
TUGBOAT

Volume 31, Number 2 / 2010
TUG 2010 Conference Proceedings

TUG 2010 114 Conference program, delegates, and sponsors

117 David Walden / TUG 2010 conference report

121 Donald Knuth / An Earthshaking Announcement

125 David Walden (moderator) / TUG 2010 Panel: Don Knuth &
Stanford TEX Project members

138 Barbara Beeton / Thoughts on TUG 2010

Resources 143 Jim Hefferon / CTAN packages get keywords

LATEX 145 Herbert Voß / From PostScript to PDF with epstopdf, pdftricks, pst-pdf,
auto-pst-pdf, pst2pdf, and more

148 Stephen Hicks / Improving margin paragraphs

Education 151 Pavneet Arora / Using LATEX to generate dynamic mathematics worksheets for the web

Publishing 154 Walter Gander / Writing the first LATEX book

158 Alan Hoenig / TEX helps you learn Chinese character meanings

Expanding Horizons 162 Didier Verna / Classes, styles, conflicts: The biological realm of LATEX

Software & Tools 173 Karl Berry / TEX Live 2010 news

174 Taco Hoekwater and Hartmut Henkel / LuaTEX 0.60: An overview of changes

178 Hans Hagen / LuaTEX: PDF merging

180 Hans Hagen / The TEX paragraph builder in Lua

183 Bart Childs / Thirty years of literate programming and more?

189 Uwe Ziegenhagen / Dynamic reporting with R/Sweave and LATEX

193 Michael Doob / A web-based TEX previewer: The ecstasy and the agony

Language Support 197 Idris Samawi Hamid / Qur ānic typography comes of age: Æsthetics, layering,
and paragraph optimization in ConTEXt

Graphics 203 John Bowman / Asymptote: Interactive TEX-aware 3D vector graphics

206 Mathieu Bourgeois and Roger Villemaire / Drawing structured diagrams with SDDL

Fonts 211 Will Robertson / Unicode mathematics in LATEX: Advantages and challenges

221 Johannes Küster / Math never seen

230 Boris Veytsman / Are virtual fonts obsolete?

Electronic Documents 236 Boris Veytsman and Leila Akhmadeeva / TEX in the GLAMP world: On-demand
creation of documents online

240 William Hammond / LATEX profiles as objects in the category of markup languages

Abstracts 248 TUG 2010 abstracts (Bazargan, Cheswick, Doumont, Grathwohl & Ruddy,
Hagen & Hoekwater, Hobby, Kew, Mittelbach, Moore, Rowley, Rundell)

Sponsors 250 Addison-Wesley; von Hoerner&Sulger

251 Cheryl Ponchin Training; River Valley Technologies

252 Principiae; University Science Books

News 253 Calendar

Advertisements 254 TEX consulting and production services

TUG Business 255 TUG institutional members

256 TUG 2011 election

TEX Users Group

TUGboat (ISSN 0896-3207) is published by the TEX
Users Group.

Memberships and Subscriptions

2010 dues for individual members are as follows:
Ordinary members: $95.
Students/Seniors: $55.

The discounted rate of $55 is also available to
citizens of countries with modest economies, as
detailed on our web site.

Membership in the TEX Users Group is for the
calendar year, and includes all issues of TUGboat

for the year in which membership begins or is
renewed, as well as software distributions and other
benefits. Individual membership is open only to
named individuals, and carries with it such rights
and responsibilities as voting in TUG elections. For
membership information, visit the TUG web site.

Also, (non-voting) TUGboat subscriptions are
available to organizations and others wishing to
receive TUGboat in a name other than that of an
individual. The subscription rate is $100 per year,
including air mail delivery.

Institutional Membership

Institutional membership is a means of showing con-
tinuing interest in and support for both TEX and
the TEX Users Group, as well as providing a dis-
counted group rate and other benefits. For further
information, see http://tug.org/instmem.html or
contact the TUG office.

TEX is a trademark of the American Mathematical
Society.

Copyright c© 2010 TEX Users Group.

Copyright to individual articles within this publication

remains with their authors, so the articles may not be

reproduced, distributed or translated without the authors’

permission.

For the editorial and other material not ascribed to

a particular author, permission is granted to make and

distribute verbatim copies without royalty, in any medium,

provided the copyright notice and this permission notice are

preserved.

Permission is also granted to make, copy and distribute

translations of such editorial material into another language,

except that the TEX Users Group must approve translations

of this permission notice itself. Lacking such approval, the

original English permission notice must be included.

Board of Directors

Donald Knuth, Grand Wizard of TEX-arcana
†

Karl Berry, President∗

Kaja Christiansen∗, Vice President

David Walden∗, Treasurer
Susan DeMeritt∗, Secretary
Barbara Beeton
Jon Breitenbucher
Jonathan Fine
Steve Grathwohl
Jim Hefferon
Klaus Höppner
Ross Moore
Steve Peter
Cheryl Ponchin
Philip Taylor
Raymond Goucher, Founding Executive Director †

Hermann Zapf, Wizard of Fonts†

∗member of executive committee
†honorary

See http://tug.org/board.html for a roster of all
past and present board members, and other official
positions.

Addresses

TEX Users Group
P.O. Box 2311
Portland, OR 97208-2311
U.S.A.

Telephone

+1 503 223-9994

Fax

+1 206 203-3960

Web

http://tug.org/

http://tug.org/TUGboat/

Electronic Mail

(Internet)

General correspondence,
membership, subscriptions:
office@tug.org

Submissions to TUGboat,
letters to the Editor:
TUGboat@tug.org

Technical support for
TEX users:
support@tug.org

Contact the Board
of Directors:
board@tug.org

Have a suggestion? Problems not resolved?

The TUG Board wants to hear from you:
Please email board@tug.org.

[printing date: September 2010]

Printed in U.S.A.

2010 Conference Proceedings

TEX Users Group

Thirty-first Annual Meeting

Sir Francis Drake Hotel

San Francisco, California, USA

June 28–30, 2010

COMMUNICATIONS OF THE TEX USERS GROUP

TUGBOAT EDITOR BARBARA BEETON

PROCEEDINGS EDITOR KARL BERRY

VOLUME 31, NUMBER 2 • 2010

PORTLAND • OREGON • U.S.A.

TUG2010
San Francisco California, USA

June 28–June 30, 2010

Sponsors

TEX Users Group DANTE e.V.

Addison-Wesley CSLI Green Lion Press Principiae River Valley Technologies
San Francisco State University Stanford Computer Science Department
University Science Books, Inc. von Hoerner & Sulger GmbH

with special assistance from individual contributors. Thanks to all!

Acknowledgments

Many thanks to all the speakers and teachers, without whom there would be no conference,
and also special thanks to:

Donald Knuth and all the panel participants, for making it such a special celebration.
Kaveh Bazargan, for the A/V recordings and more.
Duane Bibby, for the (as always) excellent and fun drawings.
Sue DeMeritt and Cheryl Ponchin, for (once again) teaching the workshop.
Dave Walden, for moderating the panel.
the photographers: Alan Wetmore, Uwe Ziegenhagen, and Jennifer Claudio.
the session chairs: Will Robertson, Klaus Höppner, Michael Doob, and Jim Hefferon.
the Sir Francis Drake Hotel, for the facilities.

Bursary committee

Sam Rhoads, chair Jana Chlebikova Bogus law Jackowski Alan Wetmore

Participants

William Adams, Mechanicsburg, PA
Leyla Akhmadeeva, Bashkir State Medical

University
David Allen, University of Kentucky
Tim Arnold, SAS Institute
Pavneet Arora, Bolton, Canada
Sheldon Axler, San Francisco State University
Dave Bailey, MacKichan Software, Inc.
Kaveh Bazargan, River Valley Technologies
Nelson Beebe, University of Utah
Barbara Beeton, American Mathematical Society
Doris Behrendt, Erlangen, Germany
Karl Berry, TEX Users Group
Brian Blackmore, Seattle, WA

Mathieu Bourgeois, Université du Québec
à Montréal

John Bowman, University of Alberta
Richard Bumby, Rutgers
Bill Cheswick, AT&T

Bart Childs, College Station, TX
Kaja Christiansen, Aarhus University
Dennis Claudio, Superior Court (Alameda County)
Jennifer Claudio, St. Lawrence Academy
Bruce Cohen, San Francisco, CA
Robert Cristel, Montréal, Canada
Jon Dechow, Westar Institute
Sue DeMeritt, Center for Communications

Research, La Jolla, CA
Michael Doob, University of Manitoba
Jean-luc Doumont, Principiae, Belgium

Rebecca Elmo, Mathematical Association
of America

Ronald Fehd, Centers for Disease Control
Thomas Feuerstack, FernUniversität in Hagen
Terri Fizer, Duke University Press
David Fuchs, Stanford TEX project
Walter Gander, ETH
Kevin Godby, Ames, IA
Steve Grathwohl, Duke University Press
Hans Hagen, Pragma ADE

Idris Hamid, Colorado State University
William Hammond, SUNY Albany
Illona Headrick, Texas State University-San Marcos
Jim Hefferon, Saint Michael’s College
Hartmut Henkel, von Hoerner & Sulger GmbH
Stephen Hicks, Google Inc.
John Hobby, Stanford TEX project
Alan Hoenig, Huntington, NY

Joe Hogg, Los Angeles, CA
Morten Høgholm, LATEX3 Project and

Technical University of Denmark
Klaus Höppner, DANTE e.V.
Ned Hummel, Indiana University-Purdue University

Indianapolis
Mirko Janc, INFORMS

Oleg Katsitadze, Portland, OR

Adam Kelly, San Francisco, CA
Jonathan Kew, Mozilla Corp.
Timothy Kew, Cambridge University
Donald Knuth, Stanford TEX project
Dick Koch, University of Oregon

Igor Kozachenko, Mathematical Sciences Publishers
Johannes Küster, Typoma
Martha Kummerer, Notre Dame J. of Formal Logic
Robin Laakso, TEX Users Group
Raymond Lambert, Duke University Press
Richard Leigh, St Albans, UK

Frank Liang, Stanford TEX project
Manfred Lotz, DANTE e.V.
Filip Machi, Berkeley, CA
Barry MacKichan, MacKichan Software, Inc.
Wendy McKay, California Institute of Technology
Doug McKenna, Mathemaesthetics, Inc.
Lothar Meyer-Lerbs, Bremen, Germany
Frank Mittelbach, LATEX3 Project
Ross Moore, Macquarie University
Zolili Ndlela, California State Univ. Sacramento
Brian Papa, American Meteorological Society
Oren Patashnik, Stanford TEX project
Roy Pattishall, Duke University Press
Michael Plass, Stanford TEX project
Cheryl Ponchin, Center for Communications

Research, Princeton, NJ

Roozbeh Pournader, San Jose, CA
Frank Quinn, eduTeX
Will Robertson, LATEX3 Project

Tom Rokicki, Stanford TEX project
Chris Rowley, LATEX3 Project
David Ruddy, Cornell University Library
Robert Rundell, Seattle, WA

Volker RW Schaa, DANTE e.V.
Martin Schröder, LuaTEX team
Herbert Schulz, Naperville, IL
Alex Scorpan, Mathematical Sciences Publishers
Heidi Sestrich, Carnegie-Mellon University
Chris Skeels, University of Melbourne
Paulo Ney de Souza, UC Berkeley
Tammy Stitz, University of Akron
Luis Trabb Pardo, Stanford TEX project
P. Alan Thiesen, Nevada City, CA
Howard Trickey, Stanford TEX project
Didier Verna, EPITA/LRDE

Boris Veytsman, George Mason University
Bruno Voisin, CNRS and University of Grenoble
Paul Vojta, UC Berkeley
Herbert Voß, DANTE e.V.
David Walden, E. Sandwich, MA

Joe Weening, Stanford TEX project
Alan Wetmore, US Army
Gio Wiederhold, Stanford University
Uwe Ziegenhagen, Cologne, Germany

LATEX workshop participants

Donna Aikins, Naval Postgraduate School
Ron Aikins, Naval Postgraduate School
Lori Boyters, Qualcomm Inc.
Bruce Cohen, San Francisco, CA
Sherry Davenport, Qualcomm Inc.
Illona Headrick, Texas State University-San Marcos
Susan Koskinen, UC Berkeley

Zolili Ndlela, California State Univ. Sacramento
Roy Pattishall, Duke University Press
Pamela Sexton, Qualcomm Inc.
Tammy Stitz, University of Akron
Mica Thomas, Alembic, Inc.
Sharon White, Qualcomm Inc.
Ronald Wickersham, Alembic, Inc.

TUG2010 program

Monday
June 28

8:00 am registration
8:55 am Karl Berry, TEX Users Group Welcome
9:00 am Ross Moore, Macquarie University TEX+MathML for Tagged PDF, the next frontier in

mathematical typesetting

9:35 am Will Robertson, LATEX3 Project Unicode mathematics in LATEX: Advantages and challenges
10:10 am Boris Veytsman, George Mason U. Are virtual fonts obsolete?
10:45 am break
11:00 am Steve Grathwohl, Duke U. Press

& David Ruddy, Cornell U. Library
Implementing MathJax in Project Euclid

11:35 am Johannes Küster, Typoma Math never seen
12:50 pm lunch
2:00 pm Alan Hoenig, Huntington, NY TEX helps you learn Chinese character meanings!
2:35 pm William Cheswick, AT&T Ebooks: New challenges for beautiful typesetting
3:10 pm Hans Hagen, Pragma ADE Just in time: Things we can do only with LuaTEX
3:45 pm break
4:00 pm Hans Hagen Building paragraphs with the help of Lua
4:35 pm Idris Hamid, Colorado State U. Oriental TEX: Culturally authentic typesetting of the Qur’an
5:10 pm q&a

Tuesday
June 29

9:00 am Michael Doob, U. of Manitoba A web-based TEX previewer: Ecstasy and agony
9:35 am Jonathan Kew, Mozilla Corp. TEXworks for newcomers—and what’s new for old hands

10:10 am Kaveh Bazargan, River Valley Tech. Batch Commander: An interactive style writer for TEX
10:45 am break
11:00 am Boris Veytsman & Leyla Akhmadeeva,

Bashkir State Medical University
TEX in the GLAMP world: On-demand creation of

documents online

11:35 am Pavneet Arora, Bolton, Canada Using LATEX to generate dynamic mathematics worksheets
for the web

12:15 pm Stephen Hicks, Google Inc. Improving margin paragraphs and float control
12:50 pm lunch
2:00 pm Herbert Voß, DANTE e.V. From PostScript to PDF

2:35 pm Jim Hefferon, Saint Michael’s College Characterizing CTAN packages
3:10 pm Didier Verna, EPITA / LRDE Classes, styles, conflicts: The biological realm of LATEX
3:45 pm break
4:00 pm Walter Gander, ETH Writing the first LATEX book
4:30 pm William Hammond, SUNY Albany LATEX profiles as objects in the “category” of markup languages
4:50 pm Chris Rowley, LATEX3 Project A brief history of LATEX—with a prediction
5:10 pm q&a; TUG meeting

Wednesday
June 30

9:00 am Uwe Ziegenhagen, Cologne, Germany Dynamic reporting with R/Sweave and LATEX
9:35 am John Bowman, U. of Alberta Interactive TEX-aware 3D vector graphics

10:10 am Mathieu Bourgeois and Roger
Villemaire, U. Québec à Montréal

Introduction to drawing structured diagrams in SDDL

10:45 am break
11:00 am Jean-luc Doumont, Principiae Quantum space: Designing pages on grids
11:35 am Robert Rundell, Seattle, WA Using the Knuth-Plass algorithm to help control widow

and orphan lines

12:15 am Bart Childs, College Station, TX Thirty years of literate programming and more?
12:50 pm lunch
1:45 pm group photo
2:00 pm John Hobby, Stanford TEX Project Is boxes.mp the right way to draw diagrams?
2:35 pm Hans Hagen and Taco Hoekwater How TEX and Meta finally got married
3:10 pm Frank Mittelbach, LATEX3 Project Exhuming coffins from the last century
3:45 pm break
4:00 pm Dave Walden, moderator panel: Don Knuth & Stanford TEX Project members
5:30 pm Don Knuth, Stanford TEX Project An Earthshaking Announcement!

≈ 6:00 pm end
7:30 pm banquet at Le Colonial (lecolonialSF.com)

TUGboat, Volume 31 (2010), No. 2 117

TUG 2010 conference report

David Walden

The TUG 2010 annual conference was held Monday
June 28 to Wednesday June 30 in San Francisco.1

This annual conference celebrated the thirty-second
anniversary of TEX. The conference venue was the
Sir Francis Drake hotel,2 a few steps from San Fran-
cisco’s famous Union Square and with the Powell
Street cable car available at the front door of the
hotel.

Attendance and the opening reception

With Don Knuth and others of the Stanford group
that helped Knuth develop TEX participating in the
conference, attendance was high compared with other
annual conferences in recent years. The conference’s
location in San Francisco likely also contributed to
attendance; many conference participants brought
along family members and many came before the con-
ference or stayed beyond the conference to sightsee
in the San Francisco area and other parts of northern
California.

More than half of the attendees of the confer-
ence were present at the Sunday 5–7 pm reception,
renewing friendships, meeting new members of the
TEX community, comparing trips into San Francisco,
and so forth. TUG president Karl Berry, executive
director Robin Laakso, and Robin’s daughter Sophia
handled the registration table, handing out name
tags and conference materials.

Three-day program

As they have at previous TUG annual conferences,
Sue DeMeritt and Cheryl Ponchin led a one-day
introductory/intermediate LATEX workshop. This
year the workshop was held in parallel with the first
day of the regular conference program. From the
reports I overheard, the workshop was well received.

The main conference program was chock-a-block
with interesting presentations.3 Once again Kaveh
Bazargan of River Valley Technologies recorded all
of the presentations, and the full set of videos will
be posted on the River Valley TV website.4

Since all of the presentations will be on the
River Valley with many being printed in this issue
of TUGboat, I will not describe any of the individual
presentations (while I had some favorites among the

1 http://tug.org/tug2010/
2 The hotel staff were very attentive to the needs of the

conference, and provided excellent food service for breaks and
lunch.

3 http://tug.org/tug2010/program.html
4 http://river-valley.tv/conferences/tug-2010

presentations that I would love to describe, other peo-
ple undoubtedly had other favorites). Instead, I will
try to describe the breadth of the presentations (Ta-
ble 1). In some ways it seemed to me that there was
a broader range of presentations this year compared
with some others. The table shows my assessment of
the areas covered by each presentation. There was a
good bit of history, in keeping with the thirty-second
anniversary theme of the conference. There was, to
me, a surprising amount of philosophy. There were
presentations by old timers and by young TEX devel-
opers and everyone in between. There were useful
updates on widely used systems. Most interesting to
me, beyond the impressive and useful characteristics
of many of the systems and tools described, was the
large numbers of instances where TEX was used in
combination with other systems and tools. From
the work described in the conference presentations,
TEX certainly looks like it will be a viable and highly
useful system for a lot of people for a long time.

The three days of the conference were divided
into a morning session and afternoon session with a
short mid-session break. Karl Berry coordinated the
chairing of the morning and afternoon sessions with
Michael Doob, Jim Hefferon, Klaus Höppner, Will
Robertson, and me each taking care of all or part
of a session. The TUG annual meeting was officially
held at the end of the second day’s sessions.

A group photo was taken after lunch of the
third day, by Alan Wetmore and Uwe Ziegenhagen.
Jennifer Claudio and Alan also took photographs
throughout the conference. The group photo and
others are included in this issue.

Throughout the conference various small meet-
ings took place, such as a MacTEX meeting and more
or less one-on-one meetings regarding collaboration
on various projects. One of the benefits of attending
TEX conferences is the opportunity to do bits of TEX
or other business in person.

Stanford TEX developers panel and
Knuth presentation

The second afternoon session of Wednesday was a
unique event — a panel consisting of Don Knuth and
nine of the Stanford students who helped create TEX
as we know it today. The panelists, aside from Don
(who needs no introduction to TUG members), were
(in alphabetic order and mentioning only one or two
of their contributions):

• David Fuchs was called “my right hand man
for TEX82” by Don Knuth. David also did the
initial development of the DVI format.

• John Hobby developed METAFONT’s polygonal
pens and other aspects of METAFONT as part

TUG 2010 conference report

118 TUGboat, Volume 31 (2010), No. 2

Table 1: Breadth of presentations

A B C D E F G H I J K L M N

First morning

Ross Moore: TEX+MathML for Tagged PDF E N

Will Robertson: Unicode mathematics in LATEX M N

Boris Veytsman: Are virtual fonts obsolete? J M

Steve Grathwohl, David Ruddy: Math on the Web: Implementing MathJax
in Project Euclid

K N

Johannes Kúster: Math never seen L M

First afternoon

Alan Hoenig: TEX helps you learn Chinese character meanings B I

Bill Cheswick: Ebooks: New challenges for beautiful typesetting I N

Hans Hagen: Just in Time: Things we can only do with LuaTEX G H J M

Hans Hagen: Building paragraphs with the help of Lua G H

Idris Hamid: Oriental TEX: Culturally authentic typesetting of the Qur’an H I M

Second morning

Michael Doob: A web-based TEX previewer: Ecstasy and agony I J N

Jonathan Kew: TEXworks for newcomers — and what’s new for old hands H I J

Kaveh Bazargan: Batch Commander: an interactive style writer for TEX J

Boris Veytsman, Leyla Akhmadeeva: TEX in the GLAMP world:
On-demand creation of documents online

I

Pavneet Arora: Using LATEX to generate dynamic mathematics worksheets I L

Stephen Hicks: Improving margin paragraphs and float control F J

Second afternoon

Herbert Voss: From PostScript to PDF E F N

Jim Hefferon: Characterizing CTAN packages H J

Didier Verna: Classes, styles, conflicts: The biological realm of LATEX L

Walter Gander: Writing the first LATEX book D

William Hammond: LATEX profiles as objects in the “category” of
markup languages

L

Chris Rowley: A brief history of LATEX with a prediction D

Third morning

Uwe Ziegenhagen: Dynamic reporting with R/Sweave and LATEX C I J K

John Bowman: Interactive TEX-aware 3D vector graphics C H J

Mathieu Bourgeois, Roger Villemaire: Introduction to drawing structured
diagrams in SDDL

C

Jean-luc Doumont: Quantum spaces: Designing pages on grids B L

Robert Rundell: Using the Knuth-Plass algorithm to help control widow
and orphan lines

F

Bart Childs: Thirty years of literate programming and more? D L

Third afternoon

John Hobby: Is boxes.mp the right way to draw diagrams? D F

Hans Hagen, Taco Hoekwater: How TEX and Meta finally got married B J

Frank Mittelbach: Exhuming coffins from the last century B J

Don Knuth & Stanford TEX Project members: panel D L

Don Knuth: A Special Announcement! A

Legend for columns A–N

A. Unclassified F. Ideas for new typesetting algorithms K. Systems using TEX
B. Book design G. Distributions and formats L. Philosophy
C. Graphics H. Status report on big on-going projects M. Fonts
D. History I. Applications of TEX N. More output devices and
E. PDF J. Tools and approaches to aid TEX use file formats for TEX

David Walden

TUGboat, Volume 31 (2010), No. 2 119

part of his PhD thesis research. Later John
developed MetaPost.

• Frank Liang worked with Don Knuth on the
hyphenation algorithm for TEX78, and Frank’s
PhD thesis presented a better hyphenation algo-
rithm which is used in the TEX we know today
and in many other typesetting systems.

• Oren Patashnik developed BibTEX and is co-
author of the Concrete Mathematics book.

• Michael Plass was co-implementor (with Frank)
of the original prototype for TEX. His PhD
thesis presented methods for line breaking and
pagination with floats, methods which of course
are used in TEX.

• Tom Rokicki developed the original Pascal-to-
C converter for the TEX system and developed
dvips.

• Luis Trabb Pardo was called “my right hand
man” for the development of TEX78 by Don
Knuth. Luis was also involved in interfacing to
the early laser printers.

• Howard Trickey did one of the first ports of TEX
to Unix. He also wrote the first four BibTEX
styles and related utility software.

• Joe Weening was involved in various ways in
the transition from TEX78 to TEX82, and main-
tained the well-known labrea.stanford.edu

FTP site.

I moderated this session, in which audience mem-
bers asked questions of all of the panelists, the pan-
elists reacted to each other’s answers and suggested
topics about which other panelists should comment,
and so forth. The discussion, lasting for an hour
and a half, was fascinating. The video of the panel
discuss is available5 as is a written transcript.

Following the panel discussion, Don Knuth took
the floor and presented the “Special announcement”
that was listed in the conference program and about
which there had been speculation at the conference
and on the World Wide Web in the days before
the conference. Don’s presentation, entitled “An
Earthshaking Announcement”, must be seen to be
appreciated: view the video.6

Banquet

The banquet was held at the restaurant Le Colonial
about two-and-one-half blocks from the hotel, and
the Vietnamese/French food was excellent.

As in previous years, Kaveh Bazargan MC’d the
presentations after dinner and dessert.

5 http://river-valley.tv/tug-2010-panel
6 http://river-valley.tv/an-earthshaking-announcement

First Kaveh introduced Karl Berry who pre-
sented a commemorative book created especially
for this thirty-second anniversary of TEX to Don
Knuth and the other nine Stanford developers of
TEX. Karl’s and my hack in creating this commemo-
rative book was to mimic the design of The TEXbook,
including a cover illustration by Duane Bibby and
reprints of previous Bibby illustrations throughout
the book. The text of the book included a foreword
by Barbara Beeton, introductions to Knuth and the
other Stanford people and reprints of papers from
TUGboat by Knuth and the others. Titled TEX’s
25 Anniversary: A Commemorative Collection, the
book is for sale (with a discount for members) from
the TUG store,7 and is available online to members.8

The original drawing for the book’s cover was given
by random selection to one of the other Stanford
developers, and went to Michael Plass.

Next, Kaveh managed the usual “soapbox” op-
portunity for anyone at the banquet to say something
about TEX, the conference, . . . , with careful timing
by Jennifer Claudio and the penalty of going over
or under of having to buy Kaveh a drink. For this
year, the required interval was 32 seconds minimum
to 128 seconds maximum. Several people took an
opportunity to speak, notably David Fuchs recalling
a bit of history he had not had an opportunity to
mention during the afternoon panel. TUG was just
coming into existence as The TEXbook was being
finished. The book already included Appendix A
(Answers to exercises), Appendix B (Basic control
sequences), and so on through Appendix I (Index).
David mentioned to Don that perhaps something
about TUG should be included in the book. Don said
that sounded good, but David would have to come up
with a title beginning with ‘J’. David thought about
it overnight and in the morning came back with the
title for Appendix J: Joining the TEX Community.

Next, Hans Hagen presented an original Duane
Bibby drawing to Don Knuth and John Hobby from
the LuaTEX team — for Don’s and John’s contribu-
tions that underly LuaTEX with its embedded Meta-
Post. The LuaTEX team commissioned the drawing
showing Don and John proofing a Punk Font9 sheet
just processed by a LuaTEX driven printing press
with mplib inside.

Hans also presented Don with a gift from the
ConTEXt user community: a mockup of the SET R©
game (made by ConTEXt development group mem-
ber Mojca Miklavec) and packaged in a special box
made by Willi Egger (the ConTEXt group’s expert on

7 http://tug.org/store
8 https://www.tug.org/members
9 http://tug.org/TUGboat/Articles/tb09-2/ tb21knut.pdf

TUG 2010 conference report

120 TUGboat, Volume 31 (2010), No. 2

bookbinding, printing, and packaging). The set uses
the cow font10 and uses the words “LUA”, “TEX”,
and “MP” in several colors and variants.

As usual, TEX-related vendors provided books
and other products to TUG which are raffled off
to people at the banquet (all registered conference
attendees’ names are in the bowl from which names
are randomly drawn). This year a copy of each of
Don’s books published by CSLI was raffled off, along
with books donated by Green Lion Press, University
Science Books, and Addison-Wesley. Two copies of
Jean-luc Doumont’s beautiful book which he used to
illustrate his conference presentation on “Quantum
Spaces” were also in the raffle.

Karl then acknowledged my contributions to
TUG, this conference, and the commemorative book,
and he gave me a hardbound copy of Knuth’s book
Digital Typography including a dust cover. Don’s pub-
lisher at Stanford Center for the Study of Language
and Information (CSLI) had contributed this special
edition to TUG, it being one of only five hardbound
copies of Digital Typography in existence with dust
covers. Karl then acknowledged the contributions
of Kaja Christiansen, longtime TUG vice-president
from Aarhus University which provides space, elec-
tricity, and Internet connectivity for the main TUG

server, for which Kaja is co-system administrator.
Karl gave the original of the conference poster by
Duane Bibby to Kaja. Finally, Karl acknowledged
the efforts over the years and especially for this con-
ference of Robin Laakso, TUG’s executive director
(observing Robin at the conference, there didn’t seem
to be so much that was “executive” about her job —
she was working at a pretty nitty-gritty, hands-on
level).

We then heard a violin solo by Zhenya and
Morten Høgholm’s young son, David.

Don Knuth ended the evening’s formal presenta-
tions by exhibiting copies of “A keepsake in honor of
TEX’s 32nd anniversary, 30 June 2010”. The keep-
sake was a piece of embroidery of an image of the TEX
lion sitting on a pedestal with the annotation, “This
souvenir TEX lion was embroidered by a numerically

10 http://tug.org/TUGboat/Articles/tb27-1/

tb86hoekwater-cows.pdf

controlled sewing machine using the remarkably sim-
ple EULER-TRAIL algorithm at www-cs-faculty.

stanford.edu/~knuth/programs.html.” Don gave
copies of the keepsake to the nine other early Stanford
TEX people in attendance, and to Barbara Beeton,
Karl Berry, Hans Hagen, Jonathan Kew, and Frank
Mittelbach for their work in pushing TEX. Finally,
Don gave to all of us attending the banquet a 2.25-
inch square framed image of his newly announced
logo.6

I see a certain pattern in the execution of vari-
ous of the items mentioned above — the items Don
presented, the items Hans presented, and the com-
memorative book. It seems the members of the TEX
community don’t just use Don’s typesetting capabil-
ity; he is also our model for detail and precision of
execution of even one-off projects.

The evening finished informally, with goodbyes,
promises to see you next time, agreements to follow-
up by email, and so forth. We had all been brought
together by TEX and now we were departing, but we
would remain connected by TEX and our memories of
having spent a couple of days with its creator. John
Bowman summed it up this way:

A professor from Stanford nearly went through the roof
On laying eyes on his very first galley proof

He said “What the heck,
I’ll go invent TEX”

That man’s name, my dear friends, was Donald E. Knuth!

All in all, from where I was sitting, the confer-
ence was a smashing success.

⋄ David Walden
E. Sandwich, MA
http://www.walden-family.com

David Walden

An Earthshaking Announcement

Donald E. Knuth

Ladies and gentlemen, distinguished guests, dear
friends: How appropriate it is for us to be meeting
here in the city where Steve Jobs has made so many
dramatic announcements. Today I have the honor of
unveiling for you something that, in Steve’s words,
is “truly incredible” — a successor to TEX that I’ve
been working on in secret for quite some time.

All of us know that computers and the Internet
have been changing the world at a dizzying pace.
Consequently few, if any, of the assumptions that
I made when I first got TEX to work in 1978 are
valid today. Day after day I’ve been becoming
more and more convinced that a totally different
approach is now needed. Finally I woke up one
morning with the realization that I couldn’t be
happy unless I came up with a new system that
rectifies my former mistakes — a system that leads
to real progress.

Thus I’ve decided to scrap TEX78 and TEX82
and to start over from scratch. Of course the first
thing that I wanted to fix was the most egregious
design error that I’d made in the early system: The
old TEX was internally based on binary arithmetic,
although its user interface was entirely decimal!
Thus one could write, for example,

\ifdim .4pt = .39999pt \message{yes} \fi

and get the response ‘yes’. Furthermore a con-
struction like

\dimen0=.4pt \multiply \dimen0 by 10

\showthe\dimen0

would give the answer ‘3.99994pt’; how ridiculous
can you get? Are mathematicians supposed to like
this? Are computer scientists supposed to like this?
Is anybody supposed to like this?

(By the way, I apologize for using handwrit-
ten overhead-projector slides in this presentation,
instead of making PowerPoint points. Some unex-
pected problems arose with my computer at home,
and I didn’t want to risk security leaks by putting
any of this material on someone else’s machine.)

Returning to my story, many of you may
recall that the old TEX represented all dimensions
as integer multiples of a so-called “scaled point”,
defined to be 1/65536th of a printer’s point, where a
printer’s point was defined to be exactly 1/72.27th
of an inch. How bizarre and anachronistic! Nobody
remembers or cares about the old-fashioned units
that printers used in the pre-Internet era. The
graphic designers of today all know that there are

TUGboat, Volume 31 (2010), No. 2 121

exactly 72 points to an inch, as specified by Adobe
Systems; why should TEX insist on calling that
now-universal unit a “big point”? Indeed, what
relevance will points of any kind be to anybody, ten
years from now?

Moreover, TEX never has allowed dimensions to
exceed \maxdimen, or 16383.9999847412109375pt,
which is roughly 18.8921175 feet (5.7583 meters).
Today’s graphic devices make posters and banners
much larger than this, so TEX cannot cope.

At the other extreme, advances in nanotech-
nology mean that TEX’s minimum dimension of one
scaled point is far too large to accommodate 21st-
century applications: A scaled point is huge, more
than two farshimmelt potrzebies; it’s more than 53
Ångstrom units, ’way bigger than a hydrogen atom.

Thus I’m pleased to say that my new typeset-
ting system finally gets it right: Dimensions can be
arbitrarily large or arbitrarily small multiples of in-
ternationally accepted units. They can be expressed
as exact rational quantities, like 3/7 of a yard; they
can also be expressed in terms of irrational numbers
like π and

√
2, so that circles and other objects can

at last be rendered with perfect accuracy.
My design from 32 years ago was heavily

influenced by what we used to call “efficiency”.
I didn’t understand the implications of Moore’s
Law. I didn’t realize that, in a few years, I wouldn’t
care whether The Art of Computer Programming
could be typeset in half a second, rather than
waiting five seconds.

Examples of my tunnel vision abound, on
almost every page of The TEXbook. For example,
I used backslashes and other strange characters to
define what I called “control sequences”. Does any
other system you know have control sequences? Of
course not.

With my old rules people never knew whether
or not a blank space really meant a blank space.

Therefore the basic input language for my
new system is entirely a subset of XML, a widely
accepted standard. However, XML is really only
necessary at the lowest level, and most users won’t
need to be aware of it, because we’ll see in a moment
that there are many other ways to provide input.

Of course the character set for my new system
is Unicode, so that there is 100% support for all of
the languages and metalanguages of the world. Au-
tomatic spelling and grammar correction are built in
for each language, as well as automatic correction
to page layout and design. Different languages can
freely be intermixed at will, always with appropriate
ligatures, kerning, and hyphenation.

The old TEX was limited to left-to-right type-
setting; and some of its extensions also now handle
the right-to-left conventions of many languages that
my original implementation didn’t consider. But
my new system has been designed from the begin-
ning to produce output in any direction whatsoever,
whether horizontally or vertically or diagonally or
along any kind of curved lines.

In fact, since 3D printing technology is now
widespread, I decided at the outset that there was
no reason to limit my new system to only two
dimensions. Three dimensions are now standard in
the new system; in other words, we deal with voxels
instead of mere pixels. I’ve also provided hooks to
allow future extensions to four or more dimensions,
in case the string theorists prove to be right.

From a virtual standpoint, the notion of hy-
pertext already gives us the equivalent of unlimited
dimensionality, and the production of hyperdocu-
ments and web pages will be one of the chief thrusts
of my new system. TEX’s old principles of boxes,
glue, and penalties turn out to yield fantastic new
ways to create multimedia documents, including
animated videos and stereophonic sound.

Indeed, the input and output aspects of the new
system aren’t confined to traditional forms of text.
Audio input and camera input are now seamlessly
integrated, as well as sensor devices of all sorts.
The system uses your GPS coordinates intelligently,
if you are a mobile user, and senses your motions
and gestures with accelerometers, etc. Complete
support of haptics is also fully implemented. Instead
of “what you see is what you get,” we now also
have “what you hear is what you get,” and “what
you feel is what you get.”

There really is little difference between input
and output in the new system, because any input
can be output; conversely, any output from one
hyperdocument can be input to another, or to itself.
For example, music can be input from one or more
MIDI devices, then either output to a conventional
printed score, or to another MIDI device or group
of devices — optionally segmented into individual
parts, or transposed, or whatever you want. Going
the other way, a printed score can be used as the
input to a synthesizer, etc. I’ll say more about
these dynamic aspects later.

Does my new system have macros? No. Macros
are passé; they’re so mid-20th-century. Nowadays
no one really needs macros, which we all know can
be difficult to write and even dangerous. Every-
thing in the new system is menu-driven, somewhat
in the style of “Microsoft Word” but considerably
enhanced: Experts have prepared recipes for ev-
erything you’ll ever want to do, and these features

122 TUGboat, Volume 31 (2010), No. 2

keep growing and getting better and better. The
menus needn’t appear on your computer screens in
traditional pull-down or pop-up form; my system
also responds to spoken commands and to gestures.
And it quickly learns your preferences, so that it’s
customized to your own wishes, thereby making
document preparation almost instantaneous.

You may have noticed that I’ve been referring a
lot to my new system, but I haven’t yet told you its
name. I had to explain some of its characteristics
before you could fully understand the name. But
now I’m ready to reveal it, and more importantly
to show you its logo:

*

How does one properly pronounce this name? Listen
carefully: “̌ı-téx” [“ěe-técks”]. In the first place,
you’ll notice that it should be said musically, with
tones as in Mandarin. (The first vowel is spoken
with a dipping tone, “̌ı”, where the pitch falls and
then rises. The second vowel has a strictly rising
tone, “é”, almost as if you’re asking a question.) In
the second place, you’ll notice that I’ve also rung a
bell when saying the name. The bell is also part of
the logo:

*

It reminds us that * is not limited by obsolete
conventions, not hampered by the days when doc-
uments were only seen but not heard. (However,
the bell is optional, and it is omitted in documents
that have no audio. Conversely, the logo is actually
three-dimensional in a 3D document.) In the third
place, did you notice that I said “tecks” instead
of “techhhh”? I’ve decided to go with the flow,
since almost nobody outside of Greece has ever
pronounced ‘TEX’ with the correct ‘X’ sound.

Some of you may recall that I wrote the entire
program for TEX78 and TEX82 all by myself, and
you may be wondering whether I’ve done the same
for *. Don’t worry: This time around I’m having
the job done by people who know what they’re
doing. After many years I’ve finally come to realize
that my main strength lies in an ability to delegate
work and to lead large projects, rather than to go
it alone. Programming has never really been my
forté — for example, I’ve had to remove 1289 bugs
from TEX, and 571 from METAFONT.

I made a very fortunate discovery during the
summer of 2006 when I visited the Academy of

* [A bell rings at this point.]

Sciences in Armenia. There I learned that a
huge amount of highly sophisticated but classified
defense work had been done secretly at a large
institute in Yerevan during the Soviet era. I met
many of the people who had participated in those
activities, and found that they were extraordinarily
good programmers. Moreover, they were anxious to
apply their skills to new domains. So they were a
perfect match for my desire to make * a reality.

I had long envied my colleagues at Stanford
who had started up their own companies and
gotten rich. Now it was my turn, and without
much difficulty I formed a clandestine group called
Project Marianne, comprising more than 100 of the
top programmers in the world.

A few weeks ago some of you apparently discov-
ered our website portal at projectmarianne.com .
I’ve also seen blogs that wondered about the Ar-
menian letter M on that page (Unicode #0544,
“Men”). But as far as I know, nobody outside
of our group has yet been able to penetrate the
firewall that we built into that site, nor to look
at any of our planning documents or initial demos.
Needless to say, I’m pleased at this success, because
the ability to create secure documents is another
feature of *.

Furthermore, I believe that nobody else has
realized until now that ‘Marianne’ is an anagram of
‘Armenian’.

After some deliberation, our group decided that
all of the code for * should be written in Scheme.
We also decided to guarantee success by using all of
the silver bullets that have been discovered by soft-
ware engineers during the past decades: Information
Hiding, Agile Software Development, Extreme Pro-
gramming, Use Case Modeling, Bebugging, Look
Ahead Design, Waterfall Modeling, Unit Testing,
Refactoring, Rapid Prototyping, the whole shebang.
We’re going beyond ordinary Object-Oriented Pro-
gramming to Aspect-Oriented Programming. But
we’re not using any formal methods, because ev-
erybody knows that formal methods are strictly
academic. And we’re abandoning the old notion of
“literate programming” that I used when developing
TEX82, because documentation has proved to be
too much of a pain.

Naturally it’s out of the question for a system
like * to be freely available and essentially in the
public domain, as the old TEX system was. These
talented programmers certainly deserve to be paid
handsomely for their hard work. We have therefore
devised some innovative pricing strategies, so that
I’m sure you will consider * to be an unbeatable
bargain, considering the enormous value of its new
features.

TUGboat, Volume 31 (2010), No. 2 123

Here’s the way it will work: Payments will
be by monthly subscription, which will entitle you
to unlimited use of * on one or two of your
own computers, or up to 40 hours × 16 gigabytes
of computing in our cloud of approved service
providers. During the first year we’re offering a one-
month free introductory trial; thereafter your costs
will depend on the quality of Internet access that
is available in your area. For example, California
users will pay $99 per month, and German users
will pay 69; but the monthly fee in Armenia will
be only 1999.

There are substantial discounts for senior citi-
zens and for children under five years of age, as well
as educational discounts for students.

Moreover — and this is the main innovation —
you get a 10% discount for every new member that
you can convince to join, lasting as long as you and
that person are both enrolled in the plan. Thus
if you can sign up just ten new subscribers, your
access to * will be free; and if you bring in eleven,
you’ve essentially garnered a lifetime income.

My new enterprise operates by monthly sub-
scription, instead of actually selling copies of the
software, in part because the software is propri-
etary, but mainly because * will change every
day, due to constant improvements and upgrades
to the system. Once upon a time I took great
care in order to ensure that TEX82 would be truly
archival, so that the results obtainable today will
produce identical output 50 years from now. But
that was manifestly foolish. Let’s face it: Who’s
going to care one whit for what I do today, after
even 5 years have elapsed, let alone 50? Life is too
short to reread anything anymore; in the Internet
Age, nothing over 30 months old is trustworthy
or interesting. We’re best off just enjoying each
moment as it happens.

* will benefit the entire world’s economy,
because it will lead to tens of thousands of new
jobs. For example, independent developers will be
able to design and sell plugins that are distributed
online and available for only a few pennies per
week. Any * user will be able to sell his or
her own documents online, without leaving the *
system, because * includes facilities for ordering,
billing, manufacturing, and shipping. You can, for
instance, write a blog, and others can package as
many chapters of that blog as they wish into a
customized book that is nicely printed and bound.

* will collect the appropriate payments from each
customer and divide them fairly between you, the
printer, the binder, and the shipper; the finished
book will then arrive promptly at the customer’s

residence. The operation will be something like the
old Sears and Roebuck catalog, but now each item
will be custom-tailored to an extent never before
seen.

More importantly, there will be a large network
of certified * consultants, at various graded levels
of certification. * has no user manual, in the
old sense, because the system changes daily. But
it does have three varieties of online help: There’s
online help for dummies, online help for wizards,
and personalized online help — in which you get to
chat one-on-one with a certified * helper. (Your
membership fee entitles you to an hour’s worth of
one-on-one help each month.) Such helpers can
arrange to work part-time for the * consortium,
out of their own homes and with flexible hours, in
order to supplement their other income.

Let me conclude by describing a few more of
*’s features, so that you can begin to get a glimpse

of how truly revolutionary it is. I’ve already told
you that dimensions can be specified as arbitrary
multiples of standard units; but that’s just a tiny
part of the story. * actually is able to do arbitrary
symbolic calculations, with polynomials and power
series and matrices and partial differential equation
solvers and convex optimization, etc., all integrated
with graphics for automatic curve plotting and
statistical charts, together with maps and satellite
photographs of the world. When combined with

*’s synthesized voice output, you can do things
like find a shortest route and navigate your car,
all as part of an * hyperdocument. If you’re
a professor like me, you can write math texts
in which the formulas are changeable by each
individual reader, who can evaluate them and plot
their graphs interactively. (Incidentally I’ve changed
math mode so that formulas must now be specified
unambiguously, in such a way that they can be
evaluated as well as printed; think MathML. This
makes the formulas longer and more difficult to
type, but that’s a small price to pay for the added
functionality.)

The hyperdocuments of * can have any
number of users, who can interact with each other
and render images of themselves as avatars. This
capability goes beyond the traditional kinds of
virtual reality that are offered by systems such as
Second Life©R , not only because of *’s haptics
but also because * uses hyperbolic geometry — in
which exponentially many avatars can be within a
bounded distance of each other.

Such interactive documents obviously enable
videoconferencing as a simple special case. I men-
tioned earlier that * can receive input from all

124 TUGboat, Volume 31 (2010), No. 2

kinds of sources: news feeds, webcams, traffic and
weather sensors, heart monitors, seismographs, as-
tronomical observations, you name it. All of these
can be captured, mixed, and/or converted to other
forms, such as audio or video or both. World-class
tools are provided for photo retouching and image
processing, computer-aided design, character and
face recognition, as well as sophisticated filters for
all sorts of data — including, for example, audio
tracks and email. Output can be automatically
formatted for lasercutters, embroidery machines,
3D printers, milling machines, and other CNC de-
vices . . . and shipped directly to consumers, as
mentioned earlier.

One of our early plugins will feature an in-
teractive cookbook that interfaces directly to your
kitchen stove, oven, pantry, and refrigerator, so
that you can prepare meals automatically with the
ingredients that you already have on hand, and/or
replenish your supplies by online ordering.

* naturally incorporates extensive facilities
for social networking. You can easily read the
hyperdocuments prepared by others, and it’s even
easier to send and receive “tweets”. (Your tweets
needn’t be limited to 140 characters of Unicode; the
actual limit is a parameter. For example, you can
set things up so that you receive only tweets of 50
characters or less.) With * your entire life can
be encapsulated into a dynamic hyperdocument,
downloadable by anybody you designate.

I had intended to give you a live demonstration
of * today, instead of merely talking about
its features. Indeed, * was supposed to have
provided all of my slides for this lecture, because
the illustrations for a technical talk are among the
simplest of all documents to create. Unfortunately,
however, that has turned out to be impossible,
because of hardware glitches and breakdowns in
communication that I had no way to anticipate.
(You can well imagine how difficult it has been to
get all the pieces of * to work together.)

But my coworkers assure me that the system is
almost ready for its first major release, and we plan
a worldwide press conference when * is officially
launched — hopefully next month.

Well, I’ve got to stop now: I can’t tell you
any more until our patent applications have all
been filed. But I’m sure that, once you’ve tried

*, you’ll immediately want to become a charter
member of ı̌TÙG*.

⋄ Donald E. Knuth
Founder of Project Marianne

TUGboat, Volume 31 (2010), No. 2 125

TUG 2010 Panel: Don Knuth & Stanford
TEX Project members

David Walden, moderator

[This transcript has been lightly edited. The session
is available on video at http://river-valley.tv/

tug-2010-panel.]

Karl Berry. I will briefly introduce our panel
moderator, Dave Walden, who as you know handles
the Interview Corner and all kinds of interviews . . .
so I asked him to handle this one too.

Dave Walden (moderator). Thank you, Karl. I
was really pleased to be invited by Karl to chair this
panel, for three reasons.

First, despite the fact I’ve lived in Boston for
46 years, I grew up in the San Francisco Bay Area
and graduated in mathematics from San Francisco
State. So, it’s a real pleasure to be back at a math
meeting in San Francisco. This is probably the first
time I’ve thought about math in San Francisco in 46
years. It’s good to be home.

Second, I’ve always admired Donald Knuth. I
bought his Art of Computer Programming in the late
60s and used it in my daily work. When volumes 2
and 3 came out, I immediately bought them, and
we used those in our daily work. More recently,
when I decided to stop using Word and go to some
kind of a text processing system that didn’t have
hidden proprietary undocumented markup, I chose
TEX because I admired Don Knuth and I thought
I’d like to try something that he created.

And, of course, the third reason is that that
brought me in contact with this community, and
through interviews and so on with everyone on this
panel. So, third, it’s a real pleasure today to get to
get to meet everyone here today in person.

With that I’d like to introduce the panel mem-
bers. I’ll first mention Don. It’s a cliche to say,
“he needs no introduction”, but with this group and
this man, he needs no introduction. I’m sure each
of us knows of several things in his massive set of
accomplishments in a variety of areas. And, in fact,
his publisher conveniently gave us this list [holds up
advertising page from CSLI] of nine different books
of his collected works in different areas, and that
does not include The Art of Computer Programming
which has a different publisher.

So I’ll go through the rest of the panel in al-
phabetical order, and I will introduce you to them
saying a word or two about their TEX accomplish-
ments. Naturally, they have had full careers in other
areas and have done many other things, and I com-
mend the interview series to you. And the couple of

you [panelists] who have not yet participated — it’s
time.

[At this point the moderator introduced David
Fuchs, John Hobby, Frank Liang, Oren Patashnik,
Michael Plass, Tom Rokicki, Luis Trabb Pardo,
Howard Trickey, and Joe Weening using essentially
the descriptions of the “TUG 2010 Conference Re-
port” on page 117 of this issue.]

Regarding the format of this panel, Don asked
me to say, “I am going to have a half hour to myself
later. This is the only time the rest of the panelists
get to talk, so please focus as many questions as
you can on the rest of the panel” — said Don, and
I say that to you [members of the audience]. What
I’d like to do is go through the panel one-by-one. I
won’t do a strict rotation but let’s have a question
for each panel member before we go to a more open
format. And, panelists, I encourage you, if you have
something to add to an answer of a fellow panelist,
please chip in. I think that hearing different sides
of these historical stories is often interesting both
because it elaborates on the stories or sometimes it
shows some conflict in the stories.

May I have the first question from the audience.
Oh, one more thing, unless we have a mike in the
audience, please say the question loud enough for me
to hear and I’ll then repeat the question for Kaveh’s
videotape.

Unknown. The question for Frank is, “How did
you discover your hyphenation algorithm?”

Frank Liang. Well, I was assigned this problem
as a thesis in 1978, I believe. As I have mentioned
in my thesis, there was an initial suggestion to use
a kind of statistical algorithm which looked at two
letters — well, actually four letters — surrounding a
potential break point, and then you were supposed to
make tables using two letters before, the middle two
letters, and the last two letters, and then combine
these tables somehow to do hyphenation. So I started
experimenting with some word lists, and I quickly
found that that wasn’t sufficient; you needed more
context. One example I mentioned in my thesis is
that sometimes a letter seven letters away from the
hyphen point can alter the breakpoint.

Anyway, I’m playing with word lists a lot and
came upon the idea that just patterns of letters was
a very simple way. Because I had started with just
these two letter digrams, it was natural to extend
that to longer letter sequences. And then through
a long process of evolution I came up with patterns
and then with the rules and exceptions. Don actually
came up with the idea of assigning the numbers and
having them at one of my thesis review meetings. I

TUG 2010 Panel: Don Knuth & Stanford TEX Project members

126 TUGboat, Volume 31 (2010), No. 2

sort of had the idea of having rules and exceptions,
and he said, “Oh, you could assign numbers to them.”
So that’s part of the answer.

One of the hardest parts of the whole thing was
acquiring a suitable word list. I didn’t have access to
every database, and there weren’t that many at the
time. I got a copy of the Merriam-Webster dictionary
that had hyphenation points. But upon looking
through it, there were many errors and lots of typos
and things that just weren’t quite right. So I had
to hand edit the dictionary, and that took about
three months. So that is where most of the work was
actually.

Moderator. Any of the other panelists have a
comment on this?

Howard. And the tries . . . ?

Frank continues. The tries — that sort of came up
separately, after the pattern idea. As I was playing
around with the word lists all the time, I needed some
kind of relatively fast algorithm to quickly collect
information about the patterns in the word lists
with hyphenation points and then to test out various
theories. Because these were just simple strings, it
was natural to look at variations of standard data
structures like tries for that and to read related
papers like Don’s on pattern matching.

The problem with the tries — tries are very fast
because it is just based on indexing, but they tend to
be very sparse so you then have to use various tricks
to speed that up. And the idea, actually, for doing
this weird packing, if that is what you are referring
to, was I read another paper by a Stanford professor
at the time, Andrew Yao, which was talking about
storing a sparse table. It was a somewhat different
application, but he had this idea of when you have
these sparse things you sort of interleave them all in
one array and thereby save space while maintaining
speed. So that’s where I got that idea.

Moderator. A question for another panelist?

William Adams. My question is for Tom Rokicki.
Ages ago, when the WorldWideWeb.app was writ-
ten on the NeXTstep, there was also available on
that same platform TEXview.app, and we’ve seen
an awful lot of effort in trying to get mathematics
and nice fonts and nice settings onto the web. Why
didn’t we just start out with an extended version of
hyperTEXview.app and cut to the chase?

Tom Rokicki. [to the moderator] I’m sorry. Can
you repeat the question?

Moderator. I don’t understand the question.
Maybe William can say it again, and I can try to
repeat it.

William. We started out with TEXview.app on
NeXTstep and on that same platform, WorldWide-
Web.app was developed by Sir Tim Berners-Lee.
Why wasn’t TEXview.app used as the basis for the
WorldWideWeb.app so that mathematics and so
forth would have always just worked instead of us
constantly working to try to make them work on the
web?

Tom Rokicki. Basically, you’re asking why TEX
was not chosen as the basis for mathematics on the
web, based on the NeXTstep. Boy, I’m not really
the right person to ask. Gosh, you know, I really
don’t have a good answer to that. The HTML stuff
was really crude in the beginning, and it’s still pretty
crude, but it’s getting there. So I don’t really think
anybody spent a lot of focus at that time. Back then,
it was just “let’s get the links working, let’s get the
text working, let’s draw around images, and stuff like
that, and call it a day.” Which was pretty amazing
in itself. As far as what went after, I really can’t say.

I’m not sure that it really fits though. Because
the web, HTML, is all XML-based. And TEX is rather
different. And I think there was a very strong reason
to keep it as a markup language like SGML or XML,
that could be easily automated, and restructured,
and all this type of stuff. So I think that there were
good reasons why TEX was never used at that point.
But I was never really part of that, so I can’t say for
sure.

Moderator. Another question? Nelson.

Nelson Beebe. Question for David Fuchs. It’s
important to remember that in this audience there
are a lot of younger people here who have grown up
with laptop computers, that TEX was designed on a
machine that cost roughly half a million dollars at
its entry level price. And there were two people, one
of whom is sitting here, who really changed that and
made life different for an awful lot of people, and
Dave Fuchs is one of those; the other one is Lance
Carnes, who unfortunately isn’t here today. I’d just
like Dave to comment on his work with MicroTEX,
which brought to you the first live preview, while
TEX was running, of what was happening, and how
difficult it was, and how much hair he lost trying to
get TEX to work on the little machines of the day.

David Fuchs. Well, that was fun. It was a lot
of kind of hackery and trickery down at kind of the
bit level, and the intricacies of the 8086. At the
time, there were no good Pascal compilers, if there
ever were, . . . , well, that’s not true — there was a
good DEC one. So that work involved writing kind
of a limited Pascal-to-C translator that had special
hacks — it didn’t bother with the parsable language

David Walden, moderator

TUGboat, Volume 31 (2010), No. 2 127

that TEX didn’t use, it had special hacks in it so that
I could insert using the change file scheme from WEB.
I could insert magical keywords that I had laid out
that said, oh, here’s one of the big arrays, and then
I could write some assembly code. . . . Gee, there was
even a version, there were different instantiations
of it. One early version, I just pretended to the C
compiler that the arrays weren’t really big. It always
produced one of three different sets of machine code
instructions to address those arrays; I had a post-
processor that would look through the object code
that the compiler created, look for those three or
four possible patterns, insert some special other code
that called some of my code to look at the real array
thing, That only lived for a version or two. Then
there were other cute tricks: it kind of used a sort
of VME system where I chopped up the arrays into
pieces, and those got swapped in and out of, I think
off of the disk. I even stuffed some of them, as an
experiment, into the . . . it turns out the video cards
that you had, that drove your displays, they had
some extra RAM in them, so you could swap stuff
out, and it was kind of fun, ’cause if you put the
video card into a different mode you could actually
see that stuff on your screen going by.

So, the early PCs had a maximum of 640 K, and
a lot of people for a while had 512 K, so that was
marginally not quite enough to do everything, so
you had to replace all the run-time libraries that
came with the compiler. I was down to . . . I wasn’t
even using . . . what’s it called that’s usually linked
in with the C program, even the startup code, so
you got . . . there was no standard files, there was
no anything. So that was all to cram it down into
512–640 K.

Lance did a job too. Because his stuff was rather
commercial — that’s his livelihood — he was always
somewhat circumspect about it. But, obviously, it
wasn’t complete black magic.

Tom also had some work in this direction, if I
remember correctly?

Tom. Absolutely not, absolutely not. [laughter]
This accomplishment of David Fuchs’ was one of
the most amazing things I’ve ever seen. All my
platforms had plenty of memory. I never had those
issues. I cannot believe what Dave accomplished —
it was absolutely amazing! Okay, truly a hero.

Moderator. Anybody else have experiences with
these tiny machines?

Another question, please. Hans.

Hans Hagen. Aren’t you somewhat disappointed
after 32 years that not more people made fonts using
METAFONT?

Don Knuth. Well, I can’t say I’m disappointed
in the fonts we have now. And I’m happy with the
ones that my students have made, and I made. So
I’m not When I wrote it, I just had the idea
. . . everybody’s entitled to have some mistakes in
their life, and so I didn’t have to worry about the
fact that not everybody would use every program I
wrote, and this one happens to be a very personal
thing, and so the way I look at it is, how wonderful
that John extended it to METAPOST, which I use
a hundred times more than I use METAFONT. I’ve
already done most of what I ever need to do with
METAFONT.

Hans. But didn’t you overestimate the font design-
ers then?

Don. Well, I thought it would be easier to teach the
font designers about the notion of parameters and
metadesign than it was. Computer scientists, we’re
used to writing something that’s going to work under
many different conditions as the parameters change.
But to most of the rest of the world, to my big
surprise, they never heard the word “parameter” —
they thought it meant “perimeter”.

Moderator. John?

John Hobby. Yes, I certainly agree that the
METAPOST application was more popular, but Don
has a very unusual set of skills, and indeed, there
aren’t many other people who are good at that kind
of thing. I think the real thing is, it’s just too hard to
create a really meta-font, as far as the art community
is concerned.

Moderator. Any other comments on that from
the panel?

Okay, another question — for Oren, or Michael,
or Luis, or Howard?

Karl Berry. I have a question for Howard, which
is, I’ve spent a lot of my life looking at TEX.CH, and
at the top in all those change files, pretty much all of
them say “Howard Trickey and Pavel Curtis”. I see
Howard Trickey, who I never quite understood was
at Stanford before this conference. I wonder if you
could tell us if you worked directly with Pavel, or
if it was two independent things, or how that came
about.

Howard Trickey. This is pretty interesting. The
fact that that change file has my name in it meant
for many years it was really easy to find me on the
World Wide Web. There was, like, 300,000 references.
So thank you all for putting that page up on the
web.

Don had done his thing on the DEC computer,
and I had worked on VAXes — I didn’t like this com-
puter. And I wanted this thing to work on VAX.

TUG 2010 Panel: Don Knuth & Stanford TEX Project members

128 TUGboat, Volume 31 (2010), No. 2

Moderator. The VAX was from DEC. [laughter
from the audience]

Howard. You’re right! I’m sorry!
The DEC 20 as opposed to the VAX. And so

I did the work that was necessary, which turned
out to be evil, although not nearly as evil as the
things Dave had to do because he had to change the
Pascal compiler default clauses to fool around with
the [inaudible]. And I had to do the change file that
did the system-y stuff that Unix needed, so that’s
where that change file came from. And then I found
out, hey!, this guy named Pavel Curtis had done the
same thing, unknown to me. It happened almost
simultaneously. So we were hooked up together and
cooperated together.

Moderator. Anything else on that from the panel?

Don. Can I ask a question of Michael Plass, to
describe his experiences in 1978 when I went to China
and asked him to implement the prototype of TEX.

Michael. Don had this trip to China, and he left
Frank and me with a few pages of what his ideas were
for implementing — what he would like us to imple-
ment over the summer. (I actually wonder whether I
still have those pages somewhere. I tend to keep stuff
so it’s possible — that would be interesting.) Frank
was tasked with the hyphenation, and I was tasked
with building up starting with storage allocation, I
guess (the very bottom), the macro processor, and
up through . . . I think by the time he got back it
was about ready to start implementing some of the
line breaking stuff. I guess Frank was also working
on the output — the printer driver end of this so we
were able to make some prints by the end of that
summer. One thing I remember is with the macro
language the way Don had spec’d it out, I did some
experiments, and he decided it was too powerful —
that you could get too tricky with it and do too many
things. So he redesigned it to be much more token
oriented than it was in the original.

Moderator. Frank, do you have anything to add
to that?

Frank. Well, what I remember in addition to the
hyphenation which actually I did while Don was here
was that, after looking at his notes, Mike decided —
he was sort of in charge — we decided to split it up
and I would do the output and he would do the rest.
And I said this didn’t sound like much. At the time
he thought output sounded pretty difficult because
maybe he didn’t know how to do it right off the bat,
and of course I had already been playing around
with the XGP so I knew how to do it. So for me
actually it wasn’t that much work and he ended up
with much more than he thought. What he gave me

was a list of boxes, graphics boxes, and I said, okay,
I’ll just put them on the printer so that wasn’t much
work for me. Obviously we way underestimated how
much work it was going to be and it was two more,
or several more years of Don’s work later.

Moderator. I have a followup question. In
Michael’s interview, on the TUG web site, he says
that after Don got back, then he rewrote it all. And
so my question for Don is, you didn’t like Frank and
Michael’s work?

Don. Oh, no, actually I liked it, although there
were basic changes made. I think control sequences
were sort of considered as one character at a time
instead — this tokenization idea was coming along
at the end — so really the main thing is it gave me
the idea for an architecture for the program. But I
never expected that I was actually going to use that
exact code. I wanted to see it in place; I wanted
to see how big it was, what kind of subroutines you
needed, and things like that, so that was a key step
in getting going. But I knew my sabbatical year was
coming up, and that during that time I would . . . I
always intended to look at what they had and then
work over again, and say, okay, now back to square
one. Now we know what it’s going to be like. Now
let’s design the right data structures that go with
this kind of architecture.

Moderator. Question for Oren or Luis or Joe?

Boris Veytsman. Question for Oren. I always
wanted to know, what was the inspiration for the
style of BibTEX language?

Oren Patashnik. For the style of the BibTEX
language?

Boris. No, for the BibTEX language itself — for
the .bst files.

Oren. Leslie Lamport needed somebody to do a
bibliography program to go along with LATEX, and
his idea was to use, sort of as a model, Scribe — it
had a bibliography program. So he and I sat down,
and he had some ideas about things that he’d want in
this .bst language. So he and I sat down and kind of
discussed it, and I was the one who implemented that.
So BibTEX itself is really, to a first approximation,
an interpreter for this .bst language. That’s really
what BibTEX is.

Leslie Lamport — I think the main ideas for
what (he had thought about it before) what was
going to go into that language, came from Leslie.
And then I implemented it.

I just wanted actually to follow up, in addition
to the discussion of literate programming from earlier
[Bart Childs’s presentation, “Thirty years of literate

David Walden, moderator

TUGboat, Volume 31 (2010), No. 2 129

programming and more?”, pp. 183–188], I sort of
thought about this a little bit over the break, and
I went up to my room and got this — it’s my copy
of bibtex.web. I think tex.web is probably the
largest piece of software in WEB, and bibtex.web is
maybe the second or third, I’m not sure. But it’s a
third or maybe two-fifths the size of TEX. Actually,
I hadn’t — all the stuff I’ve been doing with BibTEX
since, has been looking at the stuff with the .bst

language, and not with BibTEX itself. The only bugs
have been really, really minor, except for one; there
was one kind of majorish bug, which is that it didn’t
handle URLs.

Well, back when BibTEX was written, there were
no URLs, so I didn’t have a chance to test it out on
that. I think I misunderstood something that either
Don said, or Dave said, I don’t remember, about
how control sequences are handled, and so basically,
BibTEX doesn’t handle the line-breaking right for
very long URLs; that’s the issue. And so finally, I was
convinced that I should . . . , and rather than release
a version of BibTEX with all these kind of minorish
things, that’s probably not worth wasting people’s
time to install a new version for that. Rather than
just doing that, I thought I would finally release a
new version of BibTEX that had as its only change
that change to how BibTEX handled the long URLs.
And so I recently did that a couple of months ago —
I was working with Karl. And this is getting back to
the literate programming in WEB. Every time I look
at BibTEX itself — sometimes I look at the bits on
my computer, sometimes I look at the hard copy —
every time I look at it I think, kind of, what’s going
on here? But pretty quickly I then sort of get into
it. But I hadn’t really had to make a change before,
until this time. And I realized . . . same experience,
I looked at it, I knew I’d taken a peek at this, and
I thought, well it’s not completely trivial, so I’ll do
this eventually. So now is the time to do it; we finally
decided now’s the time to fix that bug.

I looked at the code, and after not very much
time — it always takes me a long time to do context
switching — I looked at it and said, oh, gee!, the
structure of what’s going on in the program became
completely clear. It was like I was in a zone; you hear
athletes talk about “being in the zone”, a basketball
player, all of a sudden the basket looks huge, and
it’s easy for them to make a basket, or a baseball
player, the pitch coming in from the pitcher looks
like a grapefruit, and it’s easy for them to hit it,
or a soccer player knows they’re going to have a
28-yard direct free kick, bend it around the wall
and bury it into the upright corner of the net. I
mean, talk about athletes getting into the zone, and

I sort of felt like that was the experience I had here:
After a little bit of looking at this program, all of a
sudden the structure and what was going on became
completely clear, and it was really easy for me to
make the change.

I had just switched computers, so I didn’t ac-
tually have a TEX implementation on my computer,
and I had to use Karl as my debugger —KBDB or
something like that — so in the change I made there
was one minor mistake. So it took two passes. But I
was amazed at how, initially you look at this code
and think, what’s going on? But very quickly I
completely realized the structure.

I think what happens is, when you do literate
programming, it imposes in your mind a map of
what’s going on in the program. It had been 22 years
since I’d looked at this code, I think; after 22 years,
it didn’t take very much, and all of a sudden it was
crystal clear. I’ve never felt that experience before.
When looking at .bst code, that doesn’t happen to
me. [laughter] But with a literate program, I think
it’s because literate programming imposes on you a
structure that, even when you haven’t looked at it
for 22 years, it comes back; it’s still there.

Moderator. Don, you have something to say?

Don. Well, speaking of literate programming re-
minds me of a question for Joe Weening, because
it was Joe who suggested the idea of mini-indexes
that I used in the TWILL program for literate pro-
grams, and Joe made some mockups, so maybe he
can remember something more than I can.

Joe Weening. I remember them, but I don’t
think there’s much to say beyond what you just
said. It’s a pretty simple idea: looking at a page of
a literate program, there’d be a lot of names you
hadn’t seen before — names of variables, names of
other sections, and so on — and so rather than go
from each page to an index and then to another page,
the idea was, let’s go there directly. Of course, this
was before hyperlinking. You must have heard about
hyperlinking! Nowadays, what you’d want to do, you
would be looking at this on line, and you’d just click
on something. That’s probably what [. . .]

Don. Certainly we do have the hyperlinks and
the clicking now, but a lot of times there’s still a
value for this in hard copy, when you have a book
and you’re sitting in your chair, or you want to keep
coding without clicking to the other part. But the
thing was, you not only suggested the idea, but you
also showed a really nice way to present it. I guess
it seems simple to you, but it was a real revelation
to me.

David. TWILL?

TUG 2010 Panel: Don Knuth & Stanford TEX Project members

130 TUGboat, Volume 31 (2010), No. 2

Don. Yeah, TWILL. It’s on my web site. It’s not
that easy to use, so I don’t advertise it much. It
requires running in several passes. When you have a
literate program and you have a variable called ‘x’,
there might be thirty variables named ‘x’, so you
have to disambiguate which one you’re talking about,
at least when you write code the way I do, which
is maybe not the best. So you have to go through
several passes, and then give hints, and say “No, I
didn’t mean that ‘x’, I meant this ‘x’.” And you
have to tell it to say “This is something in such-and-
such a C library.” So there’s a bit of hand-tuning
that goes on, and it’s not a trivial thing. I just went
through a book coming out later this year called
Selected Papers on Fun and Games. In there I have
a hundred pages — I took the original program of
“Adventure”, the cave game, of Don Woods, and I
rewrote it as a literate program. And it appears
with these mini-indexes, but I had to go through
carefully and do it. But the original program used
to do Volume B and Volume D, you know, TEX: The
Program, METAFONT: The Program, it was called
TWILL. And now I have CTWILL.

David. Wasn’t there an early version of WEB? Did
Luis work on it? Wasn’t there a version of WEB that
was before WEB?

Moderator. Perhaps one of you could speak a bit
about that? Luis, perhaps?

Don. Yes, I was going to ask Luis about the origi-
nal . . . I mean Luis was involved with this project so
early on that you don’t know any more all the key
things that happened. There are, for example, ques-
tions of how did we port TEX to a hundred different
computers and get the tapes out and everything like
this. People were asking about Maria Code the other
day, and somebody said they didn’t know if she was
a real person. And also, you might be able to also
speak as to what Ignaki [Ignacio Zabala] did — he’s
the main person of the original team who isn’t here
today.

Luis Trabb Pardo. The question about the lit-
erate programming, it was originally a much more
mundane thing. We were distributing tapes, and peo-
ple wanted to know where was the “Main”, where
does the program start? I said, “At the bottom.”
And my primary function at the TEX Project was to
answer the phone. And I essentially answered that
question, “It’s at the bottom.” In some discussions
with Don Also, there was the issue of docu-
mentation. So, the idea of blending that came very
naturally as the necessity to not answer questions
but have the questions essentially be answered by

what you said. That was the suggestion; essentially
Don did the whole thing.

The issue about what Ignaki worked on origi-
nally was to start thinking in terms of graphic objects
that were going to be put on a workstation. We were
in an environment at Stanford that was a timeshared
system, and we didn’t have much . . . well, we did
have interesting things going on there, but the con-
cept of a resource available to you like we have today,
on our desktop, on our personal computers, was not
there. So he started working from that component.
He actually put together a system that had all kinds
of graphic things. He called them graphic objects.
And you could do what you could do today in a
display environment on an existing system. I think
that answers more or less the level of what Ignaki
did.

Unknown. Was Maria Code a real person?

David. I believe that was Ron Code’s wife. I
remember dealing with Ron more than Maria. The
ARPAnet was there, but that was only academic and
government institutions, so it used to be, you’d send
in a tape to, I think, Ron and Maria Code, who were
entrepreneurs, I suppose; I don’t know how they
hooked up with us. And they would spin off a copy
for you and send it.

Unknown. So they weren’t members of the Stan-
ford CS department?

David. No, no, I saw them in person.

Moderator. The statement from a member of
the audience [Gio Wiederhold] is that Ron [Code]
worked for him in medical information systems.

Gio Wiederhold. Maria did all the hard work,
and Ron managed her.

David. I believe I gave him the tapes after a while,
whenever there was a new release. Following up on
the thing that Luis said, when he stopped answering
the phone, I was the one who started answering the
phone.

John. Actually, I answered the phone for you.

David. I apologize. [laughter] It turns out, there’s
really only five questions that anybody ever asks, so
after awhile, if you called, and you happened to get
me, you could start asking your question, and I’d be
able to answer it before you were done. And, not
only that, after awhile it got so I could say, “And, by
the way, the next question you’re going to ask”
So people thought I was brilliant from this, but it
turns out it’s all fake.

Moderator. There’s a question out there.

Didier Verna. Something totally different. The
first part of this question is probably for Don, and

David Walden, moderator

TUGboat, Volume 31 (2010), No. 2 131

the second part for everyone. I would like to know
why TEX was designed as a macro expansion system,
and the second part of the question is for all of you:
How do you regard that design decision thirty years
later?

Don. The way TEX was designed was the following.
I thought I would have a language for myself and my
secretary, and I sat down one night and I wrote out —
I chose about seven pages of The Art of Computer
Programming that had different kinds of features on
them, and I said, how, if I were entering this into a
computer, how would I like to do it? And I wrote that
down; it’s all there in the book Digital Typography,
the memo that I stayed up late one night writing it
out. And then I figured out, I changed it a little bit
to something I thought I could implement, and gave
it to Michael and Frank while I went to China. But
the design, it was natural to have macros rather than
procedure calls, the way I looked at things, because
of the way I could conceive of writing this program.

So, the second question is, is it worthwhile?
Well, you’ll have to wait for my next talk. But
I don’t know what the other people on the panel
[think].

Moderator. Does anybody else have a comment
on that?

David. Yeah. One of the things to keep in mind,
people going, oh, my gosh, how can you possibly fit it
in 640 K back in the PC days? Well, it’s important to
realize that the big DEC-10 that it was developed on
was a 36-bit-word machine — let’s call that 4 bytes,
more or less — and you only got 218 of those, so
that’s only a megabyte. And the whole thing, even
in the big version, fit in a megabyte, and, boy, when
you look at a lot of the decisions, at least from my
perspective, it was driven by that. It’s amazing that
you can do that much in that little memory.

Don. But when I got to METAFONT, it was macros
gone berserk, because I had object-oriented macros
in there.

Moderator. Another question from the audience?

Hartmut Henkel. This is for Don Knuth. Was it
backslash from the beginning? Why, actually, is it
backslash introducing any TEX command?

Moderator. The question is, was it always the
backslash that introduced TEX commands?

Don. You can see exactly what it always was just
by reading that chapter — I guess it’s two chapters —
in the book Digital Typography. It answers every
question about what was there in the beginning.

Actually, I think, in my very first draft I did not
have reserved words, because I was thinking of nroff.

They didn’t have any backslashes, so then I wouldn’t
be able to use certain words. But that didn’t last
very long.

Moderator. Question over here.

Unknown. This is partly for Don, but partly for
anybody else. When did you first become aware of
the PostScript language or its predecessor JAM and
to what extent was there any influence of that design
to TEX, or perhaps backwards?

Moderator. Michael has an answer, maybe?

Michael. After I graduated from Stanford I started
at Xerox PARC in the lab where Chuck Geschke and
John Warnock were, and at the time JAM was in use.
By that time, they had already translated TEX78
into Mesa, so it could run on Altos and the other
machines in use there. So I really don’t know how
much they influenced each other, but I think the
TEX stuff probably predated a lot of the . . .

John. I did learn JAM one summer very early
in my graduate career, but it was just part of my
education.

Don. I didn’t look at PostScript very much myself,
but I did visit PARC rather often, and I saw, well I
remember one of the first times I went there, going by
a room, somebody sitting by a terminal, and there
was a big letter “B” he was measuring. So when
I took my sabbatical year, that first year in 1978,
I asked Xerox PARC if I could work there, to do
my font work. And I was going to measure all the
letters in my book, and fit splines and everything,
and they said, well, that would be fine, but then
all of your fonts belong to Xerox. So I went back
to the Stanford AI lab and decided to do it myself.
So there was a lot of work going on at PARC. And
Warnock actually brought his stuff from Utah before,
which I only learned later. But then the other main
influences — afterwards, in the ’80s I’m meeting the
leaders of the font industry. Mike Parker comes from
Mergenthaler, and says, boy, there’s some guys over
. . . that have this PostScript language that renders
fonts in an incredibly fast way from outlines, and
things like this. And he was all excited about it.
And they had new ways of tuning the fonts to the
raster dynamically; hints, they call it now. And so
that’s when I first learned, myself, about that kind
of work, the PostScript.

Moderator. I have a question. When in his
interview, John Hobby says he worked with Don
on METAFONT, that he primarily worked on the
algorithms, and Don did the coding himself, I’m
wondering with Frank and Michael, with hyphenation
and paragraphing, was it the same situation there,

TUG 2010 Panel: Don Knuth & Stanford TEX Project members

132 TUGboat, Volume 31 (2010), No. 2

or did any of the rest of you actually touch the TEX
code?

Don. So, let me say that they were watching me,
over my shoulder. [laughter] Especially David. But
if you look at the error log you’ll see, for example, like
I think there will be several entries that say “HWT”,
and that’s Howard Trickey, and so on. And the error
log is also printed in Digital Typography. So the
idea was, really, I was the filter and the final end.
And we had this group that would meet once a week,
and we would discuss over lunch, maybe two or three
hours, and we would toss around whatever the topic
of the week was — everybody was participating and
looking at these decisions during that time, and then
I would have to go back. Usually I would have a new
chapter of the manual with me that they would look
at, and say “Well, why did you do that?” Or they
would shoot ideas, “Let’s put this feature in.” But
then I didn’t want the project to diverge, so I always
decided basically, okay, we’re going to make sure this
is a little bit unified by being the only person who
wrote the code. And I guess it’s also because I guess
I’m a little afraid of using something that I don’t
really understand all the way through.

Moderator. Anybody else want to comment on
the collaboration with Don?

David. Let me just follow up quick with that. You
know for awhile when I was answering the phone,
I was also kind of the gatekeeper — people thought
they found a bug, which frequently they hadn’t, but
when they reported it, I’d go, okay, I’d check it out,
and see that it seemed like it didn’t work, and I’d
go into the code — it didn’t happen that often — but
I’d try and come up and find the exact line that was
the problem and come up with a suggested solution,
you know, in real code and test it out, and then I’d
send it along to Professor Knuth, and not once did
a corrected version come back that matched what I
had suggested. [laughter] Never happened. It’s all
his code.

Moderator. Luis?

Luis. I think I have a comment in the opposite
direction, which is the influence of what was happen-
ing, what Don’s area of work and expertise meant
to all of us who were working in there. I want to
counter that with my experience in industry later on.

One of the things that you see in the devel-
opment of TEX and METAFONT is the concurrent
solution of a large body of problems that were not
solved in a particularly efficient way, or were solved
in different places. And many algorithms were re-
done, or adopted or whatever, but there was always
this . . . this group of people is the group of people

who had learned about algorithms and about how to
do them efficiently, and to solve complex algorithms,
not trivial [ones], and solve them in an efficient way,
not just take the trivial answer and be just happy
with it. One of the things I’ve seen repeatedly in my
experience in industry is that many, many engineers
just decide, “Oh, it works. Bye.” If you try TEX
or METAFONT that way, it will not work, because
maybe some things will be solved, but the entirety
will not work.

The other thing is the issue about efficiency and
optimality of things. My own little experience on
this was, at the beginning we needed to interface
things. And I remember a conversation with the
engineers at Canon, who had brought to Stanford
a printer, an OEM printer with no controller, and
they said, “We did the printer, but the controller is
very difficult.” So we said, “We’ll do the controller.
Can you give us the printer?” We had a discussion
about it. And what we did in there was essentially
to think about how to use things that we had, like
a little microprocessor, and built a few things, and
we got a controller in there. The industry was not
willing to go that way. They would say, “Oh, it’s a
complicated thing, we need a lot of memory, a lot of
power,” Well, what we had at that point were
the people around who just figured out how to solve
it with the things that they had there. And I guess
that that’s what made it possible.

Moderator. Karl?

Karl Berry. I guess this is a question for everybody
except Don, per his request. Given all the comments
about literate programming, both by Don and now
by Oren, I wonder if any of you have seen literate
programming after your TEX life? [silence] I was
afraid of that. [laughter]

Moderator. Has anybody seen literate program-
ming in their life after Stanford, after TEX?

Karl. Used by, done by somebody else?

Tom. I don’t claim to be capable of writing very
well, but on a number of our projects I have used
literate programming techniques for a delivered prod-
uct. In my modern life, I don’t. For fun, I do, but
not for anything I do commercially, or anything like
that. But for a number of projects I delivered both
during and after grad school, I based on literate
programming ideas. I didn’t necessarily use CWEB.
For instance, one project I did — it was a SCHEME-
language program — I did use CWEB for that. But
certainly the concept of the linear exposition of the
ideas, small sections, and focusing the effort on al-
lowing readers to understand the program was the
goal I was shooting for, as opposed to just letting

David Walden, moderator

TUGboat, Volume 31 (2010), No. 2 133

the compiler accept it and letting it pass all the unit
tests and stuff like that.

Moderator. Luis?

Luis. I think if you just take a sample of what
you have out there, you would say that probably
documentation is never done within two or three
years of release of a project. So essentially, there is
no priority anywhere in the workplace to anything
close to this idea of presenting the totality, of the
concept, the implementation details, and the actual
implementation in one place. You’ll be fired if you
try to do it.

Moderator. There’s a question back there?
Oh, wait a second, Don wanted to say something.

Hold that question.

Don. About 20 years ago when Bill Gates visited
Stanford I gave him a copy of the book Literate
Programming. I just wonder, Frank, if anybody in
Redmond ever saw it.

Frank. Twenty years ago I think I had already left
Microsoft. My office was right next to Bill Gates’s
for about a year. But I hardly ever saw him except
he would walk by in the morning and he would
walk out in the evening. So I’m sorry. We used at
Microsoft, when I was there, we had all our own
development system which was kind of inspired by
another Stanford graduate, Charles Simonyi. He
had something called Hungarian. I don’t now how
many of you are familiar with that. We used those
conventions at Microsoft in the early days. Now the
organization is so huge I don’t really know.

Moderator. Let’s go back to the question there. . . .

Idris Hamid. This is a question for Donald Knuth,
and it relates to, I guess, what we might loosely
call the mysticism or spirituality of TEX, what I
would loosely call the mysticism or the spirituality
of the topic. One of the classes that I teach in the
philosophy department is religions of the West. And
in the Christianity segment, I actually used Bible
Texts Illuminated. We don’t have time to read the
whole Bible, and of course that covers a number of
religions, and even if it only covered Christianity
we wouldn’t have enough time to cover the entire
Bible. But taking your own approach, this is one
of the texts I used in that class. And, before I
ask the question, I want to make one more brief,
contextual comment about this. In my own work,
which involves the study of Arabic manuscripts, a
lot of which relate to spiritual literature, one of the
things that I’ve encountered is the need to begin to
deal philosophically with the æsthetics, for example,
of the Arabic script. And then I start coming across

certain sayings in my own tradition, as a Muslim, for
example, a beautiful script makes the reality that
it represents become more obvious. Or, that God
is beautiful, and he loves beauty, loves to see his
creation create beauty. So my question for you is,
when you reflect on your years of work developing
TEX, and when you look at your interaction with the
written word, what spiritual or æsthetic reflections
or wisdoms would you like to share at this juncture,
given these years of digression that turned into such a
beautiful product; what kind of spiritual or æsthetic
reflections or philosophical reflections would you like
to share with us?

Don. So, in the first place, it sounds like we’re
on the same page with respect to our feelings about
the primacy of having beautiful things. The second
thought that came to mind quickly was, when TEX
itself became a reality was the moment that it had a
name, and that also goes into the religious concepts,
of naming something. When Duane Bibby came
along, it actually got more of some kind of a soul;
I don’t know. But anyway, the project from the
beginning was definitely driven by the idea that I
wanted to have the things that I myself was writing
would be something that people would enjoy looking
at — not just reading, but also somehow the idea that
I liked it enough to also present it well. I would dot
the ‘i’s and cross the ‘t’s and care about ligatures and
things like that, instead of just getting [inaudible].
So that’s not shared by everybody, and all of these
questions are very personal; so also, I think that the
Muses would agree with this kind of opinion.

Moderator. Bart?

Bart Childs. This is for everybody except Don.
When Don was about to release, started in to do 3.0,
several of us got an e-mail, “are there any features
that you think should be added to 3.0?” I sent a
list off, and later I thought, well, Don, mine didn’t
make it, but did any of you say, “here are features
that you ought to be putting in TEX” that didn’t get
there, and, if so, what were they?

John?. I remember one that made it there, which
was the one-character font name argument. I remem-
ber the day we all yelled about that back and forth,
and it was nice to get multiple character font names.

Don. No, that was before 1.0. The original TEX78,
there was \font a, \font b, \font c; there wasn’t
room for storing more than 32 fonts, so why should
we allow multiple [character font names]?

Joe. I was trying to remember, what year was TEX
3.0? 1990. Yes, and the big thing was 256-character
fonts and features like that. I think most of us were

TUG 2010 Panel: Don Knuth & Stanford TEX Project members

134 TUGboat, Volume 31 (2010), No. 2

gone from Stanford by then. Tom — maybe you were
still around.

Don. What ideas did you guys propose at our
weekly meetings that I ignored? [laughter]

Joe. I think I wanted to make control sequence
names not be case sensitive, and you insisted that
they be case sensitive. [audience: why?] Just a
matter of personal preference. [audience: I agree
with Don! laughter] I guess I was just a Fortran
programmer for too long.

Moderator. I have kind of a follow-on question
here. The question that was asked was kind of a
legacy question. I have a slightly more down-to-earth
legacy question — I’ll direct it to Tom, but I think
it’s probably true for all the rest of you in one way
or another. Tom, at one time you developed WEB2C,
and you developed DVIPS, and then somehow you
got somebody else to take it over, or somebody else
took it away from you. How do you feel about the
separation, and the continuing life [of your project]?

Tom. Oh, boy. Appreciative, I guess, is the word.
And truly so! I mean, not actively using that much,
actively supporting a bunch of people — it’s a differ-
ent world when you get out of it. And it was hard for
me to deal with some of the problems people were
having, because I wasn’t even running anything like
that. And there were a number of issues with DVIPS.
Part of it was that there was a certain effort to make
it be GNU, and at the same time I really wanted to
keep it free of the copyleft. And it turned out to be
what I ended up doing. But I really tried to keep a
separation there for awhile, and it turned out to be
a bad idea I’m just really grateful that people
took up the leadership role and made it all happen
and kept it all working ’cause I wasn’t doing it.

John. I could add a comment to that, in that I
clearly also gave up a leadership role. In my case,
clearly I was eager to give it up simply because I
didn’t have time to adequately maintain the program.
But anyway, I think we’re all glad to give up the
leadership role.

David. Oren needs to comment on that. [laughter]

Oren. Yeah. My comment was that I never let
that stop me. [laughter]

Moderator. You have a new release of BibTEX
coming out?

Oren. BibTEX 1.0 is going to come out any decade
now. [laughter]

Moderator. Another question from the audience,
please? There’s one way back there. Frank — is it
Frank?

Frank Quinn. Leslie Lamport has been a big
influence on all of these developments. Could you
perhaps comment on how you saw his motivation,
and what sort of interaction he had with the group?

Oren. Well, I’ll comment a little bit, since my
real first Other people here really know more
of the TEX internals, everybody else does than I do,
and so my first contact with a lot of the TEX stuff
was through Leslie, and as I said before, he needed
somebody to do a bibliography processor for LATEX.
And I know his thinking was, he kind of liked the
path that Brian Reid took with Scribe; it was kind
of a very simple interface, you could describe things
fairly succinctly. Somebody who’s an English major
could easily use it and get nice output. And so, I
think that was the first contact I had was with him.
I don’t know how much he was involved with the
TEX project before that. I think people at — where
was he then? I think he was at SRI— he had written
some macros that people liked there, and I think they
encouraged him to do something with it. I’m not
sure where his other influences were, but certainly,
once he got going, I think people, obviously they’re
fairly happy with it.

Moderator. Anybody else?

Don. He’s a very independent spirit, like I am.
He does a lot of work on his own. Every once in a
while he would run into something he couldn’t do,
and so then I would have to put in another feature,
while kicking and screaming. But it was totally
independent work from Stanford.

Moderator. Right here — front row.

Robert Cristel. We know how the problem of
. . . The Art of Computer Programming [printing]
caused TEX to be more [æsthetic]. So my question
really is, apart from making The Art of Computer
Programming more beautiful, how, in other ways,
did TEX affect The Art of Computer Programming?

Don. Well, it set it back about fifteen years. [laugh-
ter] On the other hand, I’m writing a little bit faster
now, so maybe it’ll save twenty years if we amortize
the whole thing.

I thought you were going to ask about other
things besides The Art of Computer Programming.

Robert. I mean the stuff that’s inside, not neces-
sarily the other.

Don. To my great surprise, right from the get-
go for example, Barbara Beeton came with a few
other people during the summer of 1978,1 and she
showed me all the kind of things that she wanted
to do with Math. Reviews, and then also the AMS

1 Actually 1980.—bb

David Walden, moderator

TUGboat, Volume 31 (2010), No. 2 135

was having trouble typesetting their journals and
things like this, so I started looking at applications
of other users. And so then this meant that TEX had
to grow in lots of ways. But it was sort of going from
one user to ten users, and then from ten users to a
hundred users, from a hundred users to a thousand
users, . . . each time the language had to change in
some way. And I think the fact that all these things
had to be filtered, had come down to me, helped to
keep the thing from diverging, although of course
for complicated systems . . . it would have been a lot
worse if we hadn’t done it that way.

Moderator. Frank?

Frank Mittelbach. A question for Michael, I
guess. I consider the paragraph algorithm as one of
the very central algorithms within what actually has
been achieved with TEX. It grew in time. I know
your thesis, and I’ve seen other papers around it. My
question is, as far as anybody can remember, have
there been things you were sort of experimenting with
that you would like to have in addition to that kind
of algorithm, like in parameterization or something
that you either never got around to doing, or found
too difficult, or got shut down for other reasons?
Is this the ultimate thing you wanted to have, as
a group, in terms of being able to do this kind of
thing, or is there some stuff that back then was not
possible for some reason, but conceptually was on
the horizon?

Michael. A lot of the features that were built
into the line-breaking algorithm itself that’s in TEX,
I think Knuth ended up putting in there based on
experience. As far as the actual coding of the algo-
rithm, he did that. The origin of the problem was
actually in the first graduate seminar programming
class, where there was a problem for doing this; I
guess he was thinking ahead a little bit to a sabbat-
ical year at that time. But that was for breaking
up — I think the problem was musical composition,
if I remember right, but it’s a very similar thing.

I guess as far as something that it would be nice
if more of it were used in practice is the stuff that’s
in my thesis about arranging figures, moving figures
from page to page, which at the time, it was certainly
way too expensive to actually consider using in a real
typesetting program. Maybe today it’s not.

Don. So homework problem, Frank, go look at
Michael’s paper. He wrote a short version of our
joint paper, which was published in another book
about typography at the time. He generalized what
we had and had an idea of a kerf (spelled ‘k e r f’),
and I don’t remember what it was, except that it
was good.

Moderator. A kerf is something to do with a saw,
in real life.

Don. Okay, but anyway, it was in his paper, and I
can’t remember it today either, but anyway, I think
it’s worth resurrecting.

I wanted to mention something before I forget
it. Although I wrote the main code that people saw,
for TEX and METAFONT, there were also drivers and
many other programs that had to be written, like
TFTOPL and all kind of other what we call utility
things. And Tom Rokicki did the things associated
with PK fonts, for example. But David remarked
briefly about having to take all the TEX code and
convert it to C; well, he wrote a long WEB program
that did this, and then I modified it slightly so that
it would make profiles of the TEX system, so that
it could instrument the whole program and find out
how many times every instruction was done. And
then David worked out a very clever thing that would
work on our computer, and it — I think Joe Ween-
ing worked on this too — there would be daemons
that would keep track of these statistics, and so
over a whole year’s time, every time anybody ran
TEX at Stanford, these statistics were kept, and the
counts were accumulated, and carefully saved, with
machines crashing every day, but still pretty good
stuff altogether. And then, using David’s profiling
program, I could make a pretty-printed version which
would associate with every line of TEX exactly how
many times people had used that line. And it was
really important, for example, how many times did
each error message get issued during the year. And
we could figure out what the bottlenecks were. So
anyway, to make a long story short, there’s lots of
other programs that were written at that time that
were necessary for the development, that didn’t go
out to the world.

Moderator. Is there another comment down
there?

Joe. I had completely forgotten all about that; it
sounds familiar. I don’t remember the details.

Don. The DEC-20 had memory that was divided
into two parts, and there was one part that was sort
of always there for the system libraries and things
like this, and that’s where all these statistics were
living. There might be ten people using TEX, but
only one copy of TEX is running somehow on the
machine. And that took a lot of system wizardry,
and I have no idea how they did it.

David. You wanna know? [laughter] So this was
actually on the DEC-10, which had the WAITS op-
erating system, which was custom-built at Stanford.
That 218 address space, it was half code, half data.

TUG 2010 Panel: Don Knuth & Stanford TEX Project members

136 TUGboat, Volume 31 (2010), No. 2

And the code segments were all shared, so if many
people on this time-sharing system were running TEX
at the same time, or any program — you know, the
editor, the system editor — there’d only be in phys-
ical memory one copy of the code, but everybody
had their own separate data, so I was editing my file,
and you’re editing your file. Well, the trick was, we
wanted to count every execution of every basic block
of TEX — every line of code, more or less. So the
compiler used on that machine was this terrible thing
from Hamburg — half the comments were in German,
which I suppose was okay, but the compiler was not
very good — but I managed to modify it so that —
what! a lot of modified compilers here [laughter] — so
that it would spit out little increment, atomic incre-
ment instructions every time it entered a basic block.
The trick was that the place, the memory locations it
would increment were in what should have been the
read-only code segment that was shared among all
the users. Yeah, right. People who know hardware
are raising their eyebrows. [laughter] So that was
fun, and every day or so, it would save itself out to
disk, and there was special code that could retrieve
this stuff out of the code segment, and it would ac-
tually increment; if the program counter was dot, it
would increment dot plus two and then jump over it.
So there was enough room for all the data. So that
was another great piece of fun; this was back in the
day . . . the point is that the resources were really
tight, and it was hard to get stuff in, and you had
to do all sorts of hackery.

Moderator. I think we may be getting a little
overly sentimental now. [laughter]

Well, over the last couple of days, trying to help
this panel go more smoothly, we invited questions
to be submitted in advance. And I have two, so I’d
better ask them, or else I’ll be very rude. And I’m
going to combine them, in a sense.

The one question is, in your legacy, where does
your work with TEX stack up? Now, that’s kind of a
TEX-centric question, but that’s the question. And
the other question is, because people are curious,
what are you doing now? I think those two questions
go well together — you’ve done a lot of things since
then. Where does TEX fit into your life adventure?
If anybody would like to answer that.

John. You say you’d like us all to answer?

Moderator. No, no, anybody who wants to an-
swer. . . . We don’t have to have everybody answer.

John. Well, okay, I’ll give you the answer first of
all. Certainly, METAPOST is one of the most visible
things I’ve done. I’d sort of not like it to be the
highlight of my scientific career, but all I can say

is, sure, it was a great experience and I’m happy to
have worked on it, and I’m not surprised that it can
somehow overshadow a little bit of the other stuff.

Tom. Well, let’s see. Coming and working on the
TEX project for me was absolutely changing, because
TeXas A&M . . . I was a bit of a cowboy, I wasn’t
really — I wasn’t CS, I was EE. I was always pushing
electronics, not bits. But I enjoyed programming a
lot, and I learned a lot myself, and all that, but com-
ing to Stanford and being with some of these people
really taught me a lot about how to program cor-
rectly, and the importance of literate programming,
and that sort of thing. So, absolutely critical. As
far as what I’m doing now — I’m a web programmer
nowadays. I’ve got a little startup down in Santa
Clara. We write huge enterprise applications for
Fortune 500 companies.

As far as legacy, you know, I could not ask for
anything better than to be associated with this group
of people and this project. So I have absolutely no
problem with this being “the big thing”.

Moderator. Anybody else have a comment? Not
required. Luis?

Luis. It essentially sent me in a direction in life
that I had never expected to be. I was a student of
Don’s, and I was going to do something academically
“tainted”. [laughter] And I ended up in industry.
And essentially, the one thing I think I have the
most . . . what I recall my time at Stanford as part
of the project is the quality of what was being done.
The point I was never able to achieve in industry,
because I want into the printing industry, who were
creating laser printers and doing some architecture
for that. You can never do it; you can never go back
to that level of excellence and I have to thank all the
people here and of course Don, for that.

Howard. I was going to say something. I’m
think that I’m very proud to be associated with
this because there’s the comparison between things
like Scribe and things like TEX when the kind of
utilitarian thing that was easy to use and then TEX
appealed to me because of the beauty part of it,
which I mentioned earlier. And I’m proud to have
been part of something that brought a lot of beauty
to texts for many, many years, that everybody has
been producing. I think the world would have been
a much uglier place if we hadn’t done what we had
done, but especially, of course, Don, to do this. I like
the fact that many, many people have run a piece of
code that I have written because of this project; so
that’s the legacy part there.

David Walden, moderator

TUGboat, Volume 31 (2010), No. 2 137

Now I work on Google maps, and wrote business
ranking code, which maybe is starting to exceed the
number of instructions executed.

Joe. Yeah, I guess just thinking about that, what
I enjoyed the most — it’s always been sort of part of
what I like to do — is to see something that I like and
make it better by adding features or doing things
that I would like to see in my project. And I think
that all of us at this table have done that. So we were
each able, in our own way, to contribute to the TEX
project, and just thinking of it in the larger sense,
this is what Don has done for this whole community,
is to take what he needed and what he wanted to
see for his books and then make a really big software
project out of that, that had a lasting [effect]. So I
think we’re all proud to be part of it in that sense.

Moderator. I think we’re almost at time out, and
I’d like to make an observation. I joined the TEX
community, I don’t know, ten years ago, roughly,
something like that. And at the time, it seemed to

me that there was some depression I sensed. You
know, things weren’t changing; things were getting
. . . . Of course, a lot of development was going on
all the time, but today, at this meeting, I have a
sense that it’s a very active development community.
People are excited about things, and I’m just so
impressed that something that started thirty-two
years ago was done in a way that enabled that group
of people to pass it on to another set of people, that
group of people to pass it on to yet another set of
people — I’m not sure what generation we’re on now.
Surely there’s some people who have been involved
more or less the whole time. And today it remains
a vibrant community trying to achieve the beauty
that this group of people set out to achieve.

With that, I think we should call an end to this
session. The panelists — I’d like to thank you all
for both your participation today and for everything
you’ve done for us, that led us to be here today.

[applause]

From left: Luis Trabb-Pardo, Michael Plass, Tom Rokicki, John Hobby, David Fuchs,
Don Knuth, Howard Trickey, Oren Patashnik, Joe Weening, Frank Liang.

TUG 2010 Panel: Don Knuth & Stanford TEX Project members

138 TUGboat, Volume 31 (2010), No. 2

Thoughts on TUG 2010

Barbara Beeton

Well, another annual meeting has come and gone.
This one has been very special. For TUG’s 25 an-
niversary, almost all the original members of the
Stanford TEX Project were located and came to the
meeting for at least the final day, when they partic-
ipated in a panel discussion (see the transcription
of the panel discussion earlier in this issue) ranging
over topics from recollections of the project itself to
what they thought has been the lasting value of TEX.
I was privileged to work with quite a few of these
individuals, principally David Fuchs and Don Knuth
himself, to learn TEX from the source. I doubt that
such a group will gather again.

What was the environment in 1980?

• Most computers had limited memory, no more
that 1 Mb. The most popular Unix platform
(the DEC PDP-11) was too small to install TEX.
Personal computers were still several years in
the future.

• TEX78 was written in SAIL; this ran only on the
DECSystem-10 or 20.

• There were no desktop laser printers. The high-
est resolution of the existing raster printers (at
least the ones available to ordinary mortals) was
200 dpi.

• Although the ARPAnet existed, this was avail-
able only at major research universities. (I was
granted an account at Stanford, bb@sail, but
could access it only through a long-distance tele-
phone hookup and telnet.) TEX was distributed
on reels of 1/2-inch magnetic tape, ordered from
Maria Code (yes, there really was such a per-
son).

Progress came relatively quickly in some areas, more
slowly in others:

• The personal computer revolution arrived in the
mid-1980s. Although the first ones had limited
memory, requiring that any attempt to port
TEX would have to use overlays and other tricks
even to fit, Moore’s law rapidly took over. Now
your cell phone has more memory than the su-
percomputers of 1980, and TEX can actually be
installed on at least the iPhone, as demonstrated
by Kaveh Bazargan at TUG 2009. And speed
of compilation is no longer an issue; where it
used to take 5 seconds to compile a page, now
500 pages or more can be compiled in less than
a second.

• By 1980 it was already realized that, if TEX
was to spread beyond the limited bounds of

the DEC-10/20 community, it would have to
be recast in another language. Pascal was the
base decided by Knuth for TEX82, followed by
mostly-automatic translations to C, which is
now the norm for most TEX implementations.

• In 1984, the Apple LaserWriter arrived, along
with PostScript. The days of raster fonts were
numbered. While commercial printers (the com-
panies that print books and journals, not the
hardware) have usually required Type 1 fonts,
the standoff between Type 1 and TrueType fonts
has been settled with the adoption of OpenType.
As for resolution, personal printers at 1200 dpi
or higher are no longer uncommon. METAFONT

can still be used to develop glyphs and fonts, but
the superiority of outline fonts in applications
such as browsers means that the “final” image
is best not limited to rasters, and METAFONT’s
offspring, METAPOST, is now used for much
TEX font development.

• The advent of the World Wide Web and powerful
browsers brings convenience as well as the ability
to share information — including downloading
an entire TEX Live distribution — in real time.
Universal connectivity via the Internet brings
bad things (e.g., spam) as well as good, but it’s
not likely to go away soon. New users of TEX
and friends wouldn’t recognize the old world.
In fact, TEX is now used “under the covers” in
some places for producing ad hoc commercial
documents like train schedules and phone bills,
totally without the knowledge of the end user.
But it is still the language of choice for most
mathematicians and physicists, and likely to
remain so until a user-friendly and semantically
meaningful front end for XML/MathML appears.

My guess is that there will still be solid uses for TEX
when its 26th birthday rolls around.

The other signal event at the conference was
Don’s introduction to the next generation of TEX —

(see his paper, also in this issue). It was earth-
shaking indeed! Although it perhaps owes more to a
date of April 11 than to its actual date of delivery, we
shouldn’t reject its “design objectives” out of hand.

Even if you couldn’t come to San Francisco,
you can enjoy much of the excitement via video:
river-valley.tv/conferences/tug-2010. Once
again, thanks to Kaveh Bazargan for making this
possible.

⋄ Barbara Beeton
bnb (at) ams dot org

1 We’ve been fooled before: TUGboat 19(2):95–96 (1998),
tug.org/TUGboat/Articles/tb19-2/tb59hoax.pdf

Barbara Beeton

TUGboat, Volume 31 (2010), No. 2 139

Leila Akhmadeeva Pavneet Arora Kaveh Bazargan

Nelson Beebe Barbara Beeton Karl Berry

Mathieu Bourgeois Bill Cheswick Bart Childs

Kaja Christiansen Jennifer Claudio Michael Doob

Jean-luc Doumont Walter Gander Steve Grathwohl

140 TUGboat, Volume 31 (2010), No. 2

Hans Hagen Idris Hamid William Hammond

Jim Hefferon Stephen Hicks John Hobby

Morten Høgholm Kaveh Bazargan, Klaus Höppner Mirko Janc

Jonathan Kew Donald Knuth Martha Kummerer

Robin Laakso Manfred Lotz Filip Machi

TUGboat, Volume 31 (2010), No. 2 141

Frank Mittelbach Ross Moore Will Robertson

Tom Rokicki Chris Rowley David Ruddy

Volker Schaa Herbert Schulz Heidi Sestrich

Didier Verna Boris Veytsman Herbert Voß

David Walden Alan Wetmore Uwe Ziegenhagen

142 TUGboat, Volume 31 (2010), No. 2

Herbert Schulz, Morten Høgholm,
John Bowman, Jim Hefferon

Bart Childs, Tom Rokicki, Nelson Beebe

Frank Mittelbach, Barbara Beeton,
Tom Rokicki, Didier Verna, Don Knuth

Herbert Schulz, Dick Koch, Wendy McKay

An Earthshaking Announcement from Don Knuth

TUGboat, Volume 31 (2010), No. 2 143

CTAN packages get keywords

Jim Hefferon

As part of a larger effort, I am adding to the web
pages on the TUG CTAN node the ability to search
by keyword and by hierarchical characterization.

1 Audience

The great majority of people who come to CTAN

use TEX and LATEX only as an adjunct to their main
work. This kind of visitor comes to us with a specific
need, looking to swoop into our holdings, grab just
what helps, and then go back to what they were
doing.

The good news for this person is that we offer
a tremendous number of things — TEX and CTAN

have been around for a long time so probably their
problem has been solved and probably we hold that
solution. But the bad news is that we offer a tremen-
dous number of things, so leading visitors to exactly
the materials that will help them is a challenge.

The current text search on http://tug.ctan.

org/search.html is a good resource, as is the file
name search on that page. But online users are also
accustomed to two other query forms that we do
not now offer, both of which suit swoopers. The
first is a list of keywords, while the second is to
have choices in a tree, as with the Open Directory
(http://www.dmoz.org).

I have put up experimental versions of these
two. Please have a look, but note that the web ad-
dresses are temporary. At the present, the keyword
page is at http://az.ctan.org/keyword and http:

//az.ctan.org/characterization is the character-
izations page. If this system becomes the default then
those addresses will change to using tug.ctan.org.

For instance, from the keyword page a user can
choose “tables” and get a list of links to packages
that work with tables. It now finds 76. The user can
narrow the results by selecting up to four keywords
at a time and getting the intersection of the sets of
associated packages.

Characterizations also work in the natural way.
One example: a user picks the primary tree and
then picks Document types > Books > Publisher

styles, yielding links to our packages that provide
publishers’ book classes.

The top characterization page links to two trees
besides primary. Many packages do more than one
thing so in addition to having the main purpose
of the package entered on the primary tree, other
functionality is on the secondary tree (a package can
be on at most one branch of the primary tree but
can be on many secondary branches). The other

tree is based on Jürgen Fenn’s topical index of the
Catalogue.

Figure 1 shows a screenshot of a package infor-
mation page including keyword and characterization
information, along with the standard Catalogue data.

2 Architecture

The keywords and characterization features are one
aspect of a larger overhaul of the tug.ctan.org web
pages. This project is named AZ, after my ham
radio call sign KE1AZ, and also for the amusement
of calling it AZTEX.

Behind the web pages is a database, where most
of the data is provided by the Catalogue. Keyword
and characterization data is in addition to that from
the Catalogue.

I made up the list of keywords based on ques-
tions to comp.text.tex and texhax, and also based
on the content of the packages that we hold — if I
ran across a number of packages to do something
then I guessed that there was a demand for the
functionality.

I also made up the primary and secondary

trees, which have the same entries. The Fenn tree is
scraped from Jürgen’s HTML page.

The selection of list entries is influenced by the
choice of audience. For instance, a person interested
in TEX development will find that all of the packages
aimed at developers have gone into just one keyword
and only a few categories. Most of the keywords and
categories are for swoopers.

I also tried, in selecting the list entries, to avoid
entries with too many associated packages, or too
few. This set of keywords and characterizations is
actually a second draft. I did a dry run with an
earlier set last year and made adjustments to get to
the current list. (Some of the entries seem to me to
be time-sensitive, but not too many. I hope these
sets last for a while.)

3 Accomplishment

CTAN holds about 4000 packages. I entered the
keyword and categorization data using a web form,
and while I sometimes needed to examine a package
closely, more often I used only the Catalogue descrip-
tion. Still, even though a typical package was done
quickly, the sheer number of packages means that the
entire job took a long time. (I entered these in the
evening while watching the Celtics play basketball
and it took me all season, so the job size is several
months of a couple of hours, three nights a week.)

I hope the list can be maintained in part by
package authors entering or editing the data via a

CTAN packages get keywords

144 TUGboat, Volume 31 (2010), No. 2

Figure 1: Package description including keywords and characterizations, as displayed in a browser.

web form at the time that they upload; this is another
feature of the AZ system.

After looking at my keywords and character-
izations you may think of another or better list.
For instance, you may think that a characterization
into “works with LATEX” or “not” or “not applicable”
would help. I’m open to suggestions but above I’ve
described the amount of scutwork required so that
you will know that if you want to suggest entering
and maintaining it then you would be committing
to a significant effort.

4 Acknowledgements

I would like to thank my CTAN colleagues, Rainer
Schöpf and Robin Fairbairns; in particular, Robin has
done many years of yeoman’s work on the Catalogue.
Karl Berry was also invaluable here, as in so many
places.

⋄ Jim Hefferon
Saint Michael’s College
Colchester, Vermont USA
ftpmaint (at) tug dot ctan dot org

Jim Hefferon

146 TUGboat, Volume 31 (2010), No. 2

\DeclareGraphicsRule

{.png}{eps}{.bb}

{‘convert #1 eps:-}

\makeatletter % more complex method for

% programs other than convert:

\let\Saved@Gin@base\Gin@base

\let\Gin@base\relax

\DeclareGraphicsRule{.gif}{eps}{.bb}

{‘convert #1 \Gin@base.eps &&

cat \Gin@base.eps}

\let\Gin@base\Saved@Gin@base

\makeatother

\usepackage{grfext}

\AppendGraphicsExtensions*{.png,.gif}

\begin{document}

\includegraphics{lion}\qquad

\includegraphics{knuth-tex}

\end{document}

Again, we need .bb files for the images:

knuth-tex.bb knuth-tex.gif

lion.bb lion.png

And shell escapes enabled:

latex -shell-escape testimgfmts.tex

4 Using PSTricks with pdflatex

Let’s turn our attention now to some of the meth-
ods for using PSTricks packages specifically with
pdflatex.

4.1 pdftricks

First, the pdftricks package. With this, you de-
marcate the preamble that should be used for the
intermediate run with the psinputs environment:

\documentclass{article}

\usepackage{pdftricks}

\begin{psinputs}% preamble for latex runs!

\usepackage{pst-node}

\usepackage{graphicx}

\end{psinputs}

And then the usual:

pdflatex -shell-escape testpdftricks

We can thus use PSTricks packages together with
EPS images, and as usual for pdflatex also JPEG,
PNG, and PDF images.

4.2 pst-pdf

With the pst-pdf package, load PSTricks packages
only when not producing PDF:

\documentclass{article}

\usepackage{pst-pdf,ifpdf}

\ifpdf\else

\usepackage{pst-node}

\fi

Then there are several steps to the processing:

1. Run latex to create a dvi file with only the
extracted pspicture and postscript environ-
ments. or \includegraphics for eps images.

2. The dvi output then is converted to a Post-
Script file which itself is of a special format and
can only be used for the next step.

3. The ps output is converted to a pdf file which
has one page per extracted image.

4. If needed, run pdfcrop to tightly crop.

5. The last pdflatex run replaces the pspicture

and postscript environments and eps images
with created pdf images.

For example:

latex ptest

dvips -o ptest-pics.ps ptest.dvi

ps2pdf ptest-pics.ps ptest-pics.pdf

#pdfcrop ptest-pics.pdf

#mv ptest-pics-crop.pdf ptest-pics.pdf

pdflatex ptest

4.3 auto-pst-pdf

The auto-pst-pdf package automates the above
process.

\documentclass{article}

\usepackage{auto-pst-pdf,ifpdf}

\ifpdf\else

\usepackage{pst-node}

\fi

We need only one pdflatex run, everything is done
inside of the auto-pst-pdf package.

pdflatex -shell-escape ptest

4.4 Option pdf for PSTricks

The [pdf] option to pstricks works only for latex!
It loads the package auto-pst-pdf.

\documentclass{article}

\usepackage[pdf]{pstricks}

\ifpdf\else

\usepackage{pst-node}

\fi

...

As above, we need only one pdflatex run:

pdflatex -shell-escape ptest

Herbert Voß

148 TUGboat, Volume 31 (2010), No. 2

Improving margin paragraphs

Stephen Hicks

1 Introduction

A common frustration among authors using LATEX
to typeset books with significant margin material is
that long margin notes often run off the bottom of
the page, as shown in Figure 1. Several years ago,
Andy Ruina approached me with an idea for solving
this problem by completely rewriting LATEX’s margin
code, at which point I developed an early version of
the marginfix package, the subject of this article.

In this article, I’ll start by looking in more detail
at the problem and some common workarounds. Af-
ter this, I’ll explain the basic idea behind marginfix’s
solution. Finally, I’ll describe a variety of options
allowed by marginfix to further tweak margin note
placement.

2 The problem

For a quick glance at the problem, the reader is
encouraged to typeset the document in Figure 2.
Doing so will yield a full-page paragraph with a
margin note tied to the end of the paragraph, and
this note clearly overflows past the bottom of the
page.

What’s happening here is that when the user
calls \marginpar, LATEX goes through a number of
steps (Lamport, Mittelbach, and Rowley, 2004). To
start, the content of the margin note (in the example,
\Large\lipsum[2]) is saved into a pair of floating
boxes (one for right-hand notes and the other for left-
hand). LATEX then inserts a specific large negative
penalty into the outer vertical list, invoking TEX’s
\output routine, where the amount of text typeset
so far on the page allows determining the vertical
position of the \marginpar callout. This vertical
position is compared to the position of the bottom of
the previous margin note (if there is one), allowing
LATEX to shift the new note downward in an effort
to prevent intersection. After this shift is computed,
the box containing the margin note is shifted all the
way to the left or right of the page (as appropriate),
smashed (its height and depth are set to zero), and
added to the outer vertical list.

This algorithm has both advantages and disad-
vantages. First, it’s relatively straightforward and
easy to understand, even if the behavior is less than
desirable. Another advantage is that it automati-
cally deals with vertical glue in the middle of a page.
If a \vskip is stretched or shrunk and there is a
\marginpar beneath it, the note is automatically
moved along with the stretch or shrink, since its

*

*

* *

Figure 1: What the user expects (top) versus the
default LATEX output (bottom)

\documentclass{memoir}

\usepackage{lipsum}

\begin{document}

\sloppy\Huge\lipsum[1]

\marginpar{\Large\lipsum[2]}

\end{document}

Figure 2: Problems with LATEX’s built-in margin
notes

box is inside the lower paragraph. There are also
a number of disadvantages. First, it’s still possi-
ble for margin notes to intersect, if a skip between
paragraphs with nearly-intersecting notes is shrunk.
More importantly, there is no provision for notes to
move upward on a page or to defer to later pages.
Thus, if a note starts on the bottom of a page, it has
nowhere to go but through the bottom margin.

3 Common workarounds

Any author who has written a substantial amount
of LATEX has developed a bag of tricks to coerce
LATEX’s behavior when it’s being particularly stub-
born. There are a few such tricks for dealing with
problematic margins.

• The simplest workaround is inserting a negative
\vskip at the start of the marginnote (i.e. just
before \Large in Figure 2). In Figure 2, the
proper value is something like -30pc. But if the
margin note changes (say, to \lipsum[3]), or if
the page breaks change, then the value must be
re-tweaked.

• The memoir package (Wilson, 2010) provides a
workaround in the \sidebar macro, a complete
(and incompatible) alternative to \marginpar

Stephen Hicks

TUGboat, Volume 31 (2010), No. 2 149

that provides a flowing column in the margin.
This sufficiently addresses the problems with
overflowing margins, but it makes no attempt
to localize the margin material anywhere near
its callout location (see the effect by changing
\marginpar to \sidebar in Figure 2).

• Occasionally authors will find margin notes ap-
pearing on the wrong side of the page. This is
due to LATEX deciding on which side a margin
note should appear at a different time from when
it decides the page breaks. If a note looks like
it will be on the bottom of an odd page, LATEX
attaches it on the right; but if a page break is
inserted before the margin note, it will be wrong.
The common solution here is provided by the
package mparhack (Sgouros and Ulrich, 2005),
which stores the actual page on which a note
appears in the .aux file.

4 A new approach

Since LATEX’s margins already make use of floating
boxes (that is, inserts), it is a natural extension to
allow the notes to actually float. We can state our
goals simply (the parenthetical notes refer to the
step in our routine that enforces each goal):

• Each margin note is close to its callout (3b)

• No notes intersect (3b) or fall off the page (3c)

• Margin notes may float to later pages (3a)

Thus, the basic outline of the margin routines in
marginfix is as follows:

1. When \marginpar is called, no change from
LATEX’s behavior.

2. When the \output routine is entered for the first
time, rather than setting the note immediately,
instead append its boxes and the callout’s page
position to a token register (\marginlist).

3. When the \output routine is called and TEX
actually builds the page, insert our own code to
assemble the margin column, described below.

4. Once the margin column is assembled, we attach
it to either side of the main column with an
\hbox.

The interesting work here happens in step 3. We
break this up into several substeps, as shown in
Figure 3:

3a. Build a list of margin notes that are guaranteed
to go on the current page by taking as many
notes as possible from the front of \marginlist
such that the total height of the notes does not
exceed \textheight.

3b. Working down from the top, insert compressible
“glue” into the list of notes on this page so that

11

2
3

4

2
3

4

1

2

3

1

2

3

1

2
3

4

1

2
3

4

Figure 3: A new approach to building margins. We
start by attaching each note to its callout position
(top). We next push the notes down the margin until
they don’t intersect, and insert compressible glue
(shown as narrow boxes) between non-abutting notes
(middle). Note that the fourth note has been deferred
because we only have room for 20 lines of margin
material on the page. Finally, we work upwards,
compressing glue as needed until all notes fit (bottom).

stacking all the boxes and glue places each note
at, or below (in the case of notes that would
otherwise intersect), its callout location (note
that if we performed this step alone, we would
reproduce LATEX’s margin routine).

3c. Working upwards from the bottom, remove as
much glue as needed so that no notes overflow
into the bottom margin.

More concisely, we “expand down, compress up”.
There are some interesting cases to consider here.

If step 3a admits exactly \textheight of margin
material then all the glue added in step 3b will be
removed in 3c, resulting in a densely packed margin,
comparable to \sidebar’s output. If there are not

Improving margin paragraphs

150 TUGboat, Volume 31 (2010), No. 2

too many notes so that 3a doesn’t defer anything,
and if nothing occurs too close to the bottom of the
page, so that 3c doesn’t remove any glue, then we
have reproduced LATEX’s output.

5 Options

The marginfix package provides a number of buttons
and knobs that allow fine-tuning of the output.

• \marginparpush works the same as in standard
LATEX, adding a fixed incompressible space be-
tween notes.

• \marginskip〈length〉 appends an incompress-
ible gap of a given length to the margin.

• \mparshift〈length〉 vertically shifts the next
note by length.

• \extendmargin〈length〉 makes this page’s mar-
gin longer by length.

• \clearmargin stops new material from going
into this margin.

• \blockmargin. . . \unblockmargin makes a gap
in the margin where no material can go, which
is useful for extra-wide figures or equations.

• \marginphantom〈length〉 makes a gap, similar
to \(un)blockmargin, except that one point is
given as a vertical displacement from the other
point, rather than specifying both points.

Outside of these macros, the package is simply a
drop-in replacement of \marginpar.

6 Concerns and future work

A number of issues have recently come up in discus-
sion with authors and developers. First, the initial
version of step 2 used \@pageht, set by LATEX’s mar-
gin routines, to determine the callout position, but
it was pointed out that this is inaccurate if any of
the glue in the main column is stretched (or shrunk).
Because LATEX attaches the margin note to the main
column immediately, the only effect this has in LATEX
is to allow the notes to possibly intersect if the glue
shrinks enough; but since we put off note placement

to the end, any stretch or shrink will cause mis-
alignment. An initial thought is to calculate the
stretchability above a note and then determine the
glue set before building the margin column, but nei-
ther of these operations is possible (without doing
cube roots of penalties, at least). Instead, we can
use pdfTEX’s \pdflastypos to determine (on the
second pass) where the callout actually is. One ben-
efit here is that we no longer need the premature
output routines to find the vertical position.

Several features have been requested that are
not yet implemented, but are not beyond the realm
of possibility. LATEX provides the ability to force a
margin note to go into the opposite margin (with
\reversemarginpar), so that both the left and right
margin can have notes. This could be achieved by
repeating the margin-building step twice, provided
that each note clearly specifies into which margin it
belongs (if notes are allowed to float between margins,
the optimization seems to become more difficult).
Another possible feature is allowing long notes to flow
onto the following page, as memoir’s \sidebar does.
Because we can push margin notes upward, there is
no reason to break a note unless the entire margin
is full (much like the flowing of a full \sidebar).
If necessary, however, a \vsplit would get the job
done.

References

Lamport, Leslie, F. Mittelbach, and C. Rowley.
“ltoutput.dtx”. 2004. Available from CTAN,
macros/latex/base.

Sgouros, Tom, and S. Ulrich. “mparhack.sty”. 2005.
Available from CTAN, macros/latex/contrib/
mparhack.

Wilson, Peter. “The Memoir Class”. 2010.
Available from CTAN, macros/latex/contrib/
memoir.

⋄ Stephen Hicks
sdh (at) google dot com

(This work was conducted independent
of the author’s role at Google.)

Stephen Hicks

TUGboat, Volume 31 (2010), No. 2 151

Using LATEX to generate dynamic
mathematics worksheets for the web

Pavneet Arora

Abstract

Mathematics worksheet generators abound on the
web. Many use static content and focus on graphics
and animation in order to package the material in
an appealing manner. This approach comes across
as a fight for eyeballs — all too common when trying
to attract the target audience on the Internet. The
emphasis on form often displaces the basis of learn-
ing at the primary education level, which is simple
practice. Beginning with an exploration of effec-
tive learning strategies for grade school mathematics,
the use of LATEX to generate dynamic mathematics
worksheets — lots and lots of them — is discussed.

1 Introduction

The impetus of this project came from witnessing
my daughter’s struggles with mastering maths in
early grades. The teachers — well intentioned as
they were — felt that she was getting bogged down
in mastering basic numeracy and that once freed
from this mechanical process, she would be able to
progress more quickly. Unfortunately, the evidence
was to the contrary: she continued to struggle, and
moreover slipped further and further behind.

In this paper, I discuss what I believe to be
the importance of numeracy as a necessary step in
achieving mathematical literacy, and the value of
its co-conspirator, practice, which is the essential
method of learning for young students.

The reader would be right in criticizing the pa-
per’s lack of statistical evidence to support the con-
clusions, and may in fact consider these conclusions
to be mere conjectures. To this I plead mea culpa.
I hope that a reasoned argument will suffice for the
time being, and perhaps encourage others to take the
exploration further. In my defence, however, I did
not seek out to prove the correctness of my thesis;
I was simply searching for techniques to help my
daughter achieve tangible results.

2 The decline of practice

It is my belief that like for any skill, practice is at the
heart of mastering elementary school mathematics.
However, in many modern textbooks the number of
practice problems is shrinking almost as if to imply
that those who are unable to master the topic within
the prescribed number of questions should consider
themselves incapable of ever doing so. Best if they
were to move on and try their hand with the next

topic, or worse, consider mathematics as one of those
areas that will forever remain inscrutable to them.

There are at least two possible reasons for this:

1. As the standardized curriculum grows, there
is less time available to devote to each study
unit. Lean manufacturing techniques seem to
be permeating down into education.

2. As rote learning, a misnomer which will be dis-
cussed below, is removed from primary school
education, the opportunity to reinforce learning
with practice is also taken away from students
who would otherwise greatly benefit.

But what if a student is capable of mastering a
subject, but requires a great deal of reinforcement
of the material in order to do so?

In order to fill the gap of what I felt was the
diminishing availability of problem sets associated
with each topic, the inspiration to generate dynamic
worksheets struck and even more importantly mak-
ing them available on the web. Naturally, this led
me to seek out the use of TEX and LATEX as the
means by which to typeset mathematics worksheets
effectively. Combining the two — that is generating
problem sets dynamically and creating well typeset
worksheets — will, I hope, tilt the balance back to-
wards a reliance on practice, which for some students
may mean much more than the median, and bring
about a more inclusive approach to mathematics
learning.

3 Rote vs. practice

It is important to distinguish from the onset a dis-
tinction between rote and practice. The reason being
that rote learning is increasingly being considered
superfluous in an age of technical wonderment. Why
spend time memorizing anything when search engines
are far more effective surrogates?

While rote and practice may be related in term
of mechanics — they both rely on repetition — they
differ in intent, and this difference strikes at the
heart of the problem with tarnishing all forms of
repetitious learning as rote. Rote implies tedium,
or repetitious activity performed without purpose.
Contrast that with practice, which is repetition done
with the intent of gaining in capabilities. This in
itself should be enough to show the wide gulf between
the two.

However, there is a secondary aspect to the defi-
nition of practice which is that of gaining proficiency
that leads us to consider just how we learn:

1. Do we first gain a kernel of comprehension when
introduced to a topic, and then use practice

Using LATEX to generate dynamic mathematics worksheets for the web

152 TUGboat, Volume 31 (2010), No. 2

to reinforce that comprehension and achieve
proficiency?

2. Or is it by the very act of practice that we get
to even a basic level of comprehension? That
is, does proficiency, even that acquired through
mechanical repetition, lead then to comprehen-
sion?

It is often assumed, I feel, that the first approach
is the only correct one.

When we reduce or remove the level of practice
associated with learning a topic, we are adhering to
this first approach, which may in fact be perfectly
adequate for many students. However, I believe
that there is a category of students for whom com-
prehension isn’t so easy to come by through mere
explanation. For these students, it is through the
mechanical act of repetition that the topic reveals
itself as patterns emerge.

Consider this as an example of that primary
heuristic technique: that of trial and error.

When we denigrate all repetitious activity by
labelling it as rote, we relegate this second important
learning technique to the dustbin. As a consequence,
students whose learning pattern mirrors the second
approach are excluded from the learning process.

This distinction in approaches may be more eas-
ily recognized in the area of computer programming,
where the relative numbers who fall into the two cate-
gories are reversed. It is a rare individual indeed who
can proceed from learning a programming language
or algorithm to immediate deep comprehension and
proficiency. More often it requires the tentative steps
of coding and stumbling with syntactic or seman-
tic programming errors before the behaviour of the
language and the program reveals itself. This trial
and error method, along with isolating function to
small digestible chunks is at the heart of software
engineering. Should we not then elevate this learning
approach to be on equal footing to the more linear
one of elucidation leading to illumination?

4 The value of numeracy

If we accept that practice, even if in some cases
this means much more practice than we might deem
necessary, is essential for learning then what value
does numeracy play towards the ultimate goal of
mathematical literacy?

Calculators, which lost their novelty long ago,
are now considered either relics of another earlier age
or as commodities with little intrinsic value. There
may be something to the concurrent decline in value
of the once exotic calculator, and the value that
we place on human numeracy. After all when a
mechanical device that costs less than a fast-food

meal is able to calculate numbers reliably and quick-
ly, what need then of teaching numeracy to young
students?

We are sometimes too quick at placing a value
on a skill based solely on the economic cost needed to
substitute for it. This mapping serves up, I believe,
a grave fallacy when it comes to the learning of
mathematics. Numeracy allows young children to
play with and come to appreciate the behaviour
of the most basic of mathematical elements, which
are numbers. It gives them a chance to begin to
recognize patterns and more importantly to gain a
sense of mathematical intuition through a mastery
of arithmetic.

Without this intuition, some students are un-
able to make the leap to symbolic manipulation as
with algebra. But even before this, understanding
fractions becomes difficult because unless one un-
derstands whole numbers how can one appreciate
fractions of numbers and the delicate interplay that
follows? And fractions are often a convenient entry
into basic geometry. It is my assertion that once the
foundation of numeracy is undermined, we make the
resulting edifice of mathematical literacy shaky at
best, and for some students impossible to construct.

Equally important, but in an entirely different
plane, is that it takes away an important avenue
through which young children are able to express
mastery over their environment. Like mastery over
language, basic numeracy allows them to interact
with, recognize patterns within, give a name to, and
to apply groupings to the physical world around them.
The value of this should not be overlooked. It is an
important aspect of giving a child self-confidence
in their own ability to express their independent
judgements.

5 Method

If one accepts the motivation outlined in the previous
sections, the question remains, “How best to offer up
practice when motivation for it is limited in a school
setting?” This is the question that confronted me
when I was trying to come up with learning materials
for my daughter.

A search for mathematics worksheets on the web
revealed an emphasis on interactive presentations,
with insufficient variation in the problems themselves
to fulfil my goal of increasing the level of practice in
my daughter’s study. Other sites had limited topics
and very basic levels of difficulty.

From this search, I sought to construct work-
sheets that fulfilled the following design criteria:

1. The list of worksheets should be easily exten-
sible. That is, if the worksheets were to be

Pavneet Arora

TUGboat, Volume 31 (2010), No. 2 153

offered up on a web site, which was a stated
goal, then it should be relatively easy to add
to their numbers without having to affect the
web site programming. This implied a database
driven approach to cataloguing and invoking
worksheets.

2. Parameterized worksheet generation. Being dy-
namic, the worksheet generators should be able
to generate different groupings by merely specify-
ing parameters. To put this in terms of concrete
examples, multiplication worksheets could be
limited to generate problems dealing with, for
instance, multiplication tables between 1–4, 5–8,
9–12, or any specified range. Or in the case
of geometry, worksheets on recognizing angles
could be limited with the use of parameters to
showcase only certain types of angles, i.e., only
acute and obtuse.

3. Graduated levels of difficulty. An essential com-
ponent of each worksheet generator was that
not only would it allow for different operands,
but that it should take the student from the ba-
sics of a topic gradually through more difficult
aspects of the same topic.

4. The ability to create beautiful documents. This
final criteria led me naturally to the doorstep of
TEX and LATEX.

Given this desired feature set, any number of
programming languages and frameworks could have
been chosen. Ruby on Rails was selected only be-
cause the author had some experience with Ruby, the
language. This provided the necessary components
to put the application on the web.

In order to animate the application, basic Unix
tools were used: bash, sed, bc, cron. Development
work was done under Ubuntu, and the application
then deployed on a Sun Microsystems SPARCserver
running Solaris 10. If nothing else, it showed the
extent and ease with which frameworks and TEX
Live accommodate cross-platform development.

The diagram below illustrates the architecture:

LATEX template

Generatorbc

sed .tex .pdf

Each group of worksheets that are related by
topic have a bash script associated with them. The
script utilizes the built-in random number generator
to generate, and bc to then normalize the operands.
The operands are substituted into the base LATEX
template for that group with the use of sed to gen-
erate a spooled .tex file. This file is compiled into a
.pdf file which is served back to the client browser.
The invocation command, along with the associated
parameters for a given worksheet at a given level of
difficulty are stored in a database, as are the counters
used to instantiate the spooled .tex file.

6 Conclusions

The value of both numeracy and practice in the teach-
ing of grade school mathematics has been presented
in this paper. The discussion has also touched upon
the larger question of just how children learn. It is
my hope that this work will encourage those children
who may struggle with the subject to look upon it
not as an insurmountable mountain, but only as a
road less travelled, one that they have the privilege
of walking along and in turn teaching us, by their
example, just what learning really means.

7 Acknowledgements

The name of the web site, www.bansisworld.org,
takes its inspiration from that of my late maternal
grandfather, Prof. Bansi Lal, Professor Emeritus of
the Department of Mathematics at D.A.V. College,
Jalandhar, India. He spent much of his career fo-
cused on the teaching of mathematics, and it is my
hope that Bansi’s World in this modern web context
will become synonymous with the earlier, original
incantation of “Bansi Lal’s world”, which intimated
the idea of open mathematics education.

⋄ Pavneet Arora
Endeavour House
11 Kingsgate Pl
Bolton ON L7E 5Z5
Canada
pavneet_arora (at) bansisworld

dot org

http://www.bansisworld.org

Using LATEX to generate dynamic mathematics worksheets for the web

154 TUGboat, Volume 31 (2010), No. 2

Writing the first LATEX book

Walter Gander

Abstract

In 1984 I wanted to write a German textbook called
“Computermathematik” using the typesetting system
TEX developed by Don Knuth, which I have always
admired and which I have been aware of since my
first sabbatical year in Stanford in 1977. Mark Kent,
a graduate student at Stanford in 1984, pointed out
to me that Leslie Lamport had just finished a new
typesetting system called LATEX which I might want
to use instead. I did and in fall 1984 I had finished
the (at least I think) first book written in LATEX. In
this historical talk I will present some reminiscences
how the book was produced.

1 First encounter with TEX

In 1977/78 I spent a year at Stanford as a postdoc
writing my Habilitation. It was still the time when
technical typists were typing in papers or books
for their professors. I was very lucky to have had
my Stanford report typed by Phyllis Winkler, the
technical typist of Don Knuth, probably the best at
Stanford. I gave her my hand-written manuscript
and she typed it very efficiently using an electric
typewriter. An excerpt is shown in Figure 1.

Figure 1: Mathematical typing: State of the art
c. 1977 at Stanford

One day in the printer room, when I was retriev-
ing some program output, I was really amazed to see
a page of a printed book coming out of the printer. I
could not really understand what this was, the only
thing I could imagine was a photocopy of a page of a
mathematical book. However, no, it was not that —
it was some TEX output which Don had sent to the
printer.

I returned home to Switzerland in fall 1978 and
continued my job as professor at the University of
Applied Sciences in Buchs in the Rhine-Valley. From
Stanford I began to receive beautifully printed math-
ematical documents, not typeset in the traditional
way but generated with TEX. One of those early ones
was the PhD thesis of Nick Trefethen (see Figure 2).

Figure 2: Part of Nick Trefethen’s PhD thesis

2 Writing the book

A few years later I was due for a sabbatical and I
decided to use it to write a German textbook with
the title “Computermathematik” which would teach
algorithms written in Pascal, mostly focussed on
topics in numerical analysis. Of course I was deter-
mined to learn TEX and write my book using this
new text-processing system.

So I went with my two daughters of 9 and 11
years and a suitcase full of hand-written notes to
Stanford. My wife Heidi had just started a new job
and had to stay in Switzerland but would visit us
during the vacations.

At the beginning I had to learn to use the com-
puter (a UNIX VAX) on which TEX was installed.
Mark Kent, a graduate student in the Computer
Science Department, working in Numerical Analysis
with Gene Golub, helped me in many ways to get me
going. I learned to use the Emacs editor to write TEX
source files. When Mark realized that I was going to
write a book he pointed out to me that just a few
weeks earlier Leslie Lamport had published a manual
in which he described his system LATEX, a collection
of TEX macros which should help a book writer a lot
since it would take him to a higher book-producing
abstraction level. Simply write \chapter{ } and
forget about the actual size of fonts, distance to text,
numbering etc. It sounded good to me and since I

Walter Gander

TUGboat, Volume 31 (2010), No. 2 155

had to learn anyway, either TEX or LATEX, I decided
to go for LATEX.

The first chapter I started to write was Chapter 4
of the book with the title “Polynome”. This was
already quite a challenge. Showing how to divide
a polynomial by some factor in the form that one
would write it up when doing it by hand is quite
demanding for a LATEX beginner. The first page of
this chapter is displayed in Figure 3.

Figure 3: First page typeset

And here is some of the corresponding source, which
will still look quite familiar to LATEX users today
(slightly reformatted for TUGboat):

\chapter{Polynome}

Eine h\"aufig verwendete Klasse von Funktionen

bilden die {\em ^{Polynome}}.

{\defi \it Seien a_0, a_1, \ldots, a_n [...]

\section{Division durch einen Linearfaktor}

Oft stellt sich die Aufgabe [...] als Rest:

\begin{equation}

\label{44.2}

\frac{P_n(x)} {x-z} = P_{n-1}(x) + \frac{r}{x-z}

\end{equation}

\begin{bsp}\label{41}

$P_3(x)=3x^3+x^2-5x+1$, $z=2$

\end{bsp}

\medskip

\begin{equation} \label{44.*}

\arraycolsep 2pt

\begin{array}{rcrcrcrlc}

(3x^3 &+& x^2 &-& 5x &+& 1) & :(x-2)

& = \underbrace{3x^2+7x+9}\\

-3x^3 &+& 6x^2 & & & & & & P_2(x)

\\[-2\smallskipamount]

\multicolumn{3}{c}\hrulefill&&&&&&\\

& & 7x^2 &-& 5x & & & &

&-& 7x^2 &+&14x & & & &

[...]

Since babel did not yet exist, issues relating to
typesetting a book in German were resolved by hand.
For example, I inserted manual hyphenations such
as Re\-chen\-ma\-schi\-nen. Mark Kent wrote a
style file la-macros.sty redefining internal LATEX
commands so that ‘Kapitel’ would be typeset instead
of ‘Chapter’, and so on.

Including graphics was not yet as convenient
as it is today. Nowadays we use \includegraphics

to include all possible graphical material in various
formats. In 1984 I used basic graphic commands
provided by LATEX to, for example, produce Figure 4:

Rechenwerk

❍
❍
❍❍❥

❍
❍

❍❍❨

Zahlenspeicher für
Zwischenergebnisse

Rechenplan auf
gelochtem Film✑

✑
✑

✑
✑✰

Figure 4: Erste Computer

\begin{figure}[htb]

\begin{center}

{\setlength{\unitlength}{8mm}

\begin{picture}(13,7)(0,0)

\put(0,3){\framebox(4,2){Rechenwerk}}

\put(4,2){\vector(2,-1){1.8}}

\put(4,2){\vector(-2,1){1.8}}

\put(6,0){\framebox(5,2){

\shortstack{Zahlenspeicher f\"ur\\

Zwischenergebnisse}}}

\put(7,5){\framebox(5,2){

\shortstack{Rechenplan auf\\

Writing the first LATEX book

156 TUGboat, Volume 31 (2010), No. 2

gelochtem Film}}}

\put(6.8,6){\vector(-3,-2){2.6}}

\end{picture}

}

\end{center}

\caption{Erste Computer} \label{1F1}

\end{figure}

Again today the situation has completely changed.
We have tools to convert formats, e.g. from eps to pdf
and tools for graphical construction, most notably
MetaPost.

Another challenge was to typeset Pascal pro-
grams. Today most of us do not bother too much.
We simply use \verbatim or \verbatiminput to in-
clude programs. I had the idea to write the reserved
words like begin, end, for, etc., in boldface and to
indent always by three spaces after a begin or when
using for-loops or if-statements. Of course I did not
want to retype the Pascal programs, this would be
too likely a source of errors. So I finally asked Leslie
Lamport by e-mail what he would recommend. He
suggested using the tabbing environment. My Pas-
cal programs were written with capitalized reserved
words. As an example consider the Pascal function
to compute a square root:

FUNCTION quadratwurzel(a:real):real;

VAR xneu,xalt:real;

BEGIN

xneu:=(1+a)/2;

REPEAT

xalt:=xneu; xneu:=(xalt+a/xalt)/2

UNTIL xneu>=xalt;

quadratwurzel:=xneu

END;

A pragmatic way to proceed was to replace a capi-
talized reserved word like BEGIN by \BEGIN, where I
had done \newcommand{\BEGIN}{{\bf begin }\+}.
The characters \+ would cause the next line to be
indented in the tabbing environment. More changes
like writing $ to use math-mode and re-indenting
I did by hand using Emacs. Defining the LATEX
command

\newcommand{\SETTABS}

{123\=456\=789\=123\=456\=789

\=123\=456\=789\=123\=\kill

\>\>\>\+\+\+}

and using Emacs I transformed it to

\begin{alg} \label{3wurzel} \it

\begin{tabbing} \SETTABS \\

\FUNCTION quadratwurzel(a:real):real;\\

\VAR xneu, xalt : real ; \\

\BEGIN \\

$ xneu := (1+a)/2;$ \\

\REPEAT \\

$xalt:=xneu; xneu:=(xalt+a/xalt)/2$ \\

\< \- \UNTIL $xneu \ge xalt;$\\

quadratwurzel := xneu \\

\END

\end{tabbing}

\end{alg}

After processing with LATEX the result looked quite
satisfactory:1

function quadratwurzel(a:real):real;
var xneu, xalt : real ;
begin

xneu := (1 + a)/2;
repeat

xalt := xneu;xneu := (xalt + a/xalt)/2
until xneu ≥ xalt;
quadratwurzel := xneu

end

I typed the whole summer, the children were busy
attending Escondido School on campus. During sum-
mer vacations Heidi came to visit us and look after
our daughters. Finally in fall the book was finished.
Voy and Gio Wiederhold invited us all to a party
at their house to celebrate this event. Don Knuth
was also with us and said: “Finally it is proved that
LATEX is useful!”

3 Book revision

The book was written. But of course I still needed to
proofread it carefully. Back in Switzerland I offered
the book to publishers for German textbooks, among
them Birkhäuser in Switzerland, Springer and Old-
enburg in Germany. All the publishers were amazed
about the quality of typing and all of them accepted
the book and made me an offer. For patriotic reasons
I then chose Birkhäuser.

When proofreading I found of course typos and
other minor things which needed to be fixed. There
was no way to process LATEX in Switzerland, I did
not even know of a TEX installation. So I decided to
fly back in the winter break at beginning of January
1985 to do the changes at Stanford and print the final
camera ready version of the book on the best avail-
able printer, the Alphatype machine in the basement.
This rather expensive way of doing changes was the
only possibility that I had at that time. Switzerland
was not yet connected to the Internet. So I spent a
week at Stanford, produced a new corrected version
of the book and wanted to print the final copy for
the publisher. However, I did not succeed because
the Alphatype printer was down. I discussed with
Mark Kent what to do and we decided that I would

1 Observant readers will note that the font used for punc-
tuation varies. The typography before TEX was in such bad
shape that such “minor flaws” in the otherwise wonderful
output were simply overlooked and not taken care of.

Walter Gander

TUGboat, Volume 31 (2010), No. 2 157

return to Switzerland and that he would print the
book when the printer was operating again and send
me the manuscript by ordinary mail. Indeed this
worked fine, two weeks later I received a beautifully
typed manuscript.

Looking it through I was terrified: at some place
the page break was different than what I had printed
in Stanford before. One table was moved and there
was a half page empty. Fix it and have Mark printed
it again using this expensive printer and paper? I
finally decided for a pragmatic solution. I took a
scissor and glue and copy pasted the few pages by
hand as I expected them to look in my first output.

What was the reason for this new page break?
Well, in my absence Leslie Lamport made some small
changes to LATEX and installed a new version. We
did not notice this and thus the different page break
occurred.

4 Epilogue

I had to write a second volume of my book which
included the solutions of all exercises, which are
mostly programming assignment. I bought a desktop
computer Olivetti M24 for some $6,000 with a 10
MB hard disk. There was a company called Micro-
TEX who had ported TEX to the IBM PC. I bought
their floppy disk and installed TEX on my Olivetti.
It used up half of my disk-space! LATEX was not
available. So I wrote in 1985 my solution book using
plain TEX on my own PC at home. Printing on
the dot matrix printer did not look so nice as with
Dover and furthermore was terribly slow. When
the book was finished, I looked around to find a
TEX installation in Switzerland. I found one in the
Institute of Astronomy at ETH. Professor Jan Olof
Stenflo was one of the first to have TEX and LATEX
installed in Switzerland. So I processed the final
version of the second book written in plain TEX on
his computer in Switzerland.

The first LATEX book is no longer in print; it had
a second edition in 1992. The publisher Birkhäuser
has returned the copyrights to me. So I decided to

give the book for free distribution to Google. This
seems to be a very long procedure. Therefore I
also made it available on http://www.educ.ethz.

ch/unt/um/inf/ad/cm (figure 5).

Figure 5: Cover of the now freely-available book

I wanted to produce a pdf file of the book for
the web page. Now the amazing result: without any
major changes the book compiled using pdflatex!
I do not know of any other typesetting system that
is as stable over more than 25 years.

⋄ Walter Gander
ETH Zurich
http://www.inf.ethz.ch/personal/gander/

Writing the first LATEX book

158 TUGboat, Volume 31 (2010), No. 2

TEX helps you learn Chinese character
meanings

Alan Hoenig

My story begins about 6 or 7 years ago now when,
on a whim, I decided to study Mandarin Chinese.
I’ve had these whims often over the years, and I
know that the more intense it is, the sooner it burns
itself out sooner or later they burn themselves out —
which is why this time I focused on the interesting
stuff and neglected the dull material, which in this
case was Chinese characters themselves and their
meanings. But, days, months, and now years passed,
and I stayed intrigued, so it was a mistake to have
ignored them.

But studying Chinese characters turned out to
be tough — too tough. I couldn’t seem to remember
more than a handful accurately, not enough to make
any real headway.

I found this frustrating, but fortunately before
ditching everything, I realized it couldn’t hurt to
apply one of the great lessons of Metafont. That is,
rather than to actually study this material, I took
a step back and thought about how to study this
material. I looked around to see what other people
had to say and what methods they used, and then I
came up with the following scheme, one that seems
to work pretty well.

I took as an initial pool the 2000 most fre-
quently used characters. (I used the so-called sim-
plified character set, the characters in official use by
the People’s Republic of China.) Then I imposed an
order on them — not an alphabetical or numerical
order, but one based on how complex each charac-
ter is — how easy (or not) it is to write. I arranged
them from simplest to increasingly complicated.

Then I used an induction-based learning scheme
relying on three essential platforms:

1. The form and meaning of any character de-
pends only on characters and components that
appear earlier in the sequence.

2. You can remember this form and its meaning
by means of relatively simple/straightforward
mnemonic narratives which use prior charac-
ters (characters that are already known) as el-
ements in this story. These characters are al-
ready known because they precede the current
character in the sequence.

3. Finally, the initial item in this sequence must
be easy to remember all by itself.

As far as the mnemonic stories go, anything — any
kind of story connecting the components, any pun
or play on words, and any kind of outlandish sce-

TUGboat, Volume 31 (2010), No. 2 159

Figure 4: ‘Labor’ or ‘work’.

160 TUGboat, Volume 31 (2010), No. 2

is is Linux Libertine

A F 0 1

2 3 4

Bold Italic Bold italic
Figure 8: Linux Libertine: a small sample.

EZChinesey.com

info@EZChinesey.com

EZChinesey@gmail.com

Figure 9: Publishing venture and contact information.

Finally, there’s some other information just for
fun — the stroke count and the frequency rank of
each character.

Incidentally, the roman typeface I used for the
book is the family Linux Libertine, an OpenType
family designed by Philipp Poll and available for free
use (fig. 8). It’s a snap to install these fonts for use
by X ETEX (at least it is on the Mac platform), and
when you do so properly you get the entire suite of
proper TEX behavior, including small caps, all the
standard ligatures, all special German ligatures, and
an intriguing ‘T-h’ ligature which you can see in the
figure.

Anyway, the result is an actual book contain-
ing the stories for about a hundred components and
twenty-one hundred some-odd characters. For more
fun, and for the thrill of fulfilling a long-held dream,
I decided to print and publish this book on my own.

To that end, my wife and I set up a small pub-
lishing company EZChinesey.com; can you guess its
associated web site? I’m not exactly rolling in roy-
alties, but running your own company turns out to
be a great adventure with lots of unexpected twists
and turns. I recommend it highly (fig. 9). By the
way, I know I’m no typographer, and so I am desper-
ately seeking feedback to improve the format of the
character panels, and I hope anyone and everyone
with better ideas will feel free to bring them to my
attention. I encourage anybody with suggestions for
improvements to please get in touch with me.

This book is the first of what I hope will be
a series of ‘EZChinesey Guides’. A second one will
appear later this summer, and it’ll be a guide for
travelers to China who want to eat in local restau-
rants. Think of it as a menu translation guide, with
translations for over 3000 Chinese menu items. Its
format is quite different from that of my character
volume; figure displays a typical page.

Figure 10: A typical page from the book
Eating Out in China.

A third volume will be similar to the one I’ve
spoken about today, but it will deal with the tra-
ditional characters, instead of the simplified ones in
the current book.

I’m anxious to explore a different format for this
upcoming volume, the traditional character volume,
and I’d like to show a preliminary version to you,
again with the goal of soliciting suggestions for im-
provement (fig. 11). New information includes the
stroke order diagrams you see, which help when you
review characters you’ve learned. Perhaps you re-
call this format is slightly different from the panels
in figure 7.

I’ve typeset a sample panel twice, showcasing
some interesting typefaces I’ve discovered. These
fonts are from the collection that Google seems to

Alan Hoenig

162 TUGboat, Volume 31 (2010), No. 2

Classes, styles, conflicts: The biological
realm of LATEX

Didier Verna

Abstract

The LATEX world is composed of thousands of soft-
ware components, most notably classes and styles.
Classes and styles are born, evolve or die, interact
with each other, compete or cooperate, very much as
living organisms do at the cellular level. This paper
attempts to draw an extended analogy between the
LATEX biotope and cellular biology. By considering
LATEX documents as living organisms and styles as
viruses that infect them, we are able to exhibit a set
of behavioral patterns common to both worlds. We
analyze infection methods, types and cures, and we
show how LATEX or cellular organisms are able to
survive in a world of perpetual war.

1 Introduction

Every LATEX user faces the “compatibility nightmare”
one day or another. With such great intercession
capability at hand (LATEX code being able to redefine
itself at will), a time comes inevitably when the
compilation of a document fails, due to a class/style
conflict. In an ideal world, class/style conflicts should
only be a concern for package maintainers, not end
users of LATEX. Unfortunately, the world is real,
not ideal, and end-user document compilation does
break.

As both a class/style maintainer and a docu-
ment author, I tried several times to come up with a
systematic approach, or at least some general princi-
ples on how to handle class/style cross-compatibility
in a smooth and gentle manner, but ultimately failed,
because the situation is just too complex. Classes
and styles evolve constantly, sometimes even in a
backward-incompatible way. Classes and styles die,
while new ones are born. Styles may conflict not only
with classes but with other styles as well. Styles may
be made aware of classes or other styles, but classes
may be made aware of styles as well. Then, there
is the influence of the end user who will combine
all available material in a somewhat unpredictable
way, possibly with his/her own personal additions,
or even modifications to the available features.

This vicious circle basically never ends and leads
to a paradoxical “If it ain’t broke, then fix it” situ-
ation in which complex trickery is added to classes
or styles, not to make them work out of the box,
but to prevent potential breakages resulting from
interactions with the outside world. In the end, the
only realistic conclusion is that there is no solution to

this problem, both because the system is too liberal,
and because the human factor is too important. One
cannot force a package author to write good quality
(for some definition of “quality”), non-intrusive or
even just bug-free code. One cannot force a package
author to keep track of all potential conflicts with
the rest of the LATEX world, let alone fixing all of
them by anticipation. One simply cannot prevent
software evolution.

Facing this somewhat pessimistic conclusion, it
is all the more intriguing to acknowledge the fact that
the system still globally works. Despite the complex-
ity of what happens behind the curtain, documents
are being produced, and in some way, seeing a freshly
compiled document pop up on the screen is just like
witnessing a small miracle. When it doesn’t compile,
you don’t really know why, but when it does compile,
you really don’t know why. This is the precise point
at which the parallel with biology occurred to me.
Any living being is by itself a miracle of complexity,
and unfortunately, sometimes it breaks as well.

One Monday morning, I woke up with this vi-
sion of the LATEX biotope, an emergent phenomenon
whose global behavior cannot be comprehended, be-
cause it is in fact the result of a myriad of “macro”-
interactions between smaller entities, themselves in
perpetual evolution. In this paper, I would like to
build bridges between LATEX and biology, by view-
ing documents, classes and styles as living beings
constantly mutating their geneTEX code in order to
survive \renewcommand attacks. . . .

The basis of our analogy is to consider LATEX
documents as living beings, and styles as viruses
that infect them. Based on this picture, a number of
puzzling similitudes can be found in the way organic/
LATEX material interact. In the following, we first
describe how LATEX documents can be morpholog-
ically compared to a specific kind of organic cells,
then draw a parallel between genetic and program-
matic material, and finally justify our view of styles
as viruses. After that, we respectively draw interest-
ing comparisons between existing viral or stylistic
infection methods, infection types, and also possible
cures.

2 Morphological analogy

In this section, we present a morphological analogy
between LATEX documents and a specific kind of
organic cells from the so-called “eukaryotes” domain.

2.1 Eukaryotes

According to Whittaker’s nomenclature [23], eukary-
otes subsume four of the five “kingdoms” of life,

Didier Verna

164 TUGboat, Volume 31 (2010), No. 2

mRNADNA Protein

\def\foo{FOO} \foo Typesetting

Figure 2: The geneTEX factory

information from deterioration. Next, the resulting
mRNA is “read” by a ribosome, which will eventually
produce the resulting protein.

3.2 TEX factory

The similarity with TEX macros (in fact, with func-
tions in any programming language) is striking. The
biologists themselves speak of genetic “code”, be-
cause it is exactly that: just like a gene contains a
formal specification for something to be synthesized,
a TEX macro definition contains a formal specifica-
tion for something to be executed. The result is not
as concrete as a protein, but instead consists in some
side-effect like the actual typesetting of a portion of
a document.

Just like genes, TEX macros don’t do anything
on their own, but are available on demand. Figure 2
depicts the process of expressing a gene or executing
a TEX macro. A macro definition is much like a
gene, which encodes a formal specification. A macro
call is much like a messenger: an actual instance
or copy of the original information which is about
to be concretely used. TEX does not use ribosomes,
but a “mouth” and “stomach” instead (as per Don-
ald Knuth’s terminology in [6]), to perform macro
expansion and (primitive) command execution.

In the remainder of this paper, we use the term
“geneTEX material” to designate both genetic material
in cells and programmatic material in documents.

4 Higher view of geneTEX material

So far, we have established a morphological ground
on which to compare unicellular eukaryotes and
LATEX documents, and we also have exhibited similar-
ities in the way genetic and programmatic informa-
tion is processed. It is now time to stand back a little
and get some perspective on why this comparison is
interesting.

4.1 Roles

We know that genes (or rather the information they
encode) determine the way a cell will function. Let
us consider two eukaryote cells, for instance resulting

from the mitosis of a mother cell, and hence equipped
with the same initial genome (in other words, the
same functional potential). Why do these two cells
eventually turn out to be different?

The difference comes from the fact that the set
of actually expressed genes differ, because the orders
emanating from the cytoplasms differ, in turn partly
because ultimately, the cell’s environments differ.
In other words, different cytoplasms lead to cells
functioning differently, even when the original genetic
material is the same. In addition to that, variations
in the environment also lead to more divergence from
the two cytoplasms as time passes.

Now consider LATEX articles, reports, books, etc.,
in the sense of their corresponding \documentclass.
It is usually very easy to figure out the class of a
document just by the look of it. Two articles look
similar because their general layout is the same: it
is dictated by the article class. Consequently, a
document’s class can be seen as its original geneTEX
material. Two articles look roughly the same but
are still different, just like two liver cells are both
liver cells, but still different ones. If we extrapolate
a little further, outside the unicellular world, the
morphological similarities between documents of the
same class are not unlike those between brothers and
sisters or even twins (blue eyes, red hair, etc.) that
may share the same genetic pool although expressed
slightly differently.

Given this parallel, what makes two article

documents different is also exactly what makes two
liver cells different. The set of expressed genes/
macros may differ (you might or might not use
\subsubsection), the orders coming from the doc-
ument’s cytoplasm/body may differ (you may issue
macro calls at different times and with different pa-
rameters), and in fact the whole documents’ cyto-
plasms/bodies diverge (their respective text is not
the same). The ultimate source of divergence is of
course the documents’ authors, who write different
documents. A document author clearly takes the
role of the cell’s environment here.

4.2 Sources

A LATEX document. just like a cell, is a viable entity
as soon as its initial geneTEX material is defined
(its class), and it has a healthy body/cytoplasm.
However, it is rare that a document is satisfied only
with a class. In fact, a perhaps even more important
and abundant source of geneTEX material is the use
of styles. Styles provide the same kind of material
as classes: macro definitions. The difference is that
styles are not needed to give birth to a document.
When some are used, however, the document may

Didier Verna

TUGboat, Volume 31 (2010), No. 2 165

function slightly or sometimes very differently.
In this context, the idea of viewing styles as

viruses that infect unicellular LATEX documents turns
out to be quite natural. Viruses are biological entities,
mostly genetic components, that need a host cell to
replicate themselves. Viruses are thus characterized
by the fact they cannot perform their function on
their own (this is why viruses are not considered
as living entities [4, 13], although the debate is still
open [11]). A LATEX style has similar properties: it
is basically useless as a standalone entity and needs
to “infect” a host document in order to perform
its function. Just like a virus, a style adds its own
geneTEX material to the document’s original pool.

Viruses are usually small compared to the organ-
isms they infect, apart from two notable exceptions:
the mamavirus and the mimivirus, which are twice
as big as the average. A quick survey of the TEX Live
2009 distribution exhibits a surprising coincidence:
among 2462 available sty files, the average size is
around 327 lines of code (LoC), with a median at
134. Styles are indeed rather small. However, two
of them are exceptionally bigger than the others:
texshade.sty and xq.sty, with 14470 and 24535
LoC respectively. These styles can arguably be called
the mimistyle and the mamastyle of LATEX.

All these considerations make it interesting to
analyze and compare the ways genetic material from
cells and viruses, or programmatic material from
classes and styles, interact. This is the purpose of
the following sections.

5 Infection methods

In cells as in documents, there are many ways to be
infected with new geneTEX material. The following
methods come to mind in both worlds.

5.1 Exogenic

Perhaps the most common way for a document to be
infected by a style is to “request” explicit infection by
means of the \usepackage command. This results
in the incorporation of the style into the document’s
preamble, the style being indeed an external LATEX
entity stored in a file of its own. We could even use
the term “stylon” to denote the style file, in reference
to the biological term “virion” which denotes the
viral particle outside the cell it is bound to infect.

Such a style infection always occurs after the
initial geneTEX material of the document has been
defined, since \documentclass must appear first.
As such, the style’s material is not technically part
of the original document’s material. The infection
occurs afterwards.

In biology, this process is said to be exogenic:
the cell is infected by the virus after it has been
created (for instance, after mitosis), and the genetic
material brought by the virus is not part of the cell’s
original pool.

5.2 Endogenic

A document might however be infected by a style
without even knowing it: a class may request infec-
tion by means of the \RequirePackage command.
As such, when a document is created based on this
class, even without explicit addition of any style
in the preamble, the document is already infected.
Arguably, this is a situation in which the geneTEX
material brought by the style is indeed part of the
original genome, because it is impossible to create a
non-infected document based on that class.

This kind of infection is known to be endogenic
in biology: when a new cell is born, it already con-
tains some genetic material that would have required
a former infection, for instance of the mother cell.

About 10% of our own genetic source material is
currently estimated to be endogenic. A quick survey
of TEX Live 2009 reveals that 259 out of the 271 avail-
able classes (95%) “suffer” from endogenic infections,
by 4 styles on average (the median being 2). CurVe

[21, 22], for instance, is infected by the ltxtable,
ifthen, calc and graphics viruses. The QCM style
is also endogenic to the QCM class [20].

5.3 Endosymbiosis

In biology, viruses are not the only source of external
genetic material. Endosymbiosis is defined as the
mutually beneficial cooperation between two living
organisms, one (the endosymbiont) contained within
the other. The so-called endosymbiotic theory [7] sug-
gests that some organelles from eukaryote cells (e.g.
mitochondria) actually come from the endosymbiosis
of former prokaryotes (cells without a nucleus).

In the LATEX world, we must acknowledge the
fact that endosymbiosis is not as widespread as it
should be. What we usually observe is the opposite
phenomenon: the proliferation of a multitude of dif-
ferent packages that are meant to work together, or
do more or less the same thing, instead of becoming
one single and bigger animal. To mention a couple of
examples, I have recently attempted twice to contact
the author of doc about incorporating the features
of DoX [17] (in other words, to turn DoX into an en-
dosymbiont for doc) but got no response.1 Not long
ago, I also launched a thread on comp.text.tex en-
titled “Please, make it stop!” in which I mentioned

1 It seems, however, that recent versions of doc do contain
endosymbiotic versions of newdoc, so there is still hope. . . .

Classes, styles, conflicts: The biological realm of LATEX

166 TUGboat, Volume 31 (2010), No. 2

a couple of packages doing a similar job (key/value
processing). At the end of the thread, the number of
such packages, as reported by different participants,
amounted to 13. LATEX definitely needs more en-
dosymbiosis. Maybe the LATEX 3 project will help in
this regard.

As a final note on endosymbiosis, we must admit
that our analogy falls short on one point: in biology,
the symbiotic organisms are living creatures (mi-
tochondria are semi-autonomous: they live in cells
but have independent division capabilities). In our
case, we are mostly talking of symbiotic relations be-
tween styles and/or classes, which are not considered
“living” documents (see section 4.2 on page 164).

5.4 Exosymbiosis

An interesting phenomenon in package development
seems to do the opposite of endosymbiosis. We call
it exosymbiosis. Many existing styles originate from
quick, local and often dirty hacks in specific doc-
uments, that are gradually abstracted away and
cleaned up in order to become styles of their own, offi-
cially distributed in the form of sty files (a “bottom-
up” development approach, in other words). In this
situation, a symbiosis continues to exist, but one of
the “organisms” is made external to the other, hence
the choice of terminology.

Here is a concrete example of this. For many of
my lectures, I use the Listings package for typesetting
code excerpts, and include them in Beamer blocks.
Providing nice shortcuts for doing so is not trivial
if one wants to preserve control over both Beamer
blocks and Listings options. The way I currently do
this is to simply cut and paste the same 50 LoC into
every new document I create over and over again.
Soon, however, this will become a style of its own
(probably called lstblocks) and released on CTAN.

This development process can indeed be re-
garded as the opposite of endosymbiosis: at first,
a document features some geneTEX material that
does not belong to its original pool, and by the way,
just as mitochondria live in the cell’s cytoplasm,
LATEX macros can be defined anywhere, including
the document’s body instead of preamble. However,
if we let natural evolution happen for some time,
this material will ultimately be extracted from the
original document and become a style, which in turn
will have the ability to infect other documents.

This is as if genetic material from a cell would
have been extracted and became a virus.

5.5 Transduction vs. transfection

Biologists speak of transduction when genetic mate-
rial is brought to a cell via a viral agent (when you

use a style). When no viral agent is involved, the
term transfection is used instead. Transfection cor-
responds to our version of endosymbiosis, where the
geneTEX material is not brought to the document by
a style, but simply by the document’s author typing
some macro definitions locally.

Interestingly enough, most cases of transfection
are transitory (as opposed to stable): the genetic
material is not copied into the cell’s genome, so it is
lost after the mitosis, just like you would need to cut
and paste endosymbiotic macros over and over again
into every new document, unless they are properly
incorporated into the relevant class. Class evolution
can hence be seen as a case of stable transfection (or
transduction if \RequirePackage is involved).

5.6 Stylophages

What if styles could infect other styles instead of just
documents? This is in fact very common practice, as
\RequirePackage can be used in styles as well as in
classes. Again surveying TEX Live 2009 reveals that
1111 out of 2462 (45%) available styles are themselves
infected, by 2 other styles on average.

This kind of behavior has been observed in bi-
ology as well, although only very recently. The
first virus capable of infecting another virus, called
the “virophage” in reference to bacteriophages, has
been discovered by Didier Raoult’s team in 2008 [12].
This virus infects the mimivirus (see section 4.2 on
page 164) and uses its machinery in lieu of a cell’s
one in order to replicate itself.

6 Infection types

In the previous section, we have looked at similarities
in the way cells or documents can be infected. In
this section, we will analyze the effects of infection,
and draw some analogies again. In other words, we
will now consider examples of what infection does
rather than how it spreads.

6.1 Standalone

Perhaps the simplest (and most harmless) form of
style infection is by what we call standalone styles.
Standalone styles provide macros that do not modify,
interact, or even require anything particular from a
document class or other styles. They just use the
usual TEX machinery to add new features, completely
orthogonal to the rest; in other words, geneTEX ma-
terial that you are free to use. . . or not. An example
of this is the clock package which provides macros
for drawing clocks of all sorts of visual appearances.

This situation is similar to that of viruses infect-
ing non-permissive cells (in which they can’t replicate

Didier Verna

TUGboat, Volume 31 (2010), No. 2 167

themselves), but in which however their genetic ma-
terial may remain in the form of free episomes, that
is, not integrated into the cell’s genome. Just like
the information necessary to draw a clock is here
but is really independent from the rest, (part of) the
genetic information of the virus is also here, but does
not interact with the cell’s original genome. The
genes brought by the virus may or may not be ex-
pressed depending on environmental conditions, just
like you may choose to actually draw a clock or not
in your document. If you don’t, the presence of this
exogenic material simply has no effect.

6.2 Prostyles

Instead of standing apart from the cell’s DNA, viruses
can have their genetic material incorporated into that
of their host, in which case they are called proviruses.
Because of this integration, proviruses passively repli-
cate as part of their host’s replication process, al-
though just as for standalone viruses, infection can
either remain latent or become active.

Because of this integration with the cell’s orig-
inal genome, the potential effects of a provirus are
extremely wide: they can amplify, inhibit or even
modify the different functions of their host. They
can either have very little pathogenic effect, like AAV

(Adeno-associated virus), or cause extremely serious
diseases, like HIV.

The vast majority of LATEX styles, including
those mentioned in the following sections, qualify
as prostyles in the sense that they incorporate their
programmatic material into the existing one, instead
of just contributing something new and orthogonal.
Most styles in LATEX indeed exist to enhance or mod-
ify an existing functionality.

The following very common programming idiom
makes a style a prostyle:

\let\@oldfoo\foo

\def\foo{... \@oldfoo ...}

What this does is essentially to incorporate some
new geneTEX material into the existing definition for
\foo, thereby modifying its associated function. In
a similar way, every time you \renewcommand some-
thing, you are creating a prostyle. The examples
are innumerable in LATEX. FiNK [18], for instance,
is a prostyle because it modifies the behavior of
\InputIfFileExists; hyperref [10] is another no-
table prostyle given the amount of semantic changes
it inflicts on existing commands, etc.

In fact, the use of a prostyle as a means to alter
the original programmatic material of a document
looks very much like the use of a virus to willingly
incorporate new genes into an organism. Such organ-
isms are called GMO/GEO (Genetically Modified/

Engineered Organisms). So we could say that using a
prostyle in a LATEX document makes it a GMD/GED

(GeneTEXally Modified/Engineered Document).

6.3 Satellite

One (perhaps the most) important source of style
proliferation in LATEX is what we call satellite styles.
A satellite style exists to amplify or extend the func-
tionalities provided by another style. Examples of
satellite styles are DoX, which extends the doc pack-
age, graphicx which extends graphics and xkeyval

which extends keyval.
Satellite styles typically depend on the presence

of their respective “sub-style” to work properly, be-
cause they build on top of them. They cannot work
properly on their own.

This behavior exists in biology as well, as some
viruses are considered to be satellites of others. For
instance, the so-called Delta virus, or Hepatitis D
Virus (HDV) is considered to be a satellite of HBV,
Hepatitis B. The HDV cannot propagate without
the presence of the HBV, but when both are present,
the risk for complication, or the lethal rate increases.
Other examples would be most of the avian sarcoma
viruses, which require the help of a non-defective (see
next section) leukemia virus.

Biologists distinguish between co-infection, when
a patient is infected by both viruses at the same
time, and super-infection when the two infections
happen one after the other. In the LATEX world,
super-infection is or should be nonexistent because
it would mean that a document author is required
to explicitly \usepackage both styles, one after the
other. A better practice for a satellite style is to
\RequirePackage the style it depends on. This way,
a document directly suffers from co-infection. In
fact, satellite styles are almost always stylophages
(see section 5.6 on the facing page).

6.4 Defective

Satellite viruses are in fact a sub-category of so-
called defective viruses. A defective virus is a virus
that lacks a complete genome and hence depends on
another virus to provide the missing genetic function.
While defective viruses are defective by mutation,
defective styles are defective by design. Computer
science does not usually like to reinvent the wheel;
reusability is a key paradigm in software engineering.
So when a package author creates a new satellite
style, he or she usually avoids replicating the base
functionality with “cut-and-paste”, but relies on co-
infection by \RequirePackage’ing the underlying
functionality. The resulting style is indeed defective,
but on purpose.

Classes, styles, conflicts: The biological realm of LATEX

168 TUGboat, Volume 31 (2010), No. 2

6.5 Host-dependent

When a virus is defective, it can rely on another
virus to provide the missing genetic function, or it
can rely on the host cell. Such viruses are not called
satellite anymore, but are said to be host-dependent.

Host-dependent styles exist in the LATEX world.
Such styles would only work with a specific document
class to provide the missing geneTEX functions. The
example which comes to mind immediately is that
of Beamer themes. Beamer is a class for writing
slides, the appearance of which can be customized.
Beamer themes are styles defining a specific set of
morphological traits for slides, and are obviously
specific to Beamer documents.

6.6 Cheaters

The defective styles presented so far work in a spirit
of cooperation with their “helper”: Beamer themes
exist to enrich Beamer documents, xkeyval exists to
improve keyval, etc. In a way, this is also the case
for the HDV and HBV viruses which “work” together
in the common and unfortunate goal of spreading
hepatitis.

But what if some defective styles were in fact
egoistically “stealing” functionality from their helper,
and diverting it for a totally different purpose? What
if, in other words, defective styles were working in a
spirit of competition instead of cooperation?

In a very amusing way, there is at least one style
that we know of which already cheats on itself: the
verbatim package. This style provides an environ-
ment for outputting text as is, but also provides a
comment environment which simply discards all its
contents. Although comments are completely unre-
lated to verbatim text, the implementation of the
comment environment steals the basic functionality
used to produce verbatim text: the ability to have
TEX read text without interpreting any commands
or special characters.

The soon-to-come lstblocks package will do
exactly the same. In order to properly integrate
inline Listings and Beamer blocks (which cannot
be nested out of the box), we use a trick based on
verbatim: the inline text is first output to a file, and
the file is later re-input by \lstinputlisting.2 In
other words, we steal functionality from verbatim

in order to do something which is the exact opposite
of what it is originally meant for: typesetting some
text with heavy fontification instead of as is.

In a very puzzling way, cheaters also exist in
the world of viruses. Experimental studies even

2 The technical details of this process are explained in
the following blog entry: http://lrde.epita.fr/~didier/

sciblog/index.php?entry=entry080604-120459

show that cheaters often win the competition and
overwhelm the cooperating ones [16]. An example of
a cheating virus is the umbravirus [8, 15] that steals
the coat protein of another virus, the luteovirus, in
order to spread to other plants.

7 Conflicts, diseases and cures

There is an angle from which the analogy between
LATEX and biology could be regarded as somewhat
shaky: viruses are usually studied and well known
for their pathogenic effects, while styles are supposed
to do some good.

7.1 Good or bad, or both

The replication of a virus usually entails cellular lysis
(the destruction of the host cell’s plasma membrane)
in order to disseminate new virions (complete virus
particles) in the environment. The pathogenic po-
tential of a virus (in other words its ability to lead
to a disease) is described in terms of virulence and
depends on the success of its replication. However,
from a unicellular point of view, the presence of a
single active viral entity is lethal to the cell. We, on
the other hand, are more interested in the benefits of
style infection: LATEX styles are normally meant to
be non-virulent and provide additional functionality:
“useful viruses” in some way.

It turns out, however, that our analogy is not
so shaky after all: a positive vision of viruses does
exist, although it is still quite young. Only recently
biologists have started to acknowledge the positive
role of viruses as important factors of evolution or
even as therapeutic tools. In fact, most viruses that
we live with every day are harmless. Consequently,
it appears that viruses, just like styles, have both a
Dr. Jekyll and a Mr. Hyde face: viruses play a crucial
role in evolution but they can cause diseases, while
styles give you more power but can cause conflicts.

7.2 Conflicts and diseases

Just as proviruses can cause serious diseases, prostyles
can cause the compilation to break, especially if some
bad interaction happens between their geneTEX ma-
terial and that of other styles or of the document
class. Basically, a LATEX document can be in three
states: healthy, ill-formed or dead. An ill-formed
document compiles successfully but displays incor-
rectly. A dead document is a document which could
not compile, so TEX aborted. In a similar way, a cell
can live normally, function improperly or be dead.

A very systematic and rather famous way of
getting a living yet ill-formed LATEX document is to
infect it with the a4wide style. If your document

Didier Verna

TUGboat, Volume 31 (2010), No. 2 169

This is a test to see if the problems which seem
to, for example?]FiXme Note: what does [this] do,
for example? be caused by using square brack-
ets in marginal fixme notes, even in a minimal
document. . .

Figure 3: An ill-formed FiXme note

uses the twoside option, then the infection will ren-
der this option inoperative (odd and even pages get
the same geometry). Another shameful example is
that of FiXme [19] which seems to have problems
typesetting square brackets in marginal notes, as
depicted in figure 3. The next version, still under
development, does not seem to suffer from this prob-
lem. The reason for this is currently unknown, but
probably involves some kind of geneTEX mutation
in the codebase. . . .

The ways to break compilation because of style
infection are too numerous to be listed here. The
fact that you are reading this very paper can be
considered a miracle in itself, given that the source
involves both the hyperref and the varioref pack-
ages. Suffice to quote the README file from the
hyperref distribution:

There are too many problems with varioref.
Nobody has time to sort them out. Therefore
this package is now unsupported.

Note that viruses or styles are not a requirement
for a cell to malfunction or die, or a document to be
ill-formed or uncompilable. A cell can malfunction
for many other reasons, including DNA mutation
because of external conditions, etc. A document can
turn out ill-formed or even die because there are
bugs in its programming.

7.3 Cures

Just as in biology, facing the risk of possibly lethal
diseases to documents entails the search for cures.
In biology, viral infections are basically treated with
either prevention, vaccines or antiviral agents.

7.3.1 Prevention

No cure is needed if no infection is present. In other
words, if you don’t want to get sick, then just don’t
get a disease. Knowing the risks in advance is hence
the key to prevention, and this is probably much
easier to do in LATEX than in biology. In the LATEX
world, prevention will mostly be accomplished by
documentation.

An example of prevention against a non-lethal
disease is given in section 3.3 of the FiXme docu-
mentation: FiXme explicitly supports the standard
LATEX classes plus their KOMA-Script replacements

for typesetting the list of FiXme’s. For any other
class, the article layout will be used, which will
probably lead to an ill-formed list. In other words,
some classes are known to be immune to FiXme

infection, and for other cases, you know the risks.
Another example of prevention against lethal

sickness is the quote from hyperref’s README file
about varioref presented in section 7.2 on the facing
page. What it really says is:

You are infected by Hyperref. If you want to
live, don’t be infected by Varioref as well: just
don’t use it.

The other interesting aspect in this particular ex-
ample is that the concern is about super-infection
rather than just infection, since it deals with the
presence of two styles simultaneously. This is a bit
like saying:

You have got HBV. This is already serious
enough. Just don’t get HDV on top of that.

7.3.2 Adaptive immune systems

Mentioning adaptive immune systems here is a bit
borderline as it involves complex, multi-cellular or-
ganisms. However, there are still a number of inter-
esting common patterns to mention.

Adaptive immunity (contrary to innate immu-
nity) is the process by which an organism acquires
defenses against a pathogen such as a virus. Im-
munological memory, materialized by the presence
of so-called B- and T-cells, contains some kind of
history of previously encountered infections, and how
to fight them. We are principally interested in active
immunological memory, which is a long-term mem-
ory of immunological responses. Such memory can
be acquired naturally after a real infection (such as
with measles or mumps), or artificially from vaccina-
tion. Vaccination typically consists of faking a real
infection with a non-virulent form of a virus in order
to trigger an immune system response.

What is interesting here is the pattern by which
an organism suffers from an infection, learns to fight
it, and then memorizes the “counter-measures” in
order to be prepared for future attacks. This pattern
exists in LATEX and can be described by the following
steps:

1. John writes a document of class class, but
notices that when he uses the style style, com-
pilation breaks.

2. John sends a bug report somewhere (such as
comp.text.tex, the author of class, or more
probably the author of style).

Classes, styles, conflicts: The biological realm of LATEX

170 TUGboat, Volume 31 (2010), No. 2

3. Some time later (for some definition of “some”),
a new version of either class or style is re-
leased and everything works smoothly.

Now, depending on whether class or style

mutates in order to circumvent the infection, we find
ourselves in two very different situations.

When a new version of the class is released, we
fall into the case of acquired immunity, as described
above: the class remembers the infection and will
know how to fight it in the future. The principal
LATEX organelle to implement acquired immunity is
the \@ifpackageloaded macro. This macro tests for
the presence of a known infection and lets you plug
in the appropriate counter-measures. In the TEX
Live 2009 distribution, only 37 out of 271 classes
(13%) seem to be equipped with an active immune
system, against 2 styles in average. The memoir

class has the strongest active immune system, with
antigens against 5 styles. revtex4 has an interesting
mechanism by which some incompatible styles are
known although no immunity is provided. Instead,
the class decides to commit suicide rather than fight
the infection, not unlike what a too brutal viral agent
would do: eradicate the virus but damage the cell,
or even kill it in the process.

When a new version of the style is released, how-
ever, the situation looks more like a case of adaptation
of the style to a new class of documents. Here, the
analogy is more that of a virus acquiring the ability
to infect new types of cells. Biologists have a term for
that: viral tropism. The principal LATEX organelle
to increase style tropism is the \@ifclassloaded

macro. This macro tests for the kind of document
you are trying to infect, and lets you plug in the
appropriate adaptation routines. As an example,
the sectsty and FiXme packages have explicit adap-
tation routines for 8 classes known in advance (in-
cluding the standard ones and their KOMA-Script
replacement). Note however that when a style does
not make use of \@ifclassloaded, this does not
mean that it has a very low viral tropism, but usu-
ally the opposite: it means that its geneTEX material
is universal enough that it doesn’t need to know the
type of its host document explicitly.

7.3.3 Acquired or innate?

A serious risk in any game of analogies is to miss
their limits. We must acknowledge a very important
divergence between biological and LATEX adaptive
immune systems as described in the previous section.

In a multi-cellular organism, the adaptive im-
mune system builds a functional response to an ag-
gression, for instance by selecting special kinds of
lymphocytes. The problem is that the active im-

munological memory is specific to the individual. In
other words, vaccinating a mother does not provide
immunity to her children. The descendants need
to be vaccinated as well. On the other hand, once
a class has mutated in order to provide the proper
immunological response to a style infection, all doc-
uments of that particular class will implicitly be
vaccinated (including the original one). In fact, the
immune response is now encoded into the original
geneTEX material of every new document of that
particular class, so that it essentially becomes an
innate trait.

The interesting question that arises here is hence
the following: can acquired traits become innate?
More specifically in our case: is it possible that a
response to a virus ends up encoded in a cell’s genetic
material? We currently don’t have a firm answer to
this question. A potential path for further study
would be to investigate the field of epigenetics at the
risk of opening the heated debate around the central
dogma of molecular biology. Recent studies show
for example that some plants are able to alter their
genetic material in response to environmental stress
(e.g. viral attacks) and that these alterations can be
transmitted to the next generations [9].

7.3.4 Antistyle agents

In the LATEX world, the fight between styles is even
more violent than the fight between styles and classes.
A particularly striking example is again that of sec-
tion 6 of the hyperref README file, which is 8
pages long and describes incompatibilities (and cures)
between hyperref itself and around 40 other pack-
ages. Sometimes, the cure simply consists in making
sure that your document is infected in a specific or-
der. Some other times, additional hacks are needed
to make things work, for instance in the case of
bibentry:

\makeatletter

\let\saved@bibitem\@bibitem

\makeatother

And then later:

\begingroup

\makeatletter

\let\@bibitem\saved@bibitem

\nobibliography{database}

\endgroup

This kind of very specialized and local “cure”
can be compared to so-called antiviral agents: spe-
cific molecules that treat specific kinds of infections.
Contrary to the case of an immune system, the organ-
ism is not prepared in advance to fight the infection.
Instead it is provided with an external compound

Didier Verna

TUGboat, Volume 31 (2010), No. 2 171

once infected. The compound in question does not
provide any immunological memory either.

Antistyle agents such as those described in the
hyperref README file behave exactly like that.
The document is not immune to the infection, as
the class is not prepared geneTEXally for it. Instead,
every document needs an inoculation of the antistyle
agent in order to fight the infection.

7.3.5 Curative infections

The use of \@ifpackageloaded is not restricted to
class files. Style files can use it as well, hereby antic-
ipating the co-existence of multiple infections within
the same document. A quick survey of the TEX Live
2009 distribution shows that only 8% of the available
styles make use of this feature. Some of them, how-
ever, rely on it quite heavily. For instance, minitoc
knows about almost 30 other styles in advance, which
helps avoid conflicts.

In most cases, this kind of style/style interaction
exists for altruistic concerns, which is somehow the
opposite approach to what hyperref does with its
README file: a document is first infected with a
style which could potentially cause problems in the
case of super-infection, but this style also provides
some geneTEX material in order to protect the whole
document against those super-infections. In other
words, one infection helps in fighting another.

Another previously mentioned example is that of
the soon-to-come lstblocks package: Beamer blocks
and Listings inline environments don’t interact well
with each other, and the purpose of lstblocks is to
fix that. This is another form of “curative infection”
although there is one fundamental difference with
the previous one. In the first case, the style pro-
vided cures against potential diseases it could cause
itself, in the presence of another style. In the case
of lstblocks, its sole purpose is to cure a conflict
caused not by itself, but by the conflicting presence
of two other (and unrelated) infections.

A similar pattern of curative infection exists in
biology: there are situations in which a virus (or at
least part of its genome) helps fighting another. For
instance, some mice are naturally protected against
variants of a virus called Friend. The gene respon-
sible for this protection, named Fv1, was identified
in 1992 to be of endogenic retroviral origin. In other
words, some genetic material from a virus helps fight-
ing against another.

8 Breaking news

To end this paper on a positive note, we would like
to proudly announce the recent discovery of the first
oncogenic style ever. This style appears to be ex-

1 \ProvidesPackage{oncogenic}

2 [2010/07/28 v1.0 TUG Virus]

3 \expandafter\let\csname

4 ver@oncogenic.sty\endcsname\relax

5 \RequirePackage{oncogenic}

Listing 1: TUG virus strain #1

1 \ProvidesPackage{oncogenic}

2 [2010/07/29 v2.0 TUG Virus]

3 \def\@ifl@aded#1#2{%

4 \expandafter\@secondoftwo}

5 \RequirePackage{oncogenic}

Listing 2: TUG virus strain #2

tremely virulent, as we were able to witness a muta-
tion just one day after its discovery.

The first strain of the virus was discovered on
July 28th, 2010, at the TUG 2010 Conference, Sir
Francis Drake Hotel, San Francisco, CA, USA, and
is shown in listing 1. As you can see in line 2, this
style makes the document forget it has been infected
by removing the definition of \ver@oncogenic.sty,
and then replicates by requiring itself. This results
in the death of the document by resource exhaustion:

! TeX capacity exceeded, sorry

[input stack size=5000].

<to be read again>

\ver@oncogenic.sty

l.1 .../06/28 v1.0 TUG Virus]

No pages of output.

Transcript written on cancer.log.

zsh: exit 1 latex cancer.ltx

Just one day after its original discovery, we were
able to isolate a new strain of the style, depicted in
listing 2. This strain is much more aggressive and
has a much more widespread effect. Line 2 exhibits
a geneTEX mutation of a macro from the original
document’s genome: \@ifl@aded. This macro is
responsible for controlling whether a file has been
loaded before, and avoids loading it multiple times if
it so happens. As such, it regulates the growth of the
document, and hence qualifies as a proto-oncogene.

The mutation caused by the style makes this
macro unconditionally load the file in question, re-
sulting in the same proliferation of the style as be-
fore. What the style does is in effect turn the proto-
oncogene into a full blown oncogene [14] that may
affect the whole document.

So far, we have been able to synthesize an
\@ntibody that will suppress the effect of line 3.

Classes, styles, conflicts: The biological realm of LATEX

172 TUGboat, Volume 31 (2010), No. 2

However, the oncogene in line 2 still remains latent
in the document’s genome, and might be expressed
again if a circular chain of file requirements ever hap-
pens, in which case the style would become virulent
again. We are confident that a definitive cure will
be found in the months to come.

9 Conclusion

Drawing bridges between apparently unrelated dis-
ciplines is always interesting and fun to do, if not
for the potential practical applications, at least for
the sake of the mental exercise. This kind of cross-
disciplinary thinking, however, has proven to be con-
cretely useful in the past. For instance, we know the
impact of Design Patterns, originating from Archi-
tecture [1], on the world of Computer Science [5, 3].

What we have done with this work is essentially
exhibit a set of behavioral patterns that seem to
equally rule the interactions between components
of different domains. In doing so, we hope to have
contributed to a better understanding of the world
we live in, whether biological or digital. It is also very
probable that we have only scratched the surface of
this idea, and that many other patterns are left for
us to discover.

Finally, we suspect that bridges with the same
essence can be extended to other macro systems,
such as m4, and beyond macro languages, program-
ming languages which provide for deep intercession
capabilities, such as the Lisp family of languages [2].

10 Acknowledgments

Alain Verna provided the original leukocyte photog-
raphy in figure 1. Mireille Verna provided valuable
comments on the ideas behind this work, as well as
proofreading of this article.

References

[1] Christopher Alexander, Sara Ishikawa, Murray
Silverstein, Max Jacobson, Ingrid Fiksdahl-King,
and Shlomo Angel. A Pattern Language: Towns,

Buildings, Construction. Oxford University Press,
1977.

[2] ANSI. American National Standard: Programming
Language—Common Lisp. ANSI X3.226:1994
(R1999), 1994.

[3] F. Buschmann, R. Meunier, H. Rohnert,
P. Sommerlad, and M. Stal. Pattern-Oriented

Software Architecture. Wiley, 1996.

[4] François Jacob. La vie. In Yves Michaud, editor,
Qu’est-ce que la vie, Université de tous les savoirs.
Odile Jacob, 2000.

[5] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns: Elements of Reusable

Object-Oriented Software. Addison-Wesley, 1994.

[6] D.E. Knuth. The TEXbook. Addison-Wesley,
1989 (reprinted with corrections).

[7] Lynn Margulis. Origin of Eukaryotic Cells.
Ignatius Press, San Francisco, 1970.

[8] R. Matthews. Plant Virology. Academic Press, 1991.

[9] J. Molinier, G. Ries, C. Zipfel, and B. Hohn.
Transgeneration memory of stress in plants.
Nature, 442:1046–1049, 2006.

[10] Heiko Oberdiek. PDF information and navigation
elements with hyperref, pdfTEX, and thumbpdf.
In EuroTEX, 1999.

[11] Ali Säıb. Les virus, inertes ou vivants ? Pour la

Science, December 2006.

[12] Bernard La Scola, Christelle Desnues, Isabelle
Pagnier, Catherine Robert, Lina Barrassi,
Ghislain Fournous, Michèle Merchat, Marie
Suzan-Monti, Patrick Forterre, Eugene Koonin,
and Didier Raoult. The virophage, a unique
parasite of the giant Mimivirus. Nature, August 2008.

[13] Wendell Stanley. Isolation of a crystalline protein
possessing the properties of tobacco-mosaic virus.
Science, 81:644–645, 1935.

[14] D. Stehelin, H.E. Varmus, J.M. Bishop, and P.K.
Vogt. DNA related to the transforming gene(s) of
avian sarcoma viruses is present in normal avian
DNA. Nature, 260:170–173, 1976.

[15] Michael E. Taliansky and David J. Robinson.
Molecular biology of umbraviruses: phantom
warriors. Journal of General Virology,
84:1951–1960, 2003.

[16] Paul E. Turner. Cheating viruses and game
theory. American Scientist, 93:428–435,
September–October 2005.

[17] Didier Verna. The DoX package. http://www.lrde.
epita.fr/~didier/software/latex.php#dox.

[18] Didier Verna. The FiNK package. http:

//www.lrde.epita.fr/~didier/software/latex.

php#fink.

[19] Didier Verna. The FiXme package. http:

//www.lrde.epita.fr/~didier/software/latex.

php#fixme.

[20] Didier Verna. The QCM package. http:

//www.lrde.epita.fr/~didier/software/latex.

php#qcm.

[21] Didier Verna. CV formatting with CurVe. TUGboat,
22(4):361–364, December 2001.

[22] Didier Verna. LATEX curricula vitae with the CurVe

class. The PracTEX Journal, (3), August 2006.

[23] R. H. Whittaker. New concepts of kingdoms of
organisms. Science, 163(3863):150–160, 1969.

⋄ Didier Verna
EPITA / LRDE
14-16 rue Voltaire
94276 Le Kremlin-Bicêtre Cedex
France
didier (at) lrde dot epita dot fr

http://www.lrde.epita.fr/~didier

Didier Verna

TUGboat, Volume 31 (2010), No. 2 173

TEX Live 2010 news

Karl Berry

Abstract

Notable changes in the TEX Live 2010 release.

1 Automatic EPS conversion for pdf(LA)TEX

In TEX Live 2010, the most visible change is that
pdf(LA)TEX now automatically converts a requested
Encapsulated PostScript (EPS) file to PDF, via the
epstopdf package, when and if the LATEX config-
uration file graphics.cfg is loaded, and PDF is
being output. The default options are intended to
eliminate any chance of hand-created PDF files be-
ing overwritten, but you can also prevent epstopdf
from being loaded at all by putting \newcommand

{\DoNotLoadEpstopdf}{} (or \def...) before the
\documentclass declaration. For details, see the
package documentation for epstopdf (http://ctan.
org/pkg/epstopdf-pkg).

A related important change is that execution
of a very few external commands, via the \write18

feature, is now enabled by default — for example,
epstopdf, makeindex, and bibtex. The exact list
of commands is defined in the texmf.cnf file. If you
want to disallow all external command execution in
your installation, you can deselect this option in the
TEX Live installer, or override the value in the root
texmf.cnf (.../2010/texmf.cnf) after installation.
(Do not change .../2010/texmf/web2c/texmf.cnf,
since it can be overwritten on updates.)

The above changes were announced for TL 2009,
but disabled before the release was made. This year
we sincerely hope and believe the bugs have been
worked out.

2 PDF 1.5 output by default

The default version for PDF output is now 1.5, en-
abling more compression. This applies to all the TeX
engines when used to produce PDF and to dvipdfmx.

Loading the pdf14 LATEX package changes back
to PDF 1.4, or setting \pdfminorversion=4 (in your
document or macros).

3 X ETEX and margin kerning

X ETEX now supports margin kerning along the same
lines as pdfTEX. Font expansion is not yet supported;
perhaps next year.

4 New programs

New programs included:

• the pTEX engine for typesetting Japanese;
• BibTEXU, a Unicode-enabled BibTEX;
• chktex, for syntax checking (LA)TEX documents

(http://baruch.ev-en.org/proj/chktex);
• dvisvgm, a DVI-to-SVG translator

(http://dvisvgm.sourceforge.net).

5 No longer live

The TEX Live incarnation on the TEX Collection DVD

(http://tug.org/texcollections) can no longer
be run live. A single DVD no longer has enough room
for all the software we want to include. One benefit
is that installation from a physical DVD should be
much faster.

6 Backups of updated packages

By default, tlmgr now saves one backup of each
package updated, so broken packages updates can
be easily reverted with tlmgr restore. If you don’t
have enough disk space for backups, and want to do
post-installation updates, run:
tlmgr option autobackup 0

7 BIBTEX and Makeindex output safer

By default, BibTEX and Makeindex will now, like
TEX itself, refuse to write their output files to an ar-
bitrary directory. This is so they could be enabled for
use by the restricted \write18 mentioned above. To
change this, the TEXMFOUTPUT environment variable
can be set, or the openout_any setting changed.

8 In summary

Thanks to all the many people involved in this and
past releases. See the documentation for acknowl-
edgements, as well as installation and usage informa-
tion — http://tug.org/texlive/doc.html.

All releases of TEX Live, along with ancillary
material such as CD labels, are available at ftp:

//tug.org/historic/systems/texlive.
TEX Live and MiKTEX account for a substantial

portion of the total traffic to CTAN. So more mirrors
are always welcome; if you can help, please see http:

//ctan.org/mirroring.html, and thanks.

⋄ Karl Berry
http://tug.org/texlive

TEX Live 2010 news

174 TUGboat, Volume 31 (2010), No. 2

LuaTEX 0.60: An overview of changes

Taco Hoekwater and Hartmut Henkel

Abstract

TEX Live 2010 will contain LuaTEX 0.60. This article
gives an overview of the changes between this version
and the version in last year’s TEX Live.

Highlights of this release: CWEB code base, dy-
namic loading of lua modules, various font subsystem
improvements including support for Apple .dfont

font collection files, braced input file names, extended
PDF Lua table, and access to the line breaking algo-
rithm from Lua code.

1 General changes

Some of the changes can be organised into sections,
but not all. So first, here are the changes that are
more or less standalone.

• Many of the source files have been converted into
CWEB. Early versions of LuaTEX were based
on Pascal WEB, but by 0.40 all code had been
hand-converted to C. The literate programming
comments were kept, and the relevant sources
have now been converted back into CWEB, rein-
stating the literate documentation.

This change does not make LuaTEX a literate
program in the traditional sense because the typ-
ical C source code layout with pairs of header &
implementation files has been kept and no code
reshuffling takes place. But it does mean that it
is much easier to keep the source documentation
up-to-date, and it is possible to create nicely
typeset program listings with indices.

• There are now source repository revision num-
bers in the banner again, which is a useful thing
to have while tracking down bugs. For exam-
ple, the LuaTEX binary being used to write this
article starts up with (except all on one line):

This is LuaTeX,

Version beta-0.60.1-2010042817 (rev 3659)

• The horizontal nodes that are added during line
breaking now inherit the attributes from the
nodes inside the created line. Previously, these
nodes (\leftskip and \rightskip in particu-
lar) inherited the attributes in effect at the end
of the (partial) paragraph because that is where
line breaking takes place.

• All Lua errors now report file and line numbers
to aid in debugging, even if the error happens
inside a callback.

• LuaTEX can now use the embedded Kpathsea
library to find Lua require() files, and will do

so by default if the Kpathsea library is enabled
by the format (as is the case in plain LuaTEX
and the various LuaLATEX formats).

• The print precision for small numbers in Lua
code (the return value of tostring()) has been
improved.

• Of course there were lots of code cleanups and
improvements to the reference manual.

2 Embedded libraries and other
third-party inclusions

The following are changes to third-party code that
for the most part should not need much explanation.

• MetaPost is now at version 1.211.

• Libpng is now at version 1.2.40.

• New SyncTEX code is imported from TEX Live.

• The Lua source file from the luamd5 library
(which provides the md5.hexsuma function) is
now embedded in the executable. Previously,
this file was missing completely.

• The Lua co-routine patch (coco) is now disabled
on powerpc-linux because of crashes on that
platform due to a bad upstream implementation.

2.1 Dynamic loading of lua modules

LuaTEX now has support for dynamic loading of
external compiled Lua libraries.

As with other require() files, LuaTEX can and
will use Kpathsea if the format allows it to do so.
For this purpose, Kpathsea has been extended with
a new file type: clua. The associated texmf.cnf

variable is defined like this by default:

CLUAINPUTS = \

.:$SELFAUTOLOC/lib/{$progname,$engine,}/lua//

which means that if your LuaTEX binary lives in

/opt/tex/texmf-linux-64/bin/

then your compiled Lua modules should go into the
local directory, or in a tree below

/opt/tex/texmf-linux-64/bin/lib/lua

Be warned that not all available Lua modules
will work. LuaTEX is a command line program, and
on some platforms that makes it nearly impossible
to use GUI-based extensions.

3 Font related

Lots of small changes have taken place in the font
processing.

• The backend message

cannot open Type 1 font file for reading

now reports the name of the Type1 font file it
was looking for.

Taco Hoekwater and Hartmut Henkel

TUGboat, Volume 31 (2010), No. 2 175

• It is no longer possible for fonts from included
PDF files to be replaced by or merged with the
document fonts of the enveloping PDF.

• Support for Type 3 .pgc files has been removed.
This is just for the .pgc format invented by
Hàn Thé̂ Thành; bitmapped PK files still work.

• For TrueType font collections (.ttc files), the
used subfont name and its index id are now
printed to the terminal, and if the backend can-
not find the font in the .ttc, the run is aborted.

• It is now possible to use Apple .dfont font col-
lection files. Unfortunately, in Snow Leopard
(a.k.a. MacOSX 10.6) Apple switched to a .ttc

format that is not quite compatible with the
Microsoft version of .ttc. As a result, the sys-
tem fonts from Snow Leopard cannot be used
in LuaTEX 0.60.

• Faster loading of large fonts via the fontloader
library, and faster inclusion for subsetting in the
backend.

• Two new entries in the MathConstants table
have been added. Suppose the Lua math font
loading code produces a Lua table named f,
then in that table, you can set

f.MathConstants.FractionDelimiterSize

f.MathConstants.

FractionDelimiterDisplayStyleSize

These new fields allow proper setting of the
size parameters for LuaTEX’s ...withdelims

math primitives, for which there is no ready
replacement in the OpenType MATH table.

• Artificially slanted or extended fonts now work
via the PDF text matrix so that this also works
for non-Type 1 fonts. In other words: the
Lua f.slant and f.extend font keys are now
obeyed in all cases.

• Another new key is allowed: f.psname. When
set, this value should be the original PostScript
font name of the font. In the PDF generation
backend, fonts inside .dfont and .ttc collec-
tions are fetched from the archive using this
field, so in those cases the key is required.

• A related change to the font name discovery
used by the backend for storage into the PDF

file structure: now it tries f.psname first, as
that is much less likely to contain spaces than
f.fontname (which is the field that 0.40 used).
If there is no f.psname, it falls back to the old
behaviour.

• Finally, Lua-loaded fonts now support the key
f.nomath to speed up loading the Lua table in
the normal case of fonts that do not provide
OpenType MATH data.

4 ‘TEX’-side extensions and changes

LuaTEX is not actually TEX even though it uses an
input language that is very similar, hence the quotes
in this section’s title. Some of the following items
are new LuaTEX extensions, others are adjustments
to pre-existing pdfTEX or Aleph functionality.

• The primitives \input and \openin now accept
braced file names, removing the need for double
quote escapes in case of files with spaces in their
name.

• The \endlinechar can now be set to any value
between 0 and 127.

• The new primitives \aligntab and \alignmark

are aliases for the characters with the category
codes of & and # in alignments, respectively.

• \latelua is now allowed inside leaders. To be
used with care, because the Lua code will be
executed once for each generated leader item.

• The new primitive \gleaders provides ‘globally
aligned’ leaders. These leaders are aligned on
one side of the main output box instead of to
the side of the immediately enclosing box.

• From now on LuaTEX handles only 4 direction
specifiers:

– TLT (latin),
– TRT (arabic),
– RTT (cjk), and
– LTL (mongolian).

Other direction specifiers generate an error.

• The \pdfcompresslevel is now effectively fixed
as soon as any output to the PDF file has oc-
curred.

• \pdfobj has gained an extra optional keyword:
uncompressed. This forces the object to be
written to the PDF in plain text, which is needed
for certain objects containing metadata.

• Two new token lists are provided: \pdfxformattr
and \pdfxformresources, as an alternative to
\pdfxform keywords.

• The new syntax

\pdfrefxform [width 〈dimen〉]
[height 〈dimen〉] [depth 〈dimen〉] 〈formref 〉

scales a single form object using similar principle
as with \pdfximage: depth alone doesn’t scale,
it shifts vertically.

• Similarly,

\pdfrefximage [width 〈dimen〉]
[height 〈dimen〉] [depth 〈dimen〉] 〈imageref 〉

overrules settings from \pdfximage for this im-
age only.

LuaTEX 0.60: An overview of changes

176 TUGboat, Volume 31 (2010), No. 2

• The following obsolete pdfTEX primitives have
been removed:

– \pdfoptionalwaysusepdfpagebox

– \pdfoptionpdfinclusionerrorlevel

– \pdfforcepagebox

– \pdfmovechars

These were already deprecated in pdfTEX itself.

5 Lua table extensions

In most of the Lua tables that LuaTEX provides,
only small changes have taken place, so they do not
deserve their own subsections.

• A new callback, process_output_buffer, al-
lows post-processing of \write text to a file.

• The callbacks hpack_filter, vpack_filter and
pre_output_filter pass on an extra string ar-
gument for the current direction.

• fontloader.open() previously cleared some of
the font name strings during load that it should
not do.

• The new function font.id("tenrm") returns
the internal id number for that font. It takes a
bare control sequence name as argument.

• The os.name variable now knows about cygwin
and kfreebsd.

• lfs.readlink("file") returns the content of
a symbolic link (Unix only). This extension is
intended for use in texlua scripts.

• lfs.shortname("file") returns the short (FAT)
name of a file (Windows only). This extension
is intended for use in texlua scripts.

• kpse.version() returns the Kpathsea version
string.

• kpse.lookup(...) offers a search interface sim-
ilar to the kpsewhich program, an example call
looks like this:

kpse.set_program_name(’luatex’)

print(kpse.lookup(’plain.tex’,

{ ["format"] = "tex",

["all"] = true,

["must-exist"] = true }))

5.1 The node table

In the verbatim code below, n stands for a userdata
node object.

• node.vpack(n) packs a list into a vlist node,
like \vbox.

• node.protrusion_skippable(n) returns true
if this node can be skipped for the purpose of
protrusion discovery. This is useful if you want
to (re)calculate protrusion in pure Lua.

• node.dimensions(n) returns the natural width,
height and depth of a (horizontal) node list.

• node.tail(n) returns the tail node of a node
list.

• Each glyph node now has three new virtual read-
only fields: width, height, and depth. The
values are the number of scaled points.

• glue_spec nodes now have an extra boolean
read-only field: writable.

Some glue specifications can be altered directly,
but certain key glue specifications are shared
among many nodes. Altering the values of
those is prohibited because it would have un-
predictable side-effects. For those cases, a copy
must be made and assigned to the parent node.

• hlist nodes now have a subtype to distinguish
between hlists generated by the paragraph break-
ing, explicit \hbox commands, and other sources.

• node.copy_list(n) now allows a second argu-
ment. This argument can be used to copy only
part of a node list.

• node.hpack(n) now accepts cal_expand_ratio
and subst_ex_font modifiers. This feature
helps the implementation of font expansion in a
pure Lua paragraph breaking code.

• node.hpack(n) and node.vpack(n) now also
return the ‘badness’ of the created box, and
accept an optional direction argument.

5.2 The pdf table

• The new functions pdf.mapfile("...") and
pdf.mapline("...") are aliases for the corre-
sponding pdfTEX primitives.

• pdf.registerannot() reserves a PDF object
number and returns it.

• The functions pdf.obj(), pdf.immediateobj(),
and pdf.reserveobj() are similar to the corre-
sponding pdfTEX primitives. Full syntax details
in the LuaTEX reference manual.

• New read-write string keys:

– pdf.catalog in the Catalog dictionary.
– pdf.info in the Info dictionary.
– pdf.names in the Names dictionary refer-

enced by the Catalog object.
– pdf.trailer in the Trailer dictionary.
– pdf.pageattributes in the Page dictio-

nary.
– pdf.pageresources in the Resources dic-

tionary referenced by the Page object.
– pdf.pagesattributes in the Pages dictio-

nary.

Taco Hoekwater and Hartmut Henkel

TUGboat, Volume 31 (2010), No. 2 177

5.3 The tex table

Finally, there are some extensions to the tex table
that are worth mentioning.

• tex.badness(f,s) interfaces to the ‘badness’
internal function. (By accident, this disables
access to the \badness internal parameter. This
will be corrected in a future LuaTEX version.)

• tex.sp("1in") converts Lua-style string units
to scaled points.

• tex.tprint(...,...) is like a sequence of
tex.sprint(...) calls.

• tex.shipout(n) ships out a constructed box.

• tex.nest[] and tex.nest.ptr together allow
read-write access to the semantic nest (mode
nesting). For example, this prints the equiva-
lent of \prevdepth at the current mode nesting
level:

print (tex.nest[tex.nest.ptr].prevdepth)

tex.nest.ptr is the current level, and lower
numbers are enclosing modes.

Each of the items in the tex.nest array rep-
resents a mode nesting level and has a set of
virtual keys that be accessed both for reading
and writing, but you cannot change the actual
tex.nest array itself. The possible keys are
listed in the LuaTEX reference manual.

• tex.linebreak(n, ...) supports running the
paragraph breaker from pure Lua. The second
argument specifies a (potentially large) table of
line breaking parameters: the parameters that
are not passed explicitly are taken from the
current typesetter state.

The exact keys in the table are documented in
the reference manual, but here is a simple yet
complete example of how to run line breaking
on the content of \box0:

\setbox0=\hbox to \hsize{\input knuth }

\startluacode

local n = node.copy_list(tex.box[0].list)

local t = node.tail(n)

local final = node.new(node.id(’glue’))

final.spec = node.new(node.id(’glue_spec’))

final.spec.stretch_order = 2

final.spec.stretch = 1

node.insert_after(n,t, final)

local m = tex.linebreak(n,

{ hangafter = 2,

hangindent = tex.sp("2em")})

local q = node.vpack(m)

node.write(q)

\stopluacode

The result is:

Thus, I came to the conclusion that the designer of

a new system must not only be the implementer and

first large--scale user; the designer should also

write the first user manual. The separation of

any of these four components would have hurt

TEX significantly. If I had not participated fully

in all these activities, literally hundreds of im-

provements would never have been made, be-

cause I would never have thought of them or

perceived why they were important. But a sys-

tem cannot be successful if it is too strongly

influenced by a single person. Once the initial

design is complete and fairly robust, the real

test begins as people with many different view-

points undertake their own experiments.

6 Summary

All in all, there are not too many incompatible
changes compared to LuaTEX 0.40, and the Lua-
TEX project is progressing nicely.

LuaTEX beta 0.70 will be released in the autumn
of 2010. Our current plans for that release are: access
to the actual PDF structures of included PDF images;
a partial redesign of the mixed direction model; even
more access to the LuaTEX internals from Lua; and
probably some more . . .

⋄ Taco Hoekwater and Hartmut Henkel
http://luatex.org

LuaTEX 0.60: An overview of changes

178 TUGboat, Volume 31 (2010), No. 2

LuaTEX: PDF merging

Hans Hagen

1 Introduction

It is tempting to add more and more features to
the backend code of the engine but it is not really
needed. Of course there are features that can best be
supported natively, like including images. In order to
include PDF images in LuaTEX the backend uses a
library (xpdf or poppler) that can load a page from a
file and embed that page into the final PDF, including
all relevant (indirect) objects needed for rendering.
In LuaTEX an experimental interface to this library
is included, tagged as epdf. In this chapter I will
spend a few words on my first attempt to use this
new library.

2 The library

The interface is rather low level. I got the following
example from Hartmut Henkel, who is responsible
for the LuaTEX backend code and this library.

local doc = epdf.open("luatexref-t.pdf")

local cat = doc:getCatalog()

local pag = cat:getPage(3)

local box = pag:getMediaBox()

local w = pag:getMediaWidth()

local h = pag:getMediaHeight()

local n = cat:getNumPages()

local m = cat:readMetadata()

print("nofpages: ", n)

print("metadata: ", m)

print("pagesize: ", w .. " * " .. h)

print("mediabox: ",box.x1,box.x2,box.y1,box.y2)

As you see, there are accessors for each interest-
ing property of the file. Of course such an interface
needs to be extended when the PDF standard evolves.
However, once we have access to the so-called cata-
log, we can use regular accessors to the dictionaries,
arrays and other data structures. So, in fact we
don’t need a full interface and can draw the line
somewhere.

There are a couple of things that you normally
do not want to deal with. A PDF file is in fact a
collection of objects that form a tree and each object
can be reached by an index using a table that links
the index to a position in the file. You don’t want to
be bothered with that kind of housekeeping. Some
data in the file, like page objects and annotations, are
organized in a tree form that one does not want to
access in that form, so again we have something that
benefits from an interface. But the majority of the
objects are simple dictionaries and arrays. Streams

(these hold the document content, image data, etc.)
are normally not of much interest, but the library
provides an interface as you can bet on needing it
someday. The library also provides ways to extend
the loaded PDF file. I will not discuss that here.

Because in ConTEXt we already have the lpdf

library for creating PDF structures, it makes sense
to define a similar interface for accessing PDF. For
that I wrote a wrapper that will be extended in due
time (read: depending on needs). The previous code
now looks as follows:

local doc = epdf.open("luatexref-t.pdf")

local cat = doc.Catalog

local pag = cat.Pages[3]

local box = pag.MediaBox

local llx, lly, urx, ury

= box[1], box[2] box[3], box[4]

local w = urx - llx -- or: box.width

local h = ury - lly -- or: box.height

local n = cat.Pages.size

local m = cat.Metadata.stream

print("nofpages: ", n)

print("metadata: ", m)

print("pagesize: ", w .. " * " .. h)

print("mediabox: ", llx, lly, urx, ury)

If we write code this way we are less dependent
on the exact API, especially because the epdf library
uses methods to access the data and we cannot easily
overload method names in there. When you look at
the box, you will see that the natural way to access
entries is using a number. As a bonus we also provide
the width and height entries.

3 Merging links

It has always been on my agenda to add the possibil-
ity to carry the (link) annotations with an included
page from a document. This is not that much needed
in regular documents, but it can be handy when you
use ConTEXt to assemble documents. In any case,
such a merge has to happen in a way that does not
interfere with other links in the parent document.
Supporting this in the engine is not an option as each
macro package follows its own approach to referenc-
ing and interactivity. Also, demands might differ
and one would end up with a lot of (error prone)
configurability. Of course we want scaled pages to
behave well too.

Implementing the merge took about a day and
most of that time was spent on experimenting with
the epdf library and making the first version of the
wrapper. I definitely had expected to waste more
time on it. So, this is yet another example of an

Hans Hagen

TUGboat, Volume 31 (2010), No. 2 179

extension that is quite doable in the Lua–TEX mix.
Of course it helps that the ConTEXt graphic inclusion
code provides enough information to integrate such
a feature. The merge is controlled by the interaction
key, as shown here:

\externalfigure[somefile.pdf][page=1,scale=700,

interaction=yes]

\externalfigure[somefile.pdf][page=2,scale=600,

interaction=yes]

You can fine-tune the merge by providing a
list of options to the interaction key but that’s still
somewhat experimental. As a start the following
links are supported.

• internal references by name (often structure re-
lated)

• internal references by page (like on tables of
contents)

• external references by file (optionally by name
and page)

• references to URIs (normally used for web pages)

When users like this functionality (or when I
really need it myself) more types of annotations
can be added although support for JavaScript and
widgets doesn’t make much sense. On the other
hand, support for destinations is currently somewhat
simplified but at some point we will support the
relevant zoom options.

The implementation is not that complex:

• check if the included page has annotations
• loop over the list of annotations and determine

if an annotation is supported (currently links)
• analyze the annotation and overlay a button

using the destination that belongs to the anno-
tation

Now, the reason why we can keep the implemen-
tation so simple is that we just map onto existing
ConTEXt functionality. And, as we have a rather
integrated support for interactive actions, only a few
basic commands are involved. Although we could do
that all in Lua, we delegate this to TEX. We create
a layer that we put on top of the image. Links are
put onto this layer using the equivalent of:

\setlayer

[epdflinks]

[x=...,y=...,preset=leftbottom]

{\button

[width=...,height=...,offset=overlay,frame=off]

{}% no content

[...]}}

The \button command is one of those inter-
action-related commands that accepts any action-
related directive. In this first implementation we see
the following destinations show up:

somelocation

url(http://www.pragma-ade.com)

file(somefile)

somefile::somelocation

somefile::page(10)

References to pages become named destinations
and are later resolved to page destinations again,
depending on the configuration of the main docu-
ment. The links within an included file get their own
namespace so (hopefully) they will not clash with
other links.

We could use lower-level code which is faster but
we’re not talking of time-critical code here. At some
point I might optimize the code a bit but for the
moment this variant gives us some tracing options for
free. Now, the nice thing about using this approach
is that the already existing cross-referencing mech-
anisms deal with the details. Each included page
gets a unique reference so references to not-included
pages are ignored simply because they cannot be
resolved. We can even consider overloading certain
types of links or ignoring named destinations that
match a specific pattern. Nothing is hard coded in
the engine so we have complete freedom in doing
that.

4 Merging layers

When including graphics from other applications it
might be that they have their content organized in
layers (that can then be turned on or off). So it
will be no surprise that merging layer information
is on the agenda: first a straightforward inclusion
of optional content dictionaries, but it might make
sense to parse the content stream and replace refer-
ences to layers by those that are relevant in the main
document. Especially when graphics come from dif-
ferent sources and layer names are inconsistent some
manipulation might be needed, so maybe we need
more detailed control. Implementing this is no big
deal and mostly a matter of figuring out a clean and
simple user interface.

⋄ Hans Hagen
Pragma ADE
The Netherlands
http://luatex.org

LuaTEX: PDF merging

180 TUGboat, Volume 31 (2010), No. 2

The TEX paragraph builder in Lua

Hans Hagen

Abstract

In this article I will summarize some experiences
with converting the TEX parbuilder to Lua. In due
time there will be a plugin mechanism in ConTEXt,
and this is a prelude to that.

1 Introduction

You enter the den of the Lion when you start messing
around with the paragraph builder. Actually, as TEX
does a pretty good job with breaking paragraphs
into lines I never really looked into the code that
does it all. However, the Oriental TEX project kind
of forced it upon me. In a separate discussion of
font goodies an optimizer is described that works
per line. This method is somewhat similar to font
expansion level one support, in the sense that it acts
independent of the parbuilder: the split off (best)
lines are postprocessed. Where expansion involves
horizontal scaling, the goodies approach does with
(Arabic) words what the original HZ approach does
with glyphs.

It would be quite some challenge (at least for
me) to come up with solutions that look at the whole
paragraph and as the per-line approach works quite
well, there is no real need for an alternative. However,
in September 2008, when we were exploring solutions
for Arabic paragraph building, Taco converted the
parbuilder into Lua code and stripped away all code
related to hyphenation, protrusion, expansion, last
line fitting, and some more. As we had enough
on our plate at that time, we never came back to
thoroughly testing it. There was even less reason to
explore this route because in the Oriental TEX project
we decided to follow the “use advanced OpenType
features” route which in turn led to the ‘replace words
in lines by narrower or wider variants’ approach.

However, as the code was lying around and as
we want to explore further, I decided to pick up the
parbuilder thread. In this article some experiences
will be discussed. The following story is as much
Taco’s as mine.

2 Cleaning up

In retrospect, we should not have been too surprised
that the first approximation was broken in many
places, and for good reason. The first version of the
code was a conversion of the C code that in turn
was a conversion from the original interwoven Pascal
code. That first conversion still looked quite C-ish
and carried interesting bits and pieces of C macros,

C-like pointer tests, interesting magic constants and
more.

When I took the code and Lua-fied it nearly
every line was changed and it took Taco and me a
bit of reverse engineering to sort out all problems
(thank you Skype). Why was it not an easy task?
There were good reasons.

• The parbuilder (and related hpacking) code is
derived from traditional TEX and has bits of pdf-
TEX, Aleph (Omega), and of course LuaTEX.

• The advocated approach to extending TEX has
been to use change files which means that a
coder does not see the whole picture.

• Originally the code is programmed in the literate
way which means that the resulting functions
are built stepwise. However, the final functions
can (and have) become quite large. Because
LuaTEX uses the woven (merged) code indeed
we have large functions. Of course this relates
to the fact that successive TEX engines have
added functionality. Eventually the source will
be webbed again, but in a more sequential way.

• This is normally no big deal, but the Aleph
(Omega) code has added a level of complexity
due to directional processing and additional be-
gin and end related boxes.

• Also the ε-TEX extension that deals with last
line fitting is interwoven and uses goto’s for the
control flow. Fortunately the extensions are
driven by parameters which makes the related
code sections easy to recognize.

• The pdfTEX protrusion extension adds code to
glyph handling and discretionary handling. The
expansion feature does that too and in addition
also messes around with kerns. Extra parame-
ters are introduced (and adapted) that influence
the decisions for breaking lines. There is also
code originating in pdfTEX which deals with
poor man’s grid snapping although that is quite
isolated and not interwoven.

• Because it uses a slightly different way of dealing
with hyphenation, LuaTEX itself also adds some
code.

• Tracing is sort of interwoven in the code. As
it uses goto’s to share code instead of func-
tions, one needs to keep a good eye on what
gets skipped or not.

I’m pretty sure that the code that we started
with looks quite different from the original TEX code
if it had been translated into C. Actually in modern
TEX, compiling involves a translation into C code
first but the intermediate form is not meant for hu-
man eyes. As the LuaTEX project started from that

Hans Hagen

TUGboat, Volume 31 (2010), No. 2 181

merged code, Taco and Hartmut already spent quite
some time on making it more readable. Of course
the original comments are still there.

Cleaning up such code takes a while. Because
both languages are similar and yet quite different,
it took some time to get compatible output. Be-
cause the C code uses macros, careful checking was
needed. Of course Lua’s table model and local vari-
ables brought some work as well. And still the code
looks a bit C-ish. We could not diverge too much
from the original model simply because it’s well doc-
umented.

When moving around code, redundant tests and
orphan code have been removed. Future versions (or
variants) might as well look much different as I want
more hooks, clearly split stages, and to convert some
linked-list-based mechanism to Lua tables. On the
other hand, as much code has been written already
for ConTEXt MkIV, making it all reasonably fast was
no big deal.

3 Expansion

The original C code related to protrusion and expan-
sion is not that efficient as many (redundant) func-
tion calls take place in the linebreaker and packer.
As most work related to fonts is done in the back-
end, we can simply stick to width calculations here.
Also, it is no problem at all that we use floating
point calculations (as Lua has only floats). The final
result will look okay as the original hpack routine
will nicely compensate for rounding errors as it will
normally distribute the content well enough. We are
currently compatible with the regular parbuilder and
protrusion code, but expansion gives different results
(not worse).

The Lua hpacker follows a different approach.
And let’s admit it: most TEXies won’t see the dif-
ference anyway. As long as we’re cross-platform
compatible it’s fine.

It is a well-known fact that character expansion
slows down the parbuilder. There are good reasons
for this in the pdfTEX approach. Each glyph and
intercharacter kern is checked a few times for stretch
or shrink using a function call. Also each font refer-
ence is checked. This is a side effect of the way the
pdfTEX backend works as there each variant has its
own font. However, in LuaTEX, we scale inline and
therefore don’t really need the fonts. Even better, we
can get rid of all that testing and only need to pass
the eventual expansion_ratio so that the backend
can do the right scaling. We will prototype this in
the Lua version1 and when we feel confident about

1 For this Hartmut has adapted the backend code to honour
this field in the glyph and kern nodes.

this approach it will be backported into the C code
base. So eventually the C code might become a bit
more readable and efficient.

Intercharacter kerning is dealt with somewhat
strangely. When a kern of subtype zero is seen, and
when its neighbours are glyphs from the same font,
the kern gets replaced by a scaled one looked up
in the font’s kerning table. In the parbuilder no
real replacement takes place but as each line ends
up in the hpack routine (where all work is simply
duplicated and done again) it really gets replaced
there. When discussing the current approach we
decided that manipulating intercharacter kerns while
leaving regular spacing untouched is not really a good
idea so there will be an extra level of configuration
added to LuaTEX:2

0 no character and kern expansion
1 character and kern expansion applied

to complete lines
2 character and kern expansion as part

of the parbuilder
3 only character expansion as part of

the parbuilder (new)

You might wonder what happens when you un-
box such a list: the original font references have been
replaced as are the kerns. However, when repack-
aged again, the kerns are replaced again. In tradi-
tional TEX, indeed rekerning might happen when a
paragraph is repackaged (as different hyphenation
points might be chosen and ligature rebuilding etc.
has taken place) but in LuaTEX we have clearly
separated stages. An interesting side effect of the
conversion is that we sometimes wonder what certain
code does and if it’s still needed.

4 Performance

We had already noticed that the Lua variant was not
that slow, so after the first cleanup it was time to do
some tests. We used our regular tufte.tex test file.
This happens to be a worst case example because
each broken line ends with a comma or hyphen and
these will hang into the margin when protruding is
enabled. So the solution space is rather large (an
example will be shown later).

Here are some timings of the March 26, 2010,
version. The test is typeset in a box so no shipout
takes place. We’re talking of 1000 typeset paragraphs.

2 As I more and more often run into books typeset (not by
TEX) with a combination of character expansion and additional
intercharacter kerning I’ve been seriously thinking of removing
support for expansion from ConTEXt MkIV. Not all is progress
especially if it can be abused.

The TEX paragraph builder in Lua

182 TUGboat, Volume 31 (2010), No. 2

The times are in seconds and in parentheses the speed
relative to the regular parbuilder is given.

native lua lua + hpack
normal 1.6 8.4 (5.3) 9.8 (6.1)

protruding 1.7 14.2 (8.4) 15.6 (9.2)
expansion 2.3 11.4 (5.0) 13.3 (5.8)

both 2.9 19.1 (6.6) 21.5 (7.4)

For a regular paragraph the Lua variant (cur-
rently) is 5 times as slow and about 6 times when we
use the Lua hpacker, which is not that bad given that
it’s interpreted code, and each access to a field in a
node involves a function call. Actually, we can make
a dedicated hpacker as some code can be omitted.
The reason why the protruding is relatively slow is
that we have quite a few protruding characters in
the test text (many commas and potential hyphens)
and therefore we have quite a few lookups and calcu-
lations. In the C code implementation much of that
is inlined by macros.

Will things get faster? I’m sure that I can boost
the protrusion code and probably the rest as well
but it will always be slower than the built-in func-
tion. This is no problem as we will only use the Lua
variant for experiments and special purposes. For
that reason more MkIV-like tracing will be added
(some is already present) and more hooks will be
provides once the builder is more compartmentalized.
Also, future versions of LuaTEX will pass around
paragraph-related parameters differently so that will
have impact on the code as well.

5 Usage

The basic parbuilder is enabled and disabled as fol-
lows:3

\definefontfeature[example]

[default][protrusion=pure]

\definedfont[Serif*example]

\setupalign[hanging]

\startparbuilder[basic]

\startcolor[blue]

\input tufte

\stopcolor

\stopparbuilder

There are a few tracing options in the parbuilders

namespace but these are not stable yet.

6 Conclusion

The module started working quite well around the
time that Peter Gabriel’s “Scratch My Back” ended
up in my Squeezecenter: modern classical interpre-
tations of some of his favourite songs. I must admit
that I scratched the back of my head a couple of
times when looking at the code. It made me realize
that a new implementation of a known problem in-
deed can come out quite different but at the same
time has much in common. As with music it’s a
matter of taste which variant a user likes most.

At the time of this writing there is still work
to do. For instance, the large functions need to be
broken into smaller steps. And of course more testing
is needed.

⋄ Hans Hagen
Pragma ADE
The Netherlands
http://luatex.org

3 I’m not sure yet if the parbuilder has to do automatic
grouping.

Hans Hagen

TUGboat, Volume 31 (2010), No. 2 183

Thirty years of literate programming
and more?

Bart Childs

Abstract

Don Knuth created Literate Programming about
thirty years ago. It could be called a methodology,
discipline, paradigm, . . . Bentley’s “Programming
Pearls” article about Knuth’s book, TEX: The Pro-
gram, caused a huge stir in the computing professions.
Soon there was announcement of a Literate Pro-
gramming section for the CACM . Several “Literate
Programming systems” quickly appeared. This was
followed by a few years of mild interest, cancelling
the Literate Programming section in the CACM, and
an apparent lack of public interest in the subject.

Really, what is literate programming?
What is the state of literate programming?

1 Introduction

It is commonly accepted in software engineering cir-
cles that one of the greatest needs in computing is
the reduction of the cost of maintenance of codes.
Maintenance programmers spend at least half of their
time trying to understand what code does and main-
tenance is accepted to be 60% to 80% of a code’s cost.
In The Mythical Man-Month: Essays on Software
Engineering, Frederick Brooks stated:

Self-Documenting Programs

A basic principle of data processing teaches
the folly of trying to maintain independent
files in synchronism. It is far better to com-
bine them into one file with each record con-
taining all the information both files held con-
cerning a given key.

Yet our practice in programming documen-
tation violates our own teaching. . . .

The results in fact confirm our teachings
about the folly of separate files. Program
documentation is notoriously poor, and its
maintenance is worse. . .

The solution . . . is to merge the files, to
incorporate the documentation in the source
program. This is at once a powerful incentive
toward proper maintenance, and an insurance
that the documentation will always be handy
to the program user. Such programs are called
self-documenting . . .

2 Definition of literate programming

Literate programming is a methodology/process/sys-
tem for creation of codes in the form of a work of
literature as well as executable programs.

The characteristics of literate programs, based
on Knuth’s WEB [2] and CWEB [3] (with Silvio Levy):

1. The section is the basic unit in the source of a lit-
erate program which is analogous to paragraphs
in usual textual documents. The section’s source
should generally be about a single screen.

2. Sections can contain documentation, definitions
(macros), and/or code.

3. The order of presentation of sections should
maximize the readability of the literate program.
There are elements of the structure of the code
parts of sections to ensure the correct placement
of the code in the resulting program source.

4. Documentation elements of a section should be
presented in a format consistent with book qual-
ity documents.

5. Code parts and code fragments in documenta-
tion parts of sections should be presented in a
format consistent with book quality documents.
This imposes a requirement of the system pars-
ing the computer language(s) used.

These characteristics should be in a literate program-
ming system for programming in most high level
languages. There are examples where a restricted
form of literate programming is quite helpful — often
the last item in the above list is omitted. These
systems still meet Brooks’ call for self-documenting
programs.

My initial experience with literate programs was
porting the TEX system to several different systems.
I found the formatting of the code to be a great help,
especially font selection for keywords, variables, and
literals as well as consideration of grouping, loops,
etc. Obviously, this requires parsing the code.

2.1 Knuth’s Pascal WEB and descendants

There were a number of features in the original WEB
that were needed to make up for problems doing sys-
tems programming in Pascal. Levy did not include
these in CWEB because of the nature of the C language.
This literate programming system has endured for
nearly three decades. There is no apparent need to
change it because of the evolving nature of Pascal.
Pascal is not a sufficiently prominent language for
systems programming and web2c has enabled TEX
and its components and friends to be widely ported.
Knuth’s original WEB was done at an early time —
relative to most of today’s understanding of systems
and programming languages — and many features
were due to Pascal limitations. The selection of Pas-
cal was done before C would have been a reasonable
choice — by only a few years. I strongly recommend
reading the original documentation and the docu-
ments produced by processing the original literate

Thirty years of literate programming and more?

184 TUGboat, Volume 31 (2010), No. 2

programs in the suite of tools to support the TEX
system.

There are at least two systems still in use that
are quite faithful to the philosophy that Knuth eluci-
dated in his original Pascal-based WEB system and are
consistent with the definition and the list of charac-
teristics given: CWEB and FWEB. Each of these support
more than one language.

2.2 CWEB—Levy and Knuth

Levy’s original CWEB was an adaption of WEB to the
use of C. Several features of WEB that were needed
for Pascal were removed. Knuth joined Levy in the
support and evolution of CWEB and others contributed
the addition of support of C++ and Java.

2.3 FWEB—Krommes

John Krommes’ FWEB is based on CWEB. FWEB sup-
ports C, C++, Fortran (77) and Ratfor. Krommes’
research dictated the need for this multilingual na-
ture of FWEB because his research was based on both
long running Fortran programs and programs to in-
terpret the data that were done in C++ or C.

Fortran had many vagaries that exceeded those
of Pascal, including its ancient card orientation. The
acronym was changed to a noun in the ’90s. Fortran
is central on many parallel systems and each seems to
have a unique system of compiler directives that are
often required to be in-line with the code. Krommes
handled these with admirable foresight. The Fortran
standards committee has been active in trying to
bring that community into the twenty-first century.
For example, semicolons are now allowed to end
statements.

Krommes included multiple output and input
files as well as the option of being language indepen-
dent that enabled the logical next step of including
scripts as part of the literate program. This language-
independent mode is called verbatim.

All in all, I would have liked a much smaller
version of FWEB. That sounds like a common whine
about TEX: “It is too big!”

We found that a small part of TEX and a web
can be taught to beginning students (see section 4).
It simply requires some work.

2.4 WEB-like systems

It is my opinion that the formatted code that the
above literate programming systems give for their
high level languages is of great benefit. Others obvi-
ously do not share my enthusiasm.

Several systems that have been called literate
programming by their creators are language indepen-
dent and therefore do not meet the characteristic in

item 5, section 4. This feature of not parsing and
formatting the programming language allows the use
of many different languages. This simplicity and
flexibility is desirable but I believe the benefits of
the formatting are crucial.

Creators of two of these systems, Williams (Fun-
nelWEB [8]) and Ramsey (NoWEB [6]) obviously
have a different opinion and focus on the benefits of
being able to order sections for expository reasons
rather than compiler requirements, and include effec-
tive documentation as making this form of literate
programming worthwhile.

I recall a reply by Williams in the literate pro-
gramming discussion group in response to a user
complaining about the tangled output not looking
like the user wanted: “Crikey, will they ever learn?
If the web is well written you will not want to look
at that version of the code.” Well, something like
that.

2.5 docstrip and doc.sty—LATEX tools

Frank Mittelbach created the doc.sty package to
combine the TEX code and documentation for LATEX.
He then created docstrip to complete a literate
programming system for LATEX [4]. This might be
the most used literate programming system on a
regular basis because it is the common format for
LATEX distributions. It should also be noted that
there have been several contributors to the evolution
of these tools, as is typical of the TEX community.

The advantage of having the documentation
and code in one file has been discussed earlier. Since
docstrip is written in TEX, which is an interpreter,
minimizing comments in the output code was impor-
tant to execution speeds.

The code part is not parsed when the document
is processed, thus the system can be used for code
other than (LA)TEX. I have found references to the
use of docstrip with other coding systems, notably
statistical packages. Perhaps a future article will
explore docstrip in more detail.

2.6 Literate programming-like usage

Nelson Beebe created a system he described as “like
literate programming” to document the many scripts
(each a code fragment) for his book Shell Scripting
[7] (with Arnold Robbins).

Like the previous subsection, a future paper is
needed for a survey of many such uses of the ideas
of literate programming.

3 web-mode—An Emacs-based tool

Mark Motl finished his dissertation under my direc-
tion by developing and testing a tool to adapt Emacs

Bart Childs

TUGboat, Volume 31 (2010), No. 2 185

to literate programming for WEB and CWEB [5].
The selection of Emacs was a bit like Knuth’s

selection of Pascal for the second writing of TEX.
Emacs was/is a large, stable system and relatively
platform independent. The emergence of worksta-
tions with a tightly coupled graphics screen was also
a great benefit to the Emacs philosophy. Much of the
early development of web-mode was done on shared
resource systems and the final work was done on
workstations.

Finishing touches were added by several students
and some by me. Some characteristics of web-mode:

• Emacs is cross platform. Most of my use in the
last few years has been on Macs, PCs, Sun, and
Linux workstations.

• It is open in the same sense as TEX and Emacs.

• The user specifies he/she is using WEB, CWEB, or
FWEB.

• If the web is a new file, the appropriate header
files are inserted with customized user-specific
information.

• For existing webs, navigation information is de-
veloped unless files (like .aux in LATEX and sim-
ilar WEB files) are newer than the web source.

• As the user enters source, the source is parsed to
ensure that section elements are complete. For
example, the meta-ness of code section names
have proper balance and the trailing = sign, if
appropriate.

• Knuth included a feature to allow the user not
to type the entire code section name, but use an
ellipsis for completion. In web-mode the Emacs
completion feature makes this unnecessary.

• Navigation of a web can be done by chapter/
section name/number, by sections referencing
variables, etc. These actions can be invoked by
function keys or pull down menus.

• The user can view the web and change file by
source, or preview of the DVI or PDF output.

• Execution of the TANGLE, WEAVE, TEX, LATEX,
can be invoked by function key or pull-down
menus.

• Outline editing of the source is especially useful.
The first line of sections (and chapters) and
the lines defining code sections are displayed. It
gives a new meaning to scrolling through source.

There is much more but that detail is not needed
here.

The distribution of web-mode will be available
soon from my home page after I perform some consis-
tency checks on current Windows and Apple systems.

4 My CS/1 experience

This section is adapted from our paper at the 16th
TUG meeting in St. Petersburg [1].

We embarked on a project to teach the first
computer science course using literate programming
while covering all the topics covered in the usual sec-
tions. We differed from the environment used by the
other sections by using Emacs and the literate pro-
gramming environment web-mode and GNU Pascal
as opposed to Turbo Pascal.

Our CS/1 course was entitled “Programming I”
and although the catalog did not specify Pascal, it
was understood that all sections of the course would
use the same language and that problem solving
would be central.

An inherent part of these CS/1 courses is to de-
velop the student’s skills in problem solving. Indeed,
in many course outlines, that is part of the title and
the main emphasis in the description of the course
contents. A problem solving methodology is often
stated in CS/1 courses which generally has steps like:

1. State the problem completely!
2. Develop all necessary assumptions.
3. Develop an algorithm and test data set(s).
4. Code the problem.
5. Analyze the results (and iterate?).

Literate programming is a style in which the
design of the code reflects that the human reader
is as important as the machine reader. The human
reader is often associated with the expensive process
of maintenance and the machine reader is the com-
piler/interpreter. Literate programming is a process
which should lead to more carefully constructed pro-
grams with better, relevant ‘systems’ documentation.
We think that the first sentence in this paragraph
should be particularly relevant to students because
the human reader (the one who assigns grades) is
obviously the most important reader.

The features of literate programming that gave
us the confidence to expect positive results are:

1. Top-down and bottom-up programming since it
is structured pseudo-code.

2. Programming in small sections where most sec-
tions of code and documentation (section in
this use is similar to a paragraph in prose) are
approximately a screen or less of source.

3. Typeset documentation (after all, Knuth was
rewriting TEX).

4. Pretty-printed code where the keywords are in
bold, user supplied names in italics, etc.

5. Extensive reading aids are automatically gen-
erated including a table of contents and index.

Thirty years of literate programming and more?

186 TUGboat, Volume 31 (2010), No. 2

The readability is improved by the programmer’s
liberal use of the tools furnished.

Each item in the following list could be added to the
corresponding item in the previous list. We think
there is merit to this split.

1. These topics are usual in CS/1 books but they
generally lack the integration to make them
really effective for the student.

2. Divide and conquer is also espoused but the
larger examples given in many books forsake
the principle.

3. It may be argued that this is ‘feeding pearls to
the swine’ but we like the cognitive emphasis
that comes from logical substitution of words
for key-words, etc.

4. The fact that weave breaks lines based on its
parsing is another cognitive reinforcement.

5. Encouraging/requiring students to review their
programs as documents makes them think about
readability.

I am still firmly convinced that literate pro-
gramming is the way to set budding programmers
and systems developers on the right track to writing
beautiful and excellent programs. There was a sec-
tion entitled Problems with ‘Problem Solving’ in the
TUG 16 paper which gave many of the arguments
for this that we gleaned from the literature.

“Are You Crazy!?” This was frequently shouted
at us because, as everybody in the world knows:

• Emacs is impossible to learn and use,
• TEX is impossible to learn,
• the addition of WEB makes for too many steps

to learn, and
• there is a reason for all those Aggie jokes.

and therefore our project was doomed!
Sometimes items from that list were suggested

gently instead of being yelled or blurted out while
the correspondent was writhing on the floor. We
exercised a little judgement and did it on the smallest
sections of the course, namely the honors sections.

There were several important items that we
considered in the design of the course and how we
executed the course.

Testing We intended the course to be more problem-
oriented rather than program-oriented. The tests
included a pre-test that was no part of the other
sections. All tests were slanted away from Pascal
details.

Emacs and web-mode We felt that in spite of this
being a new editor to nearly all, the web-mode

literate programing tool was our only choice.
We modified the Emacs reference card and gave

the students a five page memo based on Knuth’s
WEB introduction.

Knuth’s WEB We were restrained to the use of Pas-
cal and therefore Knuth’s original WEB was ap-
propriate. Some of the necessary minutiae was
easily omitted by use of web-mode.

How the course was taught The focus of the se-
mester was on problem solving. Pascal syntax
was brought along as a means of presenting
and then implementing a solution. The lecturer
presented the week’s information and handled
questions on a daily basis. The TA handled the
labs. Total enrollment in the class was about 40
and about half in each lab section.

Do all labs twice The labs in our courses are usu-
ally twice a week rather than one long period
per week. We took advantage of that and each
lab was done twice. The first time was used to
have the documentation parts of sections being
somewhat complete and the code parts sketchy.
WEB used in this manner can be a documented
pseudo-code system. This draft was marked
quickly and returned for the more complete ver-
sion to be finished before moving on to the next
lab.

4.1 Results— informal summary

Three pages of detailed results were presented in the
TUG 16 paper. I will present a high level view of
those I think that are most important and relevant.

The initial design would have led to failure if
we had analyzed the results promptly as planned.
Irrelevant personal problems delayed that analysis for
more than a year. The one result from the immediate
analysis was

The pre-test showed that the non-majors did
not have the problem solving skills of the
majors. The change was steady and by the
second regular test the non-majors were supe-
rior.

Most of the students had completed more com-
puter science courses by the time the analysis was
started in earnest. The evaluation process was mod-
ified to include tracking those students who took
these additional courses. Also, data was extracted
for students taking the same class the previous year,
this was taught by a more experienced teacher.

The additional courses were a CS/2 course which
was dominated by learning the C language and then
a data structures class. The performance in the CS/2
courses were not significantly different for those with
and without the literate programming exposure.

The literate programming exposure apparently
made a significant difference in the data structures

Bart Childs

TUGboat, Volume 31 (2010), No. 2 187

courses. With hindsight, that seems logical because
a data structures course is much more of a problem
solving experience and as implied above CS/2 was
too much a memorization of C syntax. The CS/2 and
data structures courses mentioned were not taught
by those involved in this study.

We feel the background of the students was not
atypical of many CS/1 type courses. The majority of
the class were majoring in computer science, but a
significant number were using the course as a minor
elective, a basis for deciding if they want CS as a
major, or other reasons. There was not an unusual
change of majors for the students in the study.

4.2 Student comments and evaluation

Upon nearing completion of the CS/1 course, the
students were asked to submit a paper reflecting their
feelings and attitudes towards the WEB programming
methodology. This was to be written as a typical
one-page technical note. Some expected comments
were made in the evaluation process at the end of
the CS/1 course taught using literate programming.

• TEX is not easy to learn,
• learning WEB was OK.
• Emacs was difficult (the replacement of function

keys by pull-down menus was not complete in
web-mode at the time).

4.3 Conclusions about teaching

We taught an honors section of a CS/1 course in a
different manner than usual, namely using literate
programming. The students used an editor, a format-
ting system, and a coding style that was new to all.
The students’ performance in subsequent courses was
not hurt and may have been helped with the different
methodology. The results of using the program de-
velopment methodology in the CS/1 course indicate
that the methodology is successful in teaching novice
programmers good problem solving skills.

These are the results of the experiment:

• The students showed an increase in their prob-
lem solving skills.

• Those students unfamiliar with the Pascal pro-
gramming language, or any other programming
language, were more successful then those famil-
iar with Pascal at using the literate program-
ming paradigm to capture and document their
problem solving process.

• The students were able to learn the WEB rules,
the web-mode environment, GNU Emacs, and
TEX rules, as well as the Pascal syntax and
constructs.

• Those students exposed to the program devel-
opment methodology utilizing the literate pro-

gramming paradigm were as successful in the
subsequent CS/2 course as those not exposed to
the methodology.

• Those students exposed to literate programming
were significantly more successful in the data
structures course than those not exposed to the
methodology.

• The subject program development methodol-
ogy may lead to an improved software devel-
opment process; however, more tests should be
conducted.

5 Tools

This list is used to describe some of the tools I know
of that exist to aid in literate programming. Some
have not been widely published, much to my shame.

CWEB There are several tools referenced on Knuth’s
home page; see his CWEB area.

Leo There are several references to this “outline”
editor. I have not had time to seriously look at
this yet.

web-mode I have corresponded with many users over
the years but did not realize that web-mode was
invisible to the usual literature reviews. This
will be corrected after a detailed review and mak-
ing sure of Emacs updates. The only problems I
have encountered are AUCTEX’s implementation
of description environments and conscription
of some function keys.

TAMU We did several tools and need to organize
and publish them as a set. A tool that was
frequently used when applied to a WEB or a TEX
source would give a statistical analysis of com-
mands (I used more “features” than the stu-
dents).

6 Examples of literate programs

The long term success of literate programming may
depend on the number and quality of published liter-
ate programs. A partial listing of literate programs
that are available openly is offered here as a start.

WEB The sources yield TANGLE and WEAVE at a min-
imum.

CWEB As above. The manual was last updated
eight years ago and is now out of print.

TEX and Metafont, the programs The printed
books are available from Addison-Wesley or you
can exercise your printer and paper budget.

Stanford GraphBase Knuth presents 31 WEBs in
his platform for combinatorial computing.

Don Knuth’s home page Nearly innumerable in-
teresting CWEBs for a wide range of topics.

Thirty years of literate programming and more?

188 TUGboat, Volume 31 (2010), No. 2

CACM The few that were contributed to the Liter-
ate Programming column.

BC While preparing this I encountered a reference
to a code of mine, PS_Quasi, which related to
experimental, theoretical numerical solutions of
ordinary differential equations. The link failed
but I need to reestablish that.

I also have a few dozen that were done by our
team that should be termed tools for analyzing
literate programs. These need to be cleaned up,
cataloged and published (on the web).

I have emphasized literate programs based on
the three systems that meet the definition I stated
earlier. The intended functions of those systems cen-
ter on programming in specific high level languages.

7 The state of literate programming

This is a difficult topic to treat with authority and a
straight face. Most of the systems have had only mi-
nor changes, if any, in the last twenty years. However,
stability is frequently a good thing. It is common
knowledge that adding functions to an interface will
make it more difficult to use.

Identification of and counting the number of
users of literate programming and “literate program-
ming like” systems may be impossible. Some visibil-
ity includes:

original style Knuth’s home page and books point
to many excellent examples. I am remiss in
not making a number of examples and tools
available, but I will.

literateprogramming.com Some elements point
to example literate programs, but only a few.
It includes a fair number of references to many
items that someone has called literate program-
ming. This includes a note entitled “POD is not
literate programming.” Most of the entries are
from the last century, but that is not so long
ago.

literate programming like Robbins and Beebe’s
Shell Scripting book. This perhaps could have
been done using docstrip. How many similar
projects are there that could be helped by a
good survey?

literate programming—other There is a com-
munity of users of the packages FunnelWEB and
NoWEB. I particularly like Ramsey’s philoso-
phy of piping small tools, following the Unix
philosophy. Application of these systems (and
docstrip) is also available with the statistical
system R (see Uwe Ziegenhagen’s article in these
proceedings, pp. 189–192).

8 Conclusions

I believe that this style of program development is a
great contribution to the goal of creating excellent
and maintainable programs, if it is used diligently.
I have often wondered how many of the errors that
Knuth has rewarded us for would have even been
found if the program had been in the style of Unix
“pretty printing.” In spite of this, it is referenced too
little.

We have observed first year students are already
like the professionals: “No, I do not want to learn
anything new if I already have some knowledge in
the area.” We think it should appear early and re-
peatedly in the curriculum. The design process that
is called for in most software engineering treatises is
a natural fit for literate programming, in my opinion.

References

[1] Bart Childs, Deborah Dunn, and William
Lively. Teaching CS/1 courses in a literate
manner. TUGboat, 16(3):300–309, September
1995.

[2] Donald E. Knuth. The WEB system of structured
documentation. Stanford Computer Science
Report CS980, Stanford University, Stanford,
CA, September 1983.

[3] Donald E. Knuth and Silvio Levy. The CWEB
System of Structured Documentation, Version
3.0. Addison-Wesley, Reading, MA, USA, 1993.

[4] Frank Mittelbach, Denys Duchier, Johannes
Braams, Marcin Woliński, and Mark Wooding.
The docstrip program. Technical report,
Universität Mainz, Mainz, Germany, 2005.

[5] Mark Bentley Motl. A Literate Programming
Environment Based on an Extensible Editor.
PhD thesis, Texas A&M University, College
Station, TX, December 1990.

[6] Norman Ramsey. Weaving a language-
independent WEB. Communications of the ACM,
32(9):1051–1055, September 1989.

[7] Arnold Robbins and Nelson H. F. Beebe.
Classic Shell Scripting. O’Reilly, Sebastopol,
CA, 2005.

[8] Ross N. Williams. Funnelweb User’s Manual.
http://www.ross.net/funnelweb/, May 1992.
V1.0 for FunnelWeb V3.0.

⋄ Bart Childs
Texas A&M University
College Station, TeXas 77843-3112
USA
bart (at) tamu dot edu

http://faculty.cse.tamu.edu/bart/

Bart Childs

TUGboat, Volume 31 (2010), No. 2 189

Dynamic reporting with R/Sweave
and LATEX

Uwe Ziegenhagen

Abstract

R is a sophisticated statistical programming language
available for various platforms. Since its initial devel-
opment in 1992 it has become the major open source
tool for statistical data analysis. For the integration
with LATEX it provides tools which allow the conve-
nient dynamic creation of reports. In this article I
will give a very brief introduction to R and show how
R integrates in the LATEX workflow.

1 Introduction to R

The history of R dates back to 1969 when John M.
Chambers from Bell Labs published the outlines of
S, a programming language for statistics and data
analysis that was first implemented in 1975 for Hon-
eywell computers. Starting in 1992 Ross Ihaka and
Robert Gentleman from the University of Auckland
in New Zealand took up the concepts underlying S
to develop R, a free implementation of the language.
Today R is for many statisticians the tool of choice for
visualization and data analysis, covering all aspects
of modern computer-based statistics. The R project
team has more than 500 members; more than 1,000
packages are available on CRAN, the Comprehensive
R Archive Network.

1.1 R as a calculator

Since the focus of this paper lies more on the interac-
tion with LATEX this is not the place for a thorough
introduction to R . Interested readers may have a
closer look in the bibliography of this article for suit-
able materials. Nevertheless I would like to point out
some of the main features of the language. Listing 1.1
shows some of the operators for basic calculations.

1 1+2

2 1*2

3 1/2

4 1-2

5 2^2

6 sqrt(2)

7 sin(pi) # cos, tan

8 trunc(-pi) # -3

9 round(pi) # 3

Listing 1.1: Basic calculations with R

The basic objects to store variables in R are vectors,
matrices and dataframes. Vectors and matrices may
contain only a single data type; complex data struc-

tures are stored in so-called dataframes, which are
in fact lists of objects that may have different data
types. Various ways of creating and assigning vectors
to variables are shown in Listing 1.2.

1 a <- 1:3 # store vector 1..3 in a

2 b = 2:4 # store 2..4 in b

3 c(a,b) # [1] 1 2 3 2 3 4 # cat a & b

4 # generate sequence

5 seq(1,2,by=0.1) [1] 1.1 1.2 1.3 ...

6 # repeat 1..4 twice

7 rep(1:4,2) # [1] 1 2 3 4 1 2 3 4

Listing 1.2: Generating vectors in R

Our final R example in Listing 1.3 shows how a simple
linear model can be computed with R. The vector of
independent variables x contains the numbers 1 to
10; for the vector of dependent variables y we just
multiply the x-vector with a random factor taken
from a normal distribution. The linear model is then
calculated using the lm command which presents the
coefficients of the linear model.

1 > x<-1:10

2 > y=rnorm(10)*x

3 > lm(y~x)

4

5 Call:

6 lm(formula = y ~ x)

7

8 Coefficients:

9 (Intercept) x

10 0.1079 1.0697

Listing 1.3: A linear model with R

1.2 R graphics

R manages its graphical output (see the basic exam-
ple code in Listing 1.4 and its output in Figure 1)
through graphics devices which take the graphics ob-
ject data and convert them into printable or viewable
form. The list of available graphics devices is exten-
sive; there are devices for PDF, PostScript, X11, Java
and SVG, to mention a few. Listing 1.5 shows for
example how the PDF device can be used to produce
high-quality PDF files.

1 a<- c(1:10)

2 plot(a)

Listing 1.4: The most basic R plot

Dynamic reporting with R/Sweave and LATEX

190 TUGboat, Volume 31 (2010), No. 2

●

●

●

●

●

●

●

●

●

●

2 4 6 8 10

2
4

6
8

1
0

Index

a

Figure 1: Graphics generated by Listing 1.4

1 pdf(file = "c:/punkte.pdf",width = 6,

2 height = 6, onefile = FALSE,

3 family = "Helvetica",

4 title = "R Graphics Output",

5 fonts = NULL, version = "1.4",

6 paper = "special")

7

8 a<- c(1:10)

9 plot(a)

10

11 # switch back to screen device

12 dev.off()

Listing 1.5: Example code for the PDF device

1.3 The TikZ graphics device

Especially interesting for TEXnicians is the TikZ
device which generates source code for the LATEX
graphics package of the same name. This device
either creates files that can be compiled standalone
or just the graphics code to be embedded in a LATEX
document. The advantage of this device, compared
with others, is that the internal fonts of the document
are used and mathematical code may be used in
captions and labels as well. Listing 1.7 shows an
excerpt from the file generated by the code from
Listing 1.6.

1 tikz(file = "c:/test2.tex",standAlone=F)

2 # StandAlone=T

3 plot(1:10)

4

5 dev.off()

Listing 1.6: Example code for the TikZ device

1 % Created by tikzDevice
2 \begin{tikzpicture}[x=1pt,y=1pt]
3 \draw[color=white,opacity=0] (0,0)
4 rectangle (505.89,505.89);
5 \begin{scope}
6 \path[clip] (49.20, 61.20) rectangle (480.69,456.69);
7 \definecolor[named]{drawColor}{rgb}{0.56,0.96,0.51}
8 \definecolor[named]{fillColor}{rgb}{0.13,0.09,0.52}
9 \definecolor[named]{drawColor}{rgb}{0.00,0.00,0.00}

10 \draw[color=drawColor,line cap=round,line join=round,
11 fill opacity=0.00,] (65.18, 75.85) circle (2.25);
12 \draw[color=drawColor,line cap=round,line join=round,
13 fill opacity=0.00,] (109.57,116.54) circle (2.25);
14 \end{scope}
15 \begin{scope}

Listing 1.7: Excerpt from the generated TikZ code

2 Sweave and R

2.1 Introduction

In the second part of the article I want to introduce
the Sweave package, developed by Friedrich Leisch.
Sweave is part of the standard R installation so it
requires no additional effort to install.

The package allows to include both R and LATEX
code in a single file. The R code is enclosed in “noweb”
tags, <<>>= for the beginning, @ for the end. Noweb
is a free tool implementing Donald Knuth’s approach
of literate programming (for more details on this
topic please see the articles in Wikipedia, et al.).
The noweb-file is then processed within R using the
command Sweave("<filename>"). To extract the
R code from the file, Sweave also provides a second
command, Stangle.

Listing 2.1 shows a very basic example, calcu-
lating 1 + 1.

1 \documentclass{article}

2 \begin{document}

3 <<>>=

4 1+1

5 @

6 \end{document}

Listing 2.1: Basic Sweave example

When we process the file from Listing 2.1 using the
Sweave command in R we receive the LATEX docu-
ment shown in Listing 2.2. This document can then
be compiled to PDF or DVI shown in Figure 2. As we
can see in the document, Sweave requires the LATEX
package of the same name which provides commands
for the input and output of Sweave code to be in the
search path.

2.2 Sweave options

Sweave allows various options to be set within the
<<>>= tag; for example, echo=false suppresses the

Uwe Ziegenhagen

TUGboat, Volume 31 (2010), No. 2 191

1 \documentclass{article}
2 \usepackage{Sweave}
3 \begin{document}
4 \begin{Schunk}
5 \begin{Sinput}
6 > 1 + 1
7 \end{Sinput}
8 \begin{Soutput}
9 [1] 2

10 \end{Soutput}
11 \end{Schunk}
12 \end{document}

Listing 2.2: LATEX generated by Listing 2.1

Sweave

Uwe Ziegenhagen

February 28, 2010

> 1 + 1

[1] 2

Figure 2: PDF file generated by Listing 2.1

output of the original R source, while results=hide
suppresses the output of results. A combination of
both options may not seem to make sense, but this
can be used to load data in the beginning of the
analysis, set default values for variables, etc.

Since there are R packages that directly create
valid LATEX source, Sweave supports results=tex,
a mode that passes the generated output through to
LATEX without tampering with its content.

If images are created in an R code chunk the
option fig=true needs to be set. The default setting
is to create both PostScript and PDF versions of each
plot; the settings eps=true/false and pdf=true/
false adjust this, respectively. Finally, the size of
the plot can be set using the width and height

parameter specifying the width and height of each
plot in inches. Options may also be set globally by
\SweaveOpts; see the Sweave manual for details.

Sweave also implements the noweb way of re-
using code chunks: a certain piece of code can be
named with <<〈name〉, opt=...>>=; the user may
then use these chunks with <<〈name〉>>.

For scalar results which can be, for example,
embedded in the running text, Sweave provides the
\Sexpr(〈R-code〉) command. The only requirement
for the code is that the return value must be either a
string or an object that can be converted to a string.
We will use this command in the example described
next, shown in Listing 2.3.

1 \documentclass[a4paper]{scrartcl}

2 \begin{document}

3 <<echo=false,results=hide>>=

4 data(iris) # load iris data

5 @

6 The data set has \Sexpr{ncol(iris)} columns

7 and \Sexpr{nrow(iris)} rows.

8

9 <<echo=false>>=summary(iris$Petal.Length)

10 @

11 <<echo=false,results=tex>>=

12 xtable(lm(iris$Sepal.Width~iris$Petal.Length),

13 caption="Linear Model of Sepal.Width

14 and Petal.Length")

15 @

16 \centering

17 \begin{figure}[htp]

18 <<fig=true,echo=false>>=

19 pch.vec <- c(16,2,3)[iris$Species]

20 col.vec <- c(16,2,3)[iris$Species]

21 plot(iris$Sepal.Width,iris$Petal.Length,

22 col = col.vec,pch=pch.vec)

23 @

24 \caption{Plot of iris\$Petal.Length vs. iris

\$Sepal.Width}

25 \end{figure}

26 \end{document}

Listing 2.3: Sweave code to generate Figure 3

2.3 The iris example

Listing 2.3 shows a brief example for a statistical
analysis of the well-known iris dataset, consisting of
each 50 observations for three different species of iris
flowers. In the first R code chunk the data is loaded,
since this step may not be relevant for the reader we
omit both the output and the R code.

To print the number of rows and columns for
this dataset we use the \Sexpr() command in the
LATEX text before displaying a small summary of
the data. Afterwards we have R compute the linear
model for two variables and print the results using
R’s xtable command, which provides output in valid
LATEX syntax. Therefore we prevent Sweave from
displaying the code in verbatim mode by specifying
results=tex. Finally, the last code chunk plots
a scatterplot for the variables Petal.length and
Sepal.width; please note the fig=true statement
here, specifying that the result is a picture.

2.4 Dynamic reports

The final example shows how reports with dynamic
data sources can be created easily. Let’s suppose
we need a report on the USD/EURO exchange rates
on a frequent basis. The data can be downloaded

Dynamic reporting with R/Sweave and LATEX

192 TUGboat, Volume 31 (2010), No. 2

Der Datensatz hat 5 Spalten und 150 Zeilen.

Min. 1st Qu. Median Mean 3rd Qu. Max.

1.000 1.600 4.350 3.758 5.100 6.900

Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.4549 0.0761 45.40 0.0000

iris$Petal.Length -0.1058 0.0183 -5.77 0.0000

Table 1: Lineares Model von Sepal.Width und Petal.Length

●●
●

●
●

●

●
●

●
● ●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

● ●
●

●

●●
● ●

●
●

●
●

●
●

●

●● ●

●

●

●

●

●
●

●

2.0 2.5 3.0 3.5 4.0

1
2

3
4

5
6

7

iris$Sepal.Width

ir
is

$
P

e
ta

l.
L

e
n

g
th

Figure 1: Plot von iris$Petal.Length vs. iris$Sepal.Width

Figure 3: Document generated by Listing 2.3

from the home page of the European Central Bank
where it is provided in XML or CSV format. The
retrieval process can be controlled from R using the
system() command calling an external wget (stan-
dard on Linux/Unix; Windows users may need to
install it). To extract the data from the resulting
zip file R’s internal zip tool is used and the data set
stored in the variable data. The code is shown in
Listing 2.4.

We use the \Sexpr() command to print the
dimensions of the dataset in our document before
plotting a chart (see Figure 4) with the development
of the Euro/dollar exchange rate.

Der Datensatz enthält 2858 Kurse, der aktuelle Kurs (2010-03-02) lautet 1.3548

0 500 1000 1500 2000 2500

0
.8

1
.0

1
.2

1
.4

1
.6

2858 Datensätze von 1999−01−04 bis 2010−03−02
Index

d
a
ta

$
U

S
D

Figure 4: Output of exchange rate example,
generated by Listing 2.4

3 Conclusion

R provides a vast set of functions for all aspects of
data analysis. Together with Sweave, a user can
easily generate dynamic reports holding the results
and methods leading to them in one document. With

1 \documentclass{scrartcl}

2 \begin{document}

3 <<echo=f,results=hide>>=

4 # define width and height of the plot window

5 windows(width = 8, height = 4)

6 # use external wget to download the file from

7 # the ECV and to store it in d.zip

8 system("wget -O d.zip http://www.ecb.int/

stats/eurofxref/eurofxref-hist.zip")

9 # use R’s internal zip to extract the file to

10 # the current directory

11 zip.file.extract(file="eurofxref-hist.csv",

zip="d.zip",unzip="",dir=getwd())

12 # read the data

13 data= read.csv("eurofxref-hist.csv",sep=",",

header=TRUE)

14 @

15 The data contains \Sexpr{nrow(data)} rates,

the latest rate (\Sexpr{data$Date[1]}) was

\Sexpr{data$USD[1]}

16 \centering

17 \begin{figure}[ht]

18 <<fig=true,echo=false,width=15,height=6>>=

19 # plot the data

20 plot(data$USD,t="l", sub=paste(nrow(data),"

datasets from ",data$Date[nrow(data)],"

until ",data$Date[1]),asp=)

21 @

22 \end{figure}

23 \end{document}

Listing 2.4: Sweave code with dynamic data source

this article I want to encourage everybody to give R
a try when facing a data analysis challenge. If any
questions or remarks, please feel free to contact me.

References

[1] Michael J. Crawley, Statistics—An

Introduction using R. Wiley, 2005.

[2] Peter Dalgaard, Introductory Statistics with R.

Springer-Verlag, 2004.

[3] Uwe Ligges, Programmieren mit R.

Springer-Verlag, 2008.

[4] John Maindonald and John Brown, Data

Analysis and Graphics Using R. Cambridge
University Press, 2010.

[5] R Core Team, An Introduction to R.

http://cran.r-project.org/doc/manuals/

R-intro.pdf

⋄ Uwe Ziegenhagen
Lokomotivstr. 9
50733 Cologne, Germany
ziegenhagen (at) gmail dot com

http://www.uweziegenhagen.de

Uwe Ziegenhagen

TUGboat, Volume 31 (2010), No. 2 193

A web-based TEX previewer: The ecstasy
and the agony

Michael Doob

Abstract

The appeal of a web-based combined TEX editor and
previewer is instantaneous. It allows not only the
easy testing of snippets of code, the writing of short
abstracts and even of short papers, but also allows
sharing of the results over the web. Unfortunately,
even a benign program like TEX presents serious
security risks, and care must be used when exposing
such an application.

This article describes a web-based viewer of this
type. We will:

• Illustrate how remarkably easy it is, using tools
readily available, to construct a previewer,

• give examples of potential security problems,
and

• indicate some solutions to these problems.

The context of this talk is a LAMP (Linux,
Apache, MySQL, PHP) environment, but the basic
ideas can be applied to any of the common operating
systems.

1 Ecstasy

The appeal of a web-based TEX previewer is imme-
diate. There are many possible reasons for this. We
start with a few of the them.

1.1 Motivation

1.1.1 Remote access

We at the Publications Office of the Canadian Math-
ematical Society receive papers accepted for publica-
tion (sometimes called a sow’s ear) at many different
levels of quality of TEX. They must all be made
to conform to our publication standards (sometimes
called a silk purse), and significant manpower is used
for this purpose. We have a number of editors who
work both at our office and at home. There is no
problem putting TEX on a home computer. We have
our own style file, and that can be put on the home
computers too (although it does change from time to
time). However, there is a significant problem with
our fonts. We have a number of proprietary (Adobe)
fonts, and the license restricts their distribution. The
TFM files are no problem and can be put on the home
computers; the only problem is with the previewing
since that uses the proprietary information. Hence a
web page previewer with a one-button upload of the
TEX file followed by running LATEX with our class
file and then displaying the resulting pages is just
what we need.

1.1.2 Abstract submissions

The Canadian Mathematical Society has semiannual
meetings in June and December. There are several
hundred abstracts for each meeting which need to
be in LATEX format compatible with the style of our
proceedings. Our traditional method was to allow
presenters to submit their (purported) LATEX files
by email. Changing these sows’ ears into silk purses
consumes significant resources. With a web page the
author can edit the LATEX file until it works properly
with our style file.

We now provide a window into which the ab-
stract may be loaded. It can be run though the
appropriate version of LATEX and, if needed, can be
further edited and rerun within the same window.
This transfers the editing efforts from our person-
nel to the author. There is, of course, a resulting
decrease in quality due to author inability to use
LATEX optimally. The abstracts are ephemeral (they
are used for the one meeting only), and so this is an
acceptable cost.

1.1.3 Snippet testing

Sometimes it’s desirable to try out a new definition
that may take a few tries to get right. If the web
server is on a local machine, the turnaround time
is instantaneous. It’s easy to incrementally improve
the code until it is perfect.

Similarly, it is useful to use the picture envi-
ronment incrementally to create figures that will be
usable with any implementation of LATEX.

If you subscribe to texhax (http://lists.tug.
org/texhax) then lots of little problems that arise
from that list can be checked and/or debugged on
the spot.

1.1.4 Because we can

The improvements in the speed of software applica-
tions used with web browsers over the past few years
have been breathtaking. We have long been able to
run TEX on a local machine and view the output
immediately on a previewer. It is interesting that
we can now replicate that experience using even a
modest web connection.

1.2 Some nice implementations

There are already several web-based TEX previewers
available. Here are some particularly nice examples:

• Troy Henderson’s http://www.tlhiv.org/

ltxpreview

• Jan Přichystal’s http://tex.mendelu.cz/en

• Jonathan Fine’s http://www.mathtran.org/

toys/jfine/editor2.html

A web-based TEX previewer: The ecstasy and the agony

194 TUGboat, Volume 31 (2010), No. 2

All of these have the same general pattern: A window
for typing input, some method of output display, and
options that may be chosen using radio buttons or
pulldown menus.

1.3 LAMP Implementation

1.3.1 Environment

Our environment used for this application is some-
times called LAMP: the Linux kernel for the oper-
ating system, the Apache web server, the MySQL

database management system (unused in this appli-
cation) and the PHP scripting language (sometimes
the “P” is Perl or Python; indeed, either could be
used instead of PHP). No extra modules are used
with Apache, and no additional packages are loaded
into PHP. In addition, no JavaScript is used.

1.3.2 Desired elements

The minimum implementation would usually display
input (an input window using direct typing, cut-
and-paste or file upload), as well as output that is
dependent on the success or failure of the TEX job.
In addition, it’s also easy to have file uploads only
and to display (portions of) the log file.

It’s also possible to preload TEX input or specific
packages. For example, it might be more convenient
to have the material in the input window automati-
cally inserted within:

\documentclass{article}

\begin{document}

\end{document}

if all of the TEX files will be using article.cls and
no other packages are needed. Similarly, it’s also
easy to preload either document classes or packages
using pulldown menus. Examples are given in the
documentation.

1.3.3 Browser peculiarities

Ideally the output should be rendered identically
by different browsers. This ideal, unfortunately, is
not met. For example, the output from rerunning
TEX should reflect the content in the current input
window. In fact, there is an HTML metacommand
for exactly this purpose:

<META HTTP-EQUIV="CACHE-CONTROL"

CONTENT="NO-CACHE">

Alas, some browsers will ignore this, but these short-
comings can be overcome in a LAMP environment.
It’s always possible to generate unique names with
each call to TEX to avoid the cache problem. It’s also
possible to use freely available software to generate
output (png, jpg, pdf or svg) whose renderings will
be (more or less) browser independent.

2 Agony

As can be seen in the accompanying documenta-
tion, it’s easy to set up a web-based TEX previewer
within a LAMP environment. Alas, as with any web
application that may be accessed widely, there are
certain concerns and possible exploits that must be
addressed. At first blush, TEX is pretty robust and
locks out the most dangerous threats. For example,
there are no direct system calls available. Nonethe-
less, there are precautions that must be taken. Ex-
amples follow to illustrate these problems, roughly
in increasing order of vulnerability.

2.1 The need to know principle

Clearly, the more widespread the audience is for
a web application, the less is the information that
should be disclosed about the operating environment.
There are two options: control the access to the web
pages to reduce the risk or control the amount of
information disclosed. In a LAMP environment both
are easy.

It is a standard configuration command for the
Apache server to restrict access to some (or even all)
directories to clients with specific Internet addresses,
so the access, if desired, may be localized. Greater
restriction of access may (or may not!) reduce the
risk of system compromise.

On the other hand, if there is widespread ac-
cess, then the log file, even when there is only one
line of TEX input, will reveal information about the
operating system:

This is TeX, Version 3.14159 (Web2C 7.4.5)

/usr/share/texmf/tex/latex/base/size10.clo

In this case, the structure of the file system is re-
vealed; it has files in a position (under /usr/share)
that indicates an installation via a package manager
on a Unix system rather than a texlive installa-
tion or some other operating system, and as such
it gives hints to the location of the vulnerabilities
that any operating environment possesses. Loading
more packages and fonts generates similar messages
concerning the versions running and the structure
of the file system. These may and should be filtered
out when the log file is requested. This same is true
for error messages.

2.2 Denial of service

A more serious problem is that of Denial of Service
(DoS) attacks. These are designed to utilize all of the
resources available on a particular computer and thus
deny access by others. There are several methods by
which this may be done.

Michael Doob

TUGboat, Volume 31 (2010), No. 2 195

2.2.1 CPU hogging

Consider what happens with the following LATEX
input:

\newcounter{cnt}

\loop

\stepcounter{cnt}

\ifnum \value{cnt}<500000

\repeat

There could hardly be a simpler loop construct. Run-
ning it will do nothing but increment the counter
from 0 to 500000 and then quit. This takes a few
seconds. If you use a utility (like top) to check CPU

usage while this is running, you will find it maxed out.
If the \stepcounter{cnt} is deleted, TEX will run
indefinitely, eating up all available CPU resources. As
a further insult, the PHP call will freeze the browser,
so no termination is possible, even if the program
were run by innocent error. Ouch!

Here is another example:

\newcounter{cnt}

\loop

\thecnt\newpage \stepcounter{cnt}

\ifnum \value{cnt}<10000

\repeat

This produces a 10,000 page document with one
integer on each page (actually two if you include the
page number). Suppose the \stepcounter{cnt} is
left out. Then the loop is infinite, and TEX happily
runs until it reaches its memory limit and then halts.
This indicates the following: as long as the loop is
doing anything that uses memory there will be a
graceful failure in an accidental infinite loop.

What can be done to keep infinite loops from
eating up inappropriate resources? There are at least
two remedies for this:

• Any standard implementations of Linux comes
with the pam (pluggable authentication mod-
ule) software. This module uses a file called
limits.conf to control, among other things,
the amount of CPU time any process can use.

• For operating systems without pam there is a
program called cpulimit which may be used
to control the percentage of available CPU re-
sources that may be allocated to a given process.

2.2.2 Disk hogging

Now consider the following LATEX input:

\newcounter{cnt}

\loop

\leavevmode\newpage \stepcounter{cnt}

\ifnum \value{cnt}<10000

\repeat

This produces a 10,000 page document with only the
page numbers on each page (of course, the use of
\pagestyle{empty} will make the page completely
blank). If we delete the \stepcounter{cnt} from
the input, then TEX runs indefinitely using no mem-
ory, but the DVI file will (apparently) grow without
limit.

This problem is easy to address. The file men-
tioned above, limits.conf, can also control disk
usage. Alternatively, disk quotas, turned off by de-
fault, may be enabled.

2.2.3 Server hogging

Any web application is subject to attack through
the server. A distributed DoS attack, that is, one
from a botnet of many clients, is really impossible
to stop. Even with web pages, the mouse clicks
can be spoofed, so it is important to keep the web
applications isolated from the rest of the computer
environment. One possibility is to have users register
and log into the environment that runs the web-based
browser software.

2.3 PHP attacks

In a recent paper [1], Stephen Checkoway, Hovav
Shacham, and Eric Rescorla have pointed out a sig-
nificant vulnerability in the writing and subsequent
rereading of PHP scripts. Consider the following
code:

\newwrite\bummerfile

\openout\bummerfile=badfile.php

\write\bummerfile{<?php}

\write\bummerfile{echo passthru("date");}

\write\bummerfile{phpinfo();}

\write\bummerfile{echo

passthru("cat /etc/passwd");}

\write\bummerfile{?>}

This opens a file called badfile.php in the same
directory where the DVI file is written and writes in
it five lines of PHP code. These implement three com-
mands: a listing of the current time (a typical system
call), a listing of all the PHP parameters on the sys-
tem (a clear violation of need-to-know), and finally
a listing of the password file. It should be noted that
the subdirectory from where the reading of files is
done by the Apache server is easily obtained from the
listing of the page source. It typically will have some-
thing like

within it, indicating in this case that the subdirec-
tory being read is called jail. Thus by adding
jail/badfile.php to the original http address, the
file badfile.php is executed.

This vulnerability may be addressed in several
ways: the directory from which the image files are

A web-based TEX previewer: The ecstasy and the agony

196 TUGboat, Volume 31 (2010), No. 2

read can be separated from the one where the TEX
program writes. Alternatively, if a directory con-
tains an .htaccess file which in turn contains a line
php_flag engine off, then PHP files will not be
run from that directory (note that this feature is dis-
abled by default and must be enabled in the Apache
configuration file).

2.4 Isolation

Putting any application on the web, as we have
seen, has inherent dangers. While these can not
be eliminated, they can be somewhat mitigated by
isolating the web application, inasmuch as possible,
from the rest of the computer environment. There
are several possible approaches.

2.4.1 Single computer

The Apache server has a configuration file that is read
when the server starts (often called httpd.conf). It
allows the server to start at different locations in
the file system depending on the calling IP address.
In particular the address 127.0.0.1 (also known as
localhost) is always reserved for the local computer.
Setting up a virtual host for that address can ensure
that the files are not accessible from any outside
address. If you need a web-based TEX previewer to
be used by many people on one computer, this is a
safe method of implementation.

2.4.2 Small sets of users

The configuration file for the Apache server can also
be used to restrict the server to predefined IP ad-
dresses. Alternatively, pages can be password pro-
tected.

2.4.3 Chroot jail

The chroot command is available on all Unix im-
plementations. Copies of all the software (binaries
and libraries) needed for the application are put in
one directory, and the chroot command then limits
the operating system access to that directory (and
its subdirectories) only. We say that the operating
system is in a chroot jail. This makes the rest of the
computer environment safe even if the application is
broken.

Running the Apache server in a chroot jail will
protect the rest of the operating system. In fact a
script may be set up to create the jail automatically.
If the software in the jail seems questionable, a new
copy can be reconstructed.

2.4.4 Software isolation of the
operating system

An even stronger form of isolation is to run the
Apache server under its own operating system. It is
now fairly easy to set up virtual computers within a
Unix environment. It’s then possible to take a snap-
shot of the original implementation of the operating
system and then refresh the installation regularly.
This means that any damage can be easily repaired.

2.4.5 Hardware isolation

The most extreme measure is to put the application
on its own platform. This is in effect running the
web application as an embedded device. Since a web
browser can be run headless, the costs are actually
quite modest. It is possible, for example, to set up a
mini-ITX board with an enclosure, RAM and storage
for about $150.

3 Documentation

Finally, we want the actual PHP code that imple-
ments the web-based previewer. This is included
in the TEX file [2]. Running the file through LATEX
prints the documentation along with instructions for
extracting the PHP code.

This code has worked properly with all browsers
tested (Firefox, Safari, Internet Explorer, Chrome,
Opera). Nonetheless, it should be considered as a
starting point. It is hoped that it may be improved
by making it more robust and, hopefully, not be
compromised by the types of attacks given in this
paper.

References

[1] Stephen Checkoway, Hovav Shacham, Eric
Rescorla. Are Text-Only Data Formats
Safe? http://cseweb.ucsd.edu/~hovav/

dist/texhack.pdf

[2] Michael Doob. A web-based TEX
previewer — Sources. http://tug.org/
TUGboat/31-2/doob-texwebviewer.tex

⋄ Michael Doob
Department of Mathematics
The University of Manitoba
Winnipeg, Manitoba R3N 2T2
Canada
mdoob (at) ccu dot umanitoba dot ca

Michael Doob

TUGboat, Volume 31 (2010), No. 2 197

Qur ānic typography comes of age:
Æsthetics, layering, and paragraph
optimization in ConTEXt

Idris Samawi Hamid

1 The background of Oriental TEX

Attempts to integrate scripts beyond the Latin into
the TEX universe are nearly as old as TEX itself.
In the case of Right-to-Left (RTL) scripts as Arabic
script, the inadequacy of the original TEX to the task
was pointed out bluntly by Knuth himself back in
1987.1 Since then, the heroic efforts of the ArabTEX
and Omega projects took large strides in the way of
extending TEX to support Arabic-script typesetting.
On the other hand, by the early 2000s the realization
of a paradigm capable of capturing the fullness of the
Arabic script and its sophistication still seemed a long
ways away. Combined with other challenges, e.g.,
critical-edition typesetting, so much work remained
to be done.

In the winter of 2005–6, this author, along with
Hans Hagen and Taco Hoekwater, initiated a very am-
bitious attempt to address the challenges of Arabic-
script and critical-edition typesetting in the context
of a radical overhaul and extension of TEX that would
affect and potentially benefit virtually every corner
of the TEX paradigm. This overarching context con-
stitutes the ongoing LuaTEX project. By virtue of a
major grant from Colorado State University in the
spring of 2006, since extended by the generosity of
US TUG, DANTE, and private donors, Oriental TEX
has both served as the midwife of LuaTEX as well
as having reached major mileposts in its particular
goals pertaining to Arabic-script and critical-edition
typesetting and typography.

2 Mileposts in the Oriental TEX project

2.1 The Qur ān test

The most relevant torture test of Arabic-script type-
setting and typography involves capturing the nu-
ances of the Arabic used in traditional Qur ānic
script, a task that involves much by way of multiple
layers of diacritics, paragraph optimizations using
stretching and shape alternates, as well as multilay-
ered coloring.

The Oriental TEX project is proud to announce
that it has reached the milepost of being able to rep-
resent these aspects of Qur ānic typography, marking
a major outward milepost in the forward movement
of Oriental TEX. There is still a ways to go, but in

1 See p. 157 of Knuth’s Digital Typography, CSLI Publica-
tions, Stanford, 1987.

the current visual results we can confidently say that
we are “over the hump” so to speak.

2.2 Infrastructure

The visuals achieved by Oriental TEX build on an
extensive infrastructure, involving the following mile-
posts, both achieved and in progress:

• Aleph + pdfε-TEX + native UTF-8 + Lua =
LuaTEX (done);

• OpenType + language processing in Lua ⇒
ConTEXt MkIV (beta)

• Development of Husayni font family (flagship
font nearly complete);

• Paragraph optimization and justification model
(initial implementation);

• Bidirectional model (under development — no
more naive mirroring primitives but a full typo-
graphical framework for bidi);

• Structural-element/critical-apparatus control ⇒
CriTEXt (under development)

2.3 Documentation

In addition to the numerous papers, presentations,
and other documentation by Hans Hagen, I am work-
ing on the following documentation tasks for a wider
audience:

• An Ontology of Arabic-script Typography (in
development);

• CriTEXt: The Critical Edition Module for Con-
TEXt (white paper available, unpublished)

• Typographical Æsthetics and Engineering: Struc-
tured and Automated Authoring in ConTEXt (in
development: this will be perhaps the first book
on ConTEXt for a general audience)

3 Qur ānic typography

Qur ānic typography involves getting the following
tasks done.

3.1 Control of æsthetics

Given an Arabic string, there is often more than
one way to æsthetically represent it. Which way one
chooses depends on the context. This goes beyond
the mere availability of glyph alternates as in Latin.
Put another way, just as one must choose the right
font for a given typographical task in Latin script, so
also must one choose the right set of æsthetic features
for a given Arabic-script task. This principle can be
applied to Latin, especially in the form of calligraphy
fonts, but it’s nowhere near as important an issue.

Available Arabic fonts generally mimic Latin
fonts in that they have little-to-no flexibility in this
regard. That is, given a font, its æsthetic style is

Qur ānic typography comes of age: Æsthetics, layering, and paragraph optimization in ConTEXt

198 TUGboat, Volume 31 (2010), No. 2

generally fixed. OpenType allows for far more flexi-
bility of æsthetic sets within Arabic-script, providing
more culturally authentic possibilities.

In ConTEXt MkIV, we have something called
fontfeatures. Using fontfeatures, we can define, add,
and subtract sets of OpenType lookups — called fea-
tures to create myriads of output possibilities.

In the case of Qur ānic typography, we will
illustrate a default feature set, and see what happens
when we

• subtract and add features,
• stretch glyphs using alternates.

3.2 Layering

Arabic script is mostly consonantal. The vowels
are generally not letters.2 And the consonants are
characterized by ambiguity: given a letter shape,
it may represent two or more actual letters. One
disambiguates by means of identity marks, mostly in
the form of dots.

In historical texts, including the Qur ān, some-
times only the consonantal layer is represented in the
text, sometimes only either the vowel or the identity-
marks layer. Sometimes the two layers clash and
we have to adjust the shape of the consonant or the
mutual positions of characters belonging to the two
diacritics layers.

3.3 Paragraph optimization

Given that Arabic script in general does not accept
hyphenation, getting even color in a paragraph will
use alternate glyph substitution, or stretched glyph
substitution. The first involves an entirely different
shape, e.g., ك versus ダ
whereas the latter involves a stretch of the existing
character, e.g., دなでどا versus なで幹澗ا
One can also combine this with changes in æsthetics,
e.g., دなでどا versus دｋ確翫ا

Getting all of this under control is still in the
experimental stages of implementation. The plethora
of possibilities for optimization, plus the good job
that the current paragraph builder does, leads us to
focus on a line-by-line optimization after the initial
paragraph is optimized by TEX. We illustrate this
by showing some real-life samples from the Qur ān:
from Sūraḧ’s Fātih. aḧ and Baqaraḧ.

2 There are three consonants that sometimes function as
vowels as well, analogous to the letter ‘y’ in English.

4 Æsthetics and layering

4.1 Fontfeatures: default

Given a font, it should have a default æsthetic be-
havior. To that end, we define a default fontfeature
set:

\definefontfeature[husayni-default]

[analyze=yes, mode=node, language=dflt,

script=arab, ccmp=yes, init=yes, medi=yes,

fina=yes, rlig=yes, calt=yes, salt=yes,

anum=yes, ss01=yes, ..., ss60=yes, ...,

js16=yes, kern=yes, curs=yes, mark=yes,

mkmk=yes, tlig=yes,

colorscheme=husayni:default]

For illustration we have shown excerpts from the
list of dozens of possible features. Features to be
disabled can be commented out, or ‘yes’ changed to
‘no’.

Also note the colorscheme key at the end. This
refers to a mechanism for the coloring of the various
layers of the text as we mentioned earlier.

4.2 Subtracting æsthetics

Let’s get a barebones, minimalist Arabic-script im-
plementation by subtracting features. Thus the key
command here is \subff:

\switchtobodyfont[husayni-default,40pt]

\definefontfeature [first_order]

[script=arab,dlig=yes,ss01=yes,

ss03=yes,ss07=yes,ss10=yes,ss12=yes,

ss15=yes,ss16=yes,ss19=yes,ss24=yes,

ss25=yes,ss26=yes,ss27=yes,ss31=yes,

ss34=yes,ss35=yes,ss36=yes,ss37=yes,

ss38=yes,ss41=yes,ss42=yes,ss43=yes]

\subff{first_order}

Our ConTEXt input text, typed in Arabic (omitted
in other examples):

9

\switchtobodyfont[husayni-default,40pt]

\definefontfeature [first_order]

[script=arab,dlig=yes,ss01=yes,ss03=yes,ss07=yes,

ss10=yes,

ss12=yes,ss15=yes,ss16=yes,ss19=yes,ss24=yes,ss25=yes,

ss26=yes,ss27=yes,ss31=yes,ss34=yes,ss35=yes,ss36=yes,

ss37=yes,ss38=yes,ss41=yes,ss42=yes,ss43=yes]

\subff{first_order}

Κ腸喋耽腸跳椎長Κυ腸ω喋υ耽腸υ跳χ椎ω長υ \crlf

超φ檀υ朕υ恥ψχ築σ嫡υ椎υ鳥ω徴υ恥χ蓄φ腸φ珍Κ暖椎致

نَ﮲يْ﮵مِلَاعَلْاَن﮲ي﮵ملاعلا خ﮲ي﮵ت﮴اولُرُجِ﮳فَ﮲نْ﮲يَ﮵سَدٌجِّ﮳هَتَ﮴مُ
4.3 Default Æsthetics

Setting up the default æsthetics is simple:

And the result:

9

\switchtobodyfont[husayni-default,40pt]

\definefontfeature [first_order]

[script=arab,dlig=yes,ss01=yes,ss03=yes,ss07=yes,

ss10=yes,

ss12=yes,ss15=yes,ss16=yes,ss19=yes,ss24=yes,ss25=yes,

ss26=yes,ss27=yes,ss31=yes,ss34=yes,ss35=yes,ss36=yes,

ss37=yes,ss38=yes,ss41=yes,ss42=yes,ss43=yes]

\subff{first_order}

Κ腸喋耽腸跳椎長Κυ腸ω喋υ耽腸υ跳χ椎ω長υ \crlf 超φ檀υ朕υ恥ψχ築σ嫡υ椎υ鳥ω徴υ恥χ蓄φ

腸φ珍Κ暖椎致

نَ﮲يْ﮵مِلَاعَلْاَن﮲ي﮵ملاعلا خ﮲ي﮵ت﮴اولُرُجِ﮳فَ﮲نْ﮲يَ﮵سَدٌجِّ﮳هَتَ﮴مُ
4.3 Default Æsthetics

Setting up the default æsthetics is simple:

4.3 Default æsthetics

Let’s show the default æsthetics:

\switchtobodyfont[husayni-default,40pt]

Idris Samawi Hamid

TUGboat, Volume 31 (2010), No. 2 199

The result:

10

\switchtobodyfont[husayni-default,40pt]

Κ腸喋耽腸跳椎長Κυ腸ω喋υ耽腸υ跳χ椎ω長υ \crlf 超φ檀υ朕υ恥ψχ築σ嫡υ椎υ鳥ω徴υ恥χ蓄φ

\crlf 腸φ珍Κ暖椎致

ケَ﮲釜ِ期ブَْ♂اعَلْاケَ﮲ヮブ♀♂اعلا φャَ骸َ﮴مُ ّ﮳ ِ澗ٌََ﮵سΕَ﮲نْ﮲句く ﮳ رُِ 娯√﮵塾フاولُ ﮲
Study the differences between the first two words once we introduce vowels: One of

them has a mild stretch to accommodate a lower vowel.

4.4 Advanced Æsthetics

For more fancy text, let s add some features. Note the stacking of characters, giving

in some cases a slanted feel to the text. The key command here is \addff :

Study the differences between the first two words
once we introduce vowels: one of them has a mild
stretch to accommodate a lower vowel.

4.4 Advanced æsthetics

For more fancy text, let’s add some features. Note
the stacking of characters, giving in some cases a
slanted feel to the text. The key command here is
\addff:

\switchtobodyfont[husayni-default,40pt]

\definefontfeature [stack:haa:multi-level]

[script=arab,ss05=yes,ss06=yes,ss09=yes,

ss13=yes,ss17=yes,ss40=yes]

\addff{stack:haa:multi-level}

11

\switchtobodyfont[husayni-default,40pt]

\definefontfeature [stack:haa:multi-level]

[script=arab,ss05=yes,ss06=yes,ss09=yes,ss13=yes,ss17=yes,ss40=yes]

\addff{stack:haa:multi-level}

Κυ腸ω兆腸υ跳χ椎ω長υ超φ檀υ朕υ恥ψχ築σ嫡υ椎υ鳥ω徴υ恥χ蓄φ \crlf 腸φ珍Κ暖椎致

φャَ骸َ﮴مケَُ﮲釜َِ期ブْ＞عْٰ÷اَ ّ﮳ ِ澗ٌََ﮵سΕَ﮲نْ﮲句く ﮳ رُِ 娯√﮵塾フاولُ ﮲
4.5 Stretched and Alternate Æsthetics

Again, we are adding, this time adding stretched-alternate and glyph-alternate fea-

tures:

4.5 Stretched and alternate æsthetics

Again, we are adding, this time adding stretched-
alternate and glyph-alternate features:

\switchtobodyfont[husayni-default,40pt]

\definefontfeature [maximal_stretching]

[script=arab,ss05=yes,ss09=yes,ss06=yes,

ss13=yes,ss17=yes,ss40=yes,js13=yes,js14=yes,

js16=yes,js05=yes]

\addff{maximal_stretching}

12

\switchtobodyfont[husayni-default,40pt]

\definefontfeature [maximal_stretching][script=arab,ss05=yes,

ss09=yes,ss06=yes,ss13=yes,ss17=yes,ss40=yes,js13=yes,js14=yes,

js16=yes,js05=yes]

\addff{maximal_stretching}

Κυ腸ω兆腸υ跳χ椎ω長υ超φ檀υ朕υ恥ψχ築σ嫡υ椎υ鳥ω徴υ恥χ蓄φ \crlf 腸φ珍Κ暖椎致

汲ャَ骸َ﮴ド鴎َُ﮲塊ٰ菊َ釜ِ期ブْْ÷اَ ّ﮳ ِ澗ٌ怨ََ﮵伎ْ﮲歌َ﮲狗蓋 環ُِ﮳ 翁ُ主ا塾フ﮵√娯 ﮲
This example in part illustrates that TEX is informed about where it is legal to

stretch and where it is illegal. So there are three stretch points to the word﮵سΕ﮲ن﮲句く ر﮳
The above example shows three stretches, but in real life we want only one of them.

4.6 The Base Consonant Layer

Here we get the base consonants only:

This example in part illustrates that TEX is
informed about where it is legal to stretch and where
it is illegal. This word, third from the right in the
above example, shows three stretches; in real life
we would use only one of those three for any given
stretched instantiation of the word.

12

\switchtobodyfont[husayni-default,40pt]

\definefontfeature [maximal_stretching][script=arab,ss05=yes,

ss09=yes,ss06=yes,ss13=yes,ss17=yes,ss40=yes,js13=yes,js14=yes,

js16=yes,js05=yes]

\addff{maximal_stretching}

Κυ腸ω兆腸υ跳χ椎ω長υ超φ檀υ朕υ恥ψχ築σ嫡υ椎υ鳥ω徴υ恥χ蓄φ \crlf 腸φ珍Κ暖椎致

汲ャَ骸َ﮴ド鴎َُ﮲塊ٰ菊َ釜ِ期ブْْ÷اَ ّ﮳ ِ澗ٌ怨ََ﮵伎ْ﮲歌َ﮲狗蓋 環ُِ﮳ 翁ُ主ا塾フ﮵√娯 ﮲
This example in part illustrates that TEX is informed about where it is legal to

stretch and where it is illegal. So there are three stretch points to the word﮵سΕ﮲ن﮲句く ر﮳
The above example shows three stretches, but in real life we want only one of them.

4.6 The Base Consonant Layer

Here we get the base consonants only:

4.6 The base consonant layer

Here we get the base consonants only:

\switchtobodyfont[husayni-default,40pt]

\definefontfeature [consonant]

[script=arab,ss61=yes,ss49=yes,ss52=yes]

\addff{consonant}

13

\switchtobodyfont[husayni-default,40pt]

\definefontfeature [consonant]

[script=arab,ss61=yes,ss49=yes,ss52=yes]

\addff{consonant}

Κυ腸ω兆腸υ跳χ椎ω長υ超φ檀υ朕υ恥ψχ築σ嫡υ椎υ鳥ω徴υ恥χ蓄φ \crlf 腸φ珍Κ暖椎致

裟ξ裟η裟ف裟ن裟Ε裟س裟ゾ裟バ裟郁裟裟澗裟م裟＜裟♀裟ヮ裟ケ裟ع裟÷裟ا 凝弱‾او裟ل
4.7 The Identity Marks Layer

Let s disambiguate the characters, and use colors to illustrate the difference:

4.7 The identity marks layer

Let’s disambiguate the characters, and use colors to
illustrate the difference:

\switchtobodyfont[husayni-default,40pt]

\setfontcolorscheme[1]

\definefontfeature [identity]

[script=arab,ss49=yes,ss52=yes]

\addff{identity}

14

\input font-gds.mkiv

\switchtobodyfont[husayni-default,40pt]

\setfontcolorscheme[1]

\definefontfeature [identity]

[script=arab,ss49=yes,ss52=yes]

\addff{identity}

Κυ腸ω兆腸υ跳χ椎ω長υ超φ檀υ朕υ恥ψχ築σ嫡υ椎υ鳥ω徴υ恥χ蓄φ \crlf 腸φ珍Κ暖椎致

ξ裟η裟﮳裟ف﮲裟ن﮲Ε裟﮵裟س郁裟裟澗裟﮳ゾ裟バ裟﮴裟مケ裟﮲裟＜裟♀裟ヮブ裟ع裟÷裟ا 弱﮲凝﮵フ‾او裟ل
4.8 The Vowels Layer

In the histor of the Qur ānic text, the vowels were developed before the identity

marks, so vowels without identymarks is not an abstract example:

4.8 The vowels layer

In the history of the Qur ānic text, the vowels were
developed before the identity marks, so vowels with-
out identity marks is not an abstract example:

Qur ānic typography comes of age: Æsthetics, layering, and paragraph optimization in ConTEXt

200 TUGboat, Volume 31 (2010), No. 2

\switchtobodyfont[husayni-default,40pt]

\setfontcolorscheme[1]

\definefontfeature [vowel]

[script=arab,ss61=yes]

\addff{vowel}

15

\input font-gds.mkiv

\switchtobodyfont[husayni-default,40pt]

\setfontcolorscheme[1]

\definefontfeature [vowel]

[script=arab,ss61=yes]

\addff{vowel}

Κυ腸ω兆腸υ跳χ椎ω長υ超φ檀υ朕υ恥ψχ築σ嫡υ椎υ鳥ω徴υ恥χ蓄φ \crlf 腸φ珍Κ暖椎致

ξِηُفَنΕَْسゾَバَ郁ِّ澗ٌَم釜َِ期ْケَُ＞عْٰ÷اَ 凝弱‾اولُ
4.9 Full Layering

Let s put it all together, with full layering and color distinctions:

4.9 Full layering

Let’s put it all together, with full layering and color
distinctions:

\switchtobodyfont[husayni-default,40pt]

\setfontcolorscheme[1]

16

% \usetypescriptfile[type-husayni]

% \usetypescript[husayni-default]

\input font-gds.mkiv

\switchtobodyfont[husayni-default,40pt]

\setfontcolorscheme[1]

Κυ腸ω兆腸υ跳χ椎ω長υ超φ檀υ朕υ恥ψχ築σ嫡υ椎υ鳥ω徴υ恥χ蓄φ \crlf 腸φ珍Κ暖椎致

φャَ骸َ﮴مケَُ﮲釜َِ期ブْ＞عْٰ÷اَ ّ﮳ ِ澗ٌََ﮵سΕَ﮲نْ﮲句く ﮳ رُِ 娯√﮵塾フاولُ ﮲
5 Optimization and Sample Qur ānic Typography

5.1 S ra Fāti a

Let s look at the first page of the handwritten frontspiece of the standard Egyptian

edition of the Qur ān. The entire edition is typeset except for the two first pages

that constitute the frontspiece (see Figure 1).

As simple as the handwritten version seems, it contains numerous subtleties that

make imitation using traditional typesetting technology virtually impossible. Fol-

lowing, we present it in Oriental TEX, with full layering (see Figure 2).

5 Optimization and sample
Qur ānic typography

5.1 Sūraḧ Fātih. aḧ

Let’s look at the first page of the handwritten fron-
tispiece of the standard Egyptian edition of the
Qur ān. The entire edition is typeset, except for
the two first pages that constitute the frontispiece
(see Figure 1).

As simple as the handwritten version seems, it
contains numerous subtleties that make imitation
using traditional typesetting technology virtually
impossible. Figure 2 presents it in Oriental TEX,
with full layering.

But we can be creative and imitate other styles
as well. An Iranian style is shown in Figure 3, and
an Indo-Pakistani style in Figure 4.

5.2 Sūraḧ Baqaraḧ

From the frontispiece, we move to more straightfor-
ward paragraph typography. We illustrate this with
two æsthetic sets from Sūraḧ Baqaraḧ, with opti-
mization applied to get square paragraphs that fill
the page, as well as full layering (Figures 5 and 6).

6 Conclusion

As you can see, Oriental TEX has come a long way.
There is much work ahead, including further refine-
ments to the æsthetics and the optimization routines,
but it is certainly gratifying to see such sophisticated
real-world results. Qur ānic typography has finally
come of age!

⋄ Idris Samawi Hamid
Colorado State University
ishamid (at) colostate dot edu

17

Figure 1 S ra Fāti a , from the 1924 Egyptian Edition of the Qur ān.Figure 1: Sūraḧ Fātih. aḧ, from the 1924 Egyptian Edition of the Qur ān.

TUGboat, Volume 31 (2010), No. 2 201
18

飼ِ﮲骨そۡ完َ姿رﾅّاِ>9;ّ骨اA紙ۡ還ِِ﮳ 火還ِペ﮵ح骨ِرﾅّا
├ブ┉ح骨ِرﾅّا肝ِ﮲骨そۡ完َ姿رﾅّاケホَ﮲解َ姿吉َ≧ِヮブلۡابِّ﮳رَِ>骨ّ;9ِدｋۡ格َ翫ُۡا ِボ
鴬َ姿議ِ－ِامِوۡيَ﮵守ۡ「ِّﾐブِ﮲ドポٕإ込ｷブّ 骨نَ﮲كَا緊ُۡ﮳鑑ُإٕوَد込ｷブّ 骨كَا E﮲ َ開َۡ﮴閑ِعヮブُ﮲ケマا岡ۡ澗َِ﮲ｵاا殴むِّおَ事َاط殴ُۡقِ﮴تَ﮴سۡم┉ブ├َミ
まِおَ事َاط守ّ骨ِ﮲」ﾐブَ﮲ケٔأ骨نۡ﮲琴َ翫َۡ﮴淑ぱَ岩َデブۡ劾ِ翰َۡ﮲凹岐ブۡﾚِا殴َۡبِ﮳وضُ﮲غۡ﮲م ぱَ岩َデブۡ劾ِ翰َۡاالَوّ﮲ل峨骨よِّۤلヮブَ﮲ド拶ム

Figure 2 S ra Fāti a , based on the 1924 Egyptian Edition of the Qur ān, done in Oriental

TEX.

Figure 2: Sūraḧ Fātih. aḧ, based on the 1924 Egyptian Edition of the Qur ān, done in Oriental TEX.

19

But we can be creative and imitate other styles as well. An Iranian style (Figure 3).

雌ِ﮲骨そۡ姦ٰرﾅّاِ>9;ّ此اA紫ۡ還ِِ﮳ ├ブ┉ح骨ِرﾅّا ِ薩埼
なۡでا َ寛ۡ澗ُ9ِ;ّ此<َِابِّ﮳ر÷ٰۡع＜釜َِ期ブَ﮲ケ薩碕اﾅّر骨そۡ姦ِٰ﮲雌 家翰ِ薩鷺﮵ح骨ِرﾅّا
ｷブّإِٕو科澗َُُ﮳ﾆۡنَ﮲ك詠骨やَّ﮵إド薩作ِِٕ﮲守ۡ「ِّﾐブام詠主َِۡ﮵ِ－ِ《مٰ 骨كَا E﮲ َ開َۡ﮴閑ِعヮブُ﮲ド薩削ا黄َِۡ﮲دｵاا殴むِّおٰاطَا♂釜ُۡ丸ۡقِ﮴تَ﮴┉ブ├َ薩咋

縁ِ環ٰاطَا守ّ骨ِ﮲」ﾐブَ﮲ド بِ﮳وضُ﮲غۡ﮲م殴َۡا奥岐ブۡﾚَِ﮲んぱَ岩َデブۡ躯ِ還َۡ﮴ۡ£ñَنۡ﮲骨أٔ ぱَ岩َデブۡ駆ِ還َۡاالَوّ﮲ل峨此やِّۤلヮブَ﮲ド薩拶搾
Figure 3 S ra Fāti a , in a more Iranian style.Figure 3: Sūraḧ Fātih. aḧ, in a more Iranian style.

202 TUGboat, Volume 31 (2010), No. 2

20

Or an Indo-Pakistani style (Figure 4).

偽爵ِ雑埼ۡ﮵骨肢ِرﾅّا肝ِ﮲骨そۡ姦ビرﾅّاِ>9;ّ軸اA枝ۡ還ِِ﮳
┷ｋۡ愛َا ۡΝُ9ِ;ّ軸<َِِّ﮳رろاۡل解ビ汐َ┷ ِ而ブَ﮲ケ雑混碕اﾅّر骨そۡ姦ビِ﮲歯
肝雑懇作ِ﮲泳﮵翁ۡ澗ِّامِوۡيَ﮵ِ－ِ《偽爵ِ雑混鷺襖ビ﮵骨克ِرﾅّا
ｷブّإِٕ 骨اダَنَ﮲禽ُۡ﮳鑑ُّ﮵إِٕوَد詠骨やَكE﮲ َ開َۡ﮴閑解ِ期ブُ﮲ケ雑懇削
طَاブ├َ雑混咋縁ِ環َ┉قِ﮴閑َ﮴霞ۡمُلۡاطَا殴むِّおَااｵَ﮲沖ۡ澗ِا
奥岐ブۡﾚَِ﮲界ِ還ۡ鯖يۡ﮵んぱَ岩ََ﮴緊َ翫ۡنۡ﮲骨أドَٔ﮲潅ﾐブِ﮲翁ّ骨ا ケ雑拶搾َ﮲ヮブل臥軸やِّّۤ﮲لاالَو灰ِ還َۡيۡ﮵ぱَ岩َبِ﮳牙沓ُ﮲غۡ﮲م殴َۡا

Figure 4 S ra Fāti a , in a more Indo-Pakistani style.Figure 4: Sūraḧ Fātih. aḧ, in a more Indo-Pakistani style.

1 1

1 1

怨主ة﮴رق﮴ب﮳لۙة﮴ر

٤

デマَ﮲وحُل玩ِۡ﮲ۙ♂鎌ُُۡ┝ُ▼ك魂王َ姿姉舘ٕ込َو狛أٔوَمヴバِِّۡ﮳骨رّن﮲مِّى忽دهぱَ喫َ＊ビُك魂王َ姿姉舘ٕ込َو狛أٔ
ٕۗ込نّ﮲骨ۙ守ّ骨ِ﮲」ﾐブَ﮲ケチَورُفَ﮲魂َۙءٌۤۙوَسぱَ岩َデブۡバِۡأٔءَم骨﮲嫉َ﮴رۡ「َ﮲ギバُۡأٔم骨ۡم∴َ┝ۡ‾フ اَلۡ┝ُ▼رۡذِ﮲ｭ﮲ُ
ぱَ喫َ＊ビ姉وぱَ喫َ＊ビせَ喚ۡ岸ِ海ِ翰ۡ昆َوヴ凱ِ翰َِۡ﮳為ُ】قُ﮴爵َۙ9;ّ此<ُぱَ喫َ＊ビ┖َ﮴خَ﮲ミنَ﮲وｭُ﮲مِؤۡٔيُ﮵
سِا骨نّ﮲لۙنَ﮲مِو爵甑拶ムَ┚﮵ظِ﮲عٌَۚ﮳潅َۙ﮲骨′َ患ُ翰ۡぱَو甑昆ّة﮴貨姿宍ََ﮶غِ﮲俄َ姿環ِ▼ِ┝ۡ昆بۡ﮳骨أٔ
ケメَ﮲ｭヮブِ﮲م冠ُ靴ِۡٔ┞ِ﮳┝ُ▼امَوνηَِِ﮲اَءلۙۡم伽宍َِۡ﮵لۡاｱِ﮳وَِ>9;ّ此اｱِ﮳اｭ骨ّ﮲مَۙءَلُوﾉُ﮴骨يّ﮵ن﮲مَ
∋ ブُ﮲鈎َ姿澗ُِنَ﮲وعۙ9;ّ此<ََوۙ守ّ骨ِ﮲」ﾐブَ﮲ケَُ﮲مَۙءｭو魂َۙامَو∋ ブَۡ﮲蛙澗َُٕۗنَ﮲وع込ّل骨ۤأٔا骨ُ﮲ن﮲ﾈのَバُامَوَم
昆ا忽ض﮲ۙ9;ّ此<ُ☆َぽَُ┝ُ▼دÄََۙ﮲¡َ﮲甑ض﮲骨ぽَّ☆مヴバِِ﮳為ُ】قُ﮴╆﮵îِ﮲モنَ﮲وﾂぷُぽُۡ﮶Gَ﮵
ペنَ﮲وبُ﮳…ِ﮲ۡ＼يَ﮵魂ۙونُ﮲・侃َよáَ┞ِ﮳爵ُ些┚﮵ل骨ِأٌٔۚ﮳潅َۙ﮲患ُ翰ۡぱََ′وَ ベَٕۗو込لَي﮵قِ﮴ۙذَ﮲′َ患ُ翰ۡ
ペنَ﮲وحُلِصۡم肝ُُ﮲馨ۡ〓َ﮲骨冠َよ┢ّ﮲魂ٕۙۗ込و殴ُۤا応َ﮴ضِ﮲ر骨ۡأٔلۙۡ╆﮵îِ﮲魂ۙودُسﾈِۡ﮲تُ﮴اَل ペ
ペنَ﮲وﾂぷُぽُۡ﮶Gَ﮵ا骨لّن﮲王َ姿惹ِوَنَ﮲ودُس玩ِۡ﮲ۙ♂鎌ُُۡ┝ُ▼مゲ骨バُّۡ﮲込ٕۗاۤل骨َأٔ ホَٕۗو込ۙذَ﮲
نَ﮲مَۙءーَ疾َよَۤنُ﮲مِؤۡٔنُ﮲骨أ魂ۙٔو殴ُۤا応َ﮴سُا骨نّ﮲لۙنَ﮲مَۙء魂ۙーَ疾َよَۤوｭُ﮲مِۙء患ُ翰ََۡ′لَي﮵قِ﮴
ۙسّل狛فَ﮲海َよُۤء根ٔأ骨َٕۗاۤل込ّ﮲ゲ骨バُۡم▼ُ┝ُۙسّل狛فَ﮲海َよُۤوَء王َ姿惹ِلّن﮲骨يَ﮵اﾆۡ≦َ≧ُنَ﮲وペ ボ

Figure 5: Sūraḧ Baqaraḧ, in a basic
Egyptian style.

1 1

1 1

怨主ة﮴رق﮴ب﮳لۙة﮴ر

٤

パّ﮳骨رّن﮲مِّىدًهُٰ＊ぱَ喫ك魂王ٰ姉舘ٕ込َو狛أٔ ِЫ デマَ﮲و玩ｍِすُۡ﮲ۙ姶ۡ鎌ُُ├ُ▽ك魂王ٰ姉舘ٕ込َو狛أٔوَمِۡ
ٕۗ込نّ﮲骨ۙ守ّ骨ِ﮲」ﾐブَ﮲ケチَورُفَ﮲魂َۙءٌۤۙوَسぱَ岩َデブۡバِۡأٔءَم骨﮲嫉َ﮴رۡ「َ﮲ピ憾ُ翰ۡٔأ骨ۡم∞َ├ۡ‾フ اَلۡ├ُ▽رۡذِ﮲ｭ﮲ُ
パ﮳為ُ】قُ﮴ٰ＊ۙ9;ّ此<ُぱَ喫َ├┆َ﮴خَ﮲ミنَ﮲وｭُ﮲مِؤۡٔيُ﮵ ِ換ِ翰َۡوぱَ喫＊ٰせَ巻ۡ岸ِ界ِ翰ۡ昆َوぱَ喫ٰ姉＊
سِا骨نّ﮲لۙنَ﮲مِو拶ムٌَ├ブ┉ظِ﮲عٌَۚ﮳潅َۙ﮲骨′َ患ُ翰ۡぱَو昆ّةٌ﮴وَشٰ﮶غِ﮲とٰδِ▽ِ├ۡ昆بۡ﮳骨أٔ
ケメَ﮲ｭヮブِ﮲م冠ُ靴ِۡٔ┞ِ﮳├ُ▽امَوνηَِِ﮲اَءلۙۡم伽宍َِۡ﮵لۡاｱِ﮳وَِ>9;ّ此اｱِ﮳اｭ骨ّ﮲مَٰۙلُوﾉُ﮴骨يّ﮵ن﮲مَ
∋ ブُٰ﮲蛙澗ُِنَ﮲وعۙ9;ّ此<ََوۙ守ّ骨ِ﮲」ﾐブَ﮲ケَُٰۙ﮲مｭو魂َۙامَو∋ ブَۡ﮲蛙澗َُٕۗنَ﮲وع込ّل骨ۤأٔا骨ُ﮲ن﮲ﾈのَバُامَوَم
パ﮳為ُ】قُ﮴╆﮵îِ﮲モنَ﮲وﾂぷُぽُۡ﮶Gَ﮵ ِЫ 昆اضً﮲ۙ9;ّ此<ُ☆َぽَُ├ُ▽دÄََۙ﮲¡َ﮲ضٌ﮲骨ぽَّ☆مِ
ペنَ﮲وبُ﮳…ِ﮲ۡ＼يَ﮵魂ۙونُ﮲・侃َよáَ┞ِ﮳ブ├ُ些┉ل骨ِأٌٔۚ﮳潅َۙ﮲患ُ翰ۡぱََ′وَ ベَٕۗو込لَي﮵قِ﮴ۙذَ﮲′َ患ُ翰ۡ
ペنَ﮲وｍِすُصۡم肝ُُ﮲馨ۡ〓َ﮲骨冠َよ┢ّ﮲魂ٕۙۗ込و殴ُۤا応َ﮴ضِ﮲ر骨ۡأٔلۙۡ╆﮵îِ﮲魂ۙودُسﾈِۡ﮲تُ﮴اَل ペ
ペنَ﮲وﾂぷُぽُۡ﮶Gَ﮵ا骨لّن﮲王ٰ惹ِوَنَ﮲ودُس玩ِۡ﮲プ骨憾ُ翰ۡ▽ُ├ُۙ♂鎌ُّۡ﮲込ٕۗاۤل骨َأٔ ホَٕۗو込ۙذَ﮲
نَ﮲مَۙءَۤ┼ゞَ匡َنُ﮲مِؤۡٔنُ﮲骨أ魂ۙٔو殴ُۤا応َ﮴سُا骨نّ﮲لۙنَ﮲مَٰۙۤ┼魂ۙゞَ匡َوｭُ﮲م患ُ翰َِٰۡۙ′لَي﮵قِ﮴
ۙسّل狛فَ﮲海َよُۤء根ٔأ骨َٕۗاۤل込ّ﮲プ骨憾ُ翰ۡ▽ُ├ُۙسّل狛فَ﮲海َよُۤوَء王ٰ惹ِلّن﮲骨يَ﮵اﾆۡ＜鎌َُ沓نَ﮲ペ ボ

Figure 6: Sūraḧ Baqaraḧ, in a slightly different
vowelization style, with more character stacking.

TUGboat, Volume 31 (2010), No. 2 203

Asymptote: Interactive TEX-aware
3D vector graphics

John C. Bowman

Abstract

Asymptote is a powerful descriptive vector graphics
language for technical drawing recently developed
at the University of Alberta. It attempts to do for
figures what (LA)TEX does for equations. In contrast
to METAPOST, Asymptote features robust floating-
point numerics, high-order functions, and a C++/
Java-like syntax. It uses the simplex linear program-
ming method to resolve overall size constraints for
fixed-sized and scalable objects. Asymptote under-
stands affine transformations and uses complex mul-
tiplication to rotate vectors. Labels and equations
are typeset with TEX, for professional quality and
overall document consistency.

The feature of Asymptote that has caused the
greatest excitement in the mathematical typesetting
community is the ability to generate and embed inline
interactive 3D vector illustrations within PDF files,
using Adobe’s highly compressed PRC format, which
can describe smooth surfaces and curves without
polygonal tessellation. Three-dimensional output
can also be viewed directly with Asymptote’s native
OpenGL-based renderer. Asymptote thus provides
the scientific community with a self-contained and
powerful TEX-aware facility for generating portable
interactive three-dimensional vector graphics.

1 Introduction

Notable enhancements have recently been made in
the TEX-aware vector graphics language Asymptote.1

This article provides an overview of those advances
made since the publication of articles in TUGboat
that describe Asymptote’s 2D [1] and 3D [2] typo-
graphic capabilities. Some of these advances were
developed in preparation for and during TEX’s 25

anniversary workshop in San Francisco. These im-
provements are contained in the current release (2.03)
of Asymptote.

2 Batching of 3D TEX

A significant improvement was made in the process-
ing of 3D TEX labels: their conversion into surfaces
is now batched, resulting in much faster execution.

In two dimensions, Asymptote uses a two-stage
system to position TEX labels within a figure. First,
a bidirectional TEX pipe is used to query the width,

1 Andy Hammerlindl, John Bowman, and Tom Prince,
available under the GNU Lesser General Public License from
http://asymptote.sourceforge.net/

height, and depth of a TEX string. This information
is used to align the label within a TEX layer on
top of a PostScript background. The PostScript
background and TEX layer are linked together within
a file that is then fed to TEX for final processing. In
other words, in two dimensions all that Asymptote
really does is prepare a TEX file, deferring typesetting
issues to the external TEX engine.

Since TEX is inherently a two-dimensional pro-
gram, the above scheme will clearly not work in three
dimensions. As described in [2], Asymptote uses a
PostScript interpreter to extract Bézier paths from
the output of TEX+Dvips (or PDFTEX+Ghostscript).
Previously, typesetting each three-dimensional label
therefore required executing three external processes,
drastically slowing down the processing of three-
dimensional figures (particularly under the Microsoft
Windows operating system).

In most instances, however, the deferred draw-
ing routines [1, 2] do not need detailed Bézier path
data in order to size figures, but only the three-
dimensional bounding boxes of each label. The only
exception is the case where a three-dimensional label
needs to be manipulated (e.g. extruded or trans-
formed), a case that in practice arises infrequently.
In all other cases, the bounding box may be com-
puted simply by transforming into three dimensions
the two-dimensional bounding box reported via the
bidirectional TEX pipe (which can process many thou-
sands of TEX strings per second).

This allows the conversion of three-dimensional
labels into Bézier paths to be deferred until the final
conversion of a three-dimensional picture into a fixed-
size frame, from which OpenGL calls or PRC code
can then be generated. To distinguish the individual
path arrays associated with each TEX string within
the generated PostScript code, each string is typeset
on a separate page. Batching TEX labels in this man-
ner yields remarkable performance gains (typically a
factor of two to five faster, depending on the number
of TEX labels and the underlying operating system).

3 Billboard labels

By default, three-dimensional labels now behave like
“billboards” that interactively rotate to face the cam-
era (fig. 1). This default can be changed locally or
globally:

import three;

settings.autobillboard=true; // default

currentprojection=perspective(1,-2,1);

draw(unitbox);

label("Billboard",X,red,Billboard);

label("Embedded",Y,blue,Embedded);

Asymptote: Interactive TEX-aware 3D vector graphics

204 TUGboat, Volume 31 (2010), No. 2

Figure 1: Billboard labels interactively rotate to face
the camera, while embedded labels rotate with the
picture.

4 Rendering options

Using the latest PRC specification [3], Michail Vidi-
assov recently overhauled Asymptote’s PRC driver,
which was originally written by Orest Shardt. The
most significant new feature, lossy PRC compression,
allows one to produce much more compact 3D PDF

files (typically smaller by a factor of two or more).
Such specialized rendering options can be specified
via the structure render defined at the beginning
of module three. The real member compression

of this structure can be used to set the desired
compression value. The real variables Zero=0.0,

Low=0.0001, Medium=0.001, and High=0.01 repre-
sent convenient predefined compression values. The
default setting, High, normally leads to no visible dif-
ferences in rendering quality. However, when drawing
the Bézier approximation to a unit sphere described
in [6], PRC compression may create rendering arti-
facts at the poles and should be disabled:

import three;

draw(unitsphere,

render(compression=Zero,merge=true));

The merge argument here is a tri-state boolean vari-
able; the value true causes nodes to be merged into a
group before Adobe’s fixed-resolution rendering mesh
is generated. The choice merge=default causes only
opaque patches to be merged, while the default
setting merge=false completely disables merging.
Patch merging results in faster but lower-quality
rendering. It is particularly useful for rendering
parametrized surfaces like the volume bounded by
two perpendicular unit cylinders centered on the
origin:

import graph3;

currentprojection=orthographic(5,4,2);

real f(pair z) {

return min(sqrt(1-z.x^2),sqrt(1-z.y^2));

}

surface s=surface(f,(0,0),(1,1),40,Spline);

transform3 t=rotate(90,O,Z),

t2=t*t, t3=t2*t;

transform3 i=xscale3(-1)*zscale3(-1);

draw(surface(s,t*s, t2*s,t3*s, i*s, i*t*s,

i*t2*s, i*t3*s),blue,

render(compression=Low,closed=true,

merge=true));

This example also illustrates another PRC ren-
dering option, the boolean member closed; spec-
ifying closed=true requests one-sided rendering,
whereas the default value closed=false requests
two-sided rendering.

Asymptote now automatically generates a PRC

model tree that reflects the object hierarchy, group-
ing patches together logically, as illustrated in the
model tree for the PDF version of the graph below:

One can also manually begin and end a new group
called name in the 3D model tree for a picture pic,
using the render options in the structure render:

void begingroup3(picture pic=currentpicture,

string name="",

render render=defaultrender);

void endgroup3(picture pic=currentpicture);

Various geometric PRC primitives have also been
implemented in the current PRC driver. For example,
the primitives drawPRCsphere, drawPRCcylinder,
and drawPRCtube are useful for drawing and capping
compact representations of thick curves (tubes) on
a picture. The algorithm for constructing circular
tubes was first rewritten to use Oliver Guibé’s splined
representation of parametrized surfaces, using in the
angular direction splinetype periodic scaled by
2a, where the parameter a = 4

3
(
√

2−1) is determined

John C. Bowman

TUGboat, Volume 31 (2010), No. 2 205

by requiring that the third-order midpoint of a cubic
Bézier spline lie on the unit circle. This Bézier surface
representation is used directly for OpenGL output.
For PRC output, it is more efficient to extract from
this representation a path that describes the tube
center and another path lying on the surface of the
tube. These two paths are then passed as arguments
to the drawPRCtube primitive, which Adobe Reader
then renders into a smooth tube, as shown below:

When drawing a three-dimensional dot, the ren-
dering setting sphere allows the user to choose be-
tween the built-in PRC representation of a sphere
(PRCsphere) or an efficient NURBS approximation
(NURBSsphere) to a sphere using 10 distinct control
points [4] (the 8-point version discussed in [5] leads
to rendering artifacts at the poles). The default,
NURBSsphere, generates slightly larger files but ren-
ders faster than the built-in PRC primitive.

Another new rendering option, which applies
to both OpenGL and PRC output, is labelfill.
Enabled by default, this option allows one to fill sub-
division cracks in opaque unlighted (purely emissive)
labels, thereby working around artifacts due to the
suboptimal algorithms used in Adobe Reader.

5 SVG output

To support web usage, Asymptote now uses Martin
Gieseking’s excellent dvisvgm utility to generate SVG

natively (as well as PostScript, PDF, and 3D PRC)
vector graphics output. The setting svgemulation

may be enabled to emulate unimplemented SVG fea-
tures like Gouraud and tensor-patch shading; other-
wise such elements will be replaced by PNG images.

6 Latexmk support

The latest version (1.18) of the asymptote.sty pack-
age, which allows one to embed Asymptote com-
mands within a LATEX file, supports both global and
local values for the inline and attach options. It
supports John Collins’ excellent latexmk Perl script
for updating only those figures that have changed
since the last compilation. One may also specify an
\asydir subdirectory for Asymptote figures.

7 Conclusion

The Asymptote enhancements described in this ar-
ticle have greatly increased the speed and usability
of Asymptote, especially for large documents that

contain many three-dimensional figures. They are
the result of collaborations among many Asymptote
users. In particular, I would like to acknowledge
Andy Hammerlindl for designing and implementing
much of the underlying Asymptote language, Orest
Shardt and Michail Vidiassov for their exceptional
work on the PRC driver, Olivier Guibé for his imple-
mentation of splined parametric surfaces, Philippe
Ivaldi for his implementation of rotation-minimizing
frames [7], and Will Robertson and Herbert Schulz
for discussions at the TUG 2010 workshop regarding
asymptote.sty. Financial support for this work was
provided by the Natural Sciences and Engineering
Research Council of Canada.

References

[1] John C. Bowman and Andy Hammerlindl.
Asymptote: A vector graphics language.
TUGboat: The Communications of the TEX
Users Group, 29(2):288–294, 2008.

[2] John C. Bowman and Orest Shardt. Asymptote:
Lifting TEX to three dimensions. TUGboat:
The Communications of the TEX Users Group,
30(1):58–63, 2009.

[3] ISO/TC171/SC2. 3D use of product
representation compact (PRC) format, 2009.
http://pdf.editme.com/files/PDFE/

SC2N570-PRC-WD.pdf.

[4] Kaihuai Qin. Representing quadric surfaces
using NURBS surfaces. Journal of Computer
Science and Technology, 12(3):210–216, 1997.

[5] Kaihuai Qin, Zesheng Tang, and Wenping
Wang. Representing spheres and ellipsoids using
periodic NURBS surfaces with fewer control
vertices. Computer Graphics and Applications,
Pacific Conference on, 0:210, 1998.

[6] Orest Shardt and John C. Bowman. Surface
parametrization of nonsimply connected planar
Bézier regions. Submitted to Computer-Aided
Design, 2010.

[7] Wenping Wang, Bert Jüttler, Dayue Zheng,
and Yang Liu. Computation of rotation
minimizing frames. ACM Trans. Graph.,
27(1):1–18, 2008.

⋄ John C. Bowman
Dept. of Mathematical and Statistical Sciences
University of Alberta
Edmonton, Alberta
Canada T6G 2G1
bowman (at) math dot ualberta dot ca

http://www.math.ualberta.ca/~bowman/

Asymptote: Interactive TEX-aware 3D vector graphics

206 TUGboat, Volume 31 (2010), No. 2

Drawing structured diagrams with SDDL

Mathieu Bourgeois and Roger Villemaire

Abstract

We present SDDL, a Structured Diagram Description
Language aimed at producing graphical representa-
tions for discrete mathematics and computer science.
SDDL allows combining graphical objects (circles,
lines, arrows, . . .) and LATEX boxes to produce dia-
grams representing discrete structures such as graphs,
trees, etc. with an easy-to-use domain specific lan-
guage.

1 What is SDDL?

SDDL, Structured Diagram Description Language,
is a high-level domain specific language tailored for
diagrams that have an inherent structure. Examples
of these might be trees, graphs and automata. Any
diagram that is naturally structured can be described
in SDDL. However, it was designed especially for
data structures appearing in computer science and
discrete mathematics.

The main objective of this language is to realize
drawings in a natural and structured way. Mainly,
one describes a drawing in SDDL in a way that is simi-
lar to drawing on a blackboard. For example, specific
shapes (like circles, ellipses, texts, boxes) are drawn
at positions that can be either absolute or relative
to specific points on already placed shapes. Since
we aim at mathematical drawings, text is handled
through LATEX.

Since exhibiting the structure of a diagram is es-
sential to our purpose, SDDL uses an object-oriented
hierarchy, completely written in Java, under our
high-level language. Having shapes as objects makes
structuring of diagrams easier and more intuitive
since most shapes are explicitly represented by a
class. Furthermore, extension by the end user is
quite feasible since Java is a well-known language.

At the lower level, SDDL uses another graphi-
cal description language for LATEX, namely Asymp-
tote [1]. Our tool produces Asymptote code, which
is finally converted to an encapsulated PostScript
(eps) vector file.

2 Canvas and shapes

A diagram in SDDL is defined by a main Canvas. It
is just like a standard painting canvas, in the sense
that we can place (or paint) different things on it
as much as we like. The things we can place inside
a Canvas are Shapes. Thus, for creating a “Hello,
world!” diagram, we would use the following:

put Text with [text = "Hello, world!"] in main;

resulting in:

Hello, world!

In this example, Text is a Shape, and it pos-
sesses a property text, which is the LATEX string
used to render the text. Each Shape defines a cer-
tain number of such properties.

SDDL permits the definition of variables. It is
a dynamically typed language, so variables don’t
have to be declared before being used. Variables
make it possible to reuse the same Shape at multiple
locations. For example,

a = Circle with [radius = 10.0];

put a at (-7.5, 0.0) in main;

put a at (7.5, 0.0) in main;

In this example, we specify the location where we
want our Shape to be. If a location is not specified
with the at clause, the Shape will be placed at the
point of origin of the current Canvas, which is its
center.

One important thing to note is that once a Shape
has been put in a Canvas, it is immutable. It cannot
be modified or removed. A Shape can be modified
after it has been drawn on a Canvas, but this will
have an effect only on later use of this object and will
not modify the actual Canvas in any way; a Shape

always appears in a Canvas as it was at the moment
it was added.

When a Shape is created, every property speci-
fied by the user is set, in the given order. It is not
necessary to specify all properties at once, nor to set
all of them. Most of the properties have appropriate
default values. However, some properties, if not set,
will yield strange results. For example, a circle with
no radius property set will have a default radius of 0.
Usually, property order is irrelevant. For instance,
giving for an ellipse the radius along the x-axis or
the y-axis first will yield exactly the same result.

a = Ellipse;

a = a with [xradius = 20.0];

a = a with [yradius = 10.0];

put a in main;

3 Structuring multiple canvases

Every diagram consists of a main Canvas. However,
we can define other Canvas objects if we wish. An
additional Canvas can be introduced using a typical
variable assignment. However, when a put command
is used, SDDL checks to see if the canvas variable is

Mathieu Bourgeois and Roger Villemaire

TUGboat, Volume 31 (2010), No. 2 207

already defined. If it isn’t, it automatically creates
an empty Canvas for use.

One of the main reasons to use other Canvases is
to create an explicit structure in our diagram. Since
a Canvas is a Shape, once a sub-Canvas has been
created, it can be placed inside the main Canvas, or
any other one for that matter. This will ensure that
everything that is defined inside our sub-Canvas will
be placed at the proper position in the final diagram.
However, any Canvas that has been defined, but
is not linked directly or indirectly with the main
Canvas, will not be drawn in the final diagram.

As an example, let’s say we want to make a
diagram that consists of two identical “eyes”. Instead
of defining two identical objects, we will create one in
a Canvas named form and put it at different positions
inside our main Canvas. Our “eye” consists of a
circle and an ellipse, both with the same center. All
we need to do for this is place them at the default
position of the Canvas. Finally, we can take this sub-
Canvas and place it at the two positions required.

a = Circle with [radius=10.0];

b = Ellipse with [xradius=20.0, yradius=10.0];

put a in form;

put b in form;

put form at (-20.0, 0.0) in main;

put form at (20.0, 0.0) in main;

4 Paths

SDDL offers support for the description of paths. The
way in which they are described is similar in syntax
with MetaPost and Asymptote, though with some
variations. A Path shape is described by linking
points together with specific linking symbols. To
draw a line between two points, the line symbol --
can be used. To link some points using a curve, use
the curved line symbol ~, which will use Asymptote’s
positioning algorithms to create a nice-looking curve
which passes through those points. For the moment,
user control over the curve is limited to beginning
and ending tangents, but could be expanded.

p1 = a--b--c;

p2 = a~b~c;

One of the other things you may want to do with
a Path is to create an Arrow out of it. SDDL defines
symbols for forward, backward and bidirectional ar-
rows for both linear and curved lines. Right now,
however, support is restricted to forward arrows.

p1 = a<-b--c->d;

p2 = a<~b~c~>d;

p3 = a<->b;

p4 = a<~>b;

Once a Path is defined, it can be used as any
other Shape. However, one of the main things that
you want to do is to put your Path somewhere. For
this, you can write something like this:

p = (0.0, 0.0) -- (10.0, 10.0);

put p in main;

This is the standard way to add Shapes to a
Canvas. However, since Paths are usually used to
link different Shapes together in the main Canvas,
special handling is done in SDDL. Namely, a Path

that is not explicitly assigned to a variable will be
automatically placed in the main Canvas. Therefore
the Path will be directly placed in main without any
explicit put expression. Thus, linking has its own
special syntax, which is more natural and convenient.
As an example, this program

(0.0, 0.0) -- (10.0, 10.0);

yields exactly the same result as the one just above.
Furthermore, points can be added and multiplied
by a scalar (as vectors). Using a dot to locate the
origin of the drawing, we can use the SDDL syntax
to create this example:

a = (10.0, 10.0);

a--2.0*a->(30.0, 0.0);

a~(-1.0)*a~(30.0, 0.0);

Finally, as we will now see, Shapes also usually
define specific points.

5 Drawing and linking shapes together

To draw a diagram, usually some shapes with a
specific structure are first laid down. Once that is
done, those objects are linked together with lines,
curves and arrows. However, these links must be
made between specific positions, usually derived from
one or more specific Shapes. For example, we may
want to link the northwestern point of a rectangle
with the point on a circle at an angle of 45 degrees.
These points could obviously be computed in advance.
However, this becomes quite problematic when points
are at peculiar angles or more complex relationships
between points and Shapes are needed. Worst of all,
if the position or any other property of a Shape is
changed, all computations will have to be redone.

To ease object linking, SDDL provides so-called
reference points. A reference point is a point that has
no static value, unlike points defined by a pair of two
real numbers. Instead, a reference point is defined
by its relationship to a specific Shape appearing at a
particular location. As a matter of fact, all reference

Drawing structured diagrams with SDDL

208 TUGboat, Volume 31 (2010), No. 2

points are defined along with the Shape because they
are a natural part of it. This ensures that we always
have nice-looking lines at exactly the positions we
want them to be.

However, a reference point’s exact position in a
Canvas will depend on the Shape’s position. Worse,
since the same Shape can appears at multiple loca-
tions in the same Canvas, we have to know which
occurrence we are talking about!

Therefore, SDDL introduces a feature called a
Drawing. A Drawing is an object that represents a
Shape at a particular position, i.e. a specific occur-
rence of a Shape in a Canvas. Whenever a Shape

is put inside a Canvas, a Drawing is returned and
can be assigned to a variable. This gives a way to
uniquely identify every occurrence of a Shape ap-
pearing in a Canvas. If the same Shape is placed
twice, two different Drawings will be returned, each
referring to a different occurrence of the same Shape.

a = Circle with [radius = 10.0];

d1 = put a at (-10.0, 0.0) in main;

d2 = put a at (10.0, 0.0) in main;

Once a drawing has been defined, a way to
access its points is needed. SDDL defines a syntax
for extracting points from drawings:

coord of 〈coord〉 (〈args〉) in 〈drawing〉
Here one specifies the kind of point to use (〈coord〉)
and any particular arguments required to obtain it.
The available points are Shape specific, so only those
kinds of points which make sense for the particular
Shape can be used. For instance one can get a point
at a particular angle on a Circle. This is also an
example where an additional argument is needed.
For instance, anglePoint(45.0) will give the point
at 45 degrees.

Finally, to reference the drawing from which we
take the point, its drawing Path (a dot separated
path) from the main diagram must be given.

a = Circle with [radius = 10.0];

d1 = put a at (-7.5, 0.0) in main;

d2 = put a at (7.5, 0.0) in main;

(coord of anglePoint(0.0) in main.d1) --

(coord of anglePoint(180.0) in main.d2);

In this example, a line between two identical circles
is drawn. The drawing Paths are simple here, since
both drawings are made directly in main. Thus, only
main followed by the drawing name is needed.

Simply giving a Drawing is not sufficient in order
to make reference points non-ambiguous; complete
drawing Paths are required, as we will now show.
Let’s go back to the two eyes we drew previously.

The eye was defined by a circle and an ellipse, both
put inside a sub-Canvas. Now, let’s say we want to
draw a line between the two circles. Each of those
circles is defined in the sub-Canvas and they are, as
a matter of fact, the same Drawing a. Adding a link
between a and itself would add a link between the
sub-Canvas’ circle and itself (what could this mean?).
Adding the sub-Canvas to the main Canvas twice,
as we did before, would just duplicate this structure
inside the main Canvas.

But since a Canvas is a Shape, we get a drawing
when we put the sub-Canvas inside main. We can
therefore identify each inner circle by listing the
drawings required to access them, as shown in the
following SDDL example. Thus, we can always link
together Shapes that are deeply nested inside a sub-
Canvas.

a = Circle with [radius=10.0];

b = Ellipse with [xradius=20.0, yradius=10.0];

c = put a in form;

put b in form;

f1 = put form at (-20.0, 0.0) in main;

f2 = put form at (20.0, 0.0) in main;

(coord of anglePoint(180.0) in main.f1.c) ->

(coord of anglePoint(0.0) in main.f2.c);

6 Programming constructs and lists

SDDL also defines typical programming constructs.
For instance lists are created and elements accessed
in a syntax similar to most other dynamic languages.
Since the content of a list is a general Java Object,
you can create a list of objects that are not of the
same type. Thus, an assignment like

l = [2.0, (0.0, 0.0), [], a--b];

is perfectly legal, even if not typically very useful! A
more typical use of lists would be

list = [(0.0, 0.0), (10.0, 10.0)];

l = list[0];

l2 = list[1];

l--l2;

Lists are nice, but to use them properly, ade-
quate programming constructs are needed, such as
for and while loops. SDDL defines those, permitting
us to draw arrays of Shapes or define points through
a simple list.

The ability to use loops significantly simplifies
many diagrams in computer science. In this example,
we first define a list of points. Afterward, using a for
loop, we link those points into a linear Path.

a = [(10.0, 10.0), (20.0, 10.0),

(20.0, 20.0), (10.0, 20.0)];

for i from 0 to 2 do

Mathieu Bourgeois and Roger Villemaire

TUGboat, Volume 31 (2010), No. 2 209

a[i]--a[i+1];

end

Alternatively, we could get the same result using
the following while loop.

i = 0;

while i != 3 do

a[i]--a[i+1];

i = i + 1;

end

7 Functions

SDDL also permits the creation of functions inside
the code. Those must be written before the diagram
description. A SDDL function is defined with the
keyword fun. The list of arguments does not need to
be typed, only named. The return type (if it exists)
does not need to be specified either. To call the
function in the resulting code, a typical C-like call is
used.

fun dropMany(s, i, v, n, c){

for j from 1 to n do

put s at i + j*v in c;

end

}

circle = Circle with [radius = 5.0];

dropMany(circle, (0.0, 0.0),

(5.0, 0.0), 10.0, main);

In this case, we define a function that drops
many instances of a Shape s at different positions
on a Canvas c. The positions of the Shape are deter-
mined by an initial point i and a translation vector
v. Finally, the number of Shapes placed is also given
as a parameter n. Each Shape is then placed at the
initial point translated by the translation vector a
certain number of times. This permits us to create
many circles along one line.

One important point is the parameter for the
Canvas in which we place the Shapes. However, we
pass main as our parameter. The reason for this
is that SDDL does not possess global variables. A
function can only access its parameters and variables
that have been defined inside the function. Thus,
trying to place something in main from inside a func-
tion will yield an error message saying the variable
main is unknown.

8 Primitives

SDDL, as mentioned before, is written in Java. One
of the nice features of Java is its libraries. Many
classes have been written for any number of different
tasks and the number of functions and algorithms
implemented is astonishing. To rewrite libraries that
are already defined in Java or to link them one by

one in SDDL seemed pointless. It is much nicer to
directly use those functions, since they’re already
there.

Since Java is a reflexive language, in the sense
that the program knows about itself and can modify
itself at will, functions can be dynamically accessed
at runtime. We already use this feature to simplify
the definition of the SDDL interpreter: the interpreter
doesn’t have to know every possible type of Shape

in order to work. Using these same mechanisms
permits loading classes at runtime and gives the user
the power to call from inside SDDL any Java function.

This is done through so-called primitives, which
are defined using the keyword primitive followed
by the name of the function, as it will appear in
SDDL. Following that, two strings are given: one
for the package in which the function is defined and
one for the name of the function as it was defined in
Java. Any primitive declaration must be made prior
to any function definition.

Let’s look at an example. One of the main
things a diagram description language would require
is some basic mathematics and geometry libraries.
Java possesses a nice java.lang.math package which
we would like to use, especially the sin and cos func-
tions. For this, we will need to define two primitives.

primitive static sin "java.lang.Math" "sin";

primitive static cos "java.lang.Math" "cos";

Once they are defined, they can be called just
like any other SDDL functions. In this case, we
will use those functions to place circles around an
invisible circle.

for i from 1 to 6 do

put Circle with [radius = 5.0] at

(20.0 * cos(i * 3.14 / 3.0),

20.0 * sin(i * 3.14 / 3.0))

in main;

end

9 A concrete example

Now that we have all our tools, let’s use SDDL to
describe a simple diagram of an automaton. This is
the complete code, along with the resulting image.

circle1 = Circle with [radius = 10.0];

circle2 = Circle with [radius = 12.0];

ellipse = Ellipse with [xradius = 50.0,

yradius = 20.0];

circle = put circle1 at (-30.0, 0.0) in form;

put circle1 at (30.0, 0.0) in form;

put circle2 at (30.0, 0.0) in form;

Drawing structured diagrams with SDDL

210 TUGboat, Volume 31 (2010), No. 2

put ellipse in form;

d1 = put form at (100.0, 100.0) in main;

d2 = put form at (100.0, 50.0) in main;

d3 = put form at (100.0, -50.0) in main;

put Text with [text="$N(p_1)$"]

at (100.0, 100.0) in main;

put Text with [text="$N(p_2)$"]

at (100.0, 50.0) in main;

put Text with [text="\dots"]

at (100.0,0.0) in main;

put Text with [text="$N(p_n)$"]

at (100.0, -50.0) in main;

put Text with [text = "s_0"]

at (0.0, 20.0) in main;

d4 = put circle1 at (0.0, 20.0) in main;

(coord of anglePoint(70.0) in main.d4)->

(coord of anglePoint(180.0) in main.d1.circle);

(coord of anglePoint(0.0) in main.d4)->

(coord of anglePoint(180.0) in main.d2.circle);

(coord of anglePoint(-70.0) in main.d4)->

(coord of anglePoint(180.0) in main.d3.circle);

N(p1)

N(p2)

. . .

N(p
n
)

s0

10 Modifying the hierarchy by
adding shapes

Using what has been described above, most diagrams
can be created. However, many simplifications can
be made and some domains may find it relevant to
add classes specific to their trade. SDDL eases the
modification of the Java hierarchy underneath the
language by using reflexivity. Any user who respects
some basic guidelines will be able to have its class
work automatically in SDDL without any specific
linking required.

To do this, every class must possess a certain
number of properties. Those properties are defined
through setters and getters. For instance, for the

radius of a circle, these are called setRadius and
getRadius. Any property that follows this rule will
be accessible.

Furthermore, an empty constructor must also be
defined that sets, as much as possible, default values
for all properties of the defined Shape. There are also
some small functions to be defined, like the draw and
obtainPath functions. Any reference points must
also be defined with a function to obtain them.

As an example, let’s say we would like to add
a class to represent a cloud. A cloud will have a
number of “spikes” and a size. The class definition
(without function definition) that we would require
would be the following:

public class Cloud extends Shape{

double size;

int numberOfSpikes;

public Cloud(){...}

public void setSize(double size){...}

public double getSize(){...}

public void setNumberOfSpikes(int n){...}

public int getNumberOfSpikes(){...}

public void draw(AbstractPoint a,

PrintWriter w){...}

public Path obtainPath(){...}

}

11 Future additions and availability

SDDL is available now at http://www.info2.uqam.
ca/~villemaire_r/Recherche/SDDL/. It is func-
tional, though not by any means complete. Many
additional Shapes could be added (in particular tree
and graph classes) and options could be added to
existing classes. Development of the application con-
tinues for the time being and a more thorough version
will be made available.

References

[1] John C. Bowman and Andy Hammerlindl.
Asymptote: A vector graphics language.
TUGboat: The Communications of the TEX
Users Group, 29:288–294, 2008.

⋄ Mathieu Bourgeois
Université du Québec à Montréal
Montréal, Canada
bourgeois dot mathieu dot 2 (at)

courrier dot uqam dot ca

⋄ Roger Villemaire
Université du Québec à Montréal
Montréal, Canada
villemaire dot roger (at) uqam dot ca

http://intra.info.uqam.ca/

personnels/Members/villemaire_r

Mathieu Bourgeois and Roger Villemaire

TUGboat, Volume 31 (2010), No. 2 211

Unicode mathematics in LATEX: Advantages
and challenges

Will Robertson

Abstract

Over the last few years I’ve been tinkering with
Unicode mathematics in X ETEX. In this paper, I
discuss Unicode mathematics in the context of LATEX
with the unicode-math package.

1 Introduction

X ETEX was the first widely-used Unicode extension
to TEX. Several years ago Jonathan Kew added
OpenType maths support to X ETEX [12] following
Microsoft’s addition of mathematics to the Open-
Type specification as they were preparing Microsoft
Word 2007. Around that time I built a prototype
implementation of a Unicode maths layer for LATEX,
called unicode-math, but with very few OpenType
maths fonts available, and other projects consuming
my time, the project lost momentum and I never man-
aged to finish the package and upload it to CTAN.

That has now changed. In the leadup to the
TUG 2010 conference I thoroughly revisited the code,
re-writing most of it in the LATEX3 programming
environment ‘expl3’. (A brief introduction to expl3

is given by Joseph Wright in [24].) Long-standing
issues were resolved and support for LuaTEX was
begun. It is now ready for greater distribution with
TEX Live 2010.

In a happy twist of fate, the STIX fonts have re-
cently been released and can be used by this package.
Details to follow.

1.1 Outline

In Sections 2 and 3, I cover the origins and nature of
Unicode mathematics, and what fonts are currently
available which use it. In Sections 4 and 5, I address
specific details of how to use Unicode maths in LATEX,
and comment on some challenges faced when doing so;
in Section 6, I present my thoughts for the possible
future of this work. Finally, in Sections 7 and 8 I
discuss some technical aspects of the package and its
development process.

2 What is Unicode maths?

Before we talk about Unicode maths, it is necessary
to discuss the computer typesetting of mathematics
from the very beginning, or at least since TEX was
first created.

2.1 Origins

TEX was designed alongside a set of text and maths
fonts, the ‘Computer Modern’ family. The original

Computer Modern maths fonts were limited by re-
strictions of the time, consisting of three separate
fonts with 128 glyphs each (for each design size).

Later, the well-known amsmath package pro-
vided a complement of glyphs designed to match
Computer Modern; these extra maths fonts extended
the repertoire of standard symbols that could be ex-
pected to be used by most mathematicians.

As well as the amsmath fonts, a (small) number
of other maths fonts were also created for TEX sys-
tems, including Lucida1 and MathTime Pro.2 Each
maths font developed generally contained a differ-
ent set of glyphs, and as a consequence of this the
developers who had to write the TEX support layer
for each font generally had to start from scratch to
implement the font encoding that bound symbols
to glyph slot numbers. This tedious process is one
factor in explaining the general dearth of maths fonts
for TEX-based systems.

2.2 The newmath encoding

In the 1990s, the Math Font Group3 was created to
design an 8-bit math font encoding [7] to alleviate
this problem of having to invent ad hoc encodings
for each new maths font. This ‘newmath’ encoding
was carefully designed to include as many maths
symbols as possible, and each symbol was assigned
a standard glyph slot. New fonts could just follow
this system, and switching maths fonts would be as
easy as switching text fonts since the newmath font
encoding would automatically know where all the
symbols were located.

The project produced a LATEX implementation
to support the ‘newmath’ encoding, but it was never
completed for a variety of reasons. While X ELATEX
and LuaLATEX are now available to access OpenType
fonts that use Unicode maths, there may be still some
interest in retaining (and finally releasing) newmath
for future large-scale maths font encoding support —
perhaps in order to support the STIX fonts and/or
the proposed Latin Modern Math font in eight-bit
LATEX [13].

2.3 Unicode maths and the STIX fonts

After newmath the attention of the Math Font Group
turned to Unicode, namely to answer the question:
‘What maths symbols have actually been used and
invented in published technical writing?’ The partic-
ulars of this phase of history have been covered by
Barbara Beeton’s report of the project at the time [2].
To sum it up very briefly, members of this project,

1 http://tug.org/lucida
2 http://www.pctex.com/mtpro2.html
3 http://www.tug.org/twg/mfg/

Unicode mathematics in LATEX: Advantages and challenges

212 TUGboat, Volume 31 (2010), No. 2cos態剛 髪 sin態剛 噺 伐結沈訂
\setmathfont{Cambria Math}

$\cos^2 \varphi + \sin^2 \varphi = -e^{i\pi}$

Example 1: A minimal example of the unicode-math

package.

now known as the STIX Project, gathered together a
comprehensive list of symbols used in mathematics
from as many sources as they could find and sub-
mitted these symbols to the Unicode consortium for
addition to the Unicode specification. From their
labours, we now have a formal description of thou-
sands of glyphs that a maths font should contain and
the particulars of how those glyphs should look and
behave [4].

Having defined the symbols to appear in Uni-
code mathematics, a group of scientific publishers
commissioned a new font family to be the refer-
ence implementation for the newly specified Unicode
mathematics [3]. These STIX fonts were designed to
blend with Times New Roman which was, I believe,
(and perhaps still is) the most commonly used font
in technical publishing.

2.4 OpenType maths and the modern era

But mathematics typesetting needs more than just
glyphs. TEX itself uses a number of parameters built
into the maths fonts it uses in order to place mathe-
matics on the page in a form suitable for high-quality
typesetting, such as where superscripts should be
placed, whether delimiters should grow to encompass
the material they surround, what alternative glyph
to use for ‘big operators’ when in displaystyle rather
than textstyle, and so on. The details have been
elucidated and illustrated splendidly by Bogus law
Jackowski [11]. A system to utilise Unicode maths
must contain analogous information and use similar
algorithms to produce acceptable results.

For this purpose, Microsoft extended the Open-
Type specification to include tables of structured
information for mathematics typesetting, general-
ising and extending the original algorithms within
TEX.

OpenType maths has been described in more
detail by Ulrik Vieth both in the context of its histor-
ical development [21] and with a particular emphasis
on how the OpenType parameters correspond to
TEX’s own [23]. He has also discussed some of the
deficiencies of TEX’s mathematics engine [20], most
of which are now addressed with OpenType maths.

3 The unicode-math package

With Unicode mathematics able to encode the maths
glyphs we need, and the OpenType font format able
to store the required parameters to use the new
maths fonts, the only thing missing is the typesetting
engine to put the pieces together. Microsoft Word
2007 and 2010 contains one, and so does X ETEX and
LuaTEX. It is important to recognise that a Unicode
maths font is suitable for both Word and TEX-based
systems, which I believe will aid the adoption of the
Unicode maths approach.

The unicode-math package is an initial attempt
to write a high-level interface to Unicode maths for
LATEX documents. After loading the package, users
can write

\setmathfont{Cambria Math}

as shown in Example 1 to select Cambria Math or
any other Unicode maths font.

Readers may be familiar with the fontspec pack-
age, which is a high-level interface for loading fonts
(usually OpenType fonts) in X ELATEX and now also
LuaLATEX [18]. Where fontspec is designed for load-
ing fonts to change the text font of the document,
unicode-math allows a similar interface to select the
maths font.

Previous work in this area has been performed
by Andrew Moschou with his mathspec package for
X ELATEX. With mathspec, a text font can be loaded
to substitute the alphabetic symbols of the mathe-
matics setup — say to use Minion Pro Italic for the
Latin symbols and Porson for the Greek symbols —
but all other maths symbols are left untouched. A
similar process has been shown previously for maths
fonts in eight-bit LATEX by Thierry Bouche [5]. The
unicode-math package, by contrast, is designed to
use OpenType maths fonts that contain all glyphs
and associated information necessary to replace the
existing LATEX maths setup.

The two packages are therefore designed for dif-
ferent purposes; use mathspec if most of your maths
needs are fulfilled by a pre-existing maths package
(such as mathpazo) but you would like your maths al-
phabets to be taken from the text font; alternatively,
use unicode-math if you have an OpenType maths
font that you would like to use for typesetting all
aspects of the mathematics.

The unicode-math package almost completely
replaces LATEX’s maths setup. Control sequences are
provided to access every Unicode maths symbol, and
literal input of all such characters in the source is
also supported. Maths can be copied from another
source (such as a web page or PDF document) and
pasted directly into the LATEX document and the

Will Robertson

TUGboat, Volume 31 (2010), No. 2 213

Cambria: 豹著待 e貸鎚痛血岫建岻 d建
Asana: e () d

STIX:

0
e () d

Euler: e f(t) dt

\def\laplace{\hfill$\displaystyle

\int_0^\infty \mathup e^{-st}f(t)\,\mathup dt

$\\[1ex]}

Cambria: \setmathfont{Cambria Math} \laplace

Asana: \setmathfont{Asana Math} \laplace

STIX: \setmathfont{XITS Math} \laplace

Euler: \setmathfont[math-style=upright]

{Neo Euler} \laplace

Example 2: Available OpenType maths fonts at the
time of writing.

content will be retained, albeit with some loss of its
presentational aspects (most notably subscripts and
superscripts).

With some minor exceptions, no changes to
the mathematical document source should be neces-
sary to be able to switch fonts using Unicode maths.
ConTEXt has an analogous system [14], and we have
discussed future plans for coordinating our efforts to
be consistent where possible and reduce duplication
of work between ConTEXt and LATEX.

3.1 What fonts are available?

This is all well and good, but the system doesn’t do
much good if there are no fonts to take advantage
of it. Cambria Math, by Tiro Typeworks,4 was the
first OpenType maths font released (through Ascen-
der Corp.), commissioned originally for Microsoft
Office 2007.

There are three open source OpenType maths
fonts currently available, developed using the free
font editor FontForge5 to add the OpenType maths
parameters. These fonts are:

• Apostolos Syropoulos’s Asana Math,6 which has
its origins in the ‘Pazo’ fonts, which are a clone
of Palatino with additional maths support;

4 http://www.tiro.com/projects.html
5 http://fontforge.sourceforge.net/
6 http://ctan.org/pkg/asana-math

• Khaled Hosny’s XITS Math,7 which is a fork of
the STIX fonts to include preliminary OpenType
maths layout information (XITS will eventually
be deprecated by an official release of the STIX

fonts with the same functionality); and,

• Khaled Hosny’s Neo Euler,8 which is a Unicode
re-working [10] of Hermann Zapf and Donald
Knuth’s Euler font.

These four OpenType maths fonts are shown in Ex-
ample 2, in which note the fact that the maths font
can now change part-way through a document.

Of these, XITS Math and Asana Math will both
be included in TEX Live 2010, and they can be loaded
with (respectively)

\setmathfont{xits-math.otf}

\setmathfont{Asana-Math.otf}

without any font installation necessary.
Readers may be interested in Daniel Rhatigan’s

dissertation [17] on the history of and design com-
parisons between the Times-, Euler-, and Cambria-
based maths fonts (recall that STIX is modelled after
Times).

4 Advantages

The main advantage of using Unicode maths is that it
becomes easy to switch between maths fonts. There
are some more benefits than simply standardising
the way maths fonts are loaded, however.

I suspect the most directly useful aspect of Uni-
code maths will be relieving (most of) the headache
around finding and using a particular math font
glyph. The STIX fonts are available as a fallback
font for all symbols that are part of Unicode maths.
After all, most maths symbols are geometrically ab-
stract enough that they do not need to be directly
matched with the text font.

4.1 Readable source

Unicode maths provides the ability for maths sym-
bols and characters to be input in Unicode directly
in the source file, as shown in Example 3. For exam-
ple, you may input a literal ‘α’ directly into a source
document rather than typing ‘\alpha’. A conve-
nient way to achieve this input style is to use the
auto-completion of text editors such as TeXShop and
TEXworks, in which typing a unicode-math control se-
quence and then hitting the ‘escape’ key will produce
the literal input character. Since the original control
sequence still must be typed letter-by-letter, this
technique doesn’t improve input speed, but makes
source documents far more readable and amenable

7 http://github.com/khaledhosny/xits-math
8 http://github.com/khaledhosny/euler-otf

Unicode mathematics in LATEX: Advantages and challenges

214 TUGboat, Volume 31 (2010), No. 2

ｄ岷 繊 噺 伐 椛 剛 伐 ｄfrac岶ダ旋岼岶ダt岼 ｄ峅ｄ岷 穿 噺 椛 抜 旋 ｄ峅ｄ岷 椛 糾 串 噺 貢 ｄ峅ｄ岷 椛 抜 屈 伐 ｄfrac岶ダ串岼岶ダt岼 噺 窟 ｄ峅
Example 3: Example of LATEX source using Unicode
math input with literal maths characters. Such input
can be pasted from another source or typed with the aid
of ‘smart completion’ in a text editor.

to casual editing. (Completion files for unicode-math

will be distributed with the package.)
With direct Unicode input for symbols in a

LATEX document, only small changes to the regu-
lar syntax are required to approach the simplicity
of Murray Sargent’s ‘nearly plain-text encoding of
mathematics’ [19], which can be used in Microsoft Of-
fice to achieve a TEX-like efficiency at writing maths
while obtaining a WYSIWYG view of the document.
(I personally still prefer the TEX way, however, since
you can use macros and so on to retain consistency
and give your symbols meaning.)

4.2 Mathematical alphabets

Unicode maths contains glyph slots to contain all
styled alphabetic symbols used in mathematics, in-
cluding bold, blackboard, script, etc., styles. The
complete listing is shown in Example 4. Each style
contains variations on some or all of the lowercase
and uppercase Latin and Greek characters and Ara-
bic numerals. The commands shown for switching
alphabets force each particular shape, hence their
explicit names such as bfit for ‘bold italic’; general
\mathbf and \mathsf commands are also provided to
switch to the correct upright or italic shape depend-
ing on the context (see Section 4.3 and Example 6).
Note that \mathbf is used to access bold symbols
in both Latin and Greek; this is a great useability
improvement over traditional LATEX that requires
either \boldsymbol or the bm package (or a specific
maths font package) to access bold Greek letters.

As an aside, note that the command \mathrm

from LATEX is renamed in unicode-math to \mathup

to emphasise the fact that it can be used for upright
Greek symbols as well. The old name is still provided
for backwards compatibility, of course.

As authors wish to use fonts with alphabet styles
that are not currently present in Unicode, the system
must be able to cope with the addition of new al-
phabets and new alphabet styles. The most relevant
example here is the existence in the STIX fonts of a
variety of these non-Unicode ranges, most notably
the ‘calligraphic’ style in contradistinction to the

\mathit

\mathbfit

\mathup abc XYZ 123

\mathbfup

\mathbb

\mathtt

\mathsfit

\mathbfsfit

\mathsf

\mathbfsfup

\mathscr

\mathbfscr

\mathfrak

\mathbffrak

Example 4: Mathematical alphabets in Unicode from
the STIX fonts.

Script style:

Calligraphic:

\setmathfont

[range=\mathscr]{XITS Math}

\setmathfont

[range=\mathcal,StylisticSet=1]{XITS Math}

Script style: \mathscr{ABCXYZ}\\

Calligraphic: \mathcal{ABCXYZ}

Example 5: Accessing the non-Unicode calligraphic
style in the STIX fonts.

‘script’ style that is included in Unicode. Example 5
shows the differences between these two styles; some
mathematicians are used to using these two alphabet
styles separately (with script letters accessed through
the mathrsfs package, for example). Here, the XITS

fonts have encoded the calligraphic shapes in the
position of the script glyphs under the OpenType
font feature ss01, which is accessed through fontspec

font features as StylisticSet=1.
In time, I believe that the calligraphic alphabet

will be incorporated into the Unicode standard, but
until then the unicode-math package must be able to
use it explicitly as an exceptional case. The system
in unicode-math for creating new alphabet styles in
this way is not completely generalised yet, but work
in this area is planned for the future (including the
addition of alphabets neither Latin nor Greek that
might be also used in a mathematical context, such
as Russian).

Will Robertson

TUGboat, Volume 31 (2010), No. 2 215

math-style=

ISO 欠 権 稽 隙 糠 紅 康 杭珊 子 刷 散 詩 試 師 死
TeX 欠 権 稽 隙 糠 紅 ち ふ軍 渓 遇 薫 詩 試 箭 選

upright a z B X ゎ が ち ふ軍 渓 遇 薫 膳 糎 箭 選
french 欠 権 B X ゎ が ち ふ軍 渓 遇 薫 膳 糎 箭 選

Example 6: Different output styles without changing
the input source according to the math-style option.

4.3 Flexible output

The unicode-math package does not assume a one-to-
one mapping between the Unicode characters in the
source and the Unicode glyphs in the output. In fact,
the design of the maths setup, by default, is such that
there is no semantic difference between upright and
italic letters in the input source; consistent output is
achieved regardless of the style of the input source.

Claudio Beccari [1] has detailed the require-
ments of typesetting mathematics according to the
ISO standard (ISO31/XI), which requirements dif-
fer in important ways from the typical output of
LATEX mathematics. More recently, Ulrik Vieth [22]
discussed many of the details of mathematical type-
setting in the context of mathematical physics; the
features offered by the unicode-math package help to
provide the flexibility required to achieve these ideas
for any maths font available. (Packages to perform
this in classical LATEX, such as the isomath package,
require maths fonts set up with a particular encod-
ing.) As an example of the different approaches to
mathematical typesetting, Example 6 shows how doc-
uments are able to be typeset per ISO standards or
in a more classical TEX-like format without changing
the source text of the mathematics. Similarly, the
output style of bold characters can also be adjusted.

As the package can load fonts for maths glyphs
dynamically, multiple fonts and multiple styles can
be used between various characters or families or al-
phabets of characters. Example 7 shows an example
in which the maths was typed ‘as usual’, but different
glyphs and glyph ranges were assigned fonts with
different colours (grayscaled for TUGboat). This
particular example may not be very practical, but
it illustrates that the system is flexible enough to
accommodate a wide range of effects. Even single
characters within an alphabet may be chosen, such

繋岫嫌岻 噺 失 峽血岫建岻峺 噺 豹著待 e貸鎚痛血岫建岻 d建
\setmathfont{Cambria Math}

\def\SET#1{\setmathfont[#1]{Cambria Math}}

\SET{range={\mathop,\mathscr}, Colour=red}

\SET{range={\equal}, Colour=00BB22}

\SET{range={\mathopen,\mathclose}, Colour=blue}

\[F(s)=\mathscr{L}\,\biggl\{f(t)\biggr\}

= \int_0^\infty \mathup e^{-st}f(t)

\, \mathup d t \]

Example 7: Hooks make it possible to use a variety of
fonts or styles— in this case, colours— for different maths
characters or families/alphabets of maths characters.

1: 岶糠┸ ┼ ┸ 講┸ ┼ ┸ 降岼
2: 岶糠┸ ┼ ┸ ぱ┸ ┼ ┸ 降岼
\setmathfont{Cambria Math}

1: $\{\alpha,\dots,\pi,\dots,\omega\}$

\setmathfont

[range={"1D70B},math-style=upright]

{Cambria Math}

2: $\{\alpha,\dots,\pi,\dots,\omega\}$

Example 8: An example of selecting a different font
for a single alphabetic glyph. The glyph slot "1D70B

corresponds to the pi symbol in the mathematical Greek
Unicode range.

as in Example 8 where the ‘π’ symbol alone is chosen
to be typeset upright.

5 Challenges

The biggest problem I can see with the advent of
Unicode maths, besides more fonts — I believe they’ll
slowly start to appear now that there are tools and
programs to support them — is educating people into
using them well.

5.1 Using the correct characters

Example 9 shows five different maths glyphs that
are all triangular, while Example 10 shows the eight
different slash-like glyphs; four in each direction.
Consider whether it’s clear, only from the description
in the tables, which ones to use in different contexts.

Without careful documentation and good edu-
cation, it may be hard for users to know which is
the ‘correct’ glyph to use in many occasions. The
markup in TEX and LATEX has generally steered to-
wards presentational aspects. But, as an example,
with five different choices for which triangle to choose,

Unicode mathematics in LATEX: Advantages and challenges

216 TUGboat, Volume 31 (2010), No. 2

Slot Command Glyph Class

U+25B5 \vartriangle relation

U+25B3 \bigtriangleup binary

U+25B3 \triangle ordinary

U+2206 \increment ordinary

U+0394 \mathup\Delta ordinary

Example 9: Four triangular glyphs (from the STIX fonts)
with five different uses but all with similar shapes.

Slot Name Glyph Command

U+002F Solidus / \slash

U+2044 Fraction slash \fracslash

U+2215 Division slash \divslash

U+29F8 Big solidus \xsol

U+005C Reverse solidus \ \backslash

U+2216 Set minus \smallsetminus

U+29F5 Reverse solidus

operator

\setminus

U+29F9 Big reverse

solidus

\xbsol

Example 10: A multitude of symbols for different pur-
poses. Glyphs taken from the STIX fonts.

different authors may inadvertently choose different
(but visually similar) glyphs for the same purpose
in their mathematics. Furthermore, font designers
are going to need to carefully design these glyphs
to be consistent with the STIX fonts, which have
been designed as ‘reference material’ against which
all aspects of Unicode maths can be compared.

My feelings are that new tools will be needed to
write LATEX mathematics more semantically (which
I will talk about later in Section 6.2). But such tools
will need to be specific for each scientific field that
uses different notation. This is an open problem.

5.2 LATEX vs MathML

Mathematics represented in TEX and MathML are
really quite separate beasts, although TEX can (per-
haps obviously) be used as an engine to typeset
MathML [9, 16]. While LATEX input is designed to
be hand-written and has visual output as the pri-
mary goal, MathML is a machine-friendly (human-
unfriendly!) language to represent mathematics far
more unambiguously and verbosely. There is not

much overlap between how LATEX looks at Unicode
maths and how MathML is used, although packages
such as stex (‘semantic TEX’) wed the ideas of ‘Con-
tent MathML’ to LATEX (I briefly discuss semantic
input of maths later in Section 6.2).

MathML and LATEX often use different names
for the symbols in Unicode maths. For example,
the infinity symbol ∞ (U+221E) is \infty in TEX
and ∞ in MathML. There are very few nam-
ing conflicts, but do bear in mind that the W3C

names for maths symbols can occasionally be in-
compatible with the names used in unicode-math.
As an example, consider the two ‘set minus’ char-
acters in Example 10, which inherit their names
from Plain TEX and the amssymb package, respec-
tively. U+2216 is \smallsetminus and U+29F5 is
\setminus. However, MathML does it differently due
to a historical accident: U+2216 is referred to by ei-
ther ∖ or ∖ or a number
of other synonyms; U+29F5 is as-yet unnamed [6].
The general mismatch between these two Unicode
maths glyph naming schemes might make it difficult
to move between MathML and LATEX if one is used to
writing symbol names in MathML and starts writing
LATEX mathematics, or vice versa.

Despite the semantic advantages of Content
MathML, however, it is still not supposed to be
used as an input language for mathematics; MathML

and the language of LATEX maths are simply designed
for different things. Therefore, in practise I don’t
believe there will be any problems resulting from the
differences in glyph naming between the two.

6 Thoughts for the future

Unicode is clearly here to stay, and we are entering a
time where, for the first time, fonts for mathematics
can be built with standard OpenType font tools, and
they can be used in a variety of cross-platform envi-
ronments — from X ETEX and LuaTEX to Microsoft
Office to MathML on the web. I hope and believe
that this will herald the more profuse production of
maths fonts than we’ve seen in the past.

The unicode-math package is only the first step
for modernising the maths support in LATEX. I
consider the future of maths in LATEX to be sup-
ported by three main pillars of functionality: font
support; structural improvements to the input lan-
guage supported by advanced layout algorithms; and
‘semantic’-style input. Font support is broadly cov-
ered by the unicode-math package, which leaves two
topics to discuss below.

6.1 Layout of mathematics

For ‘structural improvements to the input language’,

Will Robertson

TUGboat, Volume 31 (2010), No. 2 217

I really mean improvements for writing the kinds of
things that the amsmath package has typically been
used for; namely, it provides high(er)-level tools to de-
scribe the layout of mathematical expressions. While
the amsmath package has been extremely popular for
many years, it is not perfect. The best candidate to
extend it is the breqn package [8], which is now main-
tained by Morten Høgholm. (breqn is completely
compatible with amsmath, thus transitioning from
one to the other is very easy.)

The breqn package’s primary features are to
simplify the input necessary over what is required for
more complex structures in amsmath; the way that
it does this is by incorporating complex algorithms
to perform automatic breaking of mathematics over
lines. This has long been regarded as impossible to
perform correctly all of the time — and while no-one
is arguing that breqn is always correct, it usually
is. When it is not, the task is done manually as is
presently the case anyway.

6.2 Semantic input of mathematics

If you look over the list of ‘TEX names’ used by
unicode-math for the Unicode maths symbols, it is
clear that the names chosen have often been cho-
sen to be descriptive rather than semantic. For ex-
ample, \doteq, \bigwedge, \smwhtsquare (‘small
white square’), and so on. This is not unique to
unicode-math; this follows the general naming scheme
for LATEX math font symbols where the name of a
symbol shouldn’t be too specific for one general use.

However, when there are clear semantics for
symbols it is generally more useful to use a semantic
input style for that piece of mathematics. For exam-
ple, with ‘a → b’ (and this is from regular LATEX),
it is clearly more sensible to write $a \to b$ rather
than $a \rightarrow b$ when we’re writing what
would be said aloud as ‘for/from a to b’. Similarly,
(and more hypothetically), writing \intersection

and \union is probably better than \cap and \cup,
respectively, in that their meaning in the former is
immediately obvious from the source document.

I am aware of two macro packages that attempt
to provide a general semantic input style for mathe-
matics in LATEX: the cool (‘content-oriented LATEX’)
package and the aforementioned stex package. As an
argument for using them, and by way of comparison
between them, consider writing an integral∫ x1

x0

f(x) dx.

In pure LATEX, we must write this in a purely pre-
sentational manner, explicitly writing subscripts and
superscripts on the integral symbol, and inserting a
manual space and upright font switch to write the

‘dx’. The LATEX source is:

\int_{x_0}^{x_1} f(x) \,\mathrm{d}x

By contrast, consider what this mathematical state-
ment actually means : a direct integral of a function
f(x) from x0 to x1. There is more detail in the type-
setting of the statement than in the mathematics of
it! In the cool package, this is written

\Integral{f(x)}{x,x_0,x_1}

In stex (the package name is cmathml for just the
mathematics component of stex), it is

\CintLimits{x}{x_0}{x_1}{f(x)}

Another pertinent example is for representing de-
rivatives. To write df

dx
in LATEX requires using an

explicit fraction with more markup for the upright ‘d’:
\frac{\mathrm d f}{\mathrm d x}. The packages
cool and cmathml respectively use \D{f}{x} and
\Cddiff{x}{f}. For multiple derivatives the bene-
fits are even more obvious; \D{f(x,y)}{x,y,z} or
\Cpartialdiff{3}{x,y,z}{f(x,y)} instead of

\frac{\mathrm d^3}

{\mathrm d x\,\mathrm d y\,\mathrm d z}

f(x,y)

to obtain
d3

dx dy dz
f(x, y).

I haven’t spent much time with the more recent
cmathml package, but my experiences with writing
mathematics using the cool package have been very
positive. The additional semantics using this nota-
tion isn’t helpful from an academic sense of adding
more meaning to the document source (although
that’s also a good thing). The real benefit is that it
makes these maths constructions easier to type.

Based on the work of cool and cmathml, I believe
that standardising some of the ideas for semantic
markup of mathematics will benefit document au-
thors (many of whom, after all, use similar macros
in their own texts, albeit in an ad hoc way) and help
in the automatic translation of mathematics written
in LATEX to other markup systems like MathML, and
vice versa.

The unicode-math package will not address such
ideas directly; it is purely a system to use mathe-
matics with OpenType fonts. But as this package
becomes more mature and can be used as a solid
foundation for Unicode mathematics, then it will be
time to start thinking seriously about formalising
ideas behind ‘semantic mathematics’.

7 A technical note on alphabet remapping

In TEX and LATEX, using different fonts for alphabets
such as \mathbf and \mathscr involved setting the
‘math code’ of the ASCII Latin letters to ‘variable’

Unicode mathematics in LATEX: Advantages and challenges

218 TUGboat, Volume 31 (2010), No. 2

and simply switching the math font. This meant
that, internally, \mathbf and friends simply resulted
in a font switch, which is efficient and straightfor-
ward (although sometimes tricky to juggle with only
sixteen maths fonts in eight-bit TEX).

Unfortunately, things are not so simple with
unicode-math. Within Unicode, each alphabet style
(for bold and script and so on) is encoded in a distinct
Unicode range. For example, the italic mathemati-
cal ‘w’ accessed with w is symbol U+1D464. The
bold upright mathematical ‘w’ (\mathbf{w}) is
U+1D430. In order to switch from one to the other
using a command like \mathbf requires that the
mathcodes for all affected letters must change locally
inside its argument. This isn’t too inefficient, since
assigning \mathcodes is pretty fast, but it’s not par-
ticularly elegant. It would be easier not to support
the \mathbf{...}-style syntax at all and instead
refer to such symbols with macros, such as \mbfw for
the bold ‘w’. But we must support the switching-
style commands for backwards compatibility.

There are some alternatives to doing things this
way, but they all have trade-offs. The simplest solu-
tion would be to use X ETEX’s input mapping feature
that allows letters in the source to be transformed
into other letters before typesetting. Thus, the ‘vari-
able math code’ approach as used in LATEX could be
used for Unicode maths alphabets. However, this
system is less flexible (features such as Example 8
would be more difficult) and an alternative approach
would be required for LuaTEX.

Another approach would be to use (math-)active
characters for all maths symbols. In this approach,
ASCII letters such as ‘a’ would be active in maths
mode and expand (as if it were a macro) to a con-
struction such as

\csname mathchar_\mathstyle_a \endcsname

where \mathstyle would resolve to ‘up’ or ‘bf’ (etc.)
depending on the context and \mathchar_up_a and
\mathchar_bf_a (etc.) would be defined accordingly
with the appropriate Unicode maths glyph. This is
more efficient for font switching but less efficient (and
perhaps more fragile) when symbol remapping is not
taking place. Using active characters is the technique
used by the breqn package to do its automatic line
breaking of mathematics, and extending that system
for unicode-math would be quite logical. One way or
the other, breqn compatibility is planned for unicode-

math in the future.
Using LuaTEX for alphabet remapping (which

is how ConTEXt’s implementation works) is proba-
bly the best way to tackle this problem, but while
unicode-math is written for X ELATEX as well (and

it will continue to be for the immediate future) we
must stick with TEX-based programming solutions.

8 Experiences writing the package

Some aspects of writing the unicode-math package
have been more organised than other LATEX code
I’ve written. As more and more LATEX code is being
developed publicly in source code repositories such
as GitHub, BitBucket, and others, I would like to
discuss quickly some of the infrastructure of this
package’s development.

8.1 Cross-platform development

The fontspec and unicode-math packages are both
now targeted towards running on both X ELATEX and
LuaLATEX. Despite small differences in how certain
things are done, this generally works well for both.

Most of the code in unicode-math and fontspec

has been written (or re-written) with the expl3 pro-
gramming interface. This has proven to be a very
useable interface to numerous high-level program-
ming constructs; expl3 allows more complex ideas
to be easily realisable within the limitations of TEX
macro programming.

In this shared X ELATEX/LuaLATEX environment,
Lua code is restricted to a minimum in order to
minimise separate code branches for each engine,
as much as possible. Functions in Lua are ‘hidden’
inside TEX macros, so all of the main programming in
unicode-math resembles plain old TEX programming.
I personally find this much easier to read than mixing
Lua code and TEX macro code together.

8.2 Version control

I use the Git version control system, and for some
time I’ve been using GitHub repositories9 for most
of my public code (LATEX and otherwise). GitHub
provides free accounts for developers of open source
software, and their site includes a very functional
bug tracker/issue reporter per project. Tracking bugs
over several years is certainly no fun with email.

I’ve had many people contribute code and pro-
vide feedback through the GitHub project page, and
I highly recommend such a public development envi-
ronment for all package developers.

The main advantages to these systems, for me,
are the ease with which others can collaborate on
code or documentation writing and with how issues
can be resolved. Having a public code repository
also allows users to access historical versions of the
code, which can be important for those on legacy
systems who cannot upgrade their distributions but

9 http://github.com/wspr

Will Robertson

TUGboat, Volume 31 (2010), No. 2 219

need old versions of some packages that are no longer
available on CTAN in their original form.

8.3 Test suite

Inspired by the test suite available for the LATEX 2ε
and LATEX3 codebase, I implemented a test suite
for unicode-math based on a ‘visual diff’ between
the output of each test file compared to a known
‘reference’ output that had been compiled some time
beforehand. At the time of writing there are 128
tests in total, the output of which are included all
together as a separate documentation file in the
unicode-math distribution as a rather complete set
of minimal examples showing various aspects of the
package and its features.

In hindsight, using an image-based test was per-
haps not the best way to approach regression testing
with LATEX. The test scripts use ImageMagick’s
compare tool, which first discretises the PDF out-
put to a bitmap and compares the pixels between
the output and the reference. Unfortunately, due to
rounding errors this technique is prone to the occa-
sional ‘false negative’ in which the bitmap output of
a test might change by a few (very small) pixels but
there’s nothing wrong with the output of the test
itself.

An unintended benefit of this technique, on the
other hand, is that any changes in the fonts I am
using are immediately detected. This makes the
unicode-math test suite a useful way for me to see
what’s actually changing when the fonts that I use
in the test suite are updated.

However, the visual diff is slow and, as men-
tioned above, not always accurate (although it is
repeatable, at least). A more reliable and efficient ap-
proach might use \showbox and \tracingoutput to
create a detailed (textual) log of the TEX boxes gen-
erated in the output. This ‘box log’ can be checked
for differences against a normalised result produced
by a prior test run, and this is the technique used suc-
cessfully by the LATEX 2ε and LATEX3 test suites [15].

Regardless of whether it’s the most efficient or
the most reliable technique to use, the test suite is
still essential for catching bugs before I release new
versions of the package to the public. I can change
code without fear of unexpected problems in the
behaviour of the package.

9 Conclusion

It’s early days for Unicode mathematics. The work
here shows the first steps for using OpenType fonts
in LATEX for mathematics; while we have done lit-
tle to change the style of the input, there are still
clear advantages in more consistent commands and

Unicode input in the source. Being able to support
new fonts without any extra LATEX support files will
hopefully spur new efforts in building new maths
fonts. I am looking forward to seeing what happens
in the future.

I would like to thank the TEX Users Group for
supporting my attendance of the TUG2010 confer-
ence, and extend further thanks towards some people
without whom the unicode-math package couldn’t
exist: Barbara Beeton for all her work with the
STIX project and for her thoughtful correspondence;
members of the LATEX3 project for, well, everything;
Khaled Hosny and others for their work with luaotf-

load and LuaLATEX in general; all of those who have
collaborated with, enthusiastically commented on,
and especially tested the code; Jonathan Kew for
X ETEX; and Taco Hoekwater et al. for LuaTEX.

References

[1] Claudio Beccari. Typesetting mathematics
for science and technology according to
ISO31/XI. TUGboat, 18(1):39–48, 1997. http:
//tug.org/TUGboat/tb18-1/tb54becc.pdf.

[2] Barbara Beeton. Unicode and math, a
combination whose time has come — Finally!
TUGboat, 21(3):176–185, September 2000.
http://tug.org/TUGboat/tb21-3/tb68beet.

pdf.
[3] Barbara Beeton. The STIX project — From

Unicode to fonts. TUGboat, 28(3), 2007. http:
//tug.org/TUGboat/tb28-3/tb90beet.pdf.

[4] Barbara Beeton, Asmus Freytag, and
Murray Sargent III. Unicode support
for mathematics. Unicode Technical
Note 25 Version 9, Unicode, Inc., 2008.
http://www.unicode.org/reports/tr25.

[5] Thierry Bouche. Diversity in math fonts.
TUGboat, 19(2):120–134, 1998. http:

//tug.org/TUGboat/tb19-2/tb59bouc.pdf.
[6] David Carlisle and Patrick Ion. XML

entity definitions for characters. Technical
Report W3C Working Draft 21, W3C, 2008.
http://www.w3.org/TR/xml-entity-names/.

[7] Matthias Clasen and Ulrik Vieth. Towards
a new math font encoding for (LA)TEX.
Cahiers GUTenberg, 28–29, 1998. http:

//cahiers.gutenberg.eu.org/cg-bin/

article/CG_1998___28-29_94_0.pdf.
[8] Michael Downes. Breaking equations.

TUGboat, 18(3):182–194, 1997. http:

//tug.org/TUGboat/tb18-3/tb56down.pdf.
[9] Hans Hagen. MathML [in ConTEXt]. MAPS,

27:66–119, 2002. http://www.ntg.nl/maps/

27/18.pdf.

Unicode mathematics in LATEX: Advantages and challenges

220 TUGboat, Volume 31 (2010), No. 2

[10] Hans Hagen, Taco Hoekwater, and
Volker R.W. Schaa. Reshaping Euler: A
collaboration with Hermann Zapf. TUGboat,
29(2):283–287, 2008. http://tug.org/

TUGboat/tb29-2/tb92hagen-euler.pdf.

[11] Bogus law Jackowski. Appendix G illuminated.
TUGboat, 27(1):83–90, 2006. http://tug.org/
TUGboat/tb27-1/tb86jackowski.pdf.

[12] Jonathan Kew. X ETEX Live. TUGboat,
29(1):146–150, 2008. http://tug.org/

TUGboat/tb29-1/tb91kew.pdf.

[13] Johannes Küster. Newmath and Unicode.
Proceedings of EuroTEX 2005, 2005. http:

//tug.org/TUGboat/tb27-0/kuster.pdf.

[14] Aditya Mahajan. Integrating Unicode and
OpenType math in ConTEXt. TUGboat, 30(2),
2009. http://tug.org/TUGboat/tb30-2/

tb95mahajan-cmath.pdf.

[15] Frank Mittelbach. A regression test suite for
LATEX 2ε. TUGboat, 18(4):309–311, December
1997. http://tug.org/TUGboat/tb18-4/

tb57mitt.pdf.

[16] Luca Padovani. MathML formatting
with TEX rules, TEX fonts, and TEX
quality. TUGboat, 24(1):53–61, 2003. http:

//tug.org/TUGboat/tb24-1/padovani.pdf.

[17] Daniel Rhatigan. Three typefaces for
mathematics. Master’s thesis, University of
Reading, 2007. http://www.typeculture.

com/academic_resource/articles_essays/

pdfs/tc_article_47.pdf.

[18] Will Robertson. Advanced font features with
X ETEX — the fontspec package. TUGboat,
26(3):215–223, 2005. http://tug.org/

TUGboat/tb26-3/tb84robertson.pdf.

[19] Murray Sargent III. Unicode nearly
plain-text encoding of mathematics. Unicode
technical note 28, Unicode, Inc., 2006.
http://www.unicode.org/notes/tn28/.

[20] Ulrik Vieth. Math typesetting in TEX: The
good, the bad, the ugly. MAPS, 26:207–216,
2001. http://www.ntg.nl/maps/26/27.pdf.

[21] Ulrik Vieth. Do we need a ‘Cork’ math
font encoding? TUGboat, 29(3):426–434,
2008. http://tug.org/TUGboat/tb29-3/

tb93vieth.pdf.

[22] Ulrik Vieth. Experiences typesetting
mathematical physics. In Proceedings of
EuroTEX, 2009. http://tug.org/TUGboat/

tb30-3/tb96vieth.pdf.

[23] Ulrik Vieth. OpenType math illuminated.
TUGboat, 30(1):22–31, 2009. http:

//tug.org/TUGboat/tb30-1/tb94vieth.pdf.

[24] Joseph Wright. LATEX3 programming: External
perspectives. TUGboat, 30(1):107–109,
2009. http://tug.org/TUGboat/tb30-1/

tb94wright-latex3.pdf.

⋄ Will Robertson
School of Mechanical Engineering
University of Adelaide, SA, Australia
will dot robertson (at)

latex-project dot org

Will Robertson

Math never seen

Johannes Küster

Abstract

Why have certain mathematical symbols and notations
gained general acceptance while others fell into oblivion?

To answer this question I present quality criteria for
mathematical symbols. I show many unknown, little-
known or little-used notations, some of which deserve
much wider use.

I also show some new symbols and some ideas for
new notations, especially for some well-known concepts
which lack a good notation (Stirling numbers, greatest
common divisor and least common multiple).

1 Introduction

For TEX’s "20th birthday it seems appropriate to present
some fine points of mathematical typography and some
ideas for new symbols and notations. Let ’s start with a
quotation from�e METAFONTbook [5, p. 8]:

“Now that authors have for the first time the power
to invent new symbols with great ease, and to have
those characters printed in their manuscripts on a
wide variety of typesetting devices, we must face
the question of how much experimentation is de-
sirable. Will font freaks abuse this toy by overdo-
ing it? Is it wise to introduce new symbols by the
thousands?”

We all know that METAFONT didn’t become widely ac-
cepted. But even with other font editors, font freaks did
not create new symbols by the thousands. So while maybe
METAFONT was too complicated, and its way of thinking
foreign to most designers, this can’ t be the real reason
why only very few new symbols showed up. In fact, to
design a new useful symbol is by no means an easy task,
which I hope will become clear in the following. Just as we
all do a lot more reading than writing, it is much easier to
use existing symbols (e.g. with TEX) than to create good,
useful new symbols (e.g. with METAFONT). So TEX with
the character set offered by Computer Modern fonts (and
the AMS fonts) shaped the typography of mathematics in
the past 30 years.

�is situation only changed with Unicode mathemat-
ics: Unicode now offers mathematical symbols literally
by the thousands. But it gives little explanation and little
usage information; many symbols are described only by
shape, not by meaning. For many Unicode mathematical
symbols it is not clear how to use them, and in many cases
it is not clear whether there are any competing or superior
notations.

2 Quality criteria

What makes a notation superior to another? What makes
a symbol successful (in the sense that other mathemati-
cians accept and adopt it)? �e following list gives the
most important quality criteria. A mathematical symbol
or notation should be:

• readable, clear and simple

• needed

• international (or derived from Latin)

• mnemonic

• writable

• pronounceable

• similar and consistent

• distinct and unambiguous

• adaptable

• available

�is list is certainly not exhaustive, but these are the most
important points. Not all criteria are equally important,
and some may conflict with others, so few symbols really
fulfill all criteria.—Let me explain each point in turn.

Above all, a notation should be readable—but what
constitutes readability? Certainly it comprises clear and
simple. Also a notation should be short, at least it should
make an expression shorter thanwriting out the same state-
ment with words. Some of the other criteria contribute to
readability as well.

When a good, widely accepted notation already exists,
there is no need to invent a new one. So a new notation
should be needed or necessary.

Most mathematical symbols are international (even
if they are given different names in different languages
and although there are different traditions in mathemati-
cal notation, e.g. the use of a dot or a comma as decimal
separator). Of course a new notation should be interna-
tional. In the case of an abbreviation (like “sin”, “ log”,
etc.), it should be derived from Latin, as most scientific
terminology stems from Latin (and Greek), and so does
the international vocabulary of mathematics.

A notation should be easy to learn, and its meaning
should be easy to remember, at least a�er one has heard
or read an explanation once; i.e. a notation should be
mnemonic.

A lot of mathematics is still (and will be) written by
hand (e.g. in a mathematician’s research as the fastest way
to denote his thoughts, on the blackboard, etc.). So a nota-
tion should be writable. In fact mathematical typography
shows its close relation to handwriting inmany places. But
while written mathematics could always be explained by
the writer (e.g. by the teacher at the blackboard), printed
mathematics has to speak for itself. So in some cases it
is desirable to go for greater differentiation in print than
what is possible in handwriting.

TUGboat, Volume 31 (2010), No. 2 221

Math never seen

A notation should also be pronounceable. Usually
this is not a problem: for most notations there is a manner
of speaking, although o�en language-specific and o�en
not closely related to the notation (e.g. we call “ |a|” the
“absolute value of a”, and we would do so whatever the
notation would be). But we’ ll see an example below where
a missing manner of speaking was a problem.

A new notation should be consistent with the general
systemofmathematical notation and similar to existing no-
tations (e.g. for a symmetric relation one should choose a
symmetric symbol, for a new kind of mapping one should
choose some kind of arrow). In print, we can differentiate
more than in handwriting, but still it is o�en preferable to
stay close to existing notations.

As a special case of similarity, there are many con-
cepts in mathematics which are dual or complementary to
each other, and such dual concepts should be given dual
notations (e.g. < and > ; ∧ and ∨ ; ∪ and ∩ ; ⊂ and ⊃).
Conversely, dual symbols should denote dual concepts.

In some cases dual symbols work against mnemonics.
For many students it is difficult to remember which is
which, so one has to use an additional memory aid (e.g.
to remember which one of the the logic symbols ∧ or ∨
denotes the “logical or”, one might learn that ∨ reminds
of Latin “vel”, which means “or”).

Of course a new notation should be distinct and un-
ambiguous. Otherwise it will not be an improvement upon
existing notations.

A notation should be adaptable, it should allow for
manipulation. Also mathematical concepts are o�en gen-
eralized, and thus notation is o�en stretched to more gen-
eral cases. A good notation allows for that.

A historical example is given by the competing no-
tations ẋ of Newton and dx of Leibniz. While Newton’s
notation was similar to existing notations and better fitted
into the general system, the novel notation of Leibniz was
superior, as it was more versatile and allowed for manipu-
lation and generalization.

To give another example, the greatest common divi-
sor of two integers a and b could be denoted as gcd(a, b) ;
alternatively onemight think of an infix notation, e.g. a⊤b .
When applied to three arguments both notations still work:
gcd(a, b, c) and a⊤b⊤c . But one could also take the gcd
of all elements of a set S . With the first notation, we can
write this as gcd(S) . Yet the alternative notation fails, it is
not adaptable enough.

And last on our list, a symbol should be available.
�is is not really a criterion for quality, but rather for ac-
ceptance. �e best notation does not help much if other
people are not able to use it. In former times, this mainly
meant availability at the printer ’s office—nowadays it
means availability in a font, then a clear and simple shape
which can be added to other fonts with ease, and of course
inclusion in Unicode mathematics.

Figure 1: Robert Recorde, �e Whetstone of Witte (London,

1557). Recorde’s explanation for his symbol “=” is given in

the lines just above the display formulae.

3 Historical examples

To illustrate these quality criteria, I will give a few histor-
ical examples, some unsuccessful, some successful. �e
historical information is mainly taken from [1].

3.1 Symbols for equality

Our modern symbol for equality “=” was introduced by
Robert Recorde in 1557 in his book “�e Whetstone of
Witte” (see figure 1). Recorde explained his choice thus:

“And to avoide the tediouse repetition of these
woordes : is equalle to : I will sette as I doe o�en in
woorke use, a paire of paralleles, or Gemowe lines
of one lengthe, thus: ==== , bicause noe .2. thynges,
can be moare equalle.”

(“Gemowe” means “twin”). �is is quite a famous example,
as it is one of the very few cases where an author not only
introduced a new symbol, but explained why he chose its
particular form.

222 TUGboat, Volume 31 (2010), No. 2

Johannes Küster

Figure 2: René Descartes, La géométrie (Leiden, 1637). �e

symbol “ ∝” for equality appears throughout this page, e.g.

as the second symbol in the first displayed formula.

But 80 years later, René Descartes introduced a dif-
ferent symbol for equality, namely “ ∝”, in his book La
géométrie (see figure 2). Descartes didn’t give an explana-
tion, so it is not clear why he invented a new symbol nor
why he chose this particular form. Most likely, he was in
need for a new symbol as he already used “=” for “plus
or minus” (i.e. “±” in modern notation) elsewhere in his
writings. �e symbol of Descartes might stem from the
ligature “æ”, a common abbreviation for the Latin word “ae-
qualis”, but rotated 180 degrees. Typographically, it rather
resembles a rotated “œ”, or maybe it ’s even the astrological
symbol for Taurus, turned sideways.

When we compare the two symbols (with our quality
criteria in mind), we see that both symbols are mnemonic.
Yet Recorde’s symbol is simpler, and it is simpler to write.
Equality is of course a symmetric relation, but the sym-
bol of Descartes is not symmetric, and this is its main
disadvantage. So it seems clear that “=” is the superior
symbol.

But in fact these two symbols (and a few compet-
ing symbols as well) struggled for supremacy throughout
the 17th century. Descartes was the more eminent mathe-
matician, and with his important works his notation also
spread. General adoption of “=” as the symbol for equal-
ity came only in the early 18th century, mainly because
Leibniz and Newton both used it.

3.2 Symbols of Benjamin Peirce

In 1859, Benjamin Peirce introduced the symbols “ð” and
“ñ” to denote the numbers 3.14159. . . and 2.71828. . . (see
figure 3). To my knowledge, these were the first significant
symbols of American origin.

Figure 3: Benjamin Peirce’s symbols for the numbers

3.14159. . . and 2.71828. . . (from J. D. Runkle’s Mathematical

Monthly, Vol. I, No. 5 (February, 1859), p. 167–168).

Peirce’s symbols were used by some of his pupils
(among them his sons Charles Sanders Peirce and James
Mills Peirce), but they weren’t generally accepted, and
they were never used in Europe. By checking our quality
criteria, we can see a number of possible reasons.

First of all, the symbols were not really necessary: π
and e were already widely used to denote these two num-
bers, and this was good enough for most mathematicians.
Also they are not consistent with the general system of
mathematical notation: constants and special numbers
are usually denoted with letters, not with special sym-
bols. �en these symbols were not readily available at
the printer ’s office (of course this difficulty was o�en over-
comewith other symbols when demandwas high enough).
More importantly, the symbols ð and ñ are not really
mnemonic:

“It will be seen that the former symbol is a modifi-
cation of the letter c (circumference), and the latter
of b (base).”

�e connection between ð and c , and between ñ and
b is hard to see, and it is difficult to remember which is
which. To make matters worse, James Mills Peirce used

TUGboat, Volume 31 (2010), No. 2 223

Math never seen

variations of his father ’s symbols (and also a special sym-
bol for the imaginary unit, see figure 4), but the supposedly
mnemonic connection to c and b does not get any clearer.

Figure 4: Variations of Benjamin Peirce’s symbols (James

Mills Peirce, �ree and Four Place Tables (Boston, 1871)). In

modern notation, this formula reads as $eπ = i$ i .

But on two of our criteria these symbols really fail:
firstly, how should we pronounce these? �e symbols do
not provide a manner of speaking:

“ð to denote ratio of circumference to diameter,
ñ to denote Neperian base.”

Should we always say “ratio of circumference to diameter”
and “Neperian base”? In comparison, to pronounce “π”
and “e” is easy and fast.

Secondly, the symbols are dual, but the underlying
concepts are not. Of course, 3.14159. . . and 2.71828. . . are
connected in many interesting ways, but they are not dual
to each other. So there are good reasons why these two
symbols were not generally accepted.

3.3 Symbols for “floor” and “ceiling”

To denote the floor function (i.e. rounding a real num-
ber to the largest previous integer), Gauß introduced the
bracket notation “[x]” (C. F. Gauß, �eorematis arith-
metici demonstratio nova (1808)). �is remained standard
for a long time, and is sometimes even used today. But
in 1962, Kenneth E. Iverson (in his book A Programming
Language) introduced new notations

⌊x⌋ for the floor function, and

⌈x⌉ for the ceiling function.

�ese notations were readily accepted and are the standard
notations today. Also they have been available in TEX and
Computer Modern fonts right from the beginning, which
certainly helped them to spread. Instead of the ambiguous
[x] (as brackets are used for many different concepts, not
only for “floor”), we get a new, unambiguous notation ⌊x⌋ ,
and also a new, dual notation ⌈x⌉ for the dual concept
“ceiling” which didn’t have a standard notation before.

�ese new notations are definitely very mnemonic,
almost self-explanatory, and still they are not too far from
the old notation, so they are consistent with the general
system. Anyone used to the notation [x] could learn and
accept the new notations without difficulty.

�ese were very successful innovations indeed, and
they meet all our quality criteria.

4 Unknown and little-known notations

Now I will discuss some important existing notations
which deserve to be better known or to be usedmore o�en.
All of these improve readability, but some only work in
print, not in handwriting.

4.1 Usage of roman and italic letters

By careful usage of roman letters (or upright glyph shapes)
one can greatly improve the readability of mathematical
formulae. Instead of “roman” and “italic” I prefer to use
the terms “upright” and “oblique” (or “slanted”) here as
these terms apply to all kind of glyphs, not only to letters.
�ere’s a little-known rule, best stated as

Operators and constants with a fixed meaning
should be set upright.

Important here is “with a fixed meaning”. Note that this
rule only applies to operators and constants, not to func-
tions or other concepts. Of course this only works in print,
not in handwriting. �is rule is seldom applied properly
in TEX, probably because Computer Modern fonts did not
supply upright lowercase Greek.

�is rule applies at least to the following constants
with a fixed meaning: Euler ’s number e , circle number π,
imaginary unit i , Euler ’s constant γ (or C in European
tradition), golden ratio ϕ; and at least to the following
operators with a fixed meaning: differential operator d and
partial differential operator ∂ , difference Δ, Kronecker
symbol δij , and Christoffel symbols Γκμí . For consistency,
all “ordinary” Greek uppercase letter must be italic then:
Γ , Δ , Θ , . . .

�is list is not exhaustive, and the actual scope of
this rule might depend on context. An author could ex-
tend the scope to some constants and operators which
carry a fixed meaning throughout his text. In an encyclo-
pedia of mathematics (with a wide range of topics and
notations), applying this rule greatly improves readability,
while e.g. in a monograph about all the fascinating prop-
erties of Euler ’s number, using an italic e might seem
preferable, to separate it better from surrounding text—
but even here I would apply this rule, with some careful
spacing and kerning. Matters are more complicated when
typesetting physics, as upright type is used here also for
units, indices with a fixed meaning, particles, quanta, and
quantum states; but even here this rule is useful.

My suggestion is to apply this rule to integral sym-
bols as well: an upright integral symbol and an upright
differential operator d serve as a kind of delimiters around
the integrand:

X
b

a
f (x) dx.

�is is not the case when the integrand is a fraction: here
the differential operator is o�en written in the numerator,
but still, using an upright “d” increases readability.

224 TUGboat, Volume 31 (2010), No. 2

Johannes Küster

When we look at a few examples, we see that this rule
gives more structure and more clarity to formulae:

z̄ = a − ib = ρ (cosφ − i sinφ) = ρe−iφ

z̄ = a − ib = ρ (cosφ − i sinφ) = ρe−iφ

¤ d2

dr2
+ 1

r

d

dr
¥ lnψ0(r) = h(r)

¤ d2

dr2
+ 1

r

d

dr
¥ lnψ0(r) = h(r)

∞

0

e−at
2

dt

t + x
= e−ax

2 ¬$π

$ax

0

et
2

dt − 1

2
Ei(ax2)

∞

X
0

e−at
2

dt

t + x
= e−ax

2 ¬$π

$ax

X
0

et
2

dt − 1

2
Ei(ax2)

For the most important constants and operators, I suggest
to use the following TEX macros (somewhat analogous to
the way to input these in some computer algebra systems):

\E for e , \PI for π , \I for i , \df for d.

Here \df could be defined as \mathop with an argument,
which takes care of proper spacing, e.g.

\def\df#1{\mathop{\mathrm{d}{#1}}}

(proper font-specific spacing and kerning could be added
to these macros with \mspace or \mskip and \mkern;
in “newmath” encodings, the upright “d” is contained in
“Math Core” to allow for kerning with math italic letters).

4.2 O -notation and Vinogradov symbols

For the well-known O -notation (invented by Paul Bach-
mann in 1894 and made popular by Edmund Landau),
there is a little-known alternative with the so-called Vino-
gradov symbols, named a�er the Russian number theorist
Ivan Matveevich Vinogradov (1891–1983). Unfortunately,
I could not find when and where he introduced this nota-
tion.

So instead of f (x) = O(log n) , equivalently we can
write f (x) ⪡ log n , or we could use the symmetric variant
of “⪡” and reverse the order: log n ⪢ f (x) . �is notation
is used mainly in number theory. �e two Vinogradov
symbols are included in Unicode:

uni2AA1 ⪡ “double nested less-than”,

uni2AA2 ⪢ “double nested greater-than”.

In my opinion, the Unicode character names are mis-
nomers. At least additional information is missing in
Unicode that these two symbols are used as Vinogradov
symbols.

�e obvious TEX macro names for these symbols
are \subord for “⪡” and \supord for “⪢”, analogous to
\subset and \supset.

�e Vinogradov symbols must not be confused with

uni226A ≪ “much less-than”,

uni226B ≫ “much greater-than”.

Alas, very o�en “≪” is used instead of “⪡”, either be-
cause authors are unaware of the difference, or because
Computer Modern fonts do not provide the Vinogradov
symbols.

When we compare Vinogradov ’s notation and the
O -notation we see that both have their advantages; neither
is superior to the other.

Vinogradov ’s notation does not require additional
parentheses. With its symmetric variant, it works in two
ways: f ⪡ д and д ⪢ f . It better fits the general system
of mathematical notation, and it better fits with other sym-
bols, especially with Hardy ’s symbol “≍” for asymptotic
equivalence:

(f ⪡ д) ∧ (д ⪡ f) ⇐⇒ f ≍ д.

O -notation is similar to other Bachmann-Landau
notations, namely o -, ω -, Ω -, and Θ -notation. Also it
can be used in terms in arithmetic expressions:

f (x) = x

log x
¤1 +O¤ 1

log x
¥¥ ,

with the downside that the O might be overlooked in a
longer expression.

But O -notation makes strange use of “=”, it is some-
what foreign to the general system. In fact, here “=” does
not stand for “is equal to”, but rather for “is of the order of ”
or “is a member of the class”. So it would be more correct
to use “∈”. Of course this is well-known and has o�en
been discussed. Still it is annoying, and so this might be a
case where we should use greater differentiation in print:
i.e. to keep “=” in handwriting as a short and fast notation,
but to use an unambiguous special variant of “=” in print,
maybe by creating a new special symbol.

4.3 Intervals

In exercise 18.14 in �e TEXbook [4, p. 171], Knuth says
“Some perverse mathematicians use brackets backwards, to
denote ‘open intervals ’ ”, and the following formula is given
as an example:

]−∞, T[×]−∞, T[.
�is notation for open intervals is taught in school at least
in some countries (e.g. in Germany), and it is also recom-
mended by a German DIN standard and an international
ISO standard. So I prefer to be a perversemathematician—
but only in handwriting.

�e answer to this exercise [4, p. 322] states “Open
intervals are more clearly expressed in print by using paren-
theses instead of reversed brackets”, and the given formula
is then written as

(−∞, T) × (−∞, T).

TUGboat, Volume 31 (2010), No. 2 225

Math never seen

But the notation “(a, b)” is overloaded with meanings: it
is used to denote an ordered pair, coordinates, the greatest
common divisor, etc. So this cannot be the best way to
denote open intervals, neither in handwriting nor in print.

One simple way to improve the ambiguous notation(a, b) is to use a semicolon instead of a comma to sepa-
rate the endpoints: (a; b) . �is is especially useful when
the decimal separator is a comma (which is the standard
notation in some countries, e.g. in Germany): (1,9; 3,8)
is much more readable than (1,9, 3,8) .

�is improvement works in handwriting as well, and
it adds a lot of clarity for the reader, with minimal effort
on the writer ’s side.

Still we can do better in print, namely by using special
delimiters, already available in Unicode:

uni2997 ⦗ “le� black tortoise shell bracket”,

uni2998 ⦘ “right black tortoise shell bracket”.

If there is such a thing as an “unknown standard”, this
certainly is one: at least one German manual of style [12]
recommends these special delimiters for intervals, and one
important German book [9, 10] uses these to very good
effect. Of course, I also recommend these delimiters in
my own writings about typography of mathematics [7, 8].

Just as brackets, these delimiters are reversed to de-
note open intervals:

⦗a; b⦘ , ⦗a; b⦗, ⦘a; b⦘ , ⦘a; b⦗;
in an example formula, this looks like this:

⦘0; 1⦘ = { x ∈ R | 0 < x ≤ 1 }
(note that we keep the semicolon as separator, as suggested
above). �e formula from above is now written as

⦘−∞; T⦗ × ⦘−∞; T⦗
—admittedly, this is still not very readable, but it is not
a nice example anyway (it might be preferable here to
introduce an abbreviation for the given interval, say U ,
and to denote the formula as U ×U or even as U 2).

For use in TEX, I recommend the following macros
(with two arguments):

\ivc{a}{b} for ⦗a; b⦘ (“interval, closed”),
\ivo{a}{b} for ⦘a; b⦗ (“interval, open”),
\ivco{a}{b} for ⦗a; b⦗ ,
\ivoc{a}{b} for ⦘a; b⦘ .

�ese macros can take care of proper kerning and spacing
and of the semicolon as separator. We can alter these
as necessary, e.g. whenever the special delimiters are not
available in the used font. For larger versions, we can
define macros as \bigivc etc. For automatic extension of
delimiters (i.e. using \left and \right), we can define
macros starting with an uppercase letter: \Ivc etc. In
an similar way we can define macros for other delimiters
with special meaning, e.g. \abs for absolute value |a| or
\norm for norm ‖a‖ .

5 New symbols and new notations

In this last section I will show some of my ideas for new
symbols (even though some of these are not successful).
�e first few examples are rather minor points, but the last
one seems quite important, at least in my opinion.

5.1 Vega

In mathematical finance (with the pricing of stock op-
tions) the so-called Greeks occur: Gamma, Delta—and
Vega (these are quantities representing the sensitivities of
derivatives):

Δc = ∂C
∂S = ϕ(d1) and Δp = ∂P

∂S = −ϕ(−d1)
Γ = ∂2C

∂S2 = ϕ(d1)
Sσ$T − t

Vega = S$T − t ϕ(d1)
While Gamma and Delta are denoted by Greek letters,
Vega is either written out, or a script letter V is used, or
sometimes even a lowercase Greek “nu” (í)— a horrible
misuse of notation. So it seems appropriate to design a
new pseudo-Greek letter for Vega:

� = S$T − t ϕ(d1).
�is works well in uppercase (roman Ç and italic �), but
it would be hard to find a new distinct lowercase shape:
this is overcrowded territory, with v , í and upsilon υ .

Yet people in mathematical finance are quite inven-
tive: there’s not only Vega, but also “Vanna” and “Volga”
(also called “Vomma”)—all derived from or related to
volatility, so all start with “V”—and then also “speed”,
“color”, “charm”, and “zomma”. So while the idea for a spe-
cial letter for Vegamight be nice, it seems quite hopeless to
design proper letter-like symbols for all these quantities.

5.2 Field extension

In algebra, a common way to denote a field extension “L
over K ” is by L :K , alternatively L/K or L|K is used. All
three notations are over-used: “ : ” for index of a subgroup;
“/” for quotient ring, quotient group, division; “ |” for
“divides”.

To get an unambiguous notation, my idea is a special
“field extension colon”, formed by two small triangles, thus:
L �K (the international phonetic alphabet IPA contains
a similar idea: a colon of two triangles pointing towards
each other is used to denote length of a vowel).

By its asymmetric form it shows that L is the ex-
tended field. �is is close to the current notation. It does
not disturb the reader, but it is there to help when he is
in doubt. Of course this can’ t be used in handwriting,
and admittedly it is not very visible in print (and it needs
high-quality printing). But it might work well in online
documents, where the reader couldmagnify the text— yet
a properly tagged pdf file might be more helpful.

226 TUGboat, Volume 31 (2010), No. 2

Johannes Küster

5.3 Algebraic substructures

One can o�en read sentences like

Let H ⊂ G be a subgroup of G .

�is is logically wrong, as it tries to express two statements
in one sentence (“let H be a subset of G” and “let H be a
subgroup of G”), and the “⊂ G ” part is redundant, as any
subgroup is a subset ipso facto. So it suffices to say

Let H be a subgroup of G .

But obviously people like to use symbols (it seems that to
many people the logically correct version without symbols
feels somewhat weaker), so I thought of a way to express
“is a subgroup of ” with a symbol. I suggest to use “⊂” with
a small “G” set atop, or alternatively below on the right
(preferably, the “G” should be upright and sans-serif, as
this better separates it from other letters and makes clear
it is part of the symbol):

H
G⊂ G or H ⊂

G
G.

�us the sentence from above is shortened to

Let H
G⊂ G .

�is works for other algebraic structures as well:

S
R⊂ R, E

F⊂ F , U
V⊂ V , B

A⊂ A, etc.

(ring, field, vector space, algebra). �e obvious TEXmacro
names for these would be \subgroup, \subfield, etc.,
and one can easily construct these symbols in TEX with
\stackrel and appropriate font switches.

But some names are not international, e.g. “field”
(Latin “campus”, French “corps”, German “Körper”) and
“ring” (Latin “anellus”, French “anneau”)—according to
our quality criteria, abbreviations should come from Latin,
but “anellus” and “algebra” would both require an A . So to
make this notation really useful, we need a list of standard
abbreviations for algebraic structures.

5.4 Stirling numbers

Stirling numbers are used to convert from factorial powers
to ordinary powers, and vice versa. For definition and
properties see [6, pp. 66–69] or [3, pp. 257-267].

Stirling numbers of the first kind are notated with
brackets:

�n
k
� = (n − 1)�n − 1

k
� + �n − 1

k − 1
� (for k > 0),

with the initial conditions

�n
0
� = δn0 and �0

1
� = 0.

Stirling numbers of the second kind are notated with
braces:

�n
k
� = �n − 1

k − 1
� + k�n − 1

k
�

with

�n
1
� = 1 and �n

n
� = 1.

�ese notations are similar to those for binomial coeffi-
cients and Eulerian numbers (denoted by �nk� and �nk ,
respectively). According to Knuth:

“�ese notations [. . .] have compelling advantages
over the many other symbolisms that have been
tried.” [6, p. 66].

�is is certainly true for existing symbols. But brackets
and braces are used for many concepts, so how about new,
distinct delimiters?

My idea was to keep close to the notation with braces
and brackets, but to make it mnemonic by including an “s”
form. But this proved to be unsuccessful. It seemed nice as
an idea, it still seemed possible in handwriting, but when
tried in print, it becomes clear that this is not working (at
least it would need some reworking to make it useful).

First I tried new special brace-like delimiters, with
an “s” in the top for Stirling numbers of the first kind, and
in the bottom for those of the second kind. �is looks just
too obtrusive, too distracting:

n

k
and

n

k
,

especially when tried in a formula:

n

k
= n − 1

k − 1
+k n − 1

k
.

Instead of helping the reader, it hampers readability.
�en I tried to keep brackets and braces, but now

including a small “s” form (again in the top for the first
kind, in the bottom for the second kind):

n

k
and

n

k
;

used in a formula:
n

k
= (n − 1) n − 1

k
+ n − 1

k − 1
.

I consider this worse than the first version. Both just do
not work. So it seems best to keep brackets and braces.

5.5 Greatest common divisor,

least common multiple

My last example is one where I think a new notation is
really needed. For “greatest common divisor” and “least
common multiple”, a standard notation is missing. To me,
this is the most severe shortcoming in mathematical no-
tation in general. So far mathematicians have failed to
come up with a good notation, which is completely incom-
prehensible, as the concept of greatest common divisor is
important and in wide use. It seems each language just
uses some abbreviations:

English: gcd(a, b) and lcm(a, b)
French: pgcd(a, b) and ppcm(a, b)
German: ggT(a, b) and kgV(a, b)
Dutch: ggd(a, b) and kgv(a, b)
Polish: NWD(a, b) and NWW(a, b)
Spanish: mcd(a, b) and mcm(a, b)

TUGboat, Volume 31 (2010), No. 2 227

Math never seen

�e French version needs four letters (while almost all
abbreviations in mathematics use three letters at most),
the German version gives us the additional ugliness of
mixed-case abbreviations. �e Spanish version makes
clear why Latin abbreviations would not work here: the
“m” stands for “máximo” in one case and for “mínimo” in
the other.

Also a very common notation for greatest common
divisor, especially in number theory, is just (a, b) . As I said
abovewhendiscussing interval notation, this is ambiguous
and over-used, and a reader always has to check the context
to make sure what is meant. And there isn’t any matching
fixed notation for the least common multiple, so either[a, b] or {a, b} is used, but both notations always require
an explanation in the text.

Formulae written in any of these notations are either
lengthy, or not very readable, or not self-explanatory:

gcd(Fm , Fn) = Fgcd(m,n) (Fm , Fn) = F(m,n)

φ�[d , k]� = φ(d)φ(k)�φ�(d , k)�
and o�en they need additional explanation (this example
with mixed notation is taken from [11, p. 63]):

Let D1 and D2 be sequences such that �(lcmD1), (lcmD2)� = 1 ,

where lcm denotes the least common multiple of the members of

a sequence, and the outer parentheses denote greatest common

divisor. �en [. . .]

�erefore I suggest the following new notation with
new, special delimiters:

�a, b� for the greatest common divisor,

�a, b� for the least common multiple.

Many of our quality criteria are easily checked: obviously,
these notations are readable, needed, international, distinct
and unambiguous (at least in print).

�ey are also writable, although in sloppy handwrit-
ing they might be confused with 1 or 7 (depending on
writing style) and possibly also with “floor” ⌊x⌋ and “ceil-
ing” ⌈x⌉ , but these two functions always have just one ar-
gument, while �a, b� usually has two or more arguments.

Of course these notations are pronounceable: in En-
glish, �a, b� is pronounced as the “greatest common divi-
sor of a and b ”, and so analogously in any other language
(just as it is the case with many notations which have their
language-specific names).

�ey are adaptable: taking our example from above,
we see that we could stretch the notation to more than
two arguments: �a, b, c� , but also to a single argument:
�S� (e.g. when taking the greatest common divisor over
all members of a set S).

�ey are similar and consistent: they fit into the gen-
eral system, �a, b� is close to the common notation (a, b) ,
and now we have dual symbols for dual concepts.

But are these new delimiters available? Well, yes— at
least in my mathematical fonts (“Minion Math”, as used
here). But then it is such a simple, almost primitive de-
sign that it does not pose any problem to a font designer
who wants to add these to his font. For the METAFONT

sources of Computer Modern, it is a very simple addition:
just take the code for “slash” or “backslash”, add a third
point whose coordinates are already known by the other
two points, and connect the three points.

So the last remaining point is “mnemonic”, and the
mnemonic aspect is the reason for the particular form I
chose. For two positive integers a and b , the following
chain of inequalities holds:

�a, b� ≤ min(a, b) ≤ max(a, b) ≤ �a, b�.

�erefore �a, b� should remind of two vertices of a trian-
gle pointing downwards to a lesser number (lesser than
min(a, b) , that is), and �a, b� is meant to point upwards
to a greater number. Let ’s illustrate this with an example:

42� �
�14, 21� ≤ min(14, 21) ≤ max(14, 21) ≤ �14, 21�.� �

7

Of course the concept of greatest common divisor applies
not only to positive integers. It could be generalized to
negative integers, to polynomials, or to elements of a com-
mutative ring. �en the above inequalities do not hold in
general. Still the mnemonic is correct as it only serves to
remember which is which of our notations.

When we apply these new notations to the above
examples, we see that the formulae get shorter and do not
need any additional explanation anymore:

gcd(Fm , Fn) = Fgcd(m,n) �Fm , Fn� = F�m,n�

φ��d , k�� = φ(d)φ(k)�φ��d , k��
We could even agree upon saving parentheses, so the last
formula might be written as

φ�d , k� = φ(d)φ(k)�φ�d , k�,
but this would be overdoing it maybe. Our last example
above could now be shortened to

Let D1 and D2 be sequences such that
�D1�, �D2�� = 1 , where

� . . . � denotes the least common multiple of the members of a

sequence. �en [. . .]

or even, when it ’s clear what we mean by � . . . � with a
single argument, simply to

Let D1 and D2 be sequences such that
�D1�, �D2�� = 1 .

�en [. . .]

�is is considerably shorter, and yet clearer than the origi-
nal version.

One objection to the particular form of these new
delimiters is that the notation seems counter-intuitive,

228 TUGboat, Volume 31 (2010), No. 2

Johannes Küster

especially compared with “floor” ⌊x⌋ and “ceiling” ⌈x⌉ ,
where the “serifs” or little bars of the delimiters point to
smaller and greater numbers just in the opposite way. But
I do not see this as a contradiction: while the entire form
�a, b� should remind one of a lesser number, the serifs
remind one of the greatest number which divides both a
and b .

I think that mathematicians can all agree that a good,
distinct, international notation is really necessary here.
�e exact form of the symbols is up for discussion, but
I can’ t think of a more suitable form. I consider the no-
tations �a, b� and �a, b� necessary and important inno-
vations, and I hope that mathematicians will adopt these
symbols.

References

[1] Florian Cajori. A History of Mathematical
Notations. Dover, New York, 1993. Reprint.
Originally published in two volumes in 1928 and
1929 by �e Open Court Publishing Company,
Chicago.

[2] Friedrich Forssman and Ralf de Jong.
Detailtypografie. Hermann Schmidt Verlag, Mainz,
fourth edition, 2008.

[3] Ronald L. Graham, Donald E. Knuth, and Oren
Patashnik. Concrete Mathematics. Addison-Wesley,
Reading (MA), second edition, 1994.

[4] Donald E. Knuth. �e TEXbook, volume A of
Computers and Typesetting. Addison-Wesley,
Reading (MA), 1986.

[5] Donald E. Knuth. �e METAFONTbook,
volume C of Computers and Typesetting.
Addison-Wesley, Reading (MA), 1986.

[6] Donald E. Knuth. Fundamental Algorithms,
volume 1 of �e Art of Computer Programming.
Addison-Wesley, Reading (MA), third edition,
1997.

[7] Johannes Küster. Mathematischer Formelsatz,
pages 203–233. In Detailtypografie [2], fourth
edition, 2008.

[8] Johannes Küster. Sonderzeichen: Mathematikzeichen,
pages 382–389. In Detailtypografie [2], fourth
edition, 2008.

[9] Fritz Reinhardt and Heinrich Soeder. dtv-Atlas
Mathematik, volume 1: Grundlagen, Algebra
und Geometrie. Deutscher Taschenbuch Verlag,
München, twel�h edition, 2001.

[10] Fritz Reinhardt and Heinrich Soeder. dtv-Atlas
Mathematik, volume 2: Analysis und angewandte
Mathematik. Deutscher Taschenbuch Verlag,
München, eleventh edition, 2003.

[11] R. J. Simpson and Doron Zeilberger. Necessary
conditions for distinct covering systems with
square-free moduli. Acta Arithmetica, 59(1):59–70,
1991.

[12] Friedrich Wilhelm Weitershaus, editor. Duden
Satz- und Korrekturanweisungen (Duden
Taschenbuch Band 5). Bibliographisches Institut,
Mannheim, fi�h edition, 1986.

⬦ Johannes Küster

typoma GmbH

Karl-Stieler-Str. 4

D–83607 Holzkirchen

Germany

info (at) typoma dot com

http://www.typoma.com

TUGboat, Volume 31 (2010), No. 2 229

Math never seen

230 TUGboat, Volume 31 (2010), No. 2

Are virtual fonts obsolete?

Boris Veytsman

[Integrating third-party fonts] is
unfortunately a messy topic. Forget
about it unless you want to delve into many
details of the TEX installation.

TEX Live Manual [1]

Abstract

Virtual fonts (VF) were created to address a short-
coming of TEX fonts: each slot address occupied ex-
actly one byte, so there were no more than 256 dif-
ferent characters per font. Later, when PostScript
fonts got popular, VF became the way of choice for
integration of these fonts with TEX. Today new font
formats can be directly read by the modern TEX en-
gines, and, for example, X ETEX can directly work
with system fonts. There is a temptation to declare
VF obsolete.

In this paper we show that there is much more
in VF than just making PostScript fonts available
for TEX. There are various tricks developed over
the years that use VF technology to achieve new
striking effects.

The aim of this paper is to convince the users
to learn how to employ VF, and to convince the pro-
grammers of the new engines to provide the interface
for font manipulation comparable to VF.

1 Introduction

Several years ago I attended a presentation of X ETEX
by Jonathan Kew. He typed in the editor

\font\x="Adobe Garamond Pro" at 11pt

\x This is Adobe Garamond Pro

and then clicked “Compile”. The preview window
showed the phrase — in the beautiful Adobe Gara-
mond Pro! I remember coming to Jonathan after
the presentation and telling him, “You just closed
one of the sources of my income!” I knew that for
decades the use of third party fonts in TEX was one
of the most difficult endeavors. It had a certain pos-
itive value for a consultant like me — and now this
was going to change.

I was wrong. Actually in the years after that
meeting I had a number of virtual font projects
sponsored by various customers. Also, I learned a lot
about fonts in TEX and came to the understanding
that there is much more there than just typesetting
the text in this or that third-party font.

In this paper I try to discuss some tricks pos-
sible with the traditional VF and compare them to
the mechanism provided by X ETEX.

2 A bit of history

In its early days TEX was practically synonymous
with Computer Modern fonts. If you met a TEX
document, you could bet it was typeset in Com-
puter Modern. On the other hand, if you saw Com-
puter Modern, you knew this text was typeset by
TEX. Many people wanted to use the large num-
ber of free and commercial fonts available. How-
ever, there were two main obstacles to the use of
these fonts with TEX: first, they were not in the
METAFONT format, and second, they were not rich
enough. TEX expected to find a lot of characters
used for mathematical typesetting etc., and many
free or commercial fonts lacked them — or did not
have them in the proper places.

There were some hacks floating around — until
Knuth proposed a unified interface of virtual fonts
in TEX [7]. This interface used the fact that TEX
itself is quite agnostic about the way the fonts are
internally presented. What is needed is metric infor-
mation: the dimensions of the letters, ligatures and
kerning. The job of putting the letters themselves
on paper or screen is done by drivers like dvips.
The idea of virtual fonts is that the developer should
create a metric file and a virtual font description
with the instructions for the driver. These instruc-
tions could be quite complex, like “Take the letter A
from this position in the file abca, the letter B from
that position in the file xyzz, . . . ”. They also could
contain transformations of the letters: expansion,
contraction, slanting, kerning and ligature changes.

In this way one can overcome both obstacles for
using “foreign” fonts with TEX. The font files could
be in any format as long as the drivers recognized
them. Also, if a font lacked certain characters, they
could be taken from another font, maybe created
with the explicit purpose to extend the original font
for TEX.

The creation of virtual font files involved some
repetitious steps. Thus there were several attempts
to automate them. The most successful of them
is probably the widely used program fontinst [5].
There is a great guide for this program by Philipp
Lehman [8] and a very detailed discussion of many
related topics including mathematical typesetting in
the book by Alan Hoenig [4]. Still, even with these
resources the setup of virtual fonts remains one of
the most complex tasks for an apprentice TEXnician.
Knuth gave his paper [7] a very apt title: virtual
fonts indeed provide more fun to grand wizards.

In the next section we explore some tricks with
virtual fonts.

Boris Veytsman

TUGboat, Volume 31 (2010), No. 2 231

3 Some virtual font tricks

As discussed in the previous section, the most direct
application of virtual fonts is adding mathematical
symbols to the free and commercial fonts that lack
them. There are several good reviews of the many
fonts created in this way. They include the survey
of free fonts by Hartke [3], the “rogues gallery” in
Hoenig’s book [4], the tables in the LATEX Compan-
ion [9], etc.

A good example of virtual fonts is the mathptmx
package from PSNFSS [13]. It uses Times and Sym-
bol PostScript fonts for mathematical typesetting
(Figure 1).

Journal d’Analyse Mathematique uses Times,
but with a slight modification: the letters are ex-
panded in the horizontal direction. Math is pro-
vided by Belleek fonts [6]. Both the expansion and
addition of math symbols are done with virtual fonts
(Figure 2).

This example shows that VF can be used not
only for mathematical typesetting, but also for text
effects. Let us expand on this topic.

Eric Gill thought that italics should be used
with lower case only, and the capitals should be
taken from a matching Roman font [2]. To check
the appearance of such combinations it is easy to
“gillize” common fonts using the VF technique. The
package gillcm [16] was created to demonstrate the
setup of VF using this task. In Figure 3 we combine
Roman uppercase letters with unslanted lower case
italics.

Many examples of VF tricks can be found in the
book [4]. In Figure 4 the Mantinia font is shown. Its
unusual ligatures and swashes give the font a high
decorative value. Of course the original font had all
these characters, but it lacked ligature rules: evi-
dently the designer had in mind manual typesetting
only. Alan Hoenig added the ligatures through VF.

While this version of the font is nice to look at,
its readability may suffer. Therefore Alan created
another, more “subdued” version of this font usable
for titling (Figure 5).

We conclude this section with the example of
the use of Unicode fonts. The situation with these
fonts is in a sense opposite to the situation with non-
TEX fonts described in Section 2. They have many
glyphs in one font — while TEX expects them to be
in the different text and mathematical ones. How-
ever, VF can help in this case too. We can extract
ranges of characters from a Unicode font and assign
them to different TEX virtual fonts.

An example of this use of VF is mathgifg pack-
age [14] for use of Georgia font in text and math with

TEX. Georgia is a nice Unicode font from Microsoft
distributed with more or less recent Windows instal-
lations. It has Greek characters and mathematical
symbols. The US Army Corps of Engineers spon-
sored the creation of TEX support for typesetting
text and mathematics with it. The package [14] first
separates the font into TEX virtual fonts, and then
combines them for typesetting. Note that the Geor-
gia font has “old style” (lowercase) numerals. While
some designers used lowercase numerals in math in
the past, it is probably too disturbing for a modern
eye, so the package uses Franklin Gothic numerals
(from another font distributed by Microsoft) in math
and Georgia numerals in text. The results are shown
in Figure 6.

4 Font setup with X ETEX

X ETEX at present has the full support of virtual
fonts, as with other TEX engines. However, in this
section we discuss the features specific to this engine
which provide another way of dealing with fonts.
Namely, X ETEX uses system libraries for font han-
dling, and thus can “see” and directly use all fonts
available in the current computer.

One of the striking things about X ETEX is the
great ease with which third party text fonts are in-
cluded in TEX documents. In this section we will
discuss the LATEX variant of fonts support based
on fontspec [12] package. However, the correspond-
ing variants for other flavors of TEX are relatively
straightforward to set up. Actually the example in
Section 1 was written with plain TEX commands.

With LATEX and fontspec one can define ad hoc
font selection schemes “on the fly”. Consider the
following invocation:

\fontspec[BoldFont={Helvetica Neue}]%

{Helvetica Neue Ultralight}

As the result of this command Helvetica Neue Ul-
tralight becomes the new Roman family. Moreover,
Helvetica Neue becomes its bold variant, so macros
like \bfseries and \textbf switch to this font.

The setup of mathematics fonts depends on the
features of these fonts. If the OpenType font sup-
ports mathematics typesetting, then the experimen-
tal package unicode-math [11] can be used with the
following easy interface:

\setmathfont[math-style=TeX]{Cambria Math}

However, if no mathematics support is provided
by the font designer, then the situation becomes
more complicated. The mathspec package [10] is in-
tended to set up such fonts for typesetting mathe-
matics in TEX. It has commands for font selection
like \setmathsfont, \setmathrm, \setmathsf, etc.

Are virtual fonts obsolete?

232 TUGboat, Volume 31 (2010), No. 2

Theorem 1 (Residue Theorem). Let f be analytic in the region G except for the isolated singularities

a1,a2, . . . ,am. If γ is a closed rectifiable curve in G which does not pass through any of the points ak and if

γ ≈ 0 in G then

1

2π i

∫
γ

f =
m

∑
k=1

n(γ;ak)Res(f ;ak).

Theorem 2 (Maximum Modulus). Let G be a bounded open set in C and suppose that f is a continuous

function on G− which is analytic in G. Then

max{| f (z)| : z ∈ G−} = max{| f (z)| : z ∈ ∂G}.

AΛ∆∇BCDΣEFΓGHIJKLMNOΘΩ℧PΦΠΞQRSTUVWXYϒΨZ 1234567890

aαbβ c∂dδeεε f ζξ gγhh̄ℏιiı j jkκκlℓλ mnηθϑoσςφϕ℘pρρqrstτπuµνvυwωϖxχyψz ∞ ∝ /0∅dð �

Figure 1: Times text with Symbol math (mathptmx package [13]), from [3]

Theorem 1 (Residue Theorem). Let f be analytic in the region G except for the isolated

singularities a1, a2, . . . , am. If γ is a closed rectifiable curve in G which does not pass through any

of the points ak and if γ ≈ 0 in G then

1

2πi

∫
γ

f =

m∑
k=1

n(γ; ak)Res(f ; ak).

Theorem 2 (Maximum Modulus). Let G be a bounded open set in C and suppose that f is a

continuous function on G− which is analytic in G. Then

max{|f (z)| : z ∈ G−} = max{|f (z)| : z ∈ ∂G}.

A31∇BCD6EFŴGHIJKLMNO2�℧P854QRSTUVWXYϒ9Z 1234567890

aαbβc∂dδeǫεfζξgγhh̄ℏιiıjkκκlℓλmnηθϑoσςφϕ℘pρ̺qrstτπuµνvυwω̟xχyψz ∞ ∝ ∅∅dð �

Figure 2: Times expanded text with Belleek math (jamtimes package [15])

Properly speaking, there is no such thing as an alphabet of italic capitals, and where upright
or nearly upright italics are used ordinary upright Roman capitals go perfectly well with them.
¶Eric Gill, “An Essay on Typography”, 1931.

Properly speaking, there is no such thing as an alphabet of italic capitals, and where upright
or nearly upright italics are used ordinary upright Roman capitals go perfectly well with them.
¶Eric Gill, “An Essay on Typography”, 1931.

Figure 3: Comparison of Computer Modern Italics with “Gillized” Computer
Modern Italics: unslanted italic lowercase and Roman uppercase (package
gillcm [16])

Boris Veytsman

TUGboat, Volume 31 (2010), No. 2 233

Figure 4: Mantinia font with swashes and ligatures (from [4])

Figure 5: Mantinia font (titling) and Galliard font (body text). From [4]

Are virtual fonts obsolete?

234 TUGboat, Volume 31 (2010), No. 2

Theorem 1 (Residue Theorem). Let f be analytic in the region G except for the isolated singu-
larities a1, a2, . . . , am. If γ is a closed rectifiable curve in G which does not pass through any of the
points ak and if γ ≈ 0 in G then

1

2πi

∫
γ

f =

m∑
k=1

n(γ;ak)Res(f ;ak).

Theorem 2 (Maximum Modulus). Let G be a bounded open set in C and suppose that f is a
continuous function on G− which is analytic in G. Then

max{|f (z)| : z ∈ G−} = max{|f (z)| : z ∈ ∂G}.

AΛ∆∇BCDΣEFΓGHIJKLMNOΘΩ℧PΦΠΞQRSTUVWXYΥΨZ 1234567890

aαbβc∂dδeǫεf ζξgγhh̄ℏιiıjkκκlℓλmnηθϑoσςφϕ℘pρ̺qrstτπuµνvυwω̟xχyψz ∞ ∝ ∅∅dð �

Text numerals: 123567890
Math numerals: 123567890

Figure 6: Georgia and Franklin Gothic fonts (mathgifg package [14])

One can use these commands to tell TEX to use a
certain font for one of TEX’s mathematical alpha-
bets, for example

\setmathsfont(Digits)%

[Numbers={Lining,Proportional}]%

{Minion Pro}

\setmathsfont(Latin)%

[Numbers={Lining,Proportional}]%

{Minion Pro}

\setmathsfont(Greek)%

[Numbers={Lining,Proportional}]%

{Minion Pro}

The fontspec package allows for selecting font
variants and alternates if these are provided by the
font designer, for example

\fontspec[Variant=1]{Zapfino} Zapfino 1

\fontspec[Variant=2]{Zapfino} Zapfino 2

...

The same is true for variants in ligatures and
kerning, for example

\fontspec[Ligatures=Rare]%

{Adobe Garamond Pro} ...

\fontspec[Ligatures=NoCommon]%

{Adobe Garamond Pro} ...

This very short discussion of the possibilities of
X ETEX shows that it can help you to get from the
font everything the font designer put there. Since
OpenType format is very rich in features, this may
be quite a lot indeed.

However, this approach has a flip side: it al-
lows you to get from the font only what the font
designer put there. Thus it assumes an ideal world
of wise and TEX-aware font designers. If a font de-
signer does not envision TEX-like automatic typeset-

ting and, for example, assumes manual selection of
characters for ligatures and manual kerning adjust-
ments, you are out of luck.

In the past most font designers were of the sec-
ond category (see the description of font adjust-
ments in [4]). They often did not care about any-
thing but either the crude typesetting without liga-
tures or the manual work with the so called expert
fonts. It is true that OpenType provides many fea-
tures for automatic typesetting; whether the font
designers are going to use them is quite a different
question.

5 Conclusions

The technique of virtual fonts, initially developed
to allow the inclusion of third party fonts in TEX,
became quite versatile in many different tasks. They
can be used to achieve various effects in text and
math. Unfortunately, they are known for their steep
learning curve.

X ETEX provides an alternative way to incorpo-
rate third party fonts in TEX. This way allows using
the full potential of such fonts — which can be im-
pressive for feature-rich OpenType fonts. However,
the “old” technique of virtual fonts allows low level
font manipulation, including mixing different fonts.
This manipulation is useful for adding to the font
new features, not foreseen by the font creators.

References

[1] Karl Berry, ed. The TEX Live Guide. TUG,
July 2010. http://tug.org/texlive.

[2] Eric Gill. An Essay on Typography. With
a new introduction by Cristopher Skelton.
David R. Godine, Boston, 2007.

Boris Veytsman

TUGboat, Volume 31 (2010), No. 2 235

[3] Stephen G. Hartke. A Survey of Free Math
Fonts for TEX and LATEX, 2006. http://

mirror.ctan.org/info/Free_Math_Font_

Survey.

[4] Alan Hoenig. TEX Unbound: LATEX and TEX
Strategies for Fonts, Graphics, and More.
Oxford University Press, USA, 1998.

[5] Alan Jeffrey, Rowland McDonnell, and Lars
Hellström. fontinst: Font installation software
for TEX, December 2004. http://mirror.

ctan.org/fonts/utilities/fontinst.

[6] Richard Kinch. Belleek: Free replacement for
basic MathTime fonts, August 1998. http://

mirror.ctan.org/fonts/belleek/.

[7] Donald Knuth. Virtual fonts: More fun for
grand wizards. TUGboat, 11(1):13–23, 1990.
http://www.tug.org/TUGboat/Articles/

tb11-1/tb27knut.pdf.

[8] Philipp Lehman. The Font Installation Guide,
December 2004. http://mirror.ctan.org/

info/Type1fonts/fontinstallationguide.

[9] Frank Mittelbach, Michel Goossens, Johannes
Braams, David Carlisle, and Chris Rowley.
The LATEX Companion. Addison-Wesley
Series on Tools and Techniques for Computer
Typesetting. Addison-Wesley Professional,
Boston, 2nd edition, 2004.

[10] Andrew Gilbert Moschou. The mathspec

package, September 2009. http://mirror.

ctan.org/macros/xetex/latex/mathspec/.

[11] Will Robertson. Experimental Unicode
mathematical typesetting: The unicode-math

package, June 2010. http://mirror.ctan.

org/macros/latex/contrib/unicode-math/.

[12] Will Robertson and Khaled Hosny. The
fontspec package, June 2010. http://mirror.

ctan.org/macros/xetex/latex/fontspec/.

[13] Walter Schmidt. Using Common PostScript
Fonts with LATEX. PSNFSS Version 9.2,
September 2004. http://mirror.ctan.org/

macros/latex/required/psnfss.

[14] Boris Veytsman. LATEX Support for Microsoft
Georgia and ITC Franklin Gothic in Text and
Math, July 2009. http://mirror.ctan.org/

fonts/mathgifg/.

[15] Boris Veytsman. Expanded Times Roman
Fonts As Used in Journal d’Analyse
Mathematique, July 2010. http://mirror.

ctan.org/fonts/jamtimes/.

[16] Boris Veytsman. Unslanted Italic Computer
Modern Fonts Based on Eric Gill’s Ideas, July
2010. http://mirror.ctan.org/fonts/

gillcm/.

⋄ Boris Veytsman
Computational Materials Science

Center, MS 6A2, George Mason
University, Fairfax, VA 22030

borisv (at) lk dot net

http://borisv.lk.net

Are virtual fonts obsolete?

236 TUGboat, Volume 31 (2010), No. 2

TEX in the GLAMP world: On-demand
creation of documents online

Boris Veytsman and Leila Akhmadeeva

Abstract

The acronym GLAMP is used to denote a combi-
nation of GNU/Linux, Apache, MySQL and Perl,
Python or PHP, which now is one of the most com-
mon technologies for the creation of dynamic web
pages. In this paper we describe the use of this tech-
nology for automatic creation of medical pedigrees.

To make drawing pedigrees easy for medical
professionals, we put TEX and PostScript process-
ing of their input on a Web site (http://pedigree.
varphi.com). Here we cover both technical aspects
of this (integration of TEX with GLAMP) and the
preliminary results of using this site in an educa-
tional environment.

1 Introduction

One of the most popular Web packages today is
the combination of GNU/Linux operating system,
Apache HTTP server, MySQL database and Perl,
Python or PHP scripting language [15]. Michael
Kunze coined the acronym LAMP for such a com-
bination [6]. Following the advice of Richard Stall-
man [8] we prefer to use the term GNU/Linux in-
stead of Linux, so we use the acronym GLAMP in-
stead. However, the letter G here is silent, like in
‘GNU’, so both versions of the word sound the same.

When a web site needs to perform on-demand
typesetting, TEX seems to be a good choice for the
back-end typesetting engine. Fortunately, it can be
easily integrated in the GLAMP system (see, for ex-
ample [14]). In this paper we describe yet another
GLAMP/TEX solution, where we use TEX for the
on-demand typesetting of graphical material.

The problem we addressed here is the problem
of automatic creation of pedigree charts for genetic
researchers and medical professionals [1, 2, 7]. Ear-
lier we proposed a TEX/PSTricks-based program for
pedigree creation [10,12,13]. Its spreadsheet-like in-
terface turned out to be quite successful for non-
technical users. However, there remained a prob-
lem of cross-platform installation and technical sup-
port of a complex program on many different ar-
chitectures. At TUG’09 Karl Berry suggested we
circumvent this problem by creating a web-based
pedigree drawing tool. We followed his advice, and
created such tool at http://www.pedigree.varphi.
com. This paper describes the lessons learned from
making this tool and the preliminary user survey.

2 Some challenges

One of the challenges for using TEX on the web
is the power of this program. Powerful programs
are potential security risks. Even when TEX is re-
stricted from calling system programs (by disabling
the write18 mechanism), its ability to write files
may be dangerous [4]. There are ways to deal with
this problem: TEX can be limited to the current
directory (this is the default in the TEX Live distri-
bution [3]), and chroot may be used to additionally
enforce this restriction. We decided to circumvent
the challenge altogether: we do not allow the user
to run arbitrary TEX files on the server. Instead we
create the file from sanitized user input.

Another challenge is caused by the fact that
medical pedigrees are used for, well, medical pur-
poses. Laws in the USA and other countries enforce
rather strict rules for safeguarding the privacy of
medical records. Again, we chose not to implement
the infrastructure for storing users’ credentials and
compartmentalizing the sensitive data. Instead we
require the user to anonymize the patients’ names
and agree with the following statement:

� I agree to the Terms of Service and certify
that my input does not contain individually
Identifiable Health Information as defined by
HIPAA Privacy Laws in the USA and similar
laws of my jurisdiction.

Any attempt to create a pedigree without confirming
this statement fails with the gentle reminder to check
the box.

3 Under the hood: the missing M and
the not so silent G

The setup of the server is very simple. The user
input is collected with a spreadsheet-like interface
(see http://www.pedigree.varphi.com/cgi-bin/

pedigree.cgi). The result is fed to the Perl pro-
gram which uses our library [11] to create a TEX file,
which is processed by TEX/PSTricks program [9].

At this point an astute reader may have realized
that a part of the GLAMP system is missing: we
do not use MySQL or any other database. This is
true: while the program [11] was created with an
SQL interface in mind, we do not need it for the
pedigrees created with this online tool. However,
the letter M still plays a role in our solution.

We output the pedigrees in the format selected
by the user: TEX, DVI, EPS, PDF, GIF or PNG.
However, to lower the load on the server, we de-
cided to create only the files requested by the user.
This means that we need to decide which ones to

Boris Veytsman and Leila Akhmadeeva

TUGboat, Volume 31 (2010), No. 2 237

PSTOIMG = pstoimg -density 300 -antialias \

-aaliastext -transparent

%.dvi: %.tex

latex $<

%.ps: %.dvi

dvips -T"WIDTH cm, HEIGHT cm" -o $@ $<

%.pdf: %.ps

ps2pdf $<

%.png: %.ps

$(PSTOIMG) -type png $<

%.gif: %.ps

$(PSTOIMG) -type gif $<

.SECONDARY: chart.ps chart.dvi

Figure 1: Makefile for pedigree creation

generate — or regenerate if the input has been up-
dated. The trusted Unix make utility is the best
tool for this purpose (and it starts with M!). So
our program creates a special Makefile in the work-
ing directory (Figure 1). Note the special markers
WIDTH and HEIGHT: since PSTricks has trouble com-
municating with TEX to tell it the dimensions of the
chart, we calculate them separately and give them as
options to dvips. In this way we can create charts
exceeding “standard” paper dimensions.

The Makefile in Figure 1 uses the program
pstoimg. This is actually a wrapper around Ghost-

script; it is distributed as a part of the latex2html

package [5]. Therefore the letter G in our version of
GLAMP may not be silent after all.

4 Preliminary user survey

To test our program, we used the site http://www.

pedigree.varphi.com during the classes at Bashkir
State Medical University, Russia. There were 33 par-
ticipants: 20 Russian-speaking fourth year students,
6 English-speaking fourth year students, 7 English-
speaking first year students. The first year students
were taking a Genetics course, and the fourth year
students were taking a Clinical Neurology course.
For the first year students this was the first introduc-
tion to medical pedigrees, while the fourth year stu-
dents had some experience with manual creation of
pedigrees in earlier courses. All students were asked
to create their own pedigrees with our online tool.
Additionally, the fourth year students used the tool
to create pedigrees of their patients to be included
in the patients’ medical chart. The plotting of a pa-
tient’s pedigree for the academic medical chart is a
standard part of the curriculum for clinical classes.
Usually this chart is created manually.

The students were asked to fill a questionnaire
about their experiences. Some of their answers are
shown in Table 1.

Question Yes No Not Sure

1. Did you manage
to create your first
pedigree yourself?

83.9% 16.1% —

2. Do you plan to
use this program
in your studies?

93.9% 6.1% —

3. Do you plan to
use this program
in your future work?

75.8% 3.0% 21.2%

4. Do you like the
chart you drew
with the program?

100% — —

Table 1: Questionnaire answers

Class Number of responses

Biology 27
Genetics 24
Neurology 19
Internal diseases 4
Oncology 3
Obstetrics 3
Psychiatry 2
All clinical subjects 1

Table 2: Students’ responses about the classes that
can benefit from the use of the pedigree drawing
program

The ease of use of the program was assessed by
question 1 in Table 1 and by some specific questions.
We asked the students how much time it took to
create their first pedigree chart. The answers varied
from 2 minutes to 40 minutes with the average of 19
minutes. We also asked the students to rate the ease
of use of the software on a scale from 0 (impossible)
to 10 (no problem at all). The answers varied from
5 to 10 with the average of 8.9.

Those participants who answered affirmatively
to question 2 in Table 1 (“Do you plan to use this
program in your studies?”) were asked to specify for
which disciplines they would like to use the software.
It was an open-ended question: the students wrote
in the answers. Their responses are summarized in
Table 2.

The students were asked the traditional ques-
tion, what they liked and disliked the most about
the software (open-ended questions). Their answers
are shown in Table 3. Some of the problems found
by the students are corrected in the recent version
of the program. For example, it is now possible to
save the results and return to the pedigree later.

TEX in the GLAMP world: On-demand creation of documents online

238 TUGboat, Volume 31 (2010), No. 2

Feature Number of responses

What did you like most?
Easy to use 26
Fast 13
Functionality 12
Free 7
Beautiful results 6
Exact 5
Many output formats 1
Helps in genetic studies 1
What did you dislike most?
English only 12
Sometimes freezes 3
Cramped text 2
Online only 2
Only genetic relatives are plotted 2
Cannot save the input 2

Table 3: Features of the software most liked or
disliked by the students

We asked the students to rate their general im-
pression from the software on the scale from 0 (miser-
able) to 10 (outstanding). The answers varied from
7 to 10 with the average being 8.9.

Some pedigrees created by the students partic-
ipated in the study are shown in Figure 2.

5 Conclusions

TEX is a natural typesetting engine in the GLAMP

world. Our experience shows that it can be used not
only for creating texts, but also for creating graphi-
cal materials with charts like those for medical pedi-
grees. Our web site http://www.pedigree.varphi.

com demonstrates this point. We were successful in
using it for teaching medical students. Our prelim-
inary user survey demonstrates the potential of the
online tool for teaching, research, genetic consulting
and medical care.

Acknowledgements

One of the authors (LA) would like to acknowledge
the support from TUG, Russian Federation Presi-
dent’s Board for Support of Young Russian Scien-
tists and Scientific Schools (grant MD-1195.2008.7),
Russian Foundation for Basic Research (grants 06-
04-58811-z, 08-04-09280-mob-z, 09-04-08060-z, 10-
04-08177-z) and Ministry of Education and Science
of the Russian Federation (grant 1256).

References

[1] Robin L. Bennett, Kathryn Steinhaus
French, Robert G. Resta, and Debra Lochner

Doyle. Standardized human pedigree
nomenclature: Update and assessment of
the recommendations of the National Society
of Genetic Counselors. J. Genet. Counsel.,
17(424–433), 2008.

[2] Robin L. Bennett, Kathryn A. Steinhaus,
Stefanie B. Uhrich, Corrine K. O’Sullivan,
Robert G. Resta, Debra Lochner-Doyle,
Dorene S. Markei, Victoria Vincent, and
Jan Hamanishi. Recommendations for
standardized human pedigree nomenclature.
Am. J. Hum. Genet., 56(3):745–752, 1995.

[3] Karl Berry, ed. The TEX Live Guide. TUG,
July 2010. http://tug.org/texlive.

[4] Stephen Checkoway, Hovav Shacham, and
Eric Rescorla. Are text-only data formats
safe? Or, use this LATEX class file to pwn your
computer. In Leet’10. 3 USENIX Workshop
on Large Scale Exploits and Emergent Threats,
April 2010. http://www.usenix.org/event/

leet10/tech/tech.html.

[5] Nikos Drakos and Ross Moore. The
LATEX2HTML Translator, March 2005.
http://mirror.ctan.org/support/

latex2html.

[6] Michael Kunze. Freeware web publishing
system. c’t, 12:230, 1998. English translation
is available at http://web.archive.org/web/
20071212203835/http://www.heise.de/ct/

english/98/12/230/.

[7] Robert G. Resta. The crane’s foot: The rise
of the pedigree in the human genetics. J.
Genetic Couns., 2(4):235–260, 1993.

[8] Richard M. Stallman. Some confusing
or loaded words and phrases to avoid (or
use with care). http://www.gnu.org/

philosophy/words-to-avoid.html, 2010.

[9] Boris Veytsman and Leila Akhmadeeva.
Creating Medical Pedigrees with PSTricks and
LATEX, July 2007. http://mirror.ctan.org/

graphics/pstricks/contrib/pedigree/

pst-pdgr.

[10] Boris Veytsman and Leila Akhmadeeva.
Drawing medical pedigree trees with TEX
and PSTricks. TUGboat, 28(1):100–109, 2007.
http://www.tug.org/TUGboat/Articles/

tb28-1/tb88veytsman-pedigree.pdf.

[11] Boris Veytsman and Leila Akhmadeeva. A
Program for Automatic Pedigree Construction
with pst-pdgr. User Manual and Algorithm
Description, July 2007. http://mirror.ctan.

org/graphics/pstricks/contrib/pedigree/

pedigree-perl.

Boris Veytsman and Leila Akhmadeeva

TUGboat, Volume 31 (2010), No. 2 239

timerbak

II:1

maftucha

II:3

nafisa

II:2

usman

II:4

raviya

III:2

midchat

III:1

valiljan

I:1

safiulla

I:3

maylitbika

I:2

margiza

I:6

gilmiyaza

I:4

mortaza

I:5

ainur

IV:2

liliya

IV:1

mariam; 1935

I:2

muchamet; 1930

I:1

mubarak; 1930

I:3

raisa; 1936

I:4

rasul; 1962

II:4

anifa; 1959

II:6

nailia; 1958

II:1

ralif; 1960

II:7

flura; 1959

II:2

rida; 1963

II:5

fanusa; 1960

II:3

fanzila; 1965

II:8

rail; 1990

III:2

ulia; 1988

III:1

yamuna

II:4

sakharam

II:3

gyanuji

II:1

prayag

II:2

baliram

III:6

shevanta

III:4

atmaram

III:7

bhanudas

III:3

tanaji

III:5

narayan

III:8

devidas

III:1

shriram

III:2

dattrao

III:9

komal

V:2

namrata

V:1

pooja

V:3

mahepati

I:3

vitthal

I:1

kamal

I:2

kasa

I:4

santosh

IV:17

seema

IV:12

shivaji

IV:11

avinash

IV:13

kanchan

IV:14

shivdas

IV:2

bhagvat

IV:16

ganesh

IV:20

vinod

IV:21

sunita

IV:4

varsha

IV:1

udhav

IV:7

pradip

IV:19

sachin

IV:10

vilas

IV:15

ravi

IV:8

sudhakar

IV:6

anita

IV:5

vishnu

IV:9

yogesh

IV:18

punam

IV:3

Figure 2: Pedigrees created by students; used with permission

[12] Boris Veytsman and Leila Akhmadeeva.
Medical pedigrees with TEX and PSTricks:
New advances and challenges. TUGboat,
29(3):484, 2008. http://www.tug.org/

TUGboat/Articles/tb29-3/tb93abstracts.

pdf.

[13] Boris Veytsman and Leila Akhmadeeva.
Medical pedigrees: Typography and interfaces.
TUGboat, 30(2):227–235, 2009. http://

www.tug.org/TUGboat/Articles/tb30-2/

tb95veytsman-pedigree.pdf.

[14] Boris Veytsman and Maria Shmilevich.
Automatic report generation with Web,
TEX and SQL. TUGboat, 28(1):77–79, 2007.
http://www.tug.org/TUGboat/Articles/

tb28-1/tb88veytsman-report.pdf.

[15] Wikipedia. LAMP (software bundle). http://
en.wikipedia.org/wiki/LAMP_(software_

bundle), February 2010.

⋄ Boris Veytsman
Computational Materials Science

Center, MS 6A2, George Mason
University, Fairfax, VA 22030

borisv (at) lk dot net

http://borisv.lk.net

⋄ Leila Akhmadeeva
Bashkir State Medical University
3 Lenina Str. Ufa, 450000, Russia
la (at) ufaneuro dot org

http://www.ufaneuro.org

TEX in the GLAMP world: On-demand creation of documents online

240 TUGboat, Volume 31 (2010), No. 2

LATEX profiles as objects in the category of
markup languages

William F. Hammond

Abstract

The mathematical notion of “category” in the context
of markup languages raises the idea of widespread use
of reliable automatic translations between markup
languages.

LATEX profiles, which are dialects of LATEX with
a fixed command vocabulary where all macro ex-
pansions must be effective in that vocabulary, are
suitable domains for defining translations to other
profiles and, where sensible, to other markup lan-
guages.

The construction of reliable translators from sev-
eral journal-neutral LATEX profiles to many journal-
specific LATEX profiles would eliminate the need for
technical editing in the production flow for academic
journals.

1 Profiled usage of LATEX

We now have 15 years of experience with various
efforts to translate LATEX into HTML, the language
of the World Wide Web. We know that the task is
more difficult than it appeared to be to many of us
in the mid-1990s. Part of what makes LATEX difficult
to translate is that LATEX, contrary to the impres-
sion one might gain from an initial reading of Leslie
Lamport’s book [4], has never been entirely formal-
ized as a language unto itself independent of any
implementation for processing the language. Indeed,
the only implementation of LATEX is that originat-
ing with Lamport — now maintained by The LATEX
Project (http://www.latex-project.org/) — as a
very large macro package under TEX.

As slide 1 says, success with such translation
requires profiled usage of LATEX.

Slide 1: Translation of LATEX

Question: What works well with
translation software?

Answer: Profiled usage of LATEX.

• Carefully limited command vocabulary.

• Tuned translation software.

Slide 2 provides a succinct statement of what I
wish to suggest.

Slide 2: Today’s Suggestion

formalize profiled usage

1.1 LATEX profiles

What might be involved in formalizing profiled usage?
First, I am suggesting the notion of LATEX profile as
the framework for multi-purpose LATEX documents.
Slide 3 specifies what is meant by “LATEX profile”:

Slide 3: The Notion of LATEX Profile

• A dialect of LATEX with a fixed
command vocabulary where all macro
expansions must be effective in that
vocabulary.

• A language essentially equivalent
to an SGML document type with a
canonical XML shadow.

My project on Generalized Extensible LATEX-
Like MarkUp (GELLMU), http://www.albany.edu/

~hammond/gellmu/, begun in 1998, underlies what I
am suggesting today. The GELLMU “didactic pro-
duction system” provides, in particular, a fairly elab-
orate example of what might be regarded as a LATEX
profile although some names in its command vocab-
ulary are not part of current standard LATEX usage.
Slide 4 shows the source markup for a minimal doc-
ument instance under this profile.

Slide 4: A Simple Example

\documenttype{article}

\surtitle{LaTeX Profiles}

\title{\latex{} Profiles: An Example}

\begin{document}

It’s easier to learn to write in a

\latex{} profile than to learn to

write \latex.

The numbers pi, $i = \sqrt{-1}$,

and $e = \func{exp}(1)$ are related

by the equation

\[e^{i\pi} = -1 \ . \]

\end{document}

Slide 5 shows a typeset rendition of this minimal
document instance.

William F. Hammond

TUGboat, Volume 31 (2010), No. 2 241

Slide 5: LATEX Profiles: An example

It’s easier to learn to write in a LATEX profile
than to learn to write LATEX.
The numbers π, i =

√
−1, and e = exp(1)

are related by the equation

eiπ = −1 .

Slide 6: The GELLMU Project

• Demonstrates that the ideas in this pre-
sentation can be implemented

• Provides a didactic document type which
may be viewed as close enough to being a
LATEX profile that it can serve as a base
for constructing profiles

From the outset I should make clear that:

1. The totality of standard usage of classical LATEX,
as we have it, is not suitable for modeling as a
LATEX profile.

2. There should be many LATEX profiles.

1.2 HTML translation history

A close examination of our 15 years of experience
with the most successful projects for the automatic
translation of LATEX to HTML will suggest that such
translations should take place in two stages: (a) first,
capture the LATEX document as an XML document
under a document type that closely models LATEX,
and (b) second, translate from that document type
to HTML. This is, in fact, the design in the GELLMU

project (see [6], [7], and [8]) except that GELLMU

source, though LATEX-like, is not LATEX nor a dialect
of present LATEX.

The two stage design is also integral to the re-
markably successful translator LaTeXML,1 initiated
around 2001 at the U.S. National Institute of Stan-
dards and Technology (NIST) under the very ca-
pable leadership of Bruce Miller for the purpose
of providing a translation route to HTML (actu-
ally XHTML+MathML) for the NIST Handbook of
Mathematical Functions. As time passed LaTeXML
became the translation engine for the ambitious
project “arXMLiv”,2 led by Michael Kohlhase of Ja-
cobs University in Bremen, for translation to XHTML

+MathML of Paul Ginsparg’s large e-print archive,3

originally housed at Los Alamos and now located at
Cornell.

1 http://http://dlmf.nist.gov/LaTeXML/
2 http://kwarc.info/projects/arXMLiv/
3 http://www.arxiv.org

An older very successful project for transla-
tion from LATEX to HTML (including, as desired,
XHTML+MathML) is tex4ht,4 developed by the late
Eitan Gurari of Ohio State University, in the years
after 1995. While its core technique is the use of
special-loading in DVI files generated by LATEX with
tex4ht macros, since the time that the project’s scope
was extended to generate a number of XML formats
other than HTML, it has seemed clear to me that
the tex4ht design would be improved by generating
XML under a document type modeling the supported
parts of LATEX and then using standard XML libraries
for translation to HTML and the various other XML

document types.

2 The advantage of using a LATEX profile

The crux of the problem in translating LATEX doc-
uments to HTML is that LATEX, as a whole, is not
well-defined as a language unto itself. In the LATEX
community there is a well-known “newbie” question:
How can I know if my LATEX document is correct?
A commonly heard answer is that a LATEX document
is correct if it runs seamlessly through LATEX, the
program.5

The whole of LATEX, with maximally sane mixing
and matching of packages and arbitrary “legal” (see
Lamport [4], Appendix E) excursions into the world
of plain TEX, is suitable for translation to printer
languages (either specific printer languages or, more
commonly DVI and PDF) but not suitable for reliable
automatic translation to HTML or to common author-
level document formats.

2.1 Language specification

When a list of LATEX commands, perhaps 500 to
1500 in number,6 is fixed, and when rules for usage
of those commands in relation to each other, i.e.,
what commands are allowed to appear in a given
context, are given, then one has something that is
essentially equivalent to an SGML7 document type.
It is straightforward to construct an XML8 shadow.

4 http://www.cse.ohio-state.edu/~gurari/TeX4ht/
5 A tougher standard, probably unreasonably tough, might

be that a LATEX document is correct if it runs through LATEX
and also through the tex4ht driver script "mzlatex" for gen-
erating XHTML+MathML.

6 Imagine culling these commands from the LATEX core
and from one’s favorite packages; but note that one is just
assembling a list of commands and is not in any way thereby
adopting segments of packages.

7 Standard Generalized Markup Language, an ISO stan-
dard. See Goldfarb’s Handbook [2] for a copy of the standard,
and see http://www.sgmlsource.com/ for amendments to the
standard.

8 Extensible Markup Language, a World Wide Web Con-
sortium (W3C) standard [1].

LATEX profiles as objects in the category of markup languages

242 TUGboat, Volume 31 (2010), No. 2

The reason for the dual track is that dialects of clas-
sical LATEX can be more closely modeled with SGML

than with XML, which is SGML dumbed down for
use on the World Wide Web. The difference here
between SGML and XML is a question of convenience
for authors. For example, if we want blank lines to
begin new paragraphs without the tediously redun-
dant explicit closing of previous paragraphs, then we
want the umbrella of SGML in-house for the formal
structuring of a LATEX profile rather than the XML

umbrella.
When a document language is implemented un-

der the SGML umbrella, then

1. It is possible to know with varying degrees of
precision, as required, when a document instance
is technically correct.

2. Correct document instances can be translated
automatically to other suitable formats with a
very high degree of reliability.

3. Software libraries are available for most com-
puter languages to facilitate automated trans-
lation and other forms of automatic processing
such as, for example, automatic extraction of
metadata.

2.2 Categories: A metaphor

At this point it is relevant to mention the mathemat-
ical notion of category.

Slide 7: Notion of Category

• A category consists of:

1. Objects

2. Arrows between objects

• Rule: An arrow followed by a second is
also an arrow

• Relevance: to suggest a way of thinking
about markup

• (No plans for actually using category
theory)

My reason for introducing the concept of cate-
gory here is not for the purpose of applying category
theory but for the purpose of suggesting different
ways of thinking about how the community handles
its documents. In particular, I’m trying to suggest
a way of thinking about how the systematic use of
translations between document formats can improve
the way we operate with our documents. The largest
relevant category here is the category of all markup
languages:

Slide 8: The Category of Markup
Languages

• Markup languages are the objects

• Translations are the arrows

Slide 9 shows the principal objects and arrows
in the category of markup languages associated with
the GELLMU didactic production system.

Slide 9: Objects and Arrows in GELLMU

GELLMU

source
SGML

Outside

SGML

source

Author-

level

XML

PDF HTML

Classical LATEX is, more or less, a markup lan-
guage. While many useful arrows can point toward
LATEX, few useful arrows point from LATEX toward
markup languages other than printer languages.

Slide 10: Classical LATEX: An object in
the category

(to the extent that classical LATEX

is a well-defined language)

• LATEX is a reasonable translation target
(for author-level markup languages).

• LATEX is a poor domain for translation to
languages other than printer languages.

Classical LATEX does not fall under the umbrella
of SGML, but classical HTML does. While classical
HTML is not under the umbrella of XML, there is a
variant of HTML called XHTML that is.

William F. Hammond

TUGboat, Volume 31 (2010), No. 2 243

2.3 SGML and XML

Slide 11: SGML & XML

• SGML is a subcategory of the category
of all markup languages

• XML is a subcategory of SGML

• XML is SGML made suitable for the
World Wide Web

SGML is designed so as to facilitate the construc-
tion of arrows emanating from an SGML document
type.

Slide 12: Good domains for translation

• Author-level SGML and XML document
types are, by design, good domains for
translation, i.e., arrows can flow from
these document types.

• Arrows can be “chained”; these pipelines
work well.

Let me suggest that in a properly designed sys-
tem the chaining of arrows, i.e., translations, should
take place at the command line. This makes it pos-
sible for the user to switch components (translators)
from time to time, and it provides the opportunity
for the user to run correctness tests at intermediate
stages.

While the use of translations between document
formats has not been part of regular LATEX practice,
the use of translations has not been far away.

2.4 Example: Texinfo

Texinfo, the language of the GNU Documentation
System, was originally a vehicle for the simultaneous
generation from a single source of (1) print output
(via DVI) and (2) “Info”, an early form of hypertext
predating HTML. Historically, Texinfo had been
processed by the TEX engine with Texinfo macros
for print and either by the GNU Emacs Lisp engine
or by a free-standing C program, called makeinfo, for
Info hypertext. When HTML came along, it became
easily possible for the program makeinfo to generate
HTML as well as Info. It has been obvious from
the beginning to anyone asking the question that
Texinfo, which has a careful language definition, is
equivalent to an SGML document type. This was
formalized in the year 2000 with Daniele Giacomini’s
Sgmltexi,9 and a few years later an independent XML

9 http://www.archive.org/details/sgmltexi

version of Texinfo was incorporated in the Texinfo
distribution.

Because of its different markup syntax and com-
mand vocabulary relative to LATEX, it is not sensible
to think of Texinfo as a LATEX profile. But aside
from those differences, it is a long-standing example
of something that is the same type of object as a
LATEX profile.

As an object in the category of markup lan-
guages Texinfo can serve usefully as both origin and
target for arrows. This is often the case with author-
level SGML and XML document types.

2.5 Example: The tdsguide document class

Another instance of the use of format translations lies
in the production during the late 1990s of the spec-
ification document for the TEX Directory System
(TDS), http://mirror.ctan.org/tds.zip. Ulrik
Vieth devised a set-up under which the TDS specifi-
cation could be written in LATEX and processed either
as a LATEX document or as a Texinfo document (for
Info and HTML outputs). Of course, there was a
finite list of LATEX commands (and environments)
associated with the TDS LATEX source. In effect, this
system can be said to amount to the ad hoc con-
struction — not formalized — of (1) a LATEX profile
and (2) a program for translating that LATEX profile
to Texinfo.

Slide 13: tdsguide: Two Routes to PDF

TDS

source
Texinfo

PDF

Note that although the LATEX source tds.tex

is very nicely structured, there are two reasons why
a direct-to-html translation program might be ex-
pected to have trouble with it. First, it is written
under the document class tdsguide; I am not aware
of any direct-to-html translator with knowledge of
that document class. Second, the document uses
manmac syntax, which is part of plain TEX rather
than LATEX.

Moreover, inasmuch as it is reasonable to think
about constructing a translation to regular LATEX
from any author-level XML document type, it is, in
particular, reasonable to imagine the possibility of

LATEX profiles as objects in the category of markup languages

244 TUGboat, Volume 31 (2010), No. 2

someone constructing a translation from (the XML

guise of) Texinfo to LATEX. That would offer a third
(and different) route to PDF for tdsguide documents.
Beyond that it is reasonable to think about construct-
ing a translation from Texinfo to GELLMU article,
and, following that with the translation to LATEX
provided for GELLMU article would provide a fourth
route to PDF for tdsguide documents.

3 How LATEX profiles might be deployed

There are many advantages.

3.1 Traditional LATEX authors

We know that a very substantial portion of the
community of LATEX authors is interested in be-
ing able to “pull” HTML from LATEX documents.
There are frequent questions in the Usenet news-
group comp.text.tex about using translation pro-
grams. There is a recurring theme in discussions
there where the participants are seeking a LATEX au-
thoring interface — a better form of LATEX markup —
that is robust for translation to other formats, par-
ticularly HTML. Another recurring theme that is
sometimes intertwined with the former theme is that
of having a version of LATEX that enables an author
to focus on content. Of course, there is some irony
in this latter theme in that Lamport in his book [4]
explicitly states that this is the purpose of LATEX —
as is indeed the case, when LATEX is used well. Thus,
the latter theme may be interpreted to be about
somehow “enforcing” the use of LATEX as Lamport
intended.

One or more LATEX profiles sponsored by the
LATEX project could meet these requests.

3.2 LATEX for beginners

With a suitably literate system for constructing
LATEX profiles it should be a relatively simple matter
to produce a command glossary for a given LATEX
profile.

Combine the availability of a definitive com-
mand glossary with the enforcement of sane markup
provided by routine structural validation in the pro-
cess of running LATEX on a document instance under
a LATEX profile, and it is not difficult to see why
it should be easier for a beginner to learn a LATEX
profile than to learn classical LATEX.

3.3 LATEX’s interface with established
SGML document types

Although provision for typesetting SGML and XML

has been a stated goal of the LATEX3 Project, almost
all of the Project’s work so far has been focused
on developing the infrastructure for writing docu-

ment classes and packages. The community is just
beginning to harvest the results of that work.

Another aspect of the situation with SGML and
XML in relation to LATEX is that while LATEX is used
by a very large community of authors, it does not
seem to be the case that large crowds of original au-
thors have migrated to well-known document types
such as that of the Text Encoding Initiative (TEI),
http://www.tei-c.org, which provides a vehicle
for capturing electronic versions of classical printed
texts, and the DocBook10 document type, of the
Organization for the Advancement of Structured In-
formation Standards (OASIS), oriented (like Texinfo)
toward documentation of technical work.

Well supported SGML and XML document types
such as these typically are accompanied by format-
ting code for reaching both HTML for online presen-
tation and PDF for print presentation.

Some tentative and rather incomplete experi-
ments11 I have undertaken, with the GELLMU di-
dactic document type playing the role of a LATEX
profile, suggest to me that the process of formatting
SGML and XML documents for print and HTML can
be improved by first translating to a suitable LATEX
profile. This may seem contrary to common sense.
The first point, however, is that numbering and cross-
references can be worked out at an early stage, so
that one can have consistency in this regard between
the print and HTML outputs. The second point is
metaphorical. Think of the trip from a source docu-
ment to an end format as a downhill journey. One
can jump the entire distance, or one can move more
slowly, checking in at way stations along a path; at
each of these stages one strives to retain as much
as possible for that stage of the author’s expressed
intention as found in the source.

3.4 Suggestions for LATEX evolution

Slide 14 presents a capsule description of what I
think the LATEX project should undertake in order
to support the generation of HTML and other non-
traditional formats from LATEX source.

Because the LATEX project needs to continue
to provide support for legacy documents, a docu-
ment instance written under a LATEX profile must
be clearly identifiable at the outset. My suggestion,
used from the outset in the GELLMU project, is that
one of these new document instances, prepared under

10 http://www.oasis-open.org/docbook/
11 These involved using sgmlspl, about which there is a

section in The LATEX Web Companion [3], and which is the
staged translation workhorse in the GELLMU project, to be-
gin building a translator from DocBook to GELLMU article,
sufficient for handling four particular document instances.

William F. Hammond

TUGboat, Volume 31 (2010), No. 2 245

a LATEX profile, should begin with \documenttype

rather than \documentclass.

Slide 14: Suggestion for the LATEX
Project

• Sponsor one or more reference profiles.

• Sponsor translations from reference
profiles to PDF and HTML.

The argument of documenttype should be the
name of the root element in the XML document
type corresponding to the LATEX profile being used.
The name of the root element in an XML document
type falls far short of specifying completely what
document type definition (command list) is involved.
With GELLMU \documenttype has an option whose
content is typically a string that serves as a key
to (or name for) a data structure that has been
made known to the syntactic translator. (See §3.1
of the GELLMU Manual [5].) If this option is miss-
ing, the syntactic translator looks for a default value
for that key corresponding to the name of the root
element. While presently in GELLMU the document-
type option points to information characterizing the
document type and style choices are determined by
the manner of running processors on a document
instance, it would be possible with LATEX profiles, if
desired, to incorporate style choice information in
the data structures behind these keys.

As with the ad hoc system created for the TDS

specification (section 2.5) there will be various choices
for processing a document instance prepared under
a LATEX profile. In particular, there are a number of
choices for print formatting. Slide 15 indicates three
possibilities:

Slide 15: Paper Typesetting of a LATEX
Profile

There are several possibilities:

• Translate to classical LATEX

• Translate to ConTEXt

• Teach LATEX itself to digest the profile

In case it is not completely clear, I should point
out that the third of these routes might be substan-
tially different from the first two in that the latter
probably should involve first explicitly generating
the XML shadow of the document instance and then
translating from there. If one is also going to have
HTML output, it would, of course, be expected that
the HTML output would be translated from the same

XML shadow. With the third route, however, there
will be the question of bypassing generation of a
formal XML shadow and then losing the advantage
of structural validation — or maybe constructing the
XML shadow for structural validation and for staging
non-print outputs but generating the print output
directly from the source.

At this point I hope that the suggestions in Slide
16 will be obvious.

Slide 16: Publishing

• Encourage maintainers of XML

document types to reach HTML and
PDF by translating first to reference
LATEX profiles.

• Encourage authors to submit articles
to journals as LATEX instances under
reference profiles.

Technical editing by a journal should not be nec-
essary when an article is submitted under a reference
LATEX profile. The journal will have its own profile
that is a modification of a reference profile enabling
the journal to incorporate metadata. For each article
a journal will prepare metadata, and the journal’s
processing stream will merge that metadata with
the author’s source to generate a document instance
under the journal’s profile that, in turn, will be pro-
cessed to end formats using the journal’s formatting
software.

4 Issues with implementation

Within the GELLMU project, particularly its didac-
tic production system, there is a demonstration that
everything discussed here is possible. The question
is how these ideas might be introduced so as to pro-
vide as smooth as possible a transition in authoring
techniques for those LATEX users who wish to avail
themselves of the advantages of source markup that
is amenable to generalized processing rather than
only processing for print by TEX engines.

4.1 Syntax

The discussion following slide 15 suggests that a pos-
sible route to print for a document instance under a
LATEX profile might bypass the profile’s XML shadow.
There are related questions:

1. Might a modern engine like luatex be a good
vehicle for generating the SGML shadow? Simi-
larly, might such an engine be a better vehicle
than the GNU Emacs Lisp engine for generating
the Texinfo version of the TDS specification (see
section 2.5)?

LATEX profiles as objects in the category of markup languages

246 TUGboat, Volume 31 (2010), No. 2

2. Shall the engine used to generate the SGML

shadow use knowledge (unlike the GELLMU syn-
tactic translator) of the corresponding document
type definition12 in so doing? For example, shall
this stage of processing be allowed to know that
\frac takes two arguments, numerator and de-
nominator, and to know what the names of those
arguments are?

In regard to the second of these questions, if the pro-
cessor for generation of the SGML shadow is allowed
to use knowledge of command vocabulary, then the
syntactical requirements for a document instance
could be somewhat looser than in GELLMU. For
example, as in LATEX but not in GELLMU, spaces
could be allowed between the successive arguments
and options in a command invocation. This would
be both possible and, in a sense, author-friendly.
However, I do not recommend loose syntax. The
syntactic tightness of GELLMU was motivated by
that of Texinfo. The enforcement of syntactic tight-
ness can help prevent author errors. Moreover, the
overall design of processing is more “modular” when
the first stage deals only with syntax.

Also, if the processor for generation of the SGML

shadow incorporates knowledge of the command vo-
cabulary, then it may be reasonable for that processor
to write the XML shadow directly without first go-
ing through an SGML shadow and then relying on
an SGML parser and a subsequent processor with
knowledge of the command vocabulary to write the
XML shadow.

4.2 Counters

While LATEX has infrastructure for managing coun-
ters, there is nothing entirely parallel in the SGML

world. Document types can provide hooks for count-
ing, and the processors operating on those document
types can take those into account. Section 5.5 in the
GELLMU Manual [5], “Labels, References, and An-
chors”, explains the approach to this in the GELLMU

didactic production system.
Where there are to be multiple end formats of

a given document instance, it is best if counters,
numbering, and cross-references are managed cen-
trally, as in the GELLMU didactic production system,
so that there is consistency among the various end
formats.

12 That the GELLMU syntactic translator operates only on
syntax, largely without knowledge of command vocabulary,
enables the syntactic translator to be employed for writing
virtually any SGML or XML document type using directly the
vocabulary of that document type with the advantage for the
author of being able to use GELLMU’s newcommand with
arguments.

4.3 Names

For a faithful representation13 of source markup un-
der a LATEX profile as an XML document every item
of LATEX markup needs to have a name.

For the document type of the GELLMU didactic
production system the minimum number of char-
acters in a command name is three. One and two
character names are reserved for user macros. While
this is not necessary, I recommend it.

A number of frequently used commands in clas-
sical LATEX do not have names. The SGML and
XML shadows need names for them. For example, ~
is “non-breaking space” in LATEX. In the GELLMU

didactic production system it becomes the empty
element named nbs.14

While the argument in a LATEX command such
as \emph simply corresponds to the content of an el-
ement <emph> in the XML shadow, the arguments in
a command taking more than one argument such as
\frac need to be named. For example, \frac{3}{7}
would be represented in the XML shadow as

<frac><numr>3</numr><denm>7</denm></frac> .

4.4 Special ASCII characters

One commonly sees the 128 characters in the ASCII

character set in a table of 8 rows of 16 characters
each. The first 2 rows are control characters that
are, apart from newlines, non-printable and not used
either in LATEX or in SGML document types. Thus
there are 6 rows of 16 characters that are the print-
able ASCII characters except for the very last of
these, which is not printable and not relevant here.
Within the ASCII realm, we need to deal with the
95 printable characters. Of these 62 are alphanu-
meric — upper- and lowercase letters and numerals.
The 33 remaining printable ASCII characters are the
“special” ASCII characters.

Within the realm of electronic formats each of
the 33 special ASCII characters is a candidate for use
as a control character of some type. For this reason
it is wise that a name be provided for each of these
characters in a LATEX profile. This is the case in the
GELLMU didactic document type. Thus, for example,
{ has markup meaning in LATEX, and one may use
\{ to place an actual left brace in one’s document;
in the GELLMU didactic production system \{ is
represented by the empty element <lbr/> in the
XML shadow. The character @ is only a bit different.
Normally it is perfectly safe to use this character for

13 Faithful to the source apart from newcommands that
should appear expanded.

14 Of course, “non-breaking space” is the Unicode character
U+00A0, but writing that in the XML shadow would make
the shadow not a faithful representation of the source.

William F. Hammond

TUGboat, Volume 31 (2010), No. 2 247

itself in a LATEX document, and normally there is
no harm in passing it through as itself to the XML

shadow. If, however, the author, as in the case of the
TDS specification (see 2.5), wants to translate the
document to Texinfo, there is suddenly a problem
since @ has markup significance in Texinfo.

For each of these 33 special characters there
can be found contexts where they have markup or
“control” significance. Names should be available for
all of them.

4.5 Non-ASCII characters

Because TEX and LATEX originally handled only 7-bit
characters, LATEX has legacy names for characters
that are no longer strictly necessary or, at least, al-
most no longer strictly necessary in the sense that we
expect Unicode-capable modern TEX engines soon
to be mainstreamed. For example, there is the char-
acter ‘ l’, U+0142, which may be entered as \l15 in
LATEX and as ł in classical HTML.

For the long term it seems clear that names for
Unicode characters beginning with the Latin 1 range
of Unicode are not needed.

4.6 CSS

CSS stands for “Cascading Style Sheets”, which is
a web technology for controlling the appearance of
HTML and of arbitrary author-level XML document
types for display in mainstream web browsers.

At the point where some LATEX documents have
XML shadows, one may become interested in writing
CSS sheets for governing the display of those XML

shadows in web browsers. Beyond that the question
arises whether there might some day be gain in using
CSS sheets to govern, at least in part, the typesetting
of such a document by LATEX.

References

[1] Tim Bray, Jean Paoli, & C.M. Sperberg-McQueen,
Extensible Markup Language (XML) 1.0, World
Wide Web Consortium Recommendation, 10
February 1998, http://www.w3.org/TR/1998/
REC-xml-19980210, currently superseded by
http://www.w3.org/TR/REC-xml/.

[2] Charles F. Goldfarb, The SGML Handbook,
Oxford University Press, 1990.

15 In keeping with the thought that one-character names
should be reserved for user macros, the name for this character
in the GELLMU didactic production system is \csll.

[3] Michel Goossens and Sebastian Rahtz et al.,
The LATEX Web Companion, Addison-Wesley,
1999.

[4] Leslie Lamport, LATEX: A Document
Preparation System, 2nd edition, Addison-
Wesley, 1994.

[5] William F. Hammond, The GELLMU Manual,
2007, http://mirror.ctan.org/support/
gellmu/doc/glman.pdf, or http://mirror.

ctan.org/support/gellmu/doc/glman.xhtml

(XHTML+MathML).

[6] William F. Hammond, “GELLMU: A Bridge
for Authors from LATEX to XML”, TUGboat:
The Communications of the TEX Users Group,
vol. 22 (2001), pp. 204–207; also available
online at http://www.tug.org/TUGboat/

Contents/contents22-3.html.

[7] William F. Hammond, “Dual presentation
with math from one source using GELLMU”,
TUGboat: The Communications of the TEX
Users Group, vol. 28 (2007), pp. 306–311;
also available online at http://www.tug.

org/TUGboat/Contents/contents28-3.html.
A video recording of the presentation at
TUG 2007, July 2007, in San Diego is
available at http://www.river-valley.tv/

conferences/tex/tug2007/.

[8] William F. Hammond, “Multipurpose
LATEX-like markup for math”, talk given
in the AMS-MAA Special Session Putting
Math on the Web the Correct Way at the
Joint Mathematics Meetings in San Diego in
January 2008. This has not been published, but
HTML slides that link to many examples are
available on the web at http://math.albany.

edu/math/pers/hammond/Presen/JMM08/

Putting/.

⋄ William F. Hammond
Dept. of Mathematics & Statistics
University at Albany
Albany, New York 12222
USA
hammond (at) albany dot edu

http://www.albany.edu/~hammond/

LATEX profiles as objects in the category of markup languages

248 TUGboat, Volume 31 (2010), No. 2

TUG 2010 abstracts

Editor’s note: Many of the conference presentations
are available at http://www.river-valley.tv in
video form, thanks to Kaveh Bazargan and River
Valley Technologies.

Kaveh Bazargan

Batch Commander: An interactive style writer for TEX

Batch Commander is a general graphic user interface
for any batch system that runs a text file as a batch
job and creates an output. It allows quick manipulation
of parameters which it writes to an external config file
and which it then uses to show the output. The latest
incarnation of the system will be shown, with a live demo.

William Cheswick

Ebooks: New challenges for beautiful typesetting

TEX and other traditional text layout markup languages
are predicated on the assumption that the final output
format would be known to the nanometer. Extensive
computation and clever algorithms let us optimize the
presentation for a high standard of quality. But ebooks
are here. The iPad has sold more than two million units
in under three months, and, combined with other book
readers, offers a new way to store and read documents.
While these readers offer hope to newspapers (and per-
haps doom to many physical bookstores), they are an
increasing challenge to high quality text layout. Ebook
users are accustomed to selecting text size (for aged eyes
and varied reading conditions) and reader orientation.
We can’t run TEX over a document every time a reader
shifts position. Do we precompute and download layouts
for various devices, orientations, and text sizes? Do we
compromise our standards of quality to use HTML- and
XML-based solutions? These are new challenges to the
TEX community.

Jean-luc Doumont

Quantum space: Designing pages on grids

Most (LA)TEX documents are vertical scrolls: essentially,
they place content elements under each other, possibly
running the scroll in two columns, but hardly more. With
the exception of floats, they basically place items on the
page in the order in which these are encountered in the
source file: that is, they construct pages by piling up
boxes horizontally and vertically, gluing them carefully
together to achieve the desired (elastic) spacing.

Effective page design, in contrast, often benefits from
a more global approach to the page or spread, one that
replaces the scroll paradigm by a true two-dimensional
layout. Pages are then usually constructed on an un-
derlying grid, in reference to which the items can be
positioned flexibly yet harmoniously. To produce all the
documents created by our company (Principiae), I have
developed such an approach in TEX. The session will
present the ideas behind both grid designs in general and

the corresponding TEX macros, and illustrate these ideas
with a variety of examples (flyers, brochures, slides, etc.).

Our grid approach works in two steps: first create
all the items that will appear on a page or spread (text
blocks, illustrations, etc.), then place them in the de-
sired locations on the grid, in any order. In a sense,
the macro allow the user to specify, “this block of text
goes there, that figure goes here, this title goes there,
etc.”—not unlike what page layout software allows, but
with the infinitely superior accuracy that TEX allows.
The macros I created to this end are simple, they have
worked well for me for many years now, and the resulting
documents very often surprise people (“This was done
with TEX?!?”). The grid approach in TEX is best exem-
plified with my recent book (sample pages available at
http://www.treesmapsandtheorems.com), in which grid
alignments are pushed to an extreme, but it is behind all
our documents, notably slides.

Steve Grathwohl and David Ruddy

Math on the Web: Implementing MathJax in

Project Euclid

Project Euclid, a collaboration between Cornell Uni-
versity Library and Duke University Press, provides an
online repository and publishing environment for indepen-
dent mathematics and statistics journals. We discuss the
issues surrounding the online display of mathematics at
Project Euclid and, more specifically, the implementation
of MathJax, an open-source, Ajax-based math display
solution supporting both TEX and MathML notation.

Hans Hagen and Taco Hoekwater

How TEX and Meta finally got married

A story of TEX and METAFONT, 1996–2010. At first,
information was passed between them via \write18 and
specials, e.g., for backgrounds and layers. Then LuaTEX
started, and it became clear METAPOST should be a li-
brary, to avoid overhead. The MPlib project was funded
by TEX user groups and others, with much code cleanup
and backends for SVG and self-contained EPS. Ultimately,
MP(lib) was married to LuaTEX. In the happy couple’s
future is arbitrary precision arithmetic, complete dy-
namic memory management, and more. As an ultimate
test, Khaled Hosny created PunkNova, an OpenType
font using the RAND feature. The text here uses that
font.

d t e
r p

u

e
S

D 9
1 7

2
5 2 2

3
u 6 3 3

0 u 2
9 5

53 t
57 6

John Hobby

Is boxes.mp the right way to draw diagrams?

This talk explains the motivation behind boxes.mp and
discusses some alternatives. Automatic graph layout can
be combined with MetaPost in various ways, but this
technology is somewhat hard to control.

TUGboat, Volume 31 (2010), No. 2 249

Jonathan Kew

TEXworks for newcomers—and what’s new for old hands

This presentation introduces TEXworks, a simple TEX
environment based on modern standards— including Uni-
code text encoding, and PDF output by default—with
an uncluttered interface that does not overwhelm the
newcomer. It is built using cross-platform, open-source
tools and libraries, so as to be available on all today’s
major operating systems, with a native “look and feel”
for each.

First conceived during discussions at the time of
TUG’07 in San Diego, TEXworks is now widely available,
being included in both TEX Live and MiKTEX for Win-
dows, MacTEX for MacOSX, and in packages for various
GNU/Linux, *BSD, and similar systems.

Following the first “stable” release (v0.2) in Septem-
ber 2009, the most significant new feature added to the
application is a scripting interface. This allows users to
extend and enhance the basic program in several ways,
both by adding custom menu commands and by providing
“hook” scripts that are automatically run at specific times,
such as when a file is opened or after a typesetting run
finishes. We will look at examples of how TEXworks can
thus be extended using any of several available scripting
languages.

The TEX community is invited to participate in the
ongoing development of this environment, either at the
level of actual code or in any supporting area, such as
document templates or interface localization.

Frank Mittelbach

Exhuming coffins from the last century

In The TEXbook Don Knuth poses the following exercise:
“Why do you think the author of TEX didn’t make boxes
more symmetrical between horizontal and vertical, by al-
lowing reference points to be inside the boundary instead
of insisting that the reference point must appear at the
left edge of each box?” and gives the following answer:
“No applications of such symmetrical boxes to English-
language printing were apparent; it seemed pointless
to carry extra generality as useless baggage that would
rarely if ever be used, merely for the sake of symmetry.
In other words, the author wore a computer science cap
instead of a mathematician’s mantle on the day that
TEX’s boxes were born. Time will tell whether or not
this was a fundamental error!”

In this talk we will show how multiple reference points
on boxes allow for a completely different approach to
design specification and what can be done to successfully
overcome the limitations resulting from Don’s cap worn
that day.

Ross Moore

TEX+MathML for Tagged PDF, the next frontier in

mathematical typesetting

This talk will be a follow-on to the introduction to
“Tagged PDF” given at last year’s TEX Users Group meet-
ing. Here I’ll present several examples of tagged PDF

documents containing real-world mathematical layouts,

which demonstrate the advantages that tagging provides,
in terms of long-term Archivability (PDF/A) and Acces-
sibility (PDF/UA) and sharing of content and markup
via export to XML.

A script, written in Perl, is under continuing develop-
ment. This script combines the MathML presentational
description of a piece of mathematics with corresponding
LATEX source for its visual appearance, creating a detailed
TEX coding using new primitives that are processed by
an enhanced version of pdfTEX to produce fully tagged
PDF documents. If time permits we can discuss some
of the complications that arise due to differences in the
way mathematical structures are handled by TEX and
for MathML.

This is joint work with Hàn Thé̂ Thành (River Valley
Technologies), author of pdfTEX.

Chris Rowley

A brief history of LATEX—with a prediction

Not only brief, but very brief and with a lot of personal
bias! History with attitude!! Left as unpredictable until
the last minute will be both of these: What I mean by
LATEX; and of course the prediction!

Robert Rundell

Using the Knuth-Plass algorithm to help control widow

and orphan lines

The Knuth-Plass line-breaking algorithm is one of the
many exceptional features of TEX, taking a paragraph of
text and converting it to a vertical list of well-proportioned
lines. Through glue and penalty markers TEX gives the
user almost complete control over the spacing and look
of the paragraph.

However, in some instances TEX does not provide
the user quite as rich a set of options to control the
vertical list as in other areas. In particular, eliminating
widow and orphan lines can require inserting forced break
points into the text, break points that can only be found
from previous passes of TEX. Subsequent changes to the
document can require changes to some or all of these
manually inserted line or page breaks.

In AML, an experimental typesetting program under
development, the Knuth-Plass algorithm is enhanced to
find not only the optimal line-break points for a para-
graph, but also to give alternate mappings of the para-
graph into different numbers of lines (where possible).
AML stores these different sets of break points and uses
this information, along with natural page break points,
to automatically eliminate widow and orphan lines in
many cases. Once a bad page break point is detected,
AML will backtrack and adjust previous paragraphs to
create better page breaks. With far greater memory
and processing capabilities than were available at TEX’s
creation, multiple pages can be examined and processed
before a final page break needs to be finalized, allow-
ing the overall document layout to be improved. The
combination of keeping multiple pages and also keeping
alternative paragraph line-breaking sets in memory allows
AML to automate and improve this aspect of document
typesetting.

These new essays by legendary author

Fred Brooks contain extraordinary insights

for designers in every discipline. Brooks

pinpoints constants inherent in all design

projects and uncovers process and patterns

likely to lead to excellence. Throughout,

Brooks reveals keys to success that every

designer, design project manager, and

design researcher should know.

For more information please visit

informit.com/title/9780201362985

Available wherever technical books are sold

9780201362985 (Paperback)

Safari Books Online

Also available in all major eBook formats

NOW AVAILABLE from FRED BROOKS!

Mars rover breadboard for ESA’s ExoMars mission 2018, built by

vH&S with industry team (the flowers won’t be there then).

vH&S
SPACE • RESEARCH • INDUSTRY

Happily using pdfTEX, LuaTEX, MetaPost, & tools in our space projects.
Executive summaries · Parts approval documents · Experiment user manuals ·Risk management plans ·MGSE user manuals · End-
user statements ·Parts count reliability predictions ·Patent applications ·Study reports ·Progress reports ·Failure mode, effects, and
criticality analyses ·Contract change notices ·Acceptance data packages ·Code listings ·Requests for approval ·Payload test speci-
fication input ·Top level drawings ·Electrical interfaces verification reports ·PA/QA plans · Schedules ·Mating records ·User man-
uals ·Thermal analyses ·Thermal test reports ·Age-sensitive item records · System engineering plans ·EMC test reports ·Metrology
reports ·Requirements documents ·Document lists ·Vibration test reports ·Functional test reports ·Transport, handling, and instal-
lation procedures · Fracture control plans · Approvals to ship · Final reports · Letters · Interface control documents · Software con-
figuration status lists · Structural analyses · Declared materials
lists ·Declared components lists ·Handouts · Compliance matri-
ces · Lists of non-conformance reports ·Declared processes lists ·
Lists of waivers ·Physical properties reports ·Test reports ·Tech-
nical notes ·Product logbooks ·EGSE user manuals ·Conceptual
design reports ·Design & development plans ·Test & verification
plans · Non-conformance reports · Certificates of conformance ·

Functional diagrams · Derating analyses · Instrument configura-
tion lists ·Open items lists ·Minutes of meetings ·Grounding &
bonding diagrams ·Connector mating records ·Radiation control
plans ·Viewgraphs ·Lists of engineering change requests ·Quota-
tions ·Posters ·Bench checkout procedures ·Configuration draw-
ings · Test matrices · Project plans · Shipping documents · Red-
tag item tracking records · Qualification status lists · Christmas
cards · Structural test reports ·Worst case analyses · ITAR com-
ponents lists · Calibration data records · Advertisements · Bills ·
Detailed design reports. . .

von Hoerner & Sulger GmbH
Schlossplatz 8, D-68723 Schwetzingen, Germany
http://www.vh-s.de

Do you need on-site training for LATEX?

Contact Cheryl Ponchin at

cponchin@comcast.net

Training will be customized for your company needs.

Any level, from Beginning to Advanced.

T E C H N O L O G I E S

RIVER VALLEY

Trees, maps, and theorems

Effective communication for rational minds

“Awesome… groundbreaking… essential”
IEEE Trans. Prof. Commun.

Get your copy at the discounted rate of $72

(instead of $96) by ordering within two weeks

from site www.treesmapsandtheorems.com

and entering “special order” code TUGXX004.

University Science Books

Publishers of Chemistry, Physics, Astronomy, Biology and

Earth Environmental text and reference books.

Orders on their website, http://www.uscibooks.com, receive a 15% discount.

2010

Aug 17 – 22 TypeCon 2010: “Babel”, Los Angeles,
California. www.typecon.com

Aug 31 –
Sep 3

Book history workshop, École de
l’institut d’histoire du livre,
Lyon, France. ihl.enssib.fr

Sep 5 –
Oct 25

“Marking Time”: A traveling juried
exhibition of books by members of the
Guild of Book Workers. Lafayette
College, Easton, Pennsylvania.
Sites and dates are listed at
palimpsest.stanford.edu/byorg/gbw

Sep 8 – 12 Association Typographique Internationale
(ATypI) annual conference, “The Word”,
Dublin, Ireland. www.atypi.org

Sep 13 – 18 Fourth International ConTEXt User
Meeting, “ConTEXt typesetting
documentation, teach as we preach”,
Brejlov (Prague), Czech Republic.
meeting.contextgarden.net

Sep 16 – 19 TEXperience 2010, CS TUG, Brejlov
(Prague), Czech Republic.
striz9.fame.utb.cz/texperience

Sep 24 – 26 DANTE Herbsttagung and

43rd meeting, Trier, Germany.
www.dante.de/events/mv43.html

Oct 1 – 3 Oak Knoll Fest XVI, and Fine Press Book
Association annual meeting, New Castle,
Delaware. www.oakknoll.com/fest

Oct 15 – 16 American Printing History Association’s

35th annual conference, “Learning to Print,
Teaching to Print”, Washington, DC.
www.printinghistory.org/programs/

conference/conference_2010.php

Nov 5 –
Mar 20

“Marking Time”: A traveling juried
exhibition of books by members of the
Guild of Book Workers. Dartmouth
College, Hanover, New Hampshire.
Sites and dates are listed at
palimpsest.stanford.edu/byorg/gbw

TUGboat, Volume 31 (2010), No. 2 253

Calendar

Nov 6 – 8 The Eighth International Conference on
the Book, University of St.Gallen,
St.Gallen, Switzerland.
booksandpublishing.com/conference-2010

Nov 19 “Letterpress: Forward thinking”,
St Bride Library, London, England.
stbride.org/events

2011

Jan 13 – 16 College Book Art Association
Biennial Conference, “Word,
Image, Text, Object”, University
of Indiana, Bloomington, Indiana.
www.collegebookart.org

Jan 28 “The Design of Understanding”,
St Bride Library, London, England.
stbride.org/events

Feb 1 TUG election: nominations due.
tug.org/election

Apr-May BachoTEX2011: 19th BachoTEX
Conference, Bachotek, Poland.
www.gust.org.pl/bachotex

Jul 14 – 17 SHARP 2011, “The Book in Art & Science”,
Society for the History of Authorship,
Reading & Publishing. Washington, DC.
www.sharpweb.org

Aug 7 – 11 SIGGRAPH 2011, Vancouver, Canada.
www.siggraph.org/s2011

Oct 14 – 16 The Ninth International Conference
on the Book, University of Toronto,
Ontario, Canada.
booksandpublishing.com/conference-2011

TUG2011

Cairo, Egypt.

Nov 14 – 17 The 32nd annual meeting of the TEX
Users Group. tug.org/tug2011

Status as of 20 August 2010

For additional information on TUG-sponsored events listed here, contact the TUG office
(+1 503 223-9994, fax: +1 206 203-3960, e-mail: office@tug.org). For events sponsored
by other organizations, please use the contact address provided.

A combined calendar for all user groups is online at texcalendar.dante.de.
Other calendars of typographic interest are linked from tug.org/calendar.html.

The information here comes from the consultants
themselves. We do not include information we know
to be false, but we cannot check out any of the
information; we are transmitting it to you as it was
given to us and do not promise it is correct. Also, this
is not an official endorsement of the people listed here.
We provide this list to enable you to contact service
providers and decide for yourself whether to hire one.

TUG also provides an online list of consultants at
http://tug.org/consultants.html. If you’d like to
be listed, please see that web page.

Dangerous Curve

PO Box 532281
Los Angeles, CA 90053
+1 213-617-8483
Email: typesetting (at) dangerouscurve.org

Web: http://dangerouscurve.org/tex.html

We are your macro specialists for TEX or LATEX fine
typography specs beyond those of the average LATEX
macro package. If you use X ETEX, we are your
microtypography specialists. We take special care to
typeset mathematics well.

Not that picky? We also handle most of your typical
TEX and LATEX typesetting needs.

We have been typesetting in the commercial and
academic worlds since 1979.

Our team includes Masters-level computer scientists,
journeyman typographers, graphic designers,
letterform/font designers, artists, and a co-author of a
TEX book.

Hendrickson, Amy

Brookline, MA, USA
Email: amyh (at) texnology.com

Web: http://www.texnology.com

LATEX macro writing our speciality for more than
25 years: macro packages for major publishing
companies, author support; journal macros for
American Geophysical Union, Proceedings of the
National Academy of Sciences, and many more.

Scientific journal design/production/hosting,
e-publishing in PDF or html.

LATEX training, at MIT, Harvard, many more
venues. Customized on site training available.

Please visit our site for samples, and get in touch.
We are particularly glad to take on adventurous
new uses for LATEX, for instance, web based report
generation including graphics, for bioinformatics or
other applications.

254 TUGboat, Volume 31 (2010), No. 2

TEXConsultants

Martinez, Mercè Aicart

Tarragona 102 4o 2a

08015 Barcelona, Spain
+34 932267827
Email: m.aicart (at) ono.com

Web: http://www.edilatex.com

We provide, at reasonable low cost, TEX and LATEX
typesetting services to authors or publishers world-
wide. We have been in business since the beginning of
1990. For more information visit our web site.

Peter, Steve

295 N Bridge St.
Somerville, NJ 08876
+1 732 306-6309
Email: speter (at) mac.com

Specializing in foreign language, linguistic, and
technical typesetting using TEX, LATEX, and ConTEXt,
I have typeset books for Pragmatic Programmers,
Oxford University Press, Routledge, and Kluwer,
among others, and have helped numerous authors turn
rough manuscripts, some with dozens of languages,
into beautiful camera-ready copy. I have extensive
experience in editing, proofreading, and writing
documentation. I also tweak and design fonts. I have
an MA in Linguistics from Harvard University and live
in the New York metro area.

Shanmugam, R.

No. 38/1 (New No. 65), Veerapandian Nagar, Ist St.
Choolaimedu, Chennai-600094, Tamilnadu, India
+91 9841061058
Email: rshanmugam92 (at) yahoo.com

As a Consultant, I provide consultation, training, and
full service support to individuals, authors, typesetters,
publishers, organizations, institutions, etc. I support
leading BPO/KPO/ITES/Publishing companies in
implementing latest technologies with high level
automation in the field of Typesetting/Prepress,
ePublishing, XML2PAGE, WEBTechnology,
DataConversion, Digitization, Cross-media
publishing, etc., with highly competitive prices.
I provide consultation in building business models &
technology to develop your customer base and
community, streamlining processes in getting ROI on
our workflow, New business opportunities through
improved workflow, Developing eMarketing/E-Business
Strategy, etc. I have been in the field BPO/KPO/ITES,
Typesetting, and ePublishing for 16 years, handled
various projects. I am a software consultant with
Master’s Degree. I have sound knowledge in TEX,
LATEX2ε, XMLTEX, Quark, InDesign, XML, MathML,
DTD, XSLT, XSL-FO, Schema, ebooks, OeB, etc.

Sievers, Martin

Im Treff 8, 54296 Trier, Germany
+49 651 4936567-0
Email: info (at) schoenerpublizieren.com

Web: http://www.schoenerpublizieren.com

As a mathematician with ten years of typesetting
experience I offer TEX and LATEX services and
consulting for the whole academic sector (individuals,
universities, publishers) and everybody looking for a
high-quality output of his documents.

From setting up entire book projects to last-minute
help, from creating individual templates, packages and
citation styles (BibTEX, biblatex) to typesetting your
math, tables or graphics— just contact me with
information on your project.

TUGboat, Volume 31 (2010), No. 2 255

Veytsman, Boris

46871 Antioch Pl.
Sterling, VA 20164
+1 703 915-2406
Email: borisv (at) lk.net

Web: http://www.borisv.lk.net

TEX and LATEX consulting, training and seminars.
Integration with databases, automated document
preparation, custom LATEX packages, conversions and
much more. I have about fifteen years of experience in
TEX and twenty-eight years of experience in teaching
& training. I have authored several packages on
CTAN, published papers in TEX related journals, and
conducted several workshops on TEX and related
subjects.

TUG

Institutional

Members

American Mathematical Society,

Providence, Rhode Island

Aware Software, Inc.,

Midland Park, New Jersey

Banca d’Italia,

Roma, Italy

Center for Computing Sciences,

Bowie, Maryland

Certicom Corp.,

Mississauga, Ontario, Canada

CSTUG, Praha, Czech Republic

Florida State University,

School of Computational Science

and Information Technology,

Tallahassee, Florida

IBM Corporation,

T J Watson Research Center,

Yorktown, New York

Institute for Defense Analyses,

Center for Communications

Research, Princeton, New Jersey

Konica Minolta Systems Lab Inc,

Boulder, Colorado

MacKichan Software, Inc.,

Washington/New Mexico, USA

Marquette University,

Department of Mathematics,

Statistics and Computer Science,

Milwaukee, Wisconsin

Masaryk University,

Faculty of Informatics,

Brno, Czech Republic

MOSEK ApS,

Copenhagen, Denmark

New York University,

Academic Computing Facility,

New York, New York

Springer-Verlag Heidelberg,

Heidelberg, Germany

Stanford University,

Computer Science Department,

Stanford, California

Stockholm University,

Department of Mathematics,

Stockholm, Sweden

University College, Cork,

Computer Centre,

Cork, Ireland

University of Delaware,

Computing and Network Services,

Newark, Delaware

Université Laval,

Ste-Foy, Québec, Canada

University of Oslo,

Institute of Informatics,

Blindern, Oslo, Norway

256 TUGboat, Volume 31 (2010), No. 2

2011 TEX Users Group election

Jim Hefferon for the Elections Committee

The positions of TUG President and nine members
of the Board of Directors will be open as of the 2011
Annual Meeting, which will be held in November
2011 in Cairo, Egypt.

The directors whose terms will expire in 2011:
Barbara Beeton, Jon Breitenbucher, Kaja Christian-
sen, Susan DeMeritt, Ross Moore, Cheryl Ponchin,
and Philip Taylor. Two additional director positions
are currently unoccupied.

Continuing directors, with terms ending in 2013,
are: Jonathan Fine, Steve Grathwohl, Jim Hefferon,
Klaus Höppner, Steve Peter, and David Walden.

The election to choose the new President and
Board members will be held in Spring of 2011. Nom-
inations for these openings are now invited.

The Bylaws provide that “Any member may be
nominated for election to the office of TUG Presi-
dent/to the Board by submitting a nomination pe-
tition in accordance with the TUG Election Proce-
dures. Election . . . shall be by written mail ballot
of the entire membership, carried out in accordance
with those same Procedures.” The term of President
is two years.

The name of any member may be placed in
nomination for election to one of the open offices by
submission of a petition, signed by two other mem-
bers in good standing, to the TUG office at least
two weeks (14 days) prior to the mailing of ballots.
(A candidate’s membership dues for 2011 will be ex-
pected to be paid by the nomination deadline.) The
term of a member of the TUG Board is four years.

A nomination form follows this announcement;
forms may also be obtained from the TUG office, or
via http://tug.org/election.

Along with a nomination form, each candidate
must supply a passport-size photograph, a short bi-
ography, and a statement of intent to be included
with the ballot; the biography and statement of in-
tent together may not exceed 400 words. The dead-
line for receipt of nomination forms and ballot in-
formation at the TUG office is 1 February 2011.
Forms may be submitted by FAX, or scanned and
submitted by e-mail to office@tug.org.

Ballots will be mailed to all members within 30 days
after the close of nominations. Marked ballots must be
returned no more than six (6) weeks following the mail-
ing; the exact dates will be noted on the ballots.

Ballots will be counted by a disinterested party not
affiliated with the TUG organization. The results of
the election should be available by early June, and will
be announced in a future issue of TUGboat as well as
through various TEX-related electronic lists.

2011 TUG Election—Nomination Form

Only TUG members whose dues have been paid for 2011
will be eligible to participate in the election. The sig-
natures of two (2) members in good standing at the
time they sign the nomination form are required in ad-
dition to that of the nominee. Type or print names
clearly, using the name by which you are known to TUG.
Names that cannot be identified from the TUG member-
ship records will not be accepted as valid.

The undersigned TUG members propose the nomi-
nation of:

Name of Nominee:

Signature:

Date:

for the position of (check one):

� TUG President

� Member of the TUG Board of Directors

for a term beginning with the 2011 Annual Meeting,
November 2011

1.
(please print)

(signature) (date)

2.
(please print)

(signature) (date)

Return this nomination form to the TUG office (forms
submitted by FAX or scanned and submitted by e-mail
will be accepted). Nomination forms and all required
supplementary material (photograph, biography and per-
sonal statement for inclusion on the ballot) must be
received in the TUG office no later than 1 February

2011.1 It is the responsibility of the candidate to en-
sure that this deadline is met. Under no circumstances
will incomplete applications be accepted.

� nomination form

� photograph

� biography/personal statement

TEX Users Group FAX: +1 206 203-3960
Nominations for 2011 Election
P. O. Box 2311
Portland, OR 97208-2311
U.S.A.

1 Supplementary material may be sent separately from
the form, and supporting signatures need not all appear on
the same form.

TUGBOAT Volume 31 (2010), No. 2

Introductory

138 Barbara Beeton / Thoughts on TUG 2010
• reflections on the 25 anniversary conference

173 Karl Berry / TEX Live 2010 news
• summary of notable changes in the TEX Live 2010 software release

143 Jim Hefferon / CTAN packages get keywords
• keywords and topical characterizations of all CTAN packages

121 Donald Knuth / An Earthshaking Announcement
• iTEX*

117 David Walden / TUG 2010 conference report
• notable events and a table showing the breadth of presentations

125 David Walden (moderator) / TUG 2010 Panel: Don Knuth & Stanford TEX Project members
• edited transcript of the panel discussion

Intermediate

151 Pavneet Arora / Using LATEX to generate dynamic mathematics worksheets for the web
• mathematical practice as a learning strategy for grade school mathematics

183 Bart Childs / Thirty years of literate programming and more?
• introduction to, experiences with, state of literate programming

154 Walter Gander / Writing the first LATEX book
• first use of LATEX for a book, a numerical analysis textbook in German

174 Taco Hoekwater and Hartmut Henkel / LuaTEX 0.60: An overview of changes
• notable changes since LuaTEX 0.40: CWEB, .ttc support, more

158 Alan Hoenig / TEX helps you learn Chinese character meanings
• design and production of ezchinesey.com books

221 Johannes Küster / Math never seen
• quality criteria for mathematical symbols, with many examples and a proposal for a new gcd symbol

236 Boris Veytsman and Leila Akhmadeeva / TEX in the GLAMP world: On-demand creation of documents online
• creation of medical pedigrees via the web, and initial educational use

145 Herbert Voß / From PostScript to PDF with epstopdf, pdftricks, pst-pdf, auto-pst-pdf, pst2pdf, and more
• using PSTricks, EPS images, et al., while creating PDF output

Intermediate Plus

206 Mathieu Bourgeois and Roger Villemaire / Drawing structured diagrams with SDDL

• producing diagrams for discrete mathematics and computer science

203 John Bowman / Asymptote: Interactive TEX-aware 3D vector graphics
• advances in Asymptote’s 3D processing and more

193 Michael Doob / A web-based TEX previewer: The ecstasy and the agony
• constructing a security-conscious on-line TEX previewer

178 Hans Hagen / LuaTEX: PDF merging
• merging PDF images, with links and layers, in LuaTEX and ConTEXt

240 William Hammond / LATEX profiles as objects in the category of markup languages
• reliable automatic translations between markup languages

211 Will Robertson / Unicode mathematics in LATEX: Advantages and challenges
• background, current fonts, and futures for Unicode math typesetting

162 Didier Verna / Classes, styles, conflicts: The biological realm of LATEX
• an extended analogy between LATEX and biological organisms and viruses

189 Uwe Ziegenhagen / Dynamic reporting with R/Sweave and LATEX
• integration and literate programming of LATEX with the statistical programming language R

Advanced

180 Hans Hagen / The TEX paragraph builder in Lua
• reimplementing the TEX line breaking algorithm in Lua

197 Idris Samawi Hamid / Qurʾānic typography comes of age: Æsthetics, layering, and paragraph optimization in ConTEXt
• advanced Arabic typography in the Oriental TEX project

148 Stephen Hicks / Improving margin paragraphs
• avoiding marginal notes off the bottom of the page, and more

230 Boris Veytsman / Are virtual fonts obsolete?
• modern uses for virtual fonts, with discussion of fonts in X ETEX

Reports and notices

114 TUG 2010 conference information

248 TUG 2010 abstracts (Bazargan, Cheswick, Doumont, Grathwohl & Ruddy, Hagen & Hoekwater,
Hobby, Kew, Mittelbach, Moore, Rowley, Rundell)

250 Sponsors

253 Calendar

254 TEX consulting and production services

255 Institutional members

256 Jim Hefferon / TUG 2011 election

