
TUGboat, Volume 31 (2010), No. 2 193

A web-based TEX previewer: The ecstasy
and the agony

Michael Doob

Abstract

The appeal of a web-based combined TEX editor and
previewer is instantaneous. It allows not only the
easy testing of snippets of code, the writing of short
abstracts and even of short papers, but also allows
sharing of the results over the web. Unfortunately,
even a benign program like TEX presents serious
security risks, and care must be used when exposing
such an application.

This article describes a web-based viewer of this
type. We will:

• Illustrate how remarkably easy it is, using tools
readily available, to construct a previewer,

• give examples of potential security problems,
and

• indicate some solutions to these problems.

The context of this talk is a LAMP (Linux,
Apache, MySQL, PHP) environment, but the basic
ideas can be applied to any of the common operating
systems.

1 Ecstasy

The appeal of a web-based TEX previewer is imme-
diate. There are many possible reasons for this. We
start with a few of the them.

1.1 Motivation

1.1.1 Remote access

We at the Publications Office of the Canadian Math-
ematical Society receive papers accepted for publica-
tion (sometimes called a sow’s ear) at many different
levels of quality of TEX. They must all be made
to conform to our publication standards (sometimes
called a silk purse), and significant manpower is used
for this purpose. We have a number of editors who
work both at our office and at home. There is no
problem putting TEX on a home computer. We have
our own style file, and that can be put on the home
computers too (although it does change from time to
time). However, there is a significant problem with
our fonts. We have a number of proprietary (Adobe)
fonts, and the license restricts their distribution. The
TFM files are no problem and can be put on the home
computers; the only problem is with the previewing
since that uses the proprietary information. Hence a
web page previewer with a one-button upload of the
TEX file followed by running LATEX with our class
file and then displaying the resulting pages is just
what we need.

1.1.2 Abstract submissions

The Canadian Mathematical Society has semiannual
meetings in June and December. There are several
hundred abstracts for each meeting which need to
be in LATEX format compatible with the style of our
proceedings. Our traditional method was to allow
presenters to submit their (purported) LATEX files
by email. Changing these sows’ ears into silk purses
consumes significant resources. With a web page the
author can edit the LATEX file until it works properly
with our style file.

We now provide a window into which the ab-
stract may be loaded. It can be run though the
appropriate version of LATEX and, if needed, can be
further edited and rerun within the same window.
This transfers the editing efforts from our person-
nel to the author. There is, of course, a resulting
decrease in quality due to author inability to use
LATEX optimally. The abstracts are ephemeral (they
are used for the one meeting only), and so this is an
acceptable cost.

1.1.3 Snippet testing

Sometimes it’s desirable to try out a new definition
that may take a few tries to get right. If the web
server is on a local machine, the turnaround time
is instantaneous. It’s easy to incrementally improve
the code until it is perfect.

Similarly, it is useful to use the picture envi-
ronment incrementally to create figures that will be
usable with any implementation of LATEX.

If you subscribe to texhax (http://lists.tug.
org/texhax) then lots of little problems that arise
from that list can be checked and/or debugged on
the spot.

1.1.4 Because we can

The improvements in the speed of software applica-
tions used with web browsers over the past few years
have been breathtaking. We have long been able to
run TEX on a local machine and view the output
immediately on a previewer. It is interesting that
we can now replicate that experience using even a
modest web connection.

1.2 Some nice implementations

There are already several web-based TEX previewers
available. Here are some particularly nice examples:

• Troy Henderson’s http://www.tlhiv.org/

ltxpreview

• Jan Přichystal’s http://tex.mendelu.cz/en

• Jonathan Fine’s http://www.mathtran.org/

toys/jfine/editor2.html

A web-based TEX previewer: The ecstasy and the agony

194 TUGboat, Volume 31 (2010), No. 2

All of these have the same general pattern: A window
for typing input, some method of output display, and
options that may be chosen using radio buttons or
pulldown menus.

1.3 LAMP Implementation

1.3.1 Environment

Our environment used for this application is some-
times called LAMP: the Linux kernel for the oper-
ating system, the Apache web server, the MySQL

database management system (unused in this appli-
cation) and the PHP scripting language (sometimes
the “P” is Perl or Python; indeed, either could be
used instead of PHP). No extra modules are used
with Apache, and no additional packages are loaded
into PHP. In addition, no JavaScript is used.

1.3.2 Desired elements

The minimum implementation would usually display
input (an input window using direct typing, cut-
and-paste or file upload), as well as output that is
dependent on the success or failure of the TEX job.
In addition, it’s also easy to have file uploads only
and to display (portions of) the log file.

It’s also possible to preload TEX input or specific
packages. For example, it might be more convenient
to have the material in the input window automati-
cally inserted within:

\documentclass{article}

\begin{document}

\end{document}

if all of the TEX files will be using article.cls and
no other packages are needed. Similarly, it’s also
easy to preload either document classes or packages
using pulldown menus. Examples are given in the
documentation.

1.3.3 Browser peculiarities

Ideally the output should be rendered identically
by different browsers. This ideal, unfortunately, is
not met. For example, the output from rerunning
TEX should reflect the content in the current input
window. In fact, there is an HTML metacommand
for exactly this purpose:

<META HTTP-EQUIV="CACHE-CONTROL"

CONTENT="NO-CACHE">

Alas, some browsers will ignore this, but these short-
comings can be overcome in a LAMP environment.
It’s always possible to generate unique names with
each call to TEX to avoid the cache problem. It’s also
possible to use freely available software to generate
output (png, jpg, pdf or svg) whose renderings will
be (more or less) browser independent.

2 Agony

As can be seen in the accompanying documenta-
tion, it’s easy to set up a web-based TEX previewer
within a LAMP environment. Alas, as with any web
application that may be accessed widely, there are
certain concerns and possible exploits that must be
addressed. At first blush, TEX is pretty robust and
locks out the most dangerous threats. For example,
there are no direct system calls available. Nonethe-
less, there are precautions that must be taken. Ex-
amples follow to illustrate these problems, roughly
in increasing order of vulnerability.

2.1 The need to know principle

Clearly, the more widespread the audience is for
a web application, the less is the information that
should be disclosed about the operating environment.
There are two options: control the access to the web
pages to reduce the risk or control the amount of
information disclosed. In a LAMP environment both
are easy.

It is a standard configuration command for the
Apache server to restrict access to some (or even all)
directories to clients with specific Internet addresses,
so the access, if desired, may be localized. Greater
restriction of access may (or may not!) reduce the
risk of system compromise.

On the other hand, if there is widespread ac-
cess, then the log file, even when there is only one
line of TEX input, will reveal information about the
operating system:

This is TeX, Version 3.14159 (Web2C 7.4.5)

/usr/share/texmf/tex/latex/base/size10.clo

In this case, the structure of the file system is re-
vealed; it has files in a position (under /usr/share)
that indicates an installation via a package manager
on a Unix system rather than a texlive installa-
tion or some other operating system, and as such
it gives hints to the location of the vulnerabilities
that any operating environment possesses. Loading
more packages and fonts generates similar messages
concerning the versions running and the structure
of the file system. These may and should be filtered
out when the log file is requested. This same is true
for error messages.

2.2 Denial of service

A more serious problem is that of Denial of Service
(DoS) attacks. These are designed to utilize all of the
resources available on a particular computer and thus
deny access by others. There are several methods by
which this may be done.

Michael Doob

TUGboat, Volume 31 (2010), No. 2 195

2.2.1 CPU hogging

Consider what happens with the following LATEX
input:

\newcounter{cnt}

\loop

\stepcounter{cnt}

\ifnum \value{cnt}<500000

\repeat

There could hardly be a simpler loop construct. Run-
ning it will do nothing but increment the counter
from 0 to 500000 and then quit. This takes a few
seconds. If you use a utility (like top) to check CPU

usage while this is running, you will find it maxed out.
If the \stepcounter{cnt} is deleted, TEX will run
indefinitely, eating up all available CPU resources. As
a further insult, the PHP call will freeze the browser,
so no termination is possible, even if the program
were run by innocent error. Ouch!

Here is another example:

\newcounter{cnt}

\loop

\thecnt\newpage \stepcounter{cnt}

\ifnum \value{cnt}<10000

\repeat

This produces a 10,000 page document with one
integer on each page (actually two if you include the
page number). Suppose the \stepcounter{cnt} is
left out. Then the loop is infinite, and TEX happily
runs until it reaches its memory limit and then halts.
This indicates the following: as long as the loop is
doing anything that uses memory there will be a
graceful failure in an accidental infinite loop.

What can be done to keep infinite loops from
eating up inappropriate resources? There are at least
two remedies for this:

• Any standard implementations of Linux comes
with the pam (pluggable authentication mod-
ule) software. This module uses a file called
limits.conf to control, among other things,
the amount of CPU time any process can use.

• For operating systems without pam there is a
program called cpulimit which may be used
to control the percentage of available CPU re-
sources that may be allocated to a given process.

2.2.2 Disk hogging

Now consider the following LATEX input:

\newcounter{cnt}

\loop

\leavevmode\newpage \stepcounter{cnt}

\ifnum \value{cnt}<10000

\repeat

This produces a 10,000 page document with only the
page numbers on each page (of course, the use of
\pagestyle{empty} will make the page completely
blank). If we delete the \stepcounter{cnt} from
the input, then TEX runs indefinitely using no mem-
ory, but the DVI file will (apparently) grow without
limit.

This problem is easy to address. The file men-
tioned above, limits.conf, can also control disk
usage. Alternatively, disk quotas, turned off by de-
fault, may be enabled.

2.2.3 Server hogging

Any web application is subject to attack through
the server. A distributed DoS attack, that is, one
from a botnet of many clients, is really impossible
to stop. Even with web pages, the mouse clicks
can be spoofed, so it is important to keep the web
applications isolated from the rest of the computer
environment. One possibility is to have users register
and log into the environment that runs the web-based
browser software.

2.3 PHP attacks

In a recent paper [1], Stephen Checkoway, Hovav
Shacham, and Eric Rescorla have pointed out a sig-
nificant vulnerability in the writing and subsequent
rereading of PHP scripts. Consider the following
code:

\newwrite\bummerfile

\openout\bummerfile=badfile.php

\write\bummerfile{<?php}

\write\bummerfile{echo passthru("date");}

\write\bummerfile{phpinfo();}

\write\bummerfile{echo

passthru("cat /etc/passwd");}

\write\bummerfile{?>}

This opens a file called badfile.php in the same
directory where the DVI file is written and writes in
it five lines of PHP code. These implement three com-
mands: a listing of the current time (a typical system
call), a listing of all the PHP parameters on the sys-
tem (a clear violation of need-to-know), and finally
a listing of the password file. It should be noted that
the subdirectory from where the reading of files is
done by the Apache server is easily obtained from the
listing of the page source. It typically will have some-
thing like

within it, indicating in this case that the subdirec-
tory being read is called jail. Thus by adding
jail/badfile.php to the original http address, the
file badfile.php is executed.

This vulnerability may be addressed in several
ways: the directory from which the image files are

A web-based TEX previewer: The ecstasy and the agony

196 TUGboat, Volume 31 (2010), No. 2

read can be separated from the one where the TEX
program writes. Alternatively, if a directory con-
tains an .htaccess file which in turn contains a line
php_flag engine off, then PHP files will not be
run from that directory (note that this feature is dis-
abled by default and must be enabled in the Apache
configuration file).

2.4 Isolation

Putting any application on the web, as we have
seen, has inherent dangers. While these can not
be eliminated, they can be somewhat mitigated by
isolating the web application, inasmuch as possible,
from the rest of the computer environment. There
are several possible approaches.

2.4.1 Single computer

The Apache server has a configuration file that is read
when the server starts (often called httpd.conf). It
allows the server to start at different locations in
the file system depending on the calling IP address.
In particular the address 127.0.0.1 (also known as
localhost) is always reserved for the local computer.
Setting up a virtual host for that address can ensure
that the files are not accessible from any outside
address. If you need a web-based TEX previewer to
be used by many people on one computer, this is a
safe method of implementation.

2.4.2 Small sets of users

The configuration file for the Apache server can also
be used to restrict the server to predefined IP ad-
dresses. Alternatively, pages can be password pro-
tected.

2.4.3 Chroot jail

The chroot command is available on all Unix im-
plementations. Copies of all the software (binaries
and libraries) needed for the application are put in
one directory, and the chroot command then limits
the operating system access to that directory (and
its subdirectories) only. We say that the operating
system is in a chroot jail. This makes the rest of the
computer environment safe even if the application is
broken.

Running the Apache server in a chroot jail will
protect the rest of the operating system. In fact a
script may be set up to create the jail automatically.
If the software in the jail seems questionable, a new
copy can be reconstructed.

2.4.4 Software isolation of the
operating system

An even stronger form of isolation is to run the
Apache server under its own operating system. It is
now fairly easy to set up virtual computers within a
Unix environment. It’s then possible to take a snap-
shot of the original implementation of the operating
system and then refresh the installation regularly.
This means that any damage can be easily repaired.

2.4.5 Hardware isolation

The most extreme measure is to put the application
on its own platform. This is in effect running the
web application as an embedded device. Since a web
browser can be run headless, the costs are actually
quite modest. It is possible, for example, to set up a
mini-ITX board with an enclosure, RAM and storage
for about $150.

3 Documentation

Finally, we want the actual PHP code that imple-
ments the web-based previewer. This is included
in the TEX file [2]. Running the file through LATEX
prints the documentation along with instructions for
extracting the PHP code.

This code has worked properly with all browsers
tested (Firefox, Safari, Internet Explorer, Chrome,
Opera). Nonetheless, it should be considered as a
starting point. It is hoped that it may be improved
by making it more robust and, hopefully, not be
compromised by the types of attacks given in this
paper.

References

[1] Stephen Checkoway, Hovav Shacham, Eric
Rescorla. Are Text-Only Data Formats
Safe? http://cseweb.ucsd.edu/~hovav/

dist/texhack.pdf

[2] Michael Doob. A web-based TEX
previewer — Sources. http://tug.org/
TUGboat/31-2/doob-texwebviewer.tex

� Michael Doob
Department of Mathematics
The University of Manitoba
Winnipeg, Manitoba R3N 2T2
Canada
mdoob (at) ccu dot umanitoba dot ca

Michael Doob

