
TUGboat, Volume 31 (2010), No. 1 23

Minimal setup for a (cyrillic) TrueType font

Oleg Parashchenko

Abstract

Our goal is to describe font installation in small
steps. First, we typeset plain TEX text in the right
encoding. Then, we describe the minimal setup to
get the correct result in PDF using both the chain
tex+dvips+ps2pdf and the direct pdftex, with
notes on encodings and TrueType to Type 1 font
conversion. One final step for LATEX is then given.
The examples are based on a cyrillic font, but useful
also for other scripts as well.

1 Introduction

Several sets of instructions on how to install fonts
have already been written, among them: The LATEX
Companion [6], The LATEX Graphics Companion [3],
and fontinst documentation [2].

However, I didn’t have luck with them. The
first problem is that the installation process, as usu-
ally described, is “atomic”: after magic spells, you
get the font installed, with all the required entries
in config files, all in one step. If something goes
wrong, an inexperienced user doesn’t have control
points to check what is ok, and what went awry.

The second problem is that the tutorials use
Type 1 fonts as the starting point. But when we are
starting with a TrueType font, it is a good idea is to
skip over that starting point, and use only a part of
the standard PostScript way. Otherwise the process
seems unclear and superfluous.

Recently I needed a cyrillic Helvetica for a doc-
ument, the build system for which used the dvips
chain. Facing the choice of re-implementing the sys-
tem using X ETEX or finding a way to install the font,
I decided to try the latter once more.

My new approach was to throw away all the
tutorials and instead move step by step on my own.
First, typeset a text in the right encoding for plain
TEX. Then get the text in DVI and its viewer xdvi.
The next steps are PostScript and PDF. Finally, the
font is integrated to LATEX’s NFSS.

In this guide, all the font, config and test files
are located in one directory. Putting them into the
right places in the texmf tree is left as an exercise for
the reader. One hint on that: To trace which files
TEX is truly using, I found that instead of kpathsea
debug options, it is more reliable and convenient to
use the system utility strace.

As the font, I use here Helvetica Cyrillic from
Linotype (font name HelveticaLTCYR-Roman, file
name LT_51680.ttf). It is a proprietary font, but

that doesn’t matter for our purposes: there is noth-
ing font-specific in this guide except the names.

2 Plain TEX source

Let’s typeset the word привет (“hello” in Russian).
The question is: which encoding to use? It’s not
important as long as both the text and the font use
the same encoding. In the LATEX world, cyrillic is
associated with T2A, so let’s use it here too.

The next question is: what is the T2A encod-
ing? I couldn’t find a reference, therefore I copied
the file t2a.enc from my texmf tree and studied
it. The cyrillic letters are hidden behind the names
afiiNNNNN. I didn’t see any logic in the numbers,
and therefore searched for documentation and found
the “Adobe Standard Cyrillic Font Specification” [1].

Our word is encoded as afii10081 afii10082
afii10074 afii10067 afii10070 afii10084. Af-
ter calculating the positions in the encoding vector
(it turns out that the T2A codes are the same as in
the Windows-1251 encoding, except for the letters
Ё and ё), we are ready to typeset a test document
plaintest.tex:
\font\f=lhcr8z % error: unknown font
\f ^^ef^^f0^^e8^^e2^^e5^^f2\par
\bye

This file doesn’t compile yet because TEX does not
know the font lhcr8z (the name is explained later).

3 Font metrics

To compile a file, TEX doesn’t need the fonts them-
selves, but only their metrics, which are stored in
.tfm files. One way to get a .tfm from our TTF:
ttf2tfm LT_51680.ttf -T t2a.enc lhcr8z.tfm

The tool displays a number of warnings like
“Cannot find character ‘circumflex’ specified in in-
put encoding.” Indeed, the font doesn’t have a glyph
named circumflex, but rather asciicircum. It is
possible to define aliases, but for now I just ignored
the warnings. The naming issue is a big topic, and
an article [4] by Hàn Thế Thành explains it in detail
and suggests a general solution. An alternative is to
use fontforge instead of ttf2tfm.

Now running tex creates a .dvi file, and the
log file is free of warnings: tex plaintest.tex.

4 xdvi and .pk font

However, running xdvi is not successful: xdvi re-
quests the font, kpathsea finds no font and asks
mktexpk to generate one, but mktexpk doesn’t know
how to create it. As the font lhcr8z is not found,
xdvi uses the font cmr10 instead, but complains that
the characters are not defined in it and displays an

Minimal setup for a (cyrillic) TrueType font



24 TUGboat, Volume 31 (2010), No. 1

empty page. After consulting the documentation of
mktexpk, I created a map file ttfonts.map:
lhcr8z LT_51680.ttf Encoding=t2a.enc

Now running xdvi automatically creates a .pk
file, but it is stored in some cache directory. There-
fore, I prefer to create lhcr8z.600pk explicitly (the
resolution 600 came from the output of mktexpk):
ttf2pk lhcr8z 600

Now this works well and shows привет:
xdvi plaintest.dvi

5 testfont

As an optional step, it’s useful to get the font table,
which is also the encoding table. Process the file
testfont.tex (TEX finds it automatically):
tex testfont.tex

It first asks for a font name (answer is lhcr8z)
and then for commands. There are a number of
them, but for our needs it is enough to say:
\table\bye

Look at the result: xdvi testfont.dvi.
To avoid font issues due to further experiments,

convert the current result to a bitmap image:
dvipng -o testfont.png testfont.dvi

Check that the glyphs are located as expected
and save the table for later reference. It will be
interesting to compare the result with future output
from dvips and pdftex.

6 From DVI to PostScript to PDF

The classical way to create PDF from TEX is to use
dvips and ps2pdf. This already works for us, but
the font inside is bitmap, not vector. To get the vec-
tor version, create a local psfonts.map, the default
map file for dvips:
lhcr8z HelveticaLTCYR-Roman <lhcr8z.pfa

The font lhcr8z.pfa can be also used in its
binary form, lhcr8z.pfb. In the next sections we
will see how to convert from TTF to Type 1. After
doing that, we are ready to produce the PDF:
dvips -o plaintest.ps plaintest.dvi
ps2pdf plaintest.ps plaintest.pdf

Now running pdffonts (from the xpdf pack-
age) reports that the font HelveticaLTCYR-Roman
is embedded and its type is 1C. A PDF viewer should
welcome us with привет.

7 pdftex instead of tex+dvips+ps2pdf

One more tool, pdftex, one more map file is re-
quired. This time it is named pdftex.map. The
content is one line (the line break here is editorial):

lhcr8z HelveticaLTCYR-Roman <t2a.enc
<LT_51680.ttf

That’s all we need; pdftex is ready to run:
pdftex plaintest.tex

8 Encodings: TTF to Type 1 conversion

After reading different font installation instructions,
I was lost in details. What are all these files and do
I really need them? Extensions tfm, afm, pfa, pfb,
vf, fd, enc, map, the suffixes 8a and 8r for versions
of fonts. Font re-encoding instructions in config files.
For a cyrillic font, what are the equivalents for 8a,
8r and the magic spells?

Thanks to the step-by-step approach, the mess
was soon localized into two questions: 1) how to
convert a TrueType font to PostScript, and 2) how
to name it for NFSS.

The first initially looked simple. A quick search
pointed to the tool ttf2pt1 [5], which supports dif-
ferent encodings, including cyrillic. But then there
was a fight with technical troubles. First, due to
some copyright protection trick, the result was un-
usable without the option -a (include all glyphs,
even those not in the encoding table). Second, I
falsely concluded that dvips required a virtual font
to use the PostScript version. Third, I didn’t specify
font embedding in ttfonts.map (using the charac-
ter <) and had to teach HelveticaLTCYR-Roman to
gs/ps2pdf. But finally I got привет in PDF.

The naming issue was more tricky. The begin-
ing is obvious: l for Linotype, hc for Helvetica Cyril-
lic, r for regular. But what about the rest: 8a, 8r
or something else? And meanwhile, for latin fonts,
isn’t only one of 8a and 8r required? (Answer: 8r
is enough.) The help came from an informal note in
some tutorial: 8a fonts should be re-encoded for use
in TEX, 8r fonts are ready to use in TEX.

Finally, the whole picture was clear for me. If a
Type 1 font is made available to TEX as is, the NFSS
name uses the suffix 8a. After converting the font
to TEX encoding, the suffix becomes 8r. Further
observations:
• PostScript fonts are not physically converted.

Instead, they are re-encoded on the fly during
PostScript execution. The corresponding com-
mands are given through map files.

• With a TrueType font as the starting point, I
don’t see any reason to first convert TTF to
Type 1 with the Adobe encoding, and then re-
encode the font for use in TEX. Instead, I prefer
to convert directly to TEX encoding.

• It seems there is a strong association between
the suffix 8r and T1 encoding, therefore for the
cyrillic font I selected some other suffix, 8z.

Oleg Parashchenko



TUGboat, Volume 31 (2010), No. 1 25

This idea of avoiding 8a is obvious, but I was
misguided by the help text of ttf2pt1. Among
the supported encodings there is adobestd, which
is commented as “Adobe Standard, expected by
TeX” (wrong). Meanwhile, the encoding cyrillic
seems to be windows-1251, not T2A. Investiga-
tions show that it is possible to get the correct re-
sult using map files (the option -L) and that the
source code tarball of ttf2pt1 contains maps for
T1 and T2A, but these maps are not installed on
my Linux. Therefore, currently it’s inconvenient to
use ttf2pt1. I’ll submit a report to the developers,
and hope they will improve the situation.

The alternative is the tool fontforge [8]. Ini-
tially I failed to convert the font correctly, but while
fighting with ttf2pt1, I stumbled upon the docu-
mentation of the comicsans package [7], which de-
scribed how to use fontforge. After adaptation to
the current version, here are the instructions.
• First, teach fontforge about the T2A encod-

ing. Click Encoding→Load Encoding, select the
file t2a.enc.
• Select Encoding→Reencode→T2AAdobeEncod-

ing. The glyphs are rearranged to the correct
(for T2A) positions.
• Select File→Generate Fonts. You need to select

options: PS Type 1 Ascii or Binary, No Bitmap
Fonts, activate output of TFM and set Force
glyph names to Adobe Glyph List.

9 LATEX

The real problems are already solved. To integrate
the font to LATEX NFSS, one more config file is re-
quired, t2alhc.fd (the file name is font encoding
name plus family name):
\ProvidesFile{t2alhc.fd}
\DeclareFontFamily{T2A}{lhc}{}
\DeclareFontShape{T2A}{lhc}{m}{n}

{ <-> lhcr8z}{}

A sample LATEX document is shown next. Here
utf8 is used as the input encoding, conversion to
T2A is done by LATEX, thanks to the inputenc pack-
age. The package fontenc, among other useful ac-
tions, sets the default encoding for fonts to T2A, so
fontencoding before selectfont is redundant and
can be safely removed.
\documentclass{article}
\usepackage[T2A]{fontenc}
\usepackage[utf8]{inputenc}
\begin{document}
\fontencoding{T2A}\fontfamily{lhc}\selectfont
^^d0^^bf^^d1^^80^^d0^^b8^^d0^^b2^^d0^^b5^^d1^^82
\end{document}

Both latex+dvips+ps2pdf and pdflatex should
produce the desired PDF.

10 Summary

A .tfm file is always required. Create it using either
ttf2tfm or fontforge.

An encoding file is also always required. It can
be found in your texmf tree.

Each tool consults its own map file for more in-
formation about the fonts. You need to provide the
details (such as encoding) to get the correct result.

pdfTEX can use a TTF file directly.
xdvi and dvips use either .pk bitmaps or Type 1

outlines. A .pk font is created using ttf2pk.
A Type 1 font (and the corresponding .tfm)

can be created using fontforge. The font ought to
be created in TEX encoding. Do not use ttf2pt1
yet, unless you understand what are you doing.

For integration in LATEX NFSS, a .fd font de-
scription file is needed.

References

[1] Adobe Systems Incorporated. Adobe
standard cyrillic font specification. See
http://www.adobe.com/devnet/font/pdfs/
5013.Cyrillic_Font_Spec.pdf.

[2] The fontinst home page. See http://www.tug.
org/applications/fontinst/.

[3] Michel Goossens, Sebastian Rahtz, and Frank
Mittelbach. The LATEX Graphics Companion.
Addison-Wesley, 1997.

[4] Hàn Thế Thành. A closer look at True Type
fonts and pdfTEX. TUGboat, 30(1):32–34,
November 2009.

[5] Mark Heath. TrueType font to PostScript
Type 1 converter. See http://ttf2pt1.
sourceforge.net/.

[6] Frank Mittelbach and Michel Goossens. The
LATEX Companion. Addison-Wesley, 2004.

[7] Scott Pakin. The comicsans package. See
http://www.ctan.org/macros/latex/
contrib/comicsans/comicsans.pdf.

[8] George Williams. Fontforge. See http:
//fontforge.sourceforge.net/.

� Oleg Parashchenko
bitplant.de GmbH
Fabrikstr. 15
89520 Heidenheim, Germany
olpa (at) uucode dot com

Minimal setup for a (cyrillic) TrueType font

http://www.adobe.com/devnet/font/pdfs/5013.Cyrillic_Font_Spec.pdf
http://www.adobe.com/devnet/font/pdfs/5013.Cyrillic_Font_Spec.pdf
http://www.tug.org/applications/fontinst/
http://www.tug.org/applications/fontinst/
http://ttf2pt1.sourceforge.net/
http://ttf2pt1.sourceforge.net/
http://www.ctan.org/macros/latex/contrib/comicsans/comicsans.pdf
http://www.ctan.org/macros/latex/contrib/comicsans/comicsans.pdf
http://fontforge.sourceforge.net/
http://fontforge.sourceforge.net/

	Introduction
	Plain TeX source
	Font metrics
	xdvi and .pk font
	testfont
	From DVI to PostScript to PDF
	pdftex instead of tex+dvips+ps2pdf
	Encodings: TTF to Type 1 conversion
	LaTeX
	Summary

