
Strategies against widows

Paul Isambert

Introduction

A widow line is the last line of a paragraph appear-
ing as the first line of a page. Most typesetters try
to avoid them when designing books (though some
do not), whereas orphans (first line of a paragraph
at the bottom of a page) and hyphenated bottom
lines are often left untouched.

There are, to my knowledge, four different
approaches to make widows enjoy marital life again.

1. The TEX approach. TEX avoids widows by
assigning a penalty to them; when calculating the
cost of a page, this penalty is taken into account
and if there is a cheaper alternative, TEX will take
it. This alternative in general involves stretching or
shrinking space between paragraphs. This approach
upsets any attempt at grid typesetting: the lines of
a text might appear anywhere on the page, whereas
a grid is normally used to display the flow of text.

This approach has two other drawbacks: first,
it leads to ugly and unpredictable space between
paragraphs (which is redundant); second, it is not
sound: if breaking at a widow line is the cheapest
alternative, then it won’t be avoided. In a document
made of text only, no widow is likely to be avoided,
because there won’t be enough stretchability.

2. Extra leading between lines. Another strat-
egy is to increase the space between lines. Then
the page has one line less than usual, which is
given to the next page to accompany the widow.
This is a very common practice in French books,
and it upsets grid typesetting just like the previous
approach. But at least it is less visible to the naked
eye, and it cannot fail.

This approach is easily implemented in TEX.
To make things work properly, let’s first set the
following:

\parskip=0pt

\clubpenalty=0 \brokenpenalty=0

\interlinepenalty=0

\vsize=31\baselineskip

\advance\vsize by \topskip

The first line removes any extra stretchability be-
tween paragraphs. The next two lines remove
penalties associated with page breaking at an or-
phan, a hyphenated line, and a simple line (the
latter is generally 0 by default anyway; it is used
to invite TEX to break between rather than within

12 TUGboat, Volume 31 (2010), No. 1

paragraphs). The last part of the code sets the
height of the textblock as a number of lines, instead
of as an arbitrary length. The height of a line is
\baselineskip, except the first line, whose height
is \topskip. So here I’ve set a 32-line page. We’ll
use these values for all examples.

Extra leading between lines can be done in TEX
because \baselineskip, as its name indicates, is
a glue, not a dimension, hence it has stretchability
and shrinkability. The idea is to set its stretchable
part so that all interline glues can increase and fill
the space left by the line moved to the next page.
Suppose you have a page whose length is n lines.
Then, in case there’s a widow, you remove a line
from the page, so that it contains n− 1 lines, hence
n − 2 interline glues. The space to fill is one line,
i.e. \baselineskip, so every glue should stretch by
\baselineskip/(n − 2). Given our 32-line page,
and assuming a baseline distance of 12pt, then:

\baselineskip=12pt plus .4pt

since 0.4× (32− 2) = 12.
(Note: \baselineskip might be confusing; its

first part is not a glue at all, but the distance at
which consecutive lines should be set; to do so, TEX
inserts a glue item whose natural size depends on
the depth of the line before and the height of the
one after, but whose stretch and shrink components
are the ones given to \baselineskip.)

Now, if \widowpenalty is larger than 100, then
TEX will always increase space between lines to
avoid a widow. This should also interact nicely
with other rubber glues in the document. The
value of 100 is no magical number; it’s the badness
of the page if TEX uses all the available stretch,
which is the case at worst if there is just text on
the page. Setting \widowpenalty to a larger value
makes breaking at a widow an option with a higher
cost, which therefore won’t be taken.

A variant of this strategy decreases the space
between lines in order to leave room for the widow.
In our example, this makes a 33-line page, hence
32 interline glues, and the reader can check that it
will be achieved with \baselineskip=12pt minus

.375pt.

3. Lengthening or shortening the paragraph.
The third approach, favored by French publishing
houses with a typographic conscience, but which
can lead to ugly results if done with a blind hand,
redraws the offending paragraph so that it is one
line longer or shorter. This strategy preserves
the grid, but it can lead to paragraphs with large
interword spacing in difficult cases.



In TEX this can be done automatically with
the \looseness parameter. However this can easily
fail, because the paragraph might not be lengthened
or shortened. The following code inspects every
paragraph, and tries to add or remove a line to
paragraphs that would otherwise lead to a widow
line. If it is impossible, an error message should
be issued at output time, and the widow should be
fixed by trying the same approach on a previous
paragraph, this time by hand.

The idea is to build all paragraphs in a tem-
porary box and check whether they have one more
line than available on the page, leading to a widow.
If so, redraw the paragraph with \looseness=1 or
\looseness=-1. Here are our tools:

\chardef\linesperpage=32 \newbox\tempbox

\newcount\parheight \newcount\linesleft

\newcount\loosening

Note that we’re interested in the number of
lines of a paragraph modulo the number of lines
per page. Indeed, if a paragraph is 45 lines long,
and 12 lines remain on the current page, then it
will fill that page and the next and leave a widow
on the following one, just as a 13-line paragraph
would. Thus we must consider a 45-line paragraph
as a 13-line one. Hence the following macro, where
\parheight is the height in lines of the paragraph
under investigation:

\def\pagemodulo{%

\ifnum\parheight>\linesperpage

\advance\parheight by -\linesperpage

\pagemodulo

\fi}

We will proceed as follows. The \everypar
token list contains a macro that stores the incoming
paragraph. Meanwhile we also measure the remain-
ing space on the page by subtracting \pagetotal
(the length of the material already accumulated
on the current page) from \pagegoal (the normal
length of a page). However, there’s a subtlety we
must take into account. We’d assume that if, say,
there are already three lines on the current page,
then \pagetotal is \topskip (the height of the
first line on any page) plus twice \baselineskip
(the height of a normal line). But that is not the
case, because the \parskip glue has been added
(even though it is set to 0pt) between the previ-
ous paragraph and the current one, and TEX then
considers that the material accumulated thus far
has no depth, i.e. the depth of the last line (which
would otherwise be recorded in \pagedepth) has
been added to \pagetotal. Thus if three lines
have been gathered, \pagetotal is \topskip plus
twice \baselineskip plus the depth of the last line,
which is fortunately recorded in \prevdepth. Hence

TUGboat, Volume 31 (2010), No. 1 13

the formula to compute the remaining number of
lines on the page is:

\pagegoal− \pagetotal + \prevdepth

\baselineskip

The reader might ask, where has \topskip gone?
It is neutralized when subtracting \pagetotal from
\pagegoal. In case \pagegoal is null (and thus
\topskip should be taken into account), then we
don’t need to compute anything; we know that the
number of lines is \linesperpage.

So back to \everypar. Here’s how it goes:

\everypar={%

\ifdim\pagetotal=0pt

\linesleft=\linesperpage

\else

\ifdim\pagetotal=\pagegoal

\linesleft=\linesperpage

\else

\advance\linesleft by \pagegoal

\advance\linesleft by -\pagetotal

\divide\linesleft by \baselineskip

\fi

\fi

\testpar}

The first part of the conditional is: if there’s no
material on the page, then there remains the full
number of lines. The last part of the conditional is
the computation described above. Since \everypar

is inserted in horizontal mode, \prevdepth is not
available any more; it was thus requested at the
end of the previous paragraph (see below). Here,
then, when we advance \linesleft, you should
be aware that it’s already \prevdepth in length.
The middle part of the conditional might seem
surprising. If \pagetotal is equal to \pagegoal,
then the page is full, so we should be on a new page
with \pagetotal set to 0pt, shouldn’t we? No; if a
page is full, then TEX has not decided yet that it
is good; it takes an overfull page for TEX to decide
that the page is filled, and reset \pagetotal.

Finally, \everypar launches \testpar, which
first records in \parheight the number of lines of
the paragraph and applies \pagemodulo. We also
reset the value of \loosening, used below.

\def\testpar#1\par{%

\setbox\tempbox=\vbox{%

\everypar={}#1\endgraf

\global\parheight=\prevgraf}%

\pagemodulo \loosening=0

% definition continues ...

Then we test whether the height of the paragraph is
just one line more than \linesleft, which means
a widow is going to happen. In this case, we rebuild
the paragraph with \looseness set to −1 or 1, so as
to remove or add a line. If the operation succeeds,



we set \loosening to the successful value; if not,
we may send an error message (but it’s simpler to
leave this to the output routine).

\advance\linesleft by 1

\ifnum\parheight=\linesleft

\setbox\tempbox=\vbox{%

\everypar={}%

\looseness=-1 #1\endgraf

\ifnum\prevgraf<\parheight

\global\loosening=-1

\else

\looseness=1 #1\endgraf

\ifnum\prevgraf>\parheight

\global\loosening=1

\fi

\fi}%

\ifnum\loosening=0

\errmessage{There’ll be a widow!}%

\fi

\fi

Finally, we release the paragraph with \looseness

set to \loosening and record its depth in the
\linesleft register for the next one:

\looseness=\loosening

#1\endgraf\linesleft=\prevdepth

} % end \testpar

This approach is very far from perfect. Above
all, it isn’t automatically successful. Or it may
succeed, but not be the best solution. Indeed, it
might sometimes be better to lengthen or shorten
a previous paragraph, long enough so the operation
is invisible. This strategy should be used with
care anyway, and maybe care and automation are
incompatible in this case.

(With less care still, one could manipulate the
\tolerance value, or even interword space directly,
so as to always succeed. But I won’t spell it out,
because this approach is already problematic enough
if assignments are made within the paragraph —
most of which could have been neutralized with the
\globaldefs parameter, however — , so let’s not
trade typographic beauty any further.)

4. Adding or removing a line on the page.
The final strategy is, according to Robert Bringhurst
in his Elements of Typographic Style, used ‘in most,
if not all, the world’s typographic cultures.’ It
consists in lengthening or shortening the page or
pair of pages (the spread) by one line, so that the
widow ends on the previous page or is given another
line. I’ve never seen it done in French books, but
all the American books I’ve inspected indeed do so.

Before going any further, I want to clarify the
terminology. If a widow appears on page n, then we
must be concerned with page n− 1, and that’s a bit

14 TUGboat, Volume 31 (2010), No. 1

1 2 3

Fig. 1: A difficult case.

confusing. So I will not talk about ‘the widow on
page 3’ but rather ‘the widow from page 2’, because
we have not the slightest interest in page 3. And I
will say that page 2 produces a widow.

Adding or removing a line on a single page is
quite simple. Victor Eijkhout gives example code
on page 217 of TEX by Topic. However, books have
a strong tendency to come in double pages, and
treating pages one by one would ruin the design,
because facing pages should have the same number
of lines (except when one is the end of a chapter, of
course). This means that we might redraw the left
page to avoid a widow from the right one, and thus
pages can’t be shipped out at once even though
they seem good. This also means that this approach
won’t always work. First, mending a page might
make the other produce a widow. Second, when
we try to avoid a widow from the right page, this
might lead to another widow from the same page;
indeed, if you add or remove lines on facing pages,
the left page is affected by one line, but the right
page suffers a two-line shift: one line because of
the modification itself, and one line that went to or
from the left page. And whereas a one-line change
always fixes a widow, a two-line shift might produce
one, if we’re dealing with two-line paragraphs.

Figure 1 shows a spread and the left page
overleaf that will lead to trouble. Supposing the
road taken here is adding a line on facing pages,
then removing a widow from the second page will
make the left page produce one, and anyway since
the second page will take two more lines from the
following, as you can see another widow will appear.
In this case, previous pages should be modified too,
as we’ll see at the end of the paper.

I’ve been talking about adding or removing
lines as if both approaches could be used when
needed, but you should stick to one or the other,
otherwise differences between modified pages could
be too easily spotted. However, Robert Bringhurst,
for instance, consistently removes lines in the bulk
of his book, but adds them in the appendix on
foundries and in the bibliography (in both cases it
also prevents last pages with only a few lines). But
those two sections are distinct enough from the rest
of the book to allow this strategic change: they
aren’t read like the main text to begin with. The



code below illustrates the removal approach, but
adding lines would be the same thing with a couple
of signs reversed here and there.

The strategy is a three-pass process in the
output routine, where pass 3 only ships out the
pages. If everything is ok in pass 1, we rebuild
the pages with pass 3. Otherwise we rebuild them
with pass 2, where \vsize has been decreased by
\baselineskip; if it works here, we rebuild them
with pass 3; if not, we also rebuild them with
pass 3, but first reset \vsize to its normal value,
and with an error message to signal that manual
intervention is needed. Indeed, if the modification
leads to nothing better, it is simpler to ship out
the pages in an unmodified form so as to ease the
appreciation of a modification on previous pages, to
be done by hand.

Why can’t we ship out the pages as soon as
they are built in passes 1 or 2, provided they’re
good? Because of insertions, such as footnotes.
For instance, suppose we’re in pass 1, and the left
page is ok; we can’t ship it out, because we haven’t
examined the right page yet, and so we store it.
Then comes the right page, which is assumed to be
good too. So we could ship the pages, but what
about footnotes? If there are any, it is impossible
now to say what should appear on the left page
and what on the right. Besides, if pages are bad,
insertions should be put back in the stream with
the pages themselves, because their splitting and/or
position might change, and this is possible if and
only if they aren’t put in their boxes at output time,
and thus can’t be shipped either. I won’t investigate
this technical matter any further; to us it simply
means that the \holdinginserts parameter should
be set to a positive value for the first two passes
and to 0 for pass 3.

Here we go. First, our tools:

\holdinginserts=1

\newbox\leftpage \newif\ifleftpage

\newif\iffirstpage \firstpagetrue

\newcount\passcount \passcount=1

Now, the redefinition of the output routine (in
this and the following macros, all assignments are
\global, because the output routine is executed in
an implicit group):

\output{%

\ifnum\passcount<3

\ifnum\outputpenalty=\widowpenalty

\global\advance\vsize by

\ifnum\passcount=1 -\fi \baselineskip

\global\advance\passcount by 1

\ifnum\passcount=3

\global\holdinginserts=0

TUGboat, Volume 31 (2010), No. 1 15

\fi

\unboxpages

\else

\storepage

\fi

\else

\ifnum\outputpenalty=\widowpenalty

\errmessage{%

Page \the\pageno\space produced a widow}%

\fi

\makeshipout

\fi}

which reads as follows: if we’re in pass 1 or 2
(i.e. \passcount < 3), and there is a widow (i.e.
\outputpenalty = \widowpenalty), then we mod-
ify \vsize by one baselineskip, either positively or
negatively, depending on the pass we’re in; in pass 1,
we remove one \baselineskip, and in pass 2 we
add it, thus returning to the default value of \vsize.
Then we increase \passcount to prepare for the
next pass, set \holdinginserts to 0 if we go to the
last pass and put the page(s) constructed thus far
back into the main vertical list with \unboxpages,
explained below. If there was no widow, we simply
store the current page with \storepage, which is
also in charge of going to pass 3 for the shipout if
both pages are built. Finally, if we are in pass 3,
widows simply trigger an error message, and the
page is shipped out anyway, with \makeshipout.

Next, the macros involved. First, \unboxpages:

\def\unboxpages{%

\ifleftpage\else

\iffirstpage\else

\global\leftpagetrue

\dimen0=\dp\leftpage

\unvbox\leftpage

\vskip\baselineskip

\vskip-\topskip

\vskip-\dimen0

\fi \fi

\unvbox255

\ifnum\outputpenalty=10000 \penalty0

\else \penalty\outputpenalty \fi}

This macro always puts box 255 back in the stream,
because it’s the current page; but if box 255 is
the right page (i.e. \ifleftpage is false), then we
must first release the left one, which was stored
in the \leftpage box. However, there’s one case
when we’re on a right page without a left page:
if the page is the very first page of the document
or chapter (\iffirstpage is true). In this case,
we should simply release the current page. Now
suppose that there is in fact a stored left page.
Then we can’t simply release it to in the stream,
for the following reason: the interline glue that
was first inserted between the last line of this



page and the first line of the next, so that their
baselines are 12pt apart, has been discarded when
the latter found its way to the top of box 255,
where another glue was added, to match \topskip.
Finally, TEX doesn’t adjust interline spacing when
lines are stacked with \unvbox, nor does it update
\prevdepth. So we must do it by hand. The
distance between the baseline of the bottom line
of \leftpage and the baseline of the top line of
box 255 should be \baselineskip. Part of this
length is already filled by the depth of the bottom
line, which is also the depth of the \leftpage

box, and the height of the top line, which is
\topskip. So we need a \vskip whose value is
\baselineskip− \dp\leftpage− \topskip. Note
that \dp\leftpage must be retrieved before the
\unvbox, because the box is emptied there.

The unboxing of box 255 is much simpler.
The insertion of a penalty is meant to balance the
penalty of 10, 000 that TEX always inserts in the
main vertical list where it has broken a page. Thus
this place again becomes an admissible breakpoint,
which will be reused if pass 2 doesn’t lead to better
results and we rebuild the pages as they are now.
We use the original penalty if there was one, because
its exact value might be important (for instance for
pass 3 to signal a widow).

The \storepage macro is very simple. Recall
that it’s executed by passes 1 and 2 when no widow
is encountered. The left page is stored, whereas the
completed right page launches pass 3.

\def\storepage{%

\ifleftpage

\global\leftpagefalse

\global\setbox\leftpage=\box255

\else

\global\passcount=3 \global\holdinginserts=0

{\setbox0=\vbox{\unvcopy255}%

\ifdim\ht0=\topskip

\ifnum\outputpenalty=-20000 \else

\setbox0=\box255 \fi

\fi}%

\unboxpages

\fi}

The part between braces deals with the end
of the job, in case it happens on a left page. To
put it simply, TEX is not happy because we have
kept the left page in store when the job is supposed
to terminate; so it adds an empty line to force
the processing of the page, and this line might
sometimes ends up at the top of the right page,
thus creating a blank page. So we always analyze
the right page, and if it’s one line high and doesn’t
have the signature of a well-ended page (i.e. the
\supereject penalty), then we delete it.

16 TUGboat, Volume 31 (2010), No. 1

Finally, here is \makeshipout where headers,
footers, and any other attributes of the final page
should be added, and insertions placed; and, of
course, the pages are shipped out. Here I show
a simple page which contains only a page number.
A very important point is that this page number
can’t be placed relative to the main text in box 255,
because box 255 has a variable height whereas the
page number should always be at the same place
(if it were to go up and down, this approach would
be a disaster). So suppose we want a default page
(i.e. with an unmodified number of lines) where the
page number is separated from the main text by a
blank line; then we can’t say

\shipout\vbox{%

\box255 \vskip\baselineskip \pagenumber}

(where \pagenumber is supposed to produce the
folio) for the reason above. Instead we must say:

\shipout\vbox to\totalpage{%

\box255 \vfil \pagenumber}

where \totalpage = \vsize + 2 \baselineskip.
So, here’s how it goes. We redundantly set

\firstpagefalse on all shipouts, even though it
matters only on the first one:

\newdimen\totalpage \totalpage=\vsize

\advance\totalpage by 2\baselineskip

\def\makeshipout{%

\global\firstpagefalse

\shipout\vbox to\totalpage{%

\box255 \vfil

\hbox to\hsize{%

\ifleftpage \the\pageno\hfil

\else \hfil\the\pageno \fi}%

}%

\advancepageno

The \advancepageno macro and \pageno counter
are of course defined in plain TEX. In this example,
the position of the page number depends on the
evenness or oddness of the page, and is completely
immaterial to what is at stake here (but it reminds
us that we’re doing all this because of facing pages).

Now, if we’ve just shipped out the right page,
then pass 3 is over and we prepare for pass 1 again.
We reset \vsize with \totalpage, so we don’t
have to store its original value anywhere. \csname

page:\the\pageno\endcsname is a placeholder to
be explained presently.

\ifleftpage \global\leftpagefalse

\else

\global\leftpagetrue \global\passcount=1

\global\holdinginserts=1 \vsize=\totalpage

\global\advance\vsize by -2\baselineskip

\csname page:\the\pageno\endcsname

\fi

} % end \makeshipout



With this code, TEX will automatically remove
widows whenever possible and flag them otherwise.
In the latter case, we must be able to make a
manual intervention on previous pages. Besides,
this strategy is useful for page balancing in general.
For instance, suppose (still on a 32-line page) that
the left page is filled with 31 lines, and then comes a
new section, which is separated from the preceding
text by a blank line. Then the section title will
end up on the right page and the left page will
have only 31 lines. Suppose furthermore that the
right page is completely filled, i.e. it has 32 lines.
Then, even though the blank at the bottom of the
left page is perfectly logical, it is generally better
to remove a line from the right page so that the
spread is balanced. This operation could be made
automatically, but I will not investigate it here. I
simply mention it as another case where the manual
intervention can be used independently of widows.

The manual intervention is as follows: suppose
that, say, page 35 produces a widow, and the
automatic intervention fixes it, but creates a new
one from page 34. Then the solution consists in
removing lines on the previous spread instead, i.e.
on pages 32 and 33. Then page 34 will shift by
two lines instead of one, just like page 35, thus
avoiding the widow (I leave it to the reader to check
that this is indeed what happens). Of course, we
might encounter harder situations, where we must
modify both spreads, or still other spreads before,
and so on and so forth. But the general idea
remains the same: we must be able to indicate
spreads where lines are to be removed. This is
the meaning of the \removeline{〈pageno〉} macro.
What \removeline does is to make the spread
where 〈pageno〉 appears one line shorter, and go
directly to pass 3 for this spread. If 〈pageno〉 is 1,
then things are quite simple:

\def\removeline#1{%

\bgroup \count0=#1

\ifnum\count0=1

\global\advance\vsize by -\baselineskip

\global\passcount=3

\global\holdinginserts=0

Otherwise, we build a macro with the number of
the left page of the spread in its name. Its function
is the same as above, i.e. prepare for pass 3 directly.
And it is launched at the end of \makeshipout

when page 〈pageno〉 − 1 has been shipped.

\else

\ifodd\count0 \advance\count0 by -1\fi

\expandafter\gdef

\csname page:\the\count0\endcsname{%

\global\advance\vsize by -\baselineskip

TUGboat, Volume 31 (2010), No. 1 17

\global\passcount=3

\global\holdinginserts=0

}%

\fi

\egroup

} % end \removeline

Now we can specify, say, \removeline{54} or
\removeline{55} at the beginning of the document
so that the corresponding spread is made one line
shorter, and this can be used for difficult widows,
page balancing, and also to avoid short final pages
by giving them additional lines (pages with only
two or three lines of text are notoriously ugly).

Conclusion

The reader might have guessed that those four
approaches have been ranked by order of (my)
preference (even though approach 3 can lead to
very good results when done very carefully). One
may be surprised that TEX’s default behavior is
the worst . . . but actually this behavior is just an
algorithm. In itself it is very good, but I believe
it should be just a starting point, because it is
unable to make meaningful decisions. For instance,
although I’m not very fond of approach 2, I find
it better than stretching space between paragraphs,
because such space should be used to mark a
logical pause, whereas extra leading between lines
is unnoticeable (on a single page of course). And
the difference between approaches 1 and 2 merely
consists in moving the stretchable component from
\parskip to \baselineskip, nothing fancier.

The third and fourth methods are harder but
also lead to results not only better, but simply good.
They investigate areas of TEX that are unfortunately
not commonly studied, in part because the necessary
underlying functionality (\everypar, \output) is
appropriated by formats (which can’t really do
otherwise) and because they’re supposed to be
complex subjects. But the output routine is not
harder to understand than \expandafter, quite the
contrary, and it is worth it. Building a page is
a process too important to be left to computer
software, even TEX.

� Paul Isambert
Université de la Sorbonne Nouvelle
Paris 3
France
zappathustra (at) free dot fr


