
32 TUGboat, Volume 31 (2010), No. 1

LuaTEX: Deeply nested notes

Hans Hagen

1 Introduction

One of the mechanisms that is not on a user’s retina
when he or she starts using TEX is ‘inserts’. An
insert is material that is entered at one point but
will appear somewhere else in the output. Footnotes
for instance can be implemented using inserts. You
create a reference symbol in the running text and put
note text at the bottom of the page or at the end of
a chapter or document. But as you don’t want to do
that moving around of notes yourself TEX provides
macro writers with the inserts mechanism that will
do some of the housekeeping. Inserts are quite clever
in the sense that they are taken into account when
TEX splits off a page. A single insert can even be
split over two or more pages.

Other examples of inserts are floats that move
to the top or bottom of the page depending on re-
quirements and/or available space. Of course the
macro package is responsible for packaging such a
float (for instance an image) but by finally putting it
in an insert TEX itself will attempt to deal with ac-
cumulated floats and help you move kept over floats
to following pages. When the page is finally assem-
bled (in the output routine) the inserts for that page
become available and can be put at the spot where
they belong. In the process TEX has made sure that
we have the right amount of space available.

However, let’s get back to notes. In ConTEXt
we can have many variants of them, each taken care
of by its own class of inserts. This works quite well —
as long as a note is visible for TEX, which more or
less means: ends up in the main page flow. Consider
the following situation:

before \footnote{the note} after

When the text is typeset, a symbol is placed
directly after before and the note itself ends up at
the bottom of the page. It also works when we wrap
the text in an horizontal box:

\hbox{before \footnote{the note} after}

But it fails as soon as we go further:

\hbox{\hbox{before \footnote{the note} after}}

Here we get the reference but no note. This also
fails:

\vbox{before \footnote{the note} after}

Can you imagine what happens if we do the
following? (In this ConTEXt table, \NC separates
columns and \NR separates rows.)

\starttabulate

\NC knuth \NC test \footnote{knuth}

\input knuth \NC \NR

\NC tufte \NC test \footnote{tufte}

\input tufte \NC \NR

\NC ward \NC test \footnote{ward}

\input ward \NC \NR

\stoptabulate

This mechanism uses alignments as well as quite
some boxes. The paragraphs are nicely split over
pages but still appear as boxes to TEX which make
inserts invisible. Only the three reference symbols
would remain visible. But because in ConTEXt we
know when notes tend to disappear, we take some
provisions, and contrary to what you might expect
the notes actually do show up. However, they are
flushed in such a way that they end up on the page
where the table ends. Normally this is no big deal
as we will often use local notes that end up at the
end of the table instead of the bottom of the page,
but still.

The mechanism to deal with notes in ConTEXt
is somewhat complex at the source code level. To
mention a few properties we have to deal with:

• Notes are collected and can be accessed any
time.

• Notes are flushed either directly or delayed.

• Notes can be placed anywhere, any time, per-
haps in subsets.

• Notes can be associated with lines in paragraphs.

• Notes can be placed several times with different
layouts.

So, we have some control over flushing and place-
ment, but real synchronization between for instance
table entries having notes and the note content end-
ing up on the same page is impossible.

Within the LuaTEX team we have been dis-
cussing more control over inserts and we will defi-
nitely deal with that in upcoming releases as more
control is needed for complex multi-column docu-
ment layouts. But as we have some other priorities
these extensions have to wait.

As a prelude to them I experimented a bit with
making these deeply buried inserts visible. Of course
I use Lua for this as TEX itself does not provide the
kind of access we need for this kind of manipulation.

2 Deep down inside

Say that we have the following boxed footnote. How
does it end up in LuaTEX?

\vbox{a\footnote{b}c}

Actually it depends on the macro package but
the principles remain the same. In LuaTEX 0.50 and
the ConTEXt version used at the time of this writing
we get a (nested) linked list that prints as follows:

Hans Hagen



TUGboat, Volume 31 (2010), No. 1 33

<node 26 < 862 > nil : vlist 0>

<node 401 < 838 > 507 : hlist 1>

<node 30 < 611 > 580 : whatsit 6>

<node 611 < 580 > 493 : hlist 0>

<node 580 < 493 > 653 : glyph 256>

<node 493 < 653 > 797 : penalty 0>

<node 653 < 797 > 424 : kern 1>

<node 797 < 424 > 826 : hlist 2>

<node 445 < 563 > nil : hlist 2>

<node 420 < 817 > 821 : whatsit 35>

<node 817 < 821 > nil : glyph 256>

<node 507 < 826 > 1272 : kern 1>

<node 826 < 1272 > 1333 : glyph 256>

<node 1272 < 1333 > 830 : penalty 0>

<node 1333 < 830 > 888 : glue 15>

<node 830 < 888 > nil : glue 9>

<node 838 < 507 > nil : ins 131>

The numbers are internal references to the node
memory pool. Each line represents a node:

<node prev_index < index > next_index : type subtype>

The whatsits carry directional information and
the deeply nested hlist is the note symbol. If we
forget about whatsits, kerns and penalties, we can
simplify the listing to:

<node 26 < 862 > nil : vlist 0>

<node 401 < 838 > 507 : hlist 1>

<node 580 < 493 > 653 : glyph 256>

<node 797 < 424 > 826 : hlist 2>

<node 445 < 563 > nil : hlist 2>

<node 817 < 821 > nil : glyph 256>

<node 826 < 1272 > 1333 : glyph 256>

<node 838 < 507 > nil : ins 131>

So, we have a vlist (the \vbox), which has one
line being a hlist. Inside we have a glyph (the ‘a’)
followed by the raised symbol (the ‘1’) and next
comes the second glyph (the ‘b’). But watch how
the insert ends up at the end of the line. Although
the insert will not show up in the document, it sits
there waiting to be used. So we have:

<node 26 < 862 > nil : vlist 0>

<node 401 < 838 > 507 : hlist 1>

<node 838 < 507 > nil : ins 131>

but we need:

<node 26 < 862 > nil : vlist 0>

<node 401 < 838 > 507 : hlist 1>

<node 838 < 507 > nil : ins 131>

Now, we could use the fact that inserts end up
at the end of the line, but as we need to recursively
identify them anyway, we cannot actually use this
fact to optimize the code.

In case you wonder how multiple inserts look,
here is an example:

\vbox{a\footnote{b}\footnote{c}d}

This boils down to:

<node 26 < 1324 > nil : vlist 0>

<node 401 < 1348 > 507 : hlist 1>

<node 1348 < 507 > 457 : ins 131>

<node 507 < 457 > nil : ins 131>

And in case you wonder what more can end up
at the end, vertically adjusted material (\vadjust)
as well as marks (\mark) also get this treatment.

\vbox{a\footnote{b}\vadjust{c}%

\footnote{d}e\mark{f}}

As you see, we start with the line itself, followed
by a mixture of inserts and vertical adjusted content
(that will be placed before that line). This trace also
shows the list 2 levels deep.

<node 26 < 1324 > nil : vlist 0>

<node 401 < 1348 > 507 : hlist 1>

<node 1348 < 507 > 862 : ins 131>

<node 507 < 862 > 240 : hlist 1>

<node 862 < 240 > 2288 : ins 131>

<node 240 < 2288 > nil : mark 0>

Currently vadjust nodes have the same subtype
as an ordinary hlist but in LuaTEX versions beyond
0.50 they will have a dedicated subtype.

We can summarize the pattern of one ‘line’ in a
vertical list as:

[hlist][insertmarkvadjust]*[penaltyglue]+

In case you wonder what happens with for in-
stance specials, literals (and other whatsits): these
end up in the hlist that holds the line. Only inserts,
marks and vadjusts migrate to the outer level, but
as they stay inside the vlist, they are not visible to
the page builder unless we’re dealing with the main
vertical list. Compare:

this is a regular paragraph possibly with

inserts and they will be visible as the lines

are appended to the main vertical list \par

with:

but \vbox {this is a nested paragraph where

inserts will stay with the box} and not migrate

here \par

So much for the details; let’s move on to how
we can get around this phenomenon.

3 Some LuaTEX magic

The following code is just the first variant I made;
ConTEXt ships with a more extensive variant. Also,
in ConTEXt this is part of a larger suite of manipu-
lative actions but it does not make much sense (at
least not now) to discuss this framework here.

We start with defining a couple of convenient
shortcuts.

local hlist = node.id(’hlist’)

local vlist = node.id(’vlist’)

local ins = node.id(’ins’)

LuaTEX: Deeply nested notes



34 TUGboat, Volume 31 (2010), No. 1

We can write a more compact solution but split-
ting up the functionality better shows what we’re
doing. The main migration function hooks into the
callback build_page. Unlike other callbacks that do
phases in building lists and pages this callback does
not expect the head of a list as argument. Instead, we
operate directly on the additions to the main vertical
list which is accessible as tex.lists.contrib_head.

local deal_with_inserts -- forward reference

local function migrate_inserts(where)

local current = tex.lists.contrib_head

while current do

local id = current.id

if id == vlist or id == hlist then

current = deal_with_inserts(current)

end

current = current.next

end

end

callback.register(’buildpage_filter’,

migrate_inserts)

So, effectively we scan for vertical and horizontal
lists and deal with embedded inserts when we find
them. In ConTEXt the migratory function is just one
of the functions that is applied to this filter.

We locate inserts and collect them in a list with
first and last as head and tail and do so recursively.
When we have run into inserts we insert them after
the horizontal or vertical list that had embedded
them.

local locate -- forward reference

deal_with_inserts = function(head)

local h, first, last = head.list, nil, nil

while h do

local id = h.id

if id == vlist or id == hlist then

h, first, last = locate(h,first,last)

end

h = h.next

end

if first then

local n = head.next

head.next = first

first.prev = head

if n then

last.next = n

n.prev = last

end

return last

else

return head

end

end

The locate function removes inserts and adds
them to a new list, that is passed on down in recursive
calls and eventually is returned back to the caller.

locate = function(head,first,last)

local current = head

while current do

local id = current.id

if id == vlist or id == hlist then

current.list, first, last

= locate(current.list,first,last)

current = current.next

elseif id == ins then

local insert = current

head, current = node.remove(head,current)

insert.next = nil

if first then

insert.prev = last

last.next = insert

else

insert.prev = nil

first = insert

end

last = insert

else

current = current.next

end

end

return head, first, last

end

As we can encounter the content several times
in a row, it makes sense to mark already processed
inserts. This can for instance be done by setting an
attribute. Of course one has to make sure that this
attribute is not used elsewhere.

if not node.has_attribute(current,8061) then

node.set_attribute(current,8061,1)

current = deal_with_inserts(current)

end

Or integrated:

local has_attribute = node.has_attribute

local set_attribute = node.set_attribute

local function migrate_inserts(where)

local current = tex.lists.contrib_head

while current do

local id = current.id

if id == vlist or id == hlist then

if has_attribute(current,8061) then

-- maybe some tracing message

else

set_attribute(current,8061,1)

current = deal_with_inserts(current)

end

end

current = current.next

end

end; callback.register(’buildpage_filter’,

migrate_inserts)

Hans Hagen



TUGboat, Volume 31 (2010), No. 1 35

4 A few remarks

Surprisingly, the amount of code needed for insert
migration is not that large. This makes one won-
der why TEX does not provide this feature itself as
it could have saved macro writers quite some time
and headaches. Performance can be a reason, un-
predictable usage and side effects might be another.
Only one person knows the answer.

In ConTEXt this mechanism is built in and it
can be enabled by saying:

\automoveinserts

Future versions of ConTEXt will do this auto-
matically and also provide some control over what
classes of inserts are moved around. We will probably
overhaul the note handling mechanism a few more
times anyway as LuaTEX evolves due especially to
the demands from critical editions, which use many
kind of notes.

5 Summary of code

The following code should work in plain LuaTEX:

\directlua 0 {

local hlist = node.id(’hlist’)

local vlist = node.id(’vlist’)

local ins = node.id(’ins’)

local has_attribute = node.has_attribute

local set_attribute = node.set_attribute

local status = 8061

local function locate(head,first,last)

local current = head

while current do

local id = current.id

if id == vlist or id == hlist then

current.list, first, last

= locate(current.list,first,last)

current = current.next

elseif id == ins then

local insert = current

head, current = node.remove(head,current)

insert.next = nil

if first then

insert.prev, last.next = last, insert

else

insert.prev, first = nil, insert

end

last = insert

else

current = current.next

end

end

return head, first, last

end

local function migrate_inserts(where)

local current = tex.lists.contrib_head

while current do

local id = current.id

if id == vlist or id == hlist and

not has_attribute(current,status) then

set_attribute(current,status,1)

local h, first, last = current.list, nil, nil

while h do

local id = h.id

if id == vlist or id == hlist then

h, first, last = locate(h,first,last)

end

h = h.next

end

if first then

local n = current.next

if n then

last.next, n.prev = n, last

end

current.next, first.prev = first, current

current = last

end

end

current = current.next

end

end

callback.register(’buildpage_filter’,

migrate_inserts)

}

Alternatively you can put the code in a file and
load that with:

\directlua {require "luatex-inserts.lua"}

A simple plain test is:

\vbox{a\footnote{1}{1}b}

\hbox{a\footnote{2}{2}b}

The first footnote only shows up when we have
hooked our migrator into the callback. Not a bad
result for 60 lines of Lua code.

� Hans Hagen
Pragma ADE
The Netherlands
http://luatex.org

LuaTEX: Deeply nested notes


