
TUGboat, Volume 31 (2010), No. 2 183

Thirty years of literate programming
and more?

Bart Childs

Abstract

Don Knuth created Literate Programming about
thirty years ago. It could be called a methodology,
discipline, paradigm, . . . Bentley’s “Programming
Pearls” article about Knuth’s book, TEX: The Pro-
gram, caused a huge stir in the computing professions.
Soon there was announcement of a Literate Pro-
gramming section for the CACM . Several “Literate
Programming systems” quickly appeared. This was
followed by a few years of mild interest, cancelling
the Literate Programming section in the CACM, and
an apparent lack of public interest in the subject.

Really, what is literate programming?
What is the state of literate programming?

1 Introduction

It is commonly accepted in software engineering cir-
cles that one of the greatest needs in computing is
the reduction of the cost of maintenance of codes.
Maintenance programmers spend at least half of their
time trying to understand what code does and main-
tenance is accepted to be 60% to 80% of a code’s cost.
In The Mythical Man-Month: Essays on Software
Engineering, Frederick Brooks stated:

Self-Documenting Programs

A basic principle of data processing teaches
the folly of trying to maintain independent
files in synchronism. It is far better to com-
bine them into one file with each record con-
taining all the information both files held con-
cerning a given key.

Yet our practice in programming documen-
tation violates our own teaching. . . .

The results in fact confirm our teachings
about the folly of separate files. Program
documentation is notoriously poor, and its
maintenance is worse. . .

The solution . . . is to merge the files, to
incorporate the documentation in the source
program. This is at once a powerful incentive
toward proper maintenance, and an insurance
that the documentation will always be handy
to the program user. Such programs are called
self-documenting . . .

2 Definition of literate programming

Literate programming is a methodology/process/sys-
tem for creation of codes in the form of a work of
literature as well as executable programs.

The characteristics of literate programs, based
on Knuth’s WEB [2] and CWEB [3] (with Silvio Levy):

1. The section is the basic unit in the source of a lit-
erate program which is analogous to paragraphs
in usual textual documents. The section’s source
should generally be about a single screen.

2. Sections can contain documentation, definitions
(macros), and/or code.

3. The order of presentation of sections should
maximize the readability of the literate program.
There are elements of the structure of the code
parts of sections to ensure the correct placement
of the code in the resulting program source.

4. Documentation elements of a section should be
presented in a format consistent with book qual-
ity documents.

5. Code parts and code fragments in documenta-
tion parts of sections should be presented in a
format consistent with book quality documents.
This imposes a requirement of the system pars-
ing the computer language(s) used.

These characteristics should be in a literate program-
ming system for programming in most high level
languages. There are examples where a restricted
form of literate programming is quite helpful — often
the last item in the above list is omitted. These
systems still meet Brooks’ call for self-documenting
programs.

My initial experience with literate programs was
porting the TEX system to several different systems.
I found the formatting of the code to be a great help,
especially font selection for keywords, variables, and
literals as well as consideration of grouping, loops,
etc. Obviously, this requires parsing the code.

2.1 Knuth’s Pascal WEB and descendants

There were a number of features in the original WEB
that were needed to make up for problems doing sys-
tems programming in Pascal. Levy did not include
these in CWEB because of the nature of the C language.
This literate programming system has endured for
nearly three decades. There is no apparent need to
change it because of the evolving nature of Pascal.
Pascal is not a sufficiently prominent language for
systems programming and web2c has enabled TEX
and its components and friends to be widely ported.
Knuth’s original WEB was done at an early time —
relative to most of today’s understanding of systems
and programming languages — and many features
were due to Pascal limitations. The selection of Pas-
cal was done before C would have been a reasonable
choice — by only a few years. I strongly recommend
reading the original documentation and the docu-
ments produced by processing the original literate

Thirty years of literate programming and more?

184 TUGboat, Volume 31 (2010), No. 2

programs in the suite of tools to support the TEX
system.

There are at least two systems still in use that
are quite faithful to the philosophy that Knuth eluci-
dated in his original Pascal-based WEB system and are
consistent with the definition and the list of charac-
teristics given: CWEB and FWEB. Each of these support
more than one language.

2.2 CWEB— Levy and Knuth

Levy’s original CWEB was an adaption of WEB to the
use of C. Several features of WEB that were needed
for Pascal were removed. Knuth joined Levy in the
support and evolution of CWEB and others contributed
the addition of support of C++ and Java.

2.3 FWEB— Krommes

John Krommes’ FWEB is based on CWEB. FWEB sup-
ports C, C++, Fortran (77) and Ratfor. Krommes’
research dictated the need for this multilingual na-
ture of FWEB because his research was based on both
long running Fortran programs and programs to in-
terpret the data that were done in C++ or C.

Fortran had many vagaries that exceeded those
of Pascal, including its ancient card orientation. The
acronym was changed to a noun in the ’90s. Fortran
is central on many parallel systems and each seems to
have a unique system of compiler directives that are
often required to be in-line with the code. Krommes
handled these with admirable foresight. The Fortran
standards committee has been active in trying to
bring that community into the twenty-first century.
For example, semicolons are now allowed to end
statements.

Krommes included multiple output and input
files as well as the option of being language indepen-
dent that enabled the logical next step of including
scripts as part of the literate program. This language-
independent mode is called verbatim.

All in all, I would have liked a much smaller
version of FWEB. That sounds like a common whine
about TEX: “It is too big!”

We found that a small part of TEX and a web
can be taught to beginning students (see section 4).
It simply requires some work.

2.4 WEB-like systems

It is my opinion that the formatted code that the
above literate programming systems give for their
high level languages is of great benefit. Others obvi-
ously do not share my enthusiasm.

Several systems that have been called literate
programming by their creators are language indepen-
dent and therefore do not meet the characteristic in

item 5, section 4. This feature of not parsing and
formatting the programming language allows the use
of many different languages. This simplicity and
flexibility is desirable but I believe the benefits of
the formatting are crucial.

Creators of two of these systems, Williams (Fun-
nelWEB [8]) and Ramsey (NoWEB [6]) obviously
have a different opinion and focus on the benefits of
being able to order sections for expository reasons
rather than compiler requirements, and include effec-
tive documentation as making this form of literate
programming worthwhile.

I recall a reply by Williams in the literate pro-
gramming discussion group in response to a user
complaining about the tangled output not looking
like the user wanted: “Crikey, will they ever learn?
If the web is well written you will not want to look
at that version of the code.” Well, something like
that.

2.5 docstrip and doc.sty— LATEX tools

Frank Mittelbach created the doc.sty package to
combine the TEX code and documentation for LATEX.
He then created docstrip to complete a literate
programming system for LATEX [4]. This might be
the most used literate programming system on a
regular basis because it is the common format for
LATEX distributions. It should also be noted that
there have been several contributors to the evolution
of these tools, as is typical of the TEX community.

The advantage of having the documentation
and code in one file has been discussed earlier. Since
docstrip is written in TEX, which is an interpreter,
minimizing comments in the output code was impor-
tant to execution speeds.

The code part is not parsed when the document
is processed, thus the system can be used for code
other than (LA)TEX. I have found references to the
use of docstrip with other coding systems, notably
statistical packages. Perhaps a future article will
explore docstrip in more detail.

2.6 Literate programming-like usage

Nelson Beebe created a system he described as “like
literate programming” to document the many scripts
(each a code fragment) for his book Shell Scripting
[7] (with Arnold Robbins).

Like the previous subsection, a future paper is
needed for a survey of many such uses of the ideas
of literate programming.

3 web-mode— An Emacs-based tool

Mark Motl finished his dissertation under my direc-
tion by developing and testing a tool to adapt Emacs

Bart Childs

TUGboat, Volume 31 (2010), No. 2 185

to literate programming for WEB and CWEB [5].
The selection of Emacs was a bit like Knuth’s

selection of Pascal for the second writing of TEX.
Emacs was/is a large, stable system and relatively
platform independent. The emergence of worksta-
tions with a tightly coupled graphics screen was also
a great benefit to the Emacs philosophy. Much of the
early development of web-mode was done on shared
resource systems and the final work was done on
workstations.

Finishing touches were added by several students
and some by me. Some characteristics of web-mode:

• Emacs is cross platform. Most of my use in the
last few years has been on Macs, PCs, Sun, and
Linux workstations.

• It is open in the same sense as TEX and Emacs.

• The user specifies he/she is using WEB, CWEB, or
FWEB.

• If the web is a new file, the appropriate header
files are inserted with customized user-specific
information.

• For existing webs, navigation information is de-
veloped unless files (like .aux in LATEX and sim-
ilar WEB files) are newer than the web source.

• As the user enters source, the source is parsed to
ensure that section elements are complete. For
example, the meta-ness of code section names
have proper balance and the trailing = sign, if
appropriate.

• Knuth included a feature to allow the user not
to type the entire code section name, but use an
ellipsis for completion. In web-mode the Emacs
completion feature makes this unnecessary.

• Navigation of a web can be done by chapter/
section name/number, by sections referencing
variables, etc. These actions can be invoked by
function keys or pull down menus.

• The user can view the web and change file by
source, or preview of the DVI or PDF output.

• Execution of the TANGLE, WEAVE, TEX, LATEX,
can be invoked by function key or pull-down
menus.

• Outline editing of the source is especially useful.
The first line of sections (and chapters) and
the lines defining code sections are displayed. It
gives a new meaning to scrolling through source.

There is much more but that detail is not needed
here.

The distribution of web-mode will be available
soon from my home page after I perform some consis-
tency checks on current Windows and Apple systems.

4 My CS/1 experience

This section is adapted from our paper at the 16th
TUG meeting in St. Petersburg [1].

We embarked on a project to teach the first
computer science course using literate programming
while covering all the topics covered in the usual sec-
tions. We differed from the environment used by the
other sections by using Emacs and the literate pro-
gramming environment web-mode and GNU Pascal
as opposed to Turbo Pascal.

Our CS/1 course was entitled “Programming I”
and although the catalog did not specify Pascal, it
was understood that all sections of the course would
use the same language and that problem solving
would be central.

An inherent part of these CS/1 courses is to de-
velop the student’s skills in problem solving. Indeed,
in many course outlines, that is part of the title and
the main emphasis in the description of the course
contents. A problem solving methodology is often
stated in CS/1 courses which generally has steps like:

1. State the problem completely!
2. Develop all necessary assumptions.
3. Develop an algorithm and test data set(s).
4. Code the problem.
5. Analyze the results (and iterate?).

Literate programming is a style in which the
design of the code reflects that the human reader
is as important as the machine reader. The human
reader is often associated with the expensive process
of maintenance and the machine reader is the com-
piler/interpreter. Literate programming is a process
which should lead to more carefully constructed pro-
grams with better, relevant ‘systems’ documentation.
We think that the first sentence in this paragraph
should be particularly relevant to students because
the human reader (the one who assigns grades) is
obviously the most important reader.

The features of literate programming that gave
us the confidence to expect positive results are:

1. Top-down and bottom-up programming since it
is structured pseudo-code.

2. Programming in small sections where most sec-
tions of code and documentation (section in
this use is similar to a paragraph in prose) are
approximately a screen or less of source.

3. Typeset documentation (after all, Knuth was
rewriting TEX).

4. Pretty-printed code where the keywords are in
bold, user supplied names in italics, etc.

5. Extensive reading aids are automatically gen-
erated including a table of contents and index.

Thirty years of literate programming and more?

186 TUGboat, Volume 31 (2010), No. 2

The readability is improved by the programmer’s
liberal use of the tools furnished.

Each item in the following list could be added to the
corresponding item in the previous list. We think
there is merit to this split.

1. These topics are usual in CS/1 books but they
generally lack the integration to make them
really effective for the student.

2. Divide and conquer is also espoused but the
larger examples given in many books forsake
the principle.

3. It may be argued that this is ‘feeding pearls to
the swine’ but we like the cognitive emphasis
that comes from logical substitution of words
for key-words, etc.

4. The fact that weave breaks lines based on its
parsing is another cognitive reinforcement.

5. Encouraging/requiring students to review their
programs as documents makes them think about
readability.

I am still firmly convinced that literate pro-
gramming is the way to set budding programmers
and systems developers on the right track to writing
beautiful and excellent programs. There was a sec-
tion entitled Problems with ‘Problem Solving’ in the
TUG 16 paper which gave many of the arguments
for this that we gleaned from the literature.

“Are You Crazy!?” This was frequently shouted
at us because, as everybody in the world knows:

• Emacs is impossible to learn and use,
• TEX is impossible to learn,
• the addition of WEB makes for too many steps

to learn, and
• there is a reason for all those Aggie jokes.

and therefore our project was doomed!
Sometimes items from that list were suggested

gently instead of being yelled or blurted out while
the correspondent was writhing on the floor. We
exercised a little judgement and did it on the smallest
sections of the course, namely the honors sections.

There were several important items that we
considered in the design of the course and how we
executed the course.

Testing We intended the course to be more problem-
oriented rather than program-oriented. The tests
included a pre-test that was no part of the other
sections. All tests were slanted away from Pascal
details.

Emacs and web-mode We felt that in spite of this
being a new editor to nearly all, the web-mode

literate programing tool was our only choice.
We modified the Emacs reference card and gave

the students a five page memo based on Knuth’s
WEB introduction.

Knuth’s WEB We were restrained to the use of Pas-
cal and therefore Knuth’s original WEB was ap-
propriate. Some of the necessary minutiae was
easily omitted by use of web-mode.

How the course was taught The focus of the se-
mester was on problem solving. Pascal syntax
was brought along as a means of presenting
and then implementing a solution. The lecturer
presented the week’s information and handled
questions on a daily basis. The TA handled the
labs. Total enrollment in the class was about 40
and about half in each lab section.

Do all labs twice The labs in our courses are usu-
ally twice a week rather than one long period
per week. We took advantage of that and each
lab was done twice. The first time was used to
have the documentation parts of sections being
somewhat complete and the code parts sketchy.
WEB used in this manner can be a documented
pseudo-code system. This draft was marked
quickly and returned for the more complete ver-
sion to be finished before moving on to the next
lab.

4.1 Results — informal summary

Three pages of detailed results were presented in the
TUG 16 paper. I will present a high level view of
those I think that are most important and relevant.

The initial design would have led to failure if
we had analyzed the results promptly as planned.
Irrelevant personal problems delayed that analysis for
more than a year. The one result from the immediate
analysis was

The pre-test showed that the non-majors did
not have the problem solving skills of the
majors. The change was steady and by the
second regular test the non-majors were supe-
rior.

Most of the students had completed more com-
puter science courses by the time the analysis was
started in earnest. The evaluation process was mod-
ified to include tracking those students who took
these additional courses. Also, data was extracted
for students taking the same class the previous year,
this was taught by a more experienced teacher.

The additional courses were a CS/2 course which
was dominated by learning the C language and then
a data structures class. The performance in the CS/2
courses were not significantly different for those with
and without the literate programming exposure.

The literate programming exposure apparently
made a significant difference in the data structures

Bart Childs

TUGboat, Volume 31 (2010), No. 2 187

courses. With hindsight, that seems logical because
a data structures course is much more of a problem
solving experience and as implied above CS/2 was
too much a memorization of C syntax. The CS/2 and
data structures courses mentioned were not taught
by those involved in this study.

We feel the background of the students was not
atypical of many CS/1 type courses. The majority of
the class were majoring in computer science, but a
significant number were using the course as a minor
elective, a basis for deciding if they want CS as a
major, or other reasons. There was not an unusual
change of majors for the students in the study.

4.2 Student comments and evaluation

Upon nearing completion of the CS/1 course, the
students were asked to submit a paper reflecting their
feelings and attitudes towards the WEB programming
methodology. This was to be written as a typical
one-page technical note. Some expected comments
were made in the evaluation process at the end of
the CS/1 course taught using literate programming.

• TEX is not easy to learn,
• learning WEB was OK.
• Emacs was difficult (the replacement of function

keys by pull-down menus was not complete in
web-mode at the time).

4.3 Conclusions about teaching

We taught an honors section of a CS/1 course in a
different manner than usual, namely using literate
programming. The students used an editor, a format-
ting system, and a coding style that was new to all.
The students’ performance in subsequent courses was
not hurt and may have been helped with the different
methodology. The results of using the program de-
velopment methodology in the CS/1 course indicate
that the methodology is successful in teaching novice
programmers good problem solving skills.

These are the results of the experiment:

• The students showed an increase in their prob-
lem solving skills.

• Those students unfamiliar with the Pascal pro-
gramming language, or any other programming
language, were more successful then those famil-
iar with Pascal at using the literate program-
ming paradigm to capture and document their
problem solving process.

• The students were able to learn the WEB rules,
the web-mode environment, GNU Emacs, and
TEX rules, as well as the Pascal syntax and
constructs.

• Those students exposed to the program devel-
opment methodology utilizing the literate pro-

gramming paradigm were as successful in the
subsequent CS/2 course as those not exposed to
the methodology.

• Those students exposed to literate programming
were significantly more successful in the data
structures course than those not exposed to the
methodology.

• The subject program development methodol-
ogy may lead to an improved software devel-
opment process; however, more tests should be
conducted.

5 Tools

This list is used to describe some of the tools I know
of that exist to aid in literate programming. Some
have not been widely published, much to my shame.

CWEB There are several tools referenced on Knuth’s
home page; see his CWEB area.

Leo There are several references to this “outline”
editor. I have not had time to seriously look at
this yet.

web-mode I have corresponded with many users over
the years but did not realize that web-mode was
invisible to the usual literature reviews. This
will be corrected after a detailed review and mak-
ing sure of Emacs updates. The only problems I
have encountered are AUCTEX’s implementation
of description environments and conscription
of some function keys.

TAMU We did several tools and need to organize
and publish them as a set. A tool that was
frequently used when applied to a WEB or a TEX
source would give a statistical analysis of com-
mands (I used more “features” than the stu-
dents).

6 Examples of literate programs

The long term success of literate programming may
depend on the number and quality of published liter-
ate programs. A partial listing of literate programs
that are available openly is offered here as a start.

WEB The sources yield TANGLE and WEAVE at a min-
imum.

CWEB As above. The manual was last updated
eight years ago and is now out of print.

TEX and Metafont, the programs The printed
books are available from Addison-Wesley or you
can exercise your printer and paper budget.

Stanford GraphBase Knuth presents 31 WEBs in
his platform for combinatorial computing.

Don Knuth’s home page Nearly innumerable in-
teresting CWEBs for a wide range of topics.

Thirty years of literate programming and more?

188 TUGboat, Volume 31 (2010), No. 2

CACM The few that were contributed to the Liter-
ate Programming column.

BC While preparing this I encountered a reference
to a code of mine, PS_Quasi, which related to
experimental, theoretical numerical solutions of
ordinary differential equations. The link failed
but I need to reestablish that.

I also have a few dozen that were done by our
team that should be termed tools for analyzing
literate programs. These need to be cleaned up,
cataloged and published (on the web).

I have emphasized literate programs based on
the three systems that meet the definition I stated
earlier. The intended functions of those systems cen-
ter on programming in specific high level languages.

7 The state of literate programming

This is a difficult topic to treat with authority and a
straight face. Most of the systems have had only mi-
nor changes, if any, in the last twenty years. However,
stability is frequently a good thing. It is common
knowledge that adding functions to an interface will
make it more difficult to use.

Identification of and counting the number of
users of literate programming and “literate program-
ming like” systems may be impossible. Some visibil-
ity includes:

original style Knuth’s home page and books point
to many excellent examples. I am remiss in
not making a number of examples and tools
available, but I will.

literateprogramming.com Some elements point
to example literate programs, but only a few.
It includes a fair number of references to many
items that someone has called literate program-
ming. This includes a note entitled “POD is not
literate programming.” Most of the entries are
from the last century, but that is not so long
ago.

literate programming like Robbins and Beebe’s
Shell Scripting book. This perhaps could have
been done using docstrip. How many similar
projects are there that could be helped by a
good survey?

literate programming — other There is a com-
munity of users of the packages FunnelWEB and
NoWEB. I particularly like Ramsey’s philoso-
phy of piping small tools, following the Unix
philosophy. Application of these systems (and
docstrip) is also available with the statistical
system R (see Uwe Ziegenhagen’s article in these
proceedings, pp. 189–192).

8 Conclusions

I believe that this style of program development is a
great contribution to the goal of creating excellent
and maintainable programs, if it is used diligently.
I have often wondered how many of the errors that
Knuth has rewarded us for would have even been
found if the program had been in the style of Unix
“pretty printing.” In spite of this, it is referenced too
little.

We have observed first year students are already
like the professionals: “No, I do not want to learn
anything new if I already have some knowledge in
the area.” We think it should appear early and re-
peatedly in the curriculum. The design process that
is called for in most software engineering treatises is
a natural fit for literate programming, in my opinion.

References

[1] Bart Childs, Deborah Dunn, and William
Lively. Teaching CS/1 courses in a literate
manner. TUGboat, 16(3):300–309, September
1995.

[2] Donald E. Knuth. The WEB system of structured
documentation. Stanford Computer Science
Report CS980, Stanford University, Stanford,
CA, September 1983.

[3] Donald E. Knuth and Silvio Levy. The CWEB
System of Structured Documentation, Version
3.0. Addison-Wesley, Reading, MA, USA, 1993.

[4] Frank Mittelbach, Denys Duchier, Johannes
Braams, Marcin Woliński, and Mark Wooding.
The docstrip program. Technical report,
Universität Mainz, Mainz, Germany, 2005.

[5] Mark Bentley Motl. A Literate Programming
Environment Based on an Extensible Editor.
PhD thesis, Texas A&M University, College
Station, TX, December 1990.

[6] Norman Ramsey. Weaving a language-
independent WEB. Communications of the ACM,
32(9):1051–1055, September 1989.

[7] Arnold Robbins and Nelson H. F. Beebe.
Classic Shell Scripting. O’Reilly, Sebastopol,
CA, 2005.

[8] Ross N. Williams. Funnelweb User’s Manual.
http://www.ross.net/funnelweb/, May 1992.
V1.0 for FunnelWeb V3.0.

� Bart Childs
Texas A&M University
College Station, TeXas 77843-3112
USA
bart (at) tamu dot edu

http://faculty.cse.tamu.edu/bart/

Bart Childs

http://www.ross.net/funnelweb/

	Introduction
	Definition of literate programming
	Knuth's Pascal WEB and descendants
	CWEB-Levy and Knuth
	FWEB-Krommes
	WEB-like systems
	docstrip and doc.sty-LaTeX tools
	Literate programming-like usage

	web-mode-An Emacs-based tool
	My CS/1 experience
	Results-informal summary
	Student comments and evaluation
	Conclusions about teaching

	Tools
	Examples of literate programs
	The state of literate programming
	Conclusions

