp.plotimage()

In this case we calculate a minimum spanning tree of a
graph, and save the result in test-igraph.png. The Lua
layer is so simple that it is encapsulated in a TEX macro:

\def\PlotSpanTree#1{%
\startluacode
require("python")
local spantree_module
local sp
spantree_module =
python.import("test-igraph")

sp = spantree_module.spanningtree("#1")
sp.plotimage()
\stopluacode
\externalfigure[#1]}
\starttext
\startTEXpage
\PlotSpanTree{test-igraph.png}
\stopTEXpage
\stoptext

NetworkX. NetworkX is a Python package for the
creation, manipulation, and study of the structure, dy-
namics, and functions of complex networks. [22]

The code is simpler: we have only two layers: the
Python layer, and the TEX layer. The Python layer
is a trivial modiVcation of knuth_miles.py (see [24],
[36], [60]), and is left to the reader (hint: rename
..__init__.. in def run()).

\starttext
\startTEXpage
\ctxlua{require("python");
knuth=python.import("test-networkx");
knuth.run();}

E48 MAPS 39 Luigi Scarso

\externalfigure[knuth_miles]
\stopTEXpage
\stoptext

Here is the result (with a bit of imagination, one can see
the USA):

ROOT. ROOT is an object-oriented program and library
developed by CERN. It was originally designed for par-
ticle physics data analysis and contains several features
speciVc to this Veld. [7], [26]

In this example we will draw 110 lines from Vle data
(each line being 24 Woat values separated by spaces);
each line will be a curve to Vt with a polynomial of
degree 6. We isolate all relevant parts in a Python script
test-ROOT1.py:

from ROOT import TCanvas,
TGraph,TGraphErrors,TMultiGraph

from ROOT import gROOT
from math import sin
from array import array
def run(filename):
c1 = TCanvas("c1","multigraph",200,10,700,500)
c1.SetGrid()
mg = TMultiGraph()
n = 24; x = array(’d’,range(24))
data = file(’data’).readlines()
for line in data:
line = line.strip()
y = array(’d’,
[float(d) for d in line.split()])

gr = TGraph(n,x,y)
gr.Fit("pol6","q")
mg.Add(gr)

mg.Draw("ap")
c1.Update(); c1.Print(filename)

This is the ConTEXt side:

\startluacode
function test_ROOT(filename)
require("python")
test = python.import(’test-ROOT1’)
test.run(filename)

end
\stopluacode
\starttext \startTEXpage
\ctxlua{test_ROOT("data.pdf")}
\rotate[rotation=90]{\externalfigure[data.pdf]}
\stopTEXpage \stoptext

Here is the result:

Database
Oracle Berkeley DB XML. Oracle Berkeley DB XML “is
an open source, embeddable xml database with XQuery-
based access to documents stored in containers and
indexed based on their content. Oracle Berkeley DB XML
is built on top of Oracle Berkeley DB and inherits its rich
features and attributes” [45];

We take as our data source a Wikiversity XML
dump [8], more speciVcally
enwikiversity-20090627-pages-articles.xml,
a ~95MByte uncompressed xml Vle (in some sense, we
end were we started).

Building a database is not trivial, so one can see
[35] under Build_the_container for details. The most
important things are indexes; here we use

container.addIndex("","title",
"edge-element-substring-string",uc)

container.addIndex("","username",
"edge-element-substring-string",uc)

container.addIndex("","text",
"edge-element-substring-string",uc)

These indexes will be used for substring queries, but
not for regular expressions, for which it will be used
the much slower standard way. Again it’s bet-
ter to isolate the Python code in a speciVc module,
wikidbxml_queryTxn.py (see [35] under Make pdf for
details). This module does the most important work:
translate from a ‘MediaWiki-format’ to ConTEXt-mkiv.
A ‘MediaWiki-format’ is basically made by <page> like
this:

<page>
<title>Wikiversity:What is Wikiversity?</title>

LuaTEX lunatic EUROTEX 2009 E49

<id>6</id>
<revision>
<id>445629</id>
<timestamp>2009-06-08T06:30:15Z</timestamp>
<contributor>
<username>Jr.duboc</username>
<id>138341</id>
</contributor>
<comment>/* Wikiversity for teaching */</comment>
<text xml:space="preserve">{{policy|[[WV:IS]]}}
{{about wikiversity}}
[[Image:Plato i sin akademi,
av Carl Johan Wahlbom
(ur Svenska Familj-Journalen).png
|thumb|left|300px|Collaboration between students
and teachers.]]
__TOC__
==Wikiversity is a learning community==
[[Wikiversity]] is a community effort to learn
and facilitate others’
learning. You can use Wikiversity to find
information or ask questions about a subject you
need to find out more about. You can also use it
to share your knowledge about a subject,
and to build learning
materials around that knowledge.
:
<!-- That’s all, folks! -->
</text>
</revision>
</page>

So, a <page> is an xml document with non-xml markup
in <text> node (which is an unfortunate tag name for an
xml document); even if <page> is simple, parsing <text>
content, or, more exactly, the text node of <text> node,
is not trivial, and we can:

@ implement a custom parser using the lpeg mod-
ule of ConTEXt-mkiv (e.g. $HOMEDIR/minimals/tex
/texmf-context/tex/context/base/lxml-tab.lua);
this can be a good choice, because we can translate
‘MediaWiki-format’ directly into ConTEXt markup,
but of course we must start from scratch;

@ use an external tool, like the Python module mwlib:
MediaWiki parser and utility library [25].

We choose mwlib (here in vers. 0.11.2) and implement the
translation in two steps:

1. from ‘MediaWiki-format’ to XML-DocBook (more
exactly DocBook RELAX NG grammar 4.4; see [44])

2. from XML-DocBook to ConTEXt-mkiv (this is done
by the getConTeXt(title,res) function)

Actually, the wikidbxml_queryTxn.writeres() function writes
the result of the query by calling wikidbxml_queryTxn.

getArticleByTitle() which in turn calls wikidbxml_queryTxn.

getConTeXt() function.

The ConTEXt-mkiv side is (for the moment forget
about the functions listtitles(title) and simplere-
ports(title)):

\usetypescriptfile[type-gentium]
\usetypescript[gentium]
\setupbodyfont[gentium,10pt]
\setuppapersize[A5][A5]
\setuplayout[height=middle,
topspace=1cm,header={2\lineheight},
footer=0pt,backspace=1cm,margin=1cm,
width=middle]
%%
%% DB XML
%%
\startluacode
function testdbxml(title,preamble,

postamble,filename)
require("python")
pg = python.globals()
wikiversity =
python.import("wikidbxml_queryTxn")

wikiversity.writeres(title,preamble,
postamble,filename)

end
\stopluacode
%%
%% sqlite
%%
\startluacode
function listtitles(title)
require("python")
pg = python.globals()
wikiversity =
python.import("wikidbxml_queryTxn")

r = wikiversity.querycategory(title)
local j = 0
local res = r[j] or {}
while res do
local d =
string.format("\%s\\par",

string.gsub(tostring(res),’_’,’ ’))
tex.sprint(tex.ctxcatcodes,d)
j = j+1
res = r[j]
end

end
\stopluacode
%%
%% sqlite

E50 MAPS 39 Luigi Scarso

%%
\startluacode
function simplereports(title)
require("python")
pg = python.globals()
wikiversity =

python.import("wikidbxml_queryTxn")
r = wikiversity.simplereports(title)
local j = tonumber(r)
for v = 0,j-1 do
local d =

string.format("\\input reps\%04d ",v)
tex.sprint(tex.ctxcatcodes,d)
end
print(j)

end
\stopluacode
%% ConTeXt
\def\testdbxml[#1]{%
\getparameters[dbxml][#1]%
\ctxlua{%
testdbxml("\csname dbxmltitle\endcsname",

"\csname dbxmlpreamble\endcsname",
"\csname dbxmlpostamble\endcsname",
"\csname dbxmlfilename\endcsname")}%

\input \csname dbxmlfilename\endcsname %
}
\starttext
\testdbxml[title={Primary mathematics/Numbers},

preamble={},
postamble={},
filename={testres.tex}]

\stoptext

Here we query for the exact title Primary mathemat-
ics/Numbers: for the result, see page 55.

sqlite. Python oUers adapters for practically all well
known databases like PostgreSQL, MySQL, ZODB, etc.
(“ZODB is a persistence system for Python objects” writ-
ten in Python, see [16]. ZODB is the heart of Plone [47],
a popular content management system also written in
Python), but here we conclude with sqlite, a “soft-
ware library that implements a self-contained, serverless,
zero-conVguration, transactional SQL database engine.
SQLite is the most widely deployed SQL database engine
in the world. The source code for SQLite is in the public
domain” (see [29]).

sqlite is a module of the standard Python library,
and we can use it to query a category.db for titles.
(category.db is a db made from
enwikiversity-20090627-category.sql, which is a
MySQL dump. Conversion is not diXcult and is not
shown here.)

The code uses the two functions seen before, listtitles
and simplereports:

\starttext
{\bfb Query for ’geometr’:}
\ctxlua{listtitles("geometr")}%
\ctxlua{simplereports("geometr")}%
\stoptext

See p. 57 for a short result (actually the Vrst page of sec-
ond hit, Geometry. The complete document is 12 pages).

MetaTEX
What is MetaTEX?
Quoting from $HOMEDIR/tex/texmf-context/tex/context
/base/metatex.tex:

This format is just a minimal layer on top of the
LuaTEX engine and will not provide high level function-
ality. It can be used as basis for dedicated (specialized)
macro packages.

A format is generated with the command:
luatools --make --compile metatex

It should be clear from previous examples that a system
with all these “bindings” becomes quickly unmanage-
able: one can spend almost all available time upgrading
to latest releases. Just as an example: already at time
of preprinting ghostscript was at rel. 8.70 (vs. rel. 8.64
of this article) Sage was at rel. 4.1 (vs. rel. 3.2.2), Python
itself was at rel. 2.6.2 (vs. rel. 2.6.1) and there even exists
rel. 3.1

Also not all Python packages are “robust”: for exam-
ple, in the Vle docbookwriter.py of mwlib we can see

Generate DocBook from the DOM tree generated
by the parser.
Currently this is just a proof of concept
which is very incomplete

(and of course, mwlib was at rel. 0.12.2 (vs. rel. 0.11.2) so
this message may have disappeared as well).

So, in the end, it’s better to have more distinct “tools”
than one big tool that does anything and badly. We can
see now why MetaTEX Vts well in this line: it permits
to create the exact “tool” needed and luatex lunatic can
be used to complete this tool. For example, consider the
problem of typesetting labels like the one on top if the
next page.

Basically, it’s a table with barcode and two or three
fonts (preferably monospaced fonts), most of the time
black and white. ConTEXt-mkiv already comes with
natural tables, or even a layer mechanism (see [70]);
luatex-lunatic with barcode.ps provides the barcode.
We don’t need colors, interaction, indexes, sectioning.

LuaTEX lunatic EUROTEX 2009 E51

Financial reports are similar: here we can beneVt from
the decimal Python module that is included in the stan-
dard library (decimal is an implementation of Decimal
Vxed point and Woating point arithmetic; see [28]).

MetaTEX can be used to produce very speciVc for-
mats for educational purposes: think for example of a
MetaTEXSage, or a MetaTEXR from the CWEB point of
view, i.e. embedded source code inside descriptive text
rather than the reverse.

Also, Python can be used as a query language for
Plone (mentioned previously), a powerful CMS written
in Python, so it can be possible to print speciVc content
type without translating it into an intermediate form like
xml (and maybe in the future the reverse too, i.e. push a
content type made by a MetaTEXPlone).

Conclusion
LuaTEX with ConTEXt-mkiv is a powerful tool for pub-
lishing content, and with an embedded Python inter-
preter we unquestionably gain more power, especially
when MetaTEX becomes stabilized. If one wants, one
can also experiment with JPype “an eUort to allow
Python programs full access to Java class libraries. This
is achieved not through re-implementing Python, as
Jython/JPython has done, but rather through interfacing
at the native level in both virtual machines” [12] (cur-
rently unstable under Linux).

So it’s better here to emphasize “the dark side of the
moon”.

First, it should be clear that currently we cannot assure
stability and portability in the TEX sense.

Moreover, under Linux there is immediately a price to
pay: symbol collisions. Even if the solution presented
here should ensure that there are no symbol collisions
between luatex and an external library, it doesn’t resolve
problems of collision between symbols of two external
libraries; installing all packages under a folder /opt
/luatex/luatex-lunatic can help to track this problem,
but it’s not a deVnitive solution. Of course, we avoid this
problem if we use pure Python libraries, but these tend
to be slower than C libraries.

ctypes looks fascinating, but a binding in ctypes is
usually not easy to build; we must not forget that
Lua oUers its loadlib that can always be used as an
alternative to ctypes or to any other Python alternative
like SWIG [55] which can, anyway, build wrapper code
for Lua too, at least from development release 1.3. In
the end, an existing Python binding is a good choice if
it is stable, rich, complete and mature with respect to an
existing Lua binding, or if there is not a Lua binding.

For a small script, coding in Lua is not much diUerent
from coding in Python; but if we have complex objects,
things can be more complicated: for example this Python
code

z = x*np.exp(-x**2-y**2)

is translated in this not-so-beatiful Lua code

z=x.__mul__(np.exp((x.__pow__(2).
__add__(y.__pow__(2))).__neg__()))

(see [35]#Scipy). It is better to separate the Python
layer into an external Vle, so we can eventually end in
a *py,*lua,*tex for the same job, adding complexity to
manage.

In the end, note that a Python interpreter does not
“complete” in any sense luatex, because Lua is a perfect
choice: it’s small, stable, and OS-aware. Conversely,
Python is bigger, and today we are seeing Python ver-
sions 2.4, 2.5, 2.6.2, 2.7 alpha, 3.1 . . . not exactly a stable
language from a TEX user point of view.

Acknowledgements
The author would like to thank Taco Hoekwater and
Hans Hagen for their suggestions, help and encourage-
ment during the development and the writing process of
this article.

The author is also immensely grateful to Massimil-
iano “Max” Dominici for his strong support, help and
encouragement.

References
All links were veriVed between 2009.08.17 and 2009.08.21.

[1] http://cairographics.org
[2] http://cg.scs.carleton.ca/~luc/PSgeneral.html
[3] https://code.launchpad.net/~niemeyer/lunatic-python/trunk
[4] http://download.wikimedia.org
[5] http://en.wikipedia.org/wiki/Call_graphs
[6] http://en.wikipedia.org/wiki/Python_(programming_language)
[7] http://en.wikipedia.org/wiki/ROOT

E52 MAPS 39 Luigi Scarso

[8] http://en.wikiversity.org/wiki/Getting_stats_out_of
_Wikiversity_XML_dumps

[9] http://gcc.gnu.org/wiki/Visibility
[10] http://ghostscript.com/
[11] http://igraph.sourceforge.net
[12] http://jpype.sourceforge.net/
[13] http://kcachegrind.sourceforge.net/cgi-bin/show.cgi
[14] http://labix.org/lunatic-python
[15] http://labix.org/python-bz2
[16] https://launchpad.net/zodb
[17] http://linux.die.net/man/1/ld
[18] http://linux.die.net/man/3/dlopen
[19] http://luagraph.luaforge.net/graph.html
[20] http://luatex.bluwiki.com/go/User:Luigi.scarso
[21] http://meeting.contextgarden.net/2008
[22] http://networkx.lanl.gov
[23] http://minimals.contextgarden.net/
[24] http://networkx.lanl.gov/examples/drawing/knuth_miles.html
[25] http://pypi.python.org/pypi/mwlib
[26] http://root.cern.ch
[27] http://rpy.sourceforge.net/
[28] http://speleotrove.com/decimal
[29] http://sqlite.org/
[30] http://valgrind.org/
[31] http://vefur.simula.no/intro-programming/
[32] http://vigna.dsi.unimi.it/metagraph
[33] http://wiki.contextgarden.net/Future_ConTeXt_Users
[34] http://wiki.contextgarden.net/Image:Trick.zip
[35] http://wiki.contextgarden.net/User:Luigi.scarso/luatex_lunatic
[36] http://www-cs-faculty.stanford.edu/~knuth/sgb.html
[37] http://www.codeplex.com/IronPython
[38] http://www.graphviz.org
[39] http://www.gnu.org/software/libtool
[40] http://www.imagemagick.org/script/index.php
[41] http://www.jython.org
[42] http://www.math.ubc.ca/~cass/graphics/text/www/index.html
[43] http://www.luatex.org
[44] http://www.oasis-open.org/docbook
[45] http://www.oracle.com/database/berkeley-db/xml/index.html
[46] http://www.pathname.com/fhs/
[47] http://www.plone.org
[48] http://www.procoders.net/?p=39
[49] http://www.python.org
[50] http://www.python.org/doc/2.6.1/library/ctypes.html
[51] http://www.pythonware.com/products/pil/
[52] http://www.r-project.org/
[53] http://www.sagemath.org/
[54] http://www.scipy.org/
[55] http://www.swig.org
[56] http://www.terryburton.co.uk/barcodewriter/
[57] private email with Taco Hoekwater
[58] Bill Casselman, Mathematical Illustrations: A Manual of

Geometry and PostScript. ISBN-10: 0521547881, ISBN-13:
9780521547888 Available at site http://www.math.ubc.ca/~cass
/graphics/text/www/index.html

[59] Danny Brian, The DeVnitive Guide to Berkeley DB XML. Apress,
2006. ISBN-13: 978-1-59059-666-1

[60] Donald E. Knuth, The Stanford GraphBase: A Platform for
Combinatorial Computing. ACM Press, New York, 1993. ISBN
978-0-470-75805-2

[61] Hans Petter Langtangen, A Primer on ScientiVc Programming
with Python. Springer, 2009. ISBN: 978-3-642-02474-0

[62] Hans Petter Langtangen, Python Scripting for Computational
Science. Springer, 2009. ISBN: 978-3-540-73915-9

[63] John Levine, Linkers & Loaders. Morgan Kaufmann Publisher,
2000. ISBN-13: 978-1-55860-496-4

[64] Mark Lutz, Learning Python, Fourth Edition. O’Reilly, Septem-
ber 2009 (est.) ISBN-10: 0-596-15806-8,
ISBN 13: 978-0-596-15806-4

[65] Mark Lutz, Programming Python, Third Edition. O’Reilly, Au-
gust 2006. ISBN-10: 0-596-00925-9, ISBN 13: 978-596-00925-0

[66] luatexref-t.pdf. Available in manual folder of luatex-snapshot-
0.42.0.tar.bz2

[67] Priscilla Walmsley, XQuery. O’Reilly, April 2007. ISBN-13:
978-0-596-00634-1

[68] Roberto Ierusalimschy, Programming in Lua (second edition).
Lua.org, March 2006. ISBN 85-903798-2-5

[69] Ulrich Drepper, How to Write Shared Libraries.
http://people.redhat.com/drepper/dsohowto.pdf

[70] Willi Egger, ConTeXt: Positioning design elements at speciVc
places on a page (tutorial). EuroTEX 2009 & 3rd ConTEXt Meet-
ing

[71] Yosef Cohen and Jeremiah Cohen, Statistic and Data with R.
Wiley 2008. ISBN 978-0-470-75805-2

I currently use Ubuntu Linux, on a standalone
laptop—it has no Internet connection. I occasion-

ally carry flash memory drives between this machine
and the Macs that I use for network surfing and

graphics; but I trust my family jewels only to Linux.
— Donald Knuth

Interview with Donald Knuth
By Donald E. Knuth and Andrew Binstock

Apr. 25, 2008
http://www.informit.com/articles/article.aspx?p=1193856

The lunatic is on the grass
The lunatic is on the grass

Remembering games and daisy chains and laughs
Got to keep the loonies on the path

— Brain Damage,
The Dark Side of the Moon,

Pink Floyd 1970

Mr. LuaTEX hosts a Python,
and become a bit lunatic

— Anonymous

Luigi Scarso

LuaTEX lunatic EUROTEX 2009 E53

Appendix
Call graph of a simple run

E54 MAPS 39 Luigi Scarso

Call graph of a simple run, cont. TEX, forever

4 hlist

id:0

subtype:0

attr:<node 1 < 1953 > 1955 : attribute_list 0>

width:523764

depth:0

height:535560

dir:TLT

shift:169476

glue_order:0

glue_sign:0

glue_set:0

list:<node nil < 1970 > nil : glyph 256>

prev:<node 1965 < 150 > 1549 : kern 1>

next:<node 1549 < 2002 > 1989 : kern 1>

5 glyph

id:37

subtype:256

attr:<node 1 < 1953 > 1955 : attribute_list 0>

char:69

font:1

lang:2

left:2

right:3

uchyph:1

components:nil

xoffset:0

yoffset:0

prev:nil

next:nil

6 kern

id:11

subtype:1

attr:<node nil < 1987 > 1994 : attribute_list 0>

kern:-88178

prev:<node 150 < 1549 > 2002 : hlist 0>

next:<node 2002 < 1989 > nil : glyph 256>

7 glyph

id:37

subtype:256

attr:<node nil < 1979 > 1981 : attribute_list 0>

char:88

font:1

lang:2

left:2

right:3

uchyph:1

components:nil

xoffset:0

yoffset:0

prev:<node 1549 < 2002 > 1989 : kern 1>

next:nil

1 hlist

id:0

subtype:0

attr:<node nil < 1435 > 1420 : attribute_list 0>

width:1451238

depth:169476

height:537133

dir:TLT

shift:0

glue_order:0

glue_sign:0

glue_set:0

list:<node 2000 < 1965 > 150 : glyph 256>

prev:nil

next:nil

2 glyph

id:37

subtype:256

attr:<node nil < 1435 > 1420 : attribute_list 0>

char:84

font:1

lang:2

left:2

right:3

uchyph:1

components:nil

xoffset:0

yoffset:0

prev:<node nil < 2000 > 2006 : attribute 1>

next:<node 1965 < 150 > 1549 : kern 1>

3 kern

id:11

subtype:1

attr:<node nil < 1373 > 1433 : attribute_list 0>

kern:-117596

prev:<node 2000 < 1965 > 150 : glyph 256>

next:<node 150 < 1549 > 2002 : hlist 0>

TEX nodelist made with lunatic binding for graphviz

LuaTEX lunatic EUROTEX 2009 E55

DB XML example

1

1 Primary mathematics/Numbers

1.1 Primary mathematics/Numbers

1.1.1 Teaching Number

This page is for teachers or home-schoolers. It is about teaching the basic concepts and conventions of simple number.

1.1.1.1 Developing a sound concept of number

Children typically learn about numbers at a very young age by learning the sequence ofwords, "one, two, three, four, five" etc. Usually,

in chanting this in conjunction with pointing at a set of toys, or mounting a flight of steps for example. Typically, 'mistakes' are made.

Toys or steps are missed or counted twice, or a mistake is made in the chanted sequence. Very often, from these sorts of activities,

and from informal matching activities, a child's concept of number and counting emerges as their mistakes are corrected. However,

here, at the very foundation of numerical concepts, children are often left to 'put it all together' themselves, and some start off on a

shaky foundation. Number concepts can be deliberately developed by suitable activities. The first one of these is object matching.

1.1.2 Matching Activities

As opposed to the typical counting activity childen are first exposed to,matching sets of objects gives a firm foundation for the concept

of number and numerical relationships. It is very important that matching should be a physical activity that children can relate to

and build on.

Typical activities would be a toy's tea-party. With a set of (say) four toy characters, each toy has a place to sit. Each toy has a cup,

maybe a saucer, a plate etc. Without even mentioning 'four', we can talk with the child about 'the right number' of cups, of plates

etc. We can talk about 'too many' or 'not enough'. Here, we are talking about number and important number relations without even

mentioning which number we are talking about! Only after a lot of activities of this type should we talk about specific numbers and

the idea of number in the abstract.

1.1.3 Number and Numerals

Teachers should print these numbers or show the children these numbers. Ideally, the numbers should be handled by the student.

There are a number of ways to acheive this: cut out numerals from heavy cardstock, shape themwith clay together, purchase wooden

numerals or give them sandpaper numerals to trace. Simultaneously, show the definitions of these numbers as containers or discrete

quantities (using boxes and small balls, eg. 1 ball, 2 balls, etc. Note that 0 means "no balls"). This should take some time to learn

thoroughly (depending on the student).

0 1 2 3 4 5 6 7 8 9

1.1.4 Place Value

The Next step is to learn the place value of numbers.

It is probably true that if you are reading this page you know that after 9 comes 10 (and you usually call it ten) but this would not be

true if you would belong to another culture.

Take for example the Maya Culture where there are not the ten symbols above but twenty symbols.

cfr http://www.michielb.nl/maya/math.html

Imagine that instead of using 10 symbols one uses only 2 symbols. For example 0 and 1

Here is how the system will be created:

Binary 0 1 10 11 100 101 110 111 1000 ...

Decimal 0 1 2 3 4 5 6 7 8 ...

Or if one uses the symbols A and B one gets:

Binary A B BA BB BAA BAB BBA BBB BAAA ...

Decimal 0 1 2 3 4 5 6 7 8 ...

This may give you enough information to figure the place value idea of any number system.

For example what if you used 3 symbols instead of 2 (say 0,1,2).

E56 MAPS 39 Luigi Scarso

2

Trinary 0 1 2 10 11 12 20 21 22 100 ...

Decimal 0 1 2 3 4 5 6 7 8 9 ...

If you're into computers, the HEXADECIMAL (Base 16) or Hex for short, number system will be of interest to you. This system uses 4

binary digits at a time to represent numbers from 0 to 15 (decimal). This allows for a more convenient way to express numbers the

way computers think - that we can understand. So now we need 16 symbols instead of 2, 3, or 10. So we use 0123456789ABCDEF.

Binary 0 1 10 11 100 101 110 111 1000 1001 1010 1011 1100 1101 1110 1111 10000 ...

Decimal 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 ...

Hex 0 1 2 3 4 5 6 7 8 9 A B C D E F 10 ...

1.1.5 Resources for Early Math

15 Fun Ways and Easy Games for Young Learners Math: Reproducible, Easy-to-Play Learning Games That Help Kids Build Essential

Math Skills, by Susan Julio, Scholastic Professional, 2001.

Eenie Meenie Miney Math!: Math Play for You and Your Preschooler, by Linda Allison, Little Brown & Co., 1993.

Marshmallow Math: Early Math for Toddlers, Preschoolers and Primary School Children, by Trevor Schindeler, Trafford, 2002.

Number Wonder: Teaching Basic Math Concepts to Preschoolers, by Deborah Saathoff and Jane Jarrell, Holman Bible, 1999.

cfr Category:School of Mathematics

cfr Category:Pages moved fromWikibooks

cfr Category:Primary education

Next in Primary School Mathematics:

cfr http://en.wikiversity.org/wiki/Primary_mathematics:Adding_numbers

LuaTEX lunatic EUROTEX 2009 E57

sqlite example

1

Query for 'geometr': Geometric algebra

Geometry

Introductory Algebra and Geometry

Orbital geometry

Coordinate Geometry

E58 MAPS 39 Luigi Scarso

3

2 Geometry

2.1 Geometry

This subdivision is dedicated to bridging the gap between the mathematical layperson and the student who is ready to learn calculus

and higher mathematics or to take on any other endeavour that requires an understanding of basic algebra and (at least Euclidean)

geometry.

2.1.1 Subdivision news

2.1.2 Departments

2.1.3 Active participants

The histories of Wikiversity pages indicate who the active participants are. If you are an active participant in this subdivision, you

can list your name here (this can help small subdivisions grow and the participants communicate better; for large subdivisions a list

of active participants is not needed). Please remember: if you have an

cfr http://en.wikiversity.org/w/index.php?title=Special:Userlogin\&type=signup

cfr Category:Geometry

cfr Category:Introductions

cfr \#

cfr \#

In Cartesian or Analytic Geometry we will learn how to represent points, lines, and planes using the Cartesian Coordinate System,

also called Rectangular Coordinate System. This can be applied to solve a broad range of problems from geometry to algebra and it

will be very useful later on Calculus.

2.1.4 Cartesian Coordinate System

The foundations of Analytic Geometry lie in the search for describing geometric shapes by using algebraic equations. One of the most

importantmathematicians that helped to accomplish this task was René Descartes for whom the name is given to this exciting subject

of mathematics.

2.1.4.1 The Coordinate System

For a coordinate system to be useful we want to give to each point an atribute that help to distinguish and relate different points.

In the Cartesian system we do that by describing a point using the intersection of two(2D Coordinates) or more(Higher Dimensional

Coordinates) lines. Therefore a point is represented as P(x1,x2,x3,...,xn) in "n" dimensions.

2.1.5 Licensing:

"Geometry is the only science that it hath pleased God hitherto to bestow on mankind."–Thomas Hobbes

This department of the Olympiad Mathematics course focuses on problem-solving based on circles and vectors, thus generalizing

to Coordinate Geometry. Our major focus is on Rectangular (Cartesian) Coordinates, although the course does touch upon Polar

coordinates.

The first section is based on the geometric study of circles. Although not based on pure analytical geometry, it uses Appolonius-style

reference lines in addition to Theorems on Tangents, Areas, etc.

The second section is devoted to Vector Analysis, covering problem-solving from Lattices and Affine Geometry to Linear Algebra of

Vectors

Third section, focusing on locus problems, is all about conic sections and other curves in the Cartesian plane.

2.1.6 Textbooks

2.1.7 Practice Questions

