
TUGboat, Volume 31 (2010), No. 2 125

TUG 2010 Panel: Don Knuth & Stanford
TEX Project members

David Walden, moderator

[This transcript has been lightly edited. The session
is available on video at http://river-valley.tv/

tug-2010-panel.]

Karl Berry. I will briefly introduce our panel
moderator, Dave Walden, who as you know handles
the Interview Corner and all kinds of interviews . . .
so I asked him to handle this one too.

Dave Walden (moderator). Thank you, Karl. I
was really pleased to be invited by Karl to chair this
panel, for three reasons.

First, despite the fact I’ve lived in Boston for
46 years, I grew up in the San Francisco Bay Area
and graduated in mathematics from San Francisco
State. So, it’s a real pleasure to be back at a math
meeting in San Francisco. This is probably the first
time I’ve thought about math in San Francisco in 46
years. It’s good to be home.

Second, I’ve always admired Donald Knuth. I
bought his Art of Computer Programming in the late
60s and used it in my daily work. When volumes 2
and 3 came out, I immediately bought them, and
we used those in our daily work. More recently,
when I decided to stop using Word and go to some
kind of a text processing system that didn’t have
hidden proprietary undocumented markup, I chose
TEX because I admired Don Knuth and I thought
I’d like to try something that he created.

And, of course, the third reason is that that
brought me in contact with this community, and
through interviews and so on with everyone on this
panel. So, third, it’s a real pleasure today to get to
get to meet everyone here today in person.

With that I’d like to introduce the panel mem-
bers. I’ll first mention Don. It’s a cliche to say,
“he needs no introduction”, but with this group and
this man, he needs no introduction. I’m sure each
of us knows of several things in his massive set of
accomplishments in a variety of areas. And, in fact,
his publisher conveniently gave us this list [holds up
advertising page from CSLI] of nine different books
of his collected works in different areas, and that
does not include The Art of Computer Programming
which has a different publisher.

So I’ll go through the rest of the panel in al-
phabetical order, and I will introduce you to them
saying a word or two about their TEX accomplish-
ments. Naturally, they have had full careers in other
areas and have done many other things, and I com-
mend the interview series to you. And the couple of

you [panelists] who have not yet participated — it’s
time.

[At this point the moderator introduced David
Fuchs, John Hobby, Frank Liang, Oren Patashnik,
Michael Plass, Tom Rokicki, Luis Trabb Pardo,
Howard Trickey, and Joe Weening using essentially
the descriptions of the “TUG 2010 Conference Re-
port” on page 117 of this issue.]

Regarding the format of this panel, Don asked
me to say, “I am going to have a half hour to myself
later. This is the only time the rest of the panelists
get to talk, so please focus as many questions as
you can on the rest of the panel” — said Don, and
I say that to you [members of the audience]. What
I’d like to do is go through the panel one-by-one. I
won’t do a strict rotation but let’s have a question
for each panel member before we go to a more open
format. And, panelists, I encourage you, if you have
something to add to an answer of a fellow panelist,
please chip in. I think that hearing different sides
of these historical stories is often interesting both
because it elaborates on the stories or sometimes it
shows some conflict in the stories.

May I have the first question from the audience.
Oh, one more thing, unless we have a mike in the
audience, please say the question loud enough for me
to hear and I’ll then repeat the question for Kaveh’s
videotape.

Unknown. The question for Frank is, “How did
you discover your hyphenation algorithm?”

Frank Liang. Well, I was assigned this problem
as a thesis in 1978, I believe. As I have mentioned
in my thesis, there was an initial suggestion to use
a kind of statistical algorithm which looked at two
letters — well, actually four letters — surrounding a
potential break point, and then you were supposed to
make tables using two letters before, the middle two
letters, and the last two letters, and then combine
these tables somehow to do hyphenation. So I started
experimenting with some word lists, and I quickly
found that that wasn’t sufficient; you needed more
context. One example I mentioned in my thesis is
that sometimes a letter seven letters away from the
hyphen point can alter the breakpoint.

Anyway, I’m playing with word lists a lot and
came upon the idea that just patterns of letters was
a very simple way. Because I had started with just
these two letter digrams, it was natural to extend
that to longer letter sequences. And then through
a long process of evolution I came up with patterns
and then with the rules and exceptions. Don actually
came up with the idea of assigning the numbers and
having them at one of my thesis review meetings. I

TUG 2010 Panel: Don Knuth & Stanford TEX Project members

126 TUGboat, Volume 31 (2010), No. 2

sort of had the idea of having rules and exceptions,
and he said, “Oh, you could assign numbers to them.”
So that’s part of the answer.

One of the hardest parts of the whole thing was
acquiring a suitable word list. I didn’t have access to
every database, and there weren’t that many at the
time. I got a copy of the Merriam-Webster dictionary
that had hyphenation points. But upon looking
through it, there were many errors and lots of typos
and things that just weren’t quite right. So I had
to hand edit the dictionary, and that took about
three months. So that is where most of the work was
actually.

Moderator. Any of the other panelists have a
comment on this?

Howard. And the tries . . . ?

Frank continues. The tries — that sort of came up
separately, after the pattern idea. As I was playing
around with the word lists all the time, I needed some
kind of relatively fast algorithm to quickly collect
information about the patterns in the word lists
with hyphenation points and then to test out various
theories. Because these were just simple strings, it
was natural to look at variations of standard data
structures like tries for that and to read related
papers like Don’s on pattern matching.

The problem with the tries — tries are very fast
because it is just based on indexing, but they tend to
be very sparse so you then have to use various tricks
to speed that up. And the idea, actually, for doing
this weird packing, if that is what you are referring
to, was I read another paper by a Stanford professor
at the time, Andrew Yao, which was talking about
storing a sparse table. It was a somewhat different
application, but he had this idea of when you have
these sparse things you sort of interleave them all in
one array and thereby save space while maintaining
speed. So that’s where I got that idea.

Moderator. A question for another panelist?

William Adams. My question is for Tom Rokicki.
Ages ago, when the WorldWideWeb.app was writ-
ten on the NeXTstep, there was also available on
that same platform TEXview.app, and we’ve seen
an awful lot of effort in trying to get mathematics
and nice fonts and nice settings onto the web. Why
didn’t we just start out with an extended version of
hyperTEXview.app and cut to the chase?

Tom Rokicki. [to the moderator] I’m sorry. Can
you repeat the question?

Moderator. I don’t understand the question.
Maybe William can say it again, and I can try to
repeat it.

William. We started out with TEXview.app on
NeXTstep and on that same platform, WorldWide-
Web.app was developed by Sir Tim Berners-Lee.
Why wasn’t TEXview.app used as the basis for the
WorldWideWeb.app so that mathematics and so
forth would have always just worked instead of us
constantly working to try to make them work on the
web?

Tom Rokicki. Basically, you’re asking why TEX
was not chosen as the basis for mathematics on the
web, based on the NeXTstep. Boy, I’m not really
the right person to ask. Gosh, you know, I really
don’t have a good answer to that. The HTML stuff
was really crude in the beginning, and it’s still pretty
crude, but it’s getting there. So I don’t really think
anybody spent a lot of focus at that time. Back then,
it was just “let’s get the links working, let’s get the
text working, let’s draw around images, and stuff like
that, and call it a day.” Which was pretty amazing
in itself. As far as what went after, I really can’t say.

I’m not sure that it really fits though. Because
the web, HTML, is all XML-based. And TEX is rather
different. And I think there was a very strong reason
to keep it as a markup language like SGML or XML,
that could be easily automated, and restructured,
and all this type of stuff. So I think that there were
good reasons why TEX was never used at that point.
But I was never really part of that, so I can’t say for
sure.

Moderator. Another question? Nelson.

Nelson Beebe. Question for David Fuchs. It’s
important to remember that in this audience there
are a lot of younger people here who have grown up
with laptop computers, that TEX was designed on a
machine that cost roughly half a million dollars at
its entry level price. And there were two people, one
of whom is sitting here, who really changed that and
made life different for an awful lot of people, and
Dave Fuchs is one of those; the other one is Lance
Carnes, who unfortunately isn’t here today. I’d just
like Dave to comment on his work with MicroTEX,
which brought to you the first live preview, while
TEX was running, of what was happening, and how
difficult it was, and how much hair he lost trying to
get TEX to work on the little machines of the day.

David Fuchs. Well, that was fun. It was a lot
of kind of hackery and trickery down at kind of the
bit level, and the intricacies of the 8086. At the
time, there were no good Pascal compilers, if there
ever were, . . . , well, that’s not true — there was a
good DEC one. So that work involved writing kind
of a limited Pascal-to-C translator that had special
hacks — it didn’t bother with the parsable language

David Walden, moderator

TUGboat, Volume 31 (2010), No. 2 127

that TEX didn’t use, it had special hacks in it so that
I could insert using the change file scheme from WEB.
I could insert magical keywords that I had laid out
that said, oh, here’s one of the big arrays, and then
I could write some assembly code. . . . Gee, there was
even a version, there were different instantiations
of it. One early version, I just pretended to the C
compiler that the arrays weren’t really big. It always
produced one of three different sets of machine code
instructions to address those arrays; I had a post-
processor that would look through the object code
that the compiler created, look for those three or
four possible patterns, insert some special other code
that called some of my code to look at the real array
thing, That only lived for a version or two. Then
there were other cute tricks: it kind of used a sort
of VME system where I chopped up the arrays into
pieces, and those got swapped in and out of, I think
off of the disk. I even stuffed some of them, as an
experiment, into the . . . it turns out the video cards
that you had, that drove your displays, they had
some extra RAM in them, so you could swap stuff
out, and it was kind of fun, ’cause if you put the
video card into a different mode you could actually
see that stuff on your screen going by.

So, the early PCs had a maximum of 640 K, and
a lot of people for a while had 512 K, so that was
marginally not quite enough to do everything, so
you had to replace all the run-time libraries that
came with the compiler. I was down to . . . I wasn’t
even using . . . what’s it called that’s usually linked
in with the C program, even the startup code, so
you got . . . there was no standard files, there was
no anything. So that was all to cram it down into
512–640 K.

Lance did a job too. Because his stuff was rather
commercial — that’s his livelihood — he was always
somewhat circumspect about it. But, obviously, it
wasn’t complete black magic.

Tom also had some work in this direction, if I
remember correctly?

Tom. Absolutely not, absolutely not. [laughter]
This accomplishment of David Fuchs’ was one of
the most amazing things I’ve ever seen. All my
platforms had plenty of memory. I never had those
issues. I cannot believe what Dave accomplished —
it was absolutely amazing! Okay, truly a hero.

Moderator. Anybody else have experiences with
these tiny machines?

Another question, please. Hans.

Hans Hagen. Aren’t you somewhat disappointed
after 32 years that not more people made fonts using
METAFONT?

Don Knuth. Well, I can’t say I’m disappointed
in the fonts we have now. And I’m happy with the
ones that my students have made, and I made. So
I’m not When I wrote it, I just had the idea
. . . everybody’s entitled to have some mistakes in
their life, and so I didn’t have to worry about the
fact that not everybody would use every program I
wrote, and this one happens to be a very personal
thing, and so the way I look at it is, how wonderful
that John extended it to METAPOST, which I use
a hundred times more than I use METAFONT. I’ve
already done most of what I ever need to do with
METAFONT.

Hans. But didn’t you overestimate the font design-
ers then?

Don. Well, I thought it would be easier to teach the
font designers about the notion of parameters and
metadesign than it was. Computer scientists, we’re
used to writing something that’s going to work under
many different conditions as the parameters change.
But to most of the rest of the world, to my big
surprise, they never heard the word “parameter” —
they thought it meant “perimeter”.

Moderator. John?

John Hobby. Yes, I certainly agree that the
METAPOST application was more popular, but Don
has a very unusual set of skills, and indeed, there
aren’t many other people who are good at that kind
of thing. I think the real thing is, it’s just too hard to
create a really meta-font, as far as the art community
is concerned.

Moderator. Any other comments on that from
the panel?

Okay, another question — for Oren, or Michael,
or Luis, or Howard?

Karl Berry. I have a question for Howard, which
is, I’ve spent a lot of my life looking at TEX.CH, and
at the top in all those change files, pretty much all of
them say “Howard Trickey and Pavel Curtis”. I see
Howard Trickey, who I never quite understood was
at Stanford before this conference. I wonder if you
could tell us if you worked directly with Pavel, or
if it was two independent things, or how that came
about.

Howard Trickey. This is pretty interesting. The
fact that that change file has my name in it meant
for many years it was really easy to find me on the
World Wide Web. There was, like, 300,000 references.
So thank you all for putting that page up on the
web.

Don had done his thing on the DEC computer,
and I had worked on VAXes — I didn’t like this com-
puter. And I wanted this thing to work on VAX.

TUG 2010 Panel: Don Knuth & Stanford TEX Project members

128 TUGboat, Volume 31 (2010), No. 2

Moderator. The VAX was from DEC. [laughter
from the audience]

Howard. You’re right! I’m sorry!
The DEC 20 as opposed to the VAX. And so

I did the work that was necessary, which turned
out to be evil, although not nearly as evil as the
things Dave had to do because he had to change the
Pascal compiler default clauses to fool around with
the [inaudible]. And I had to do the change file that
did the system-y stuff that Unix needed, so that’s
where that change file came from. And then I found
out, hey!, this guy named Pavel Curtis had done the
same thing, unknown to me. It happened almost
simultaneously. So we were hooked up together and
cooperated together.

Moderator. Anything else on that from the panel?

Don. Can I ask a question of Michael Plass, to
describe his experiences in 1978 when I went to China
and asked him to implement the prototype of TEX.

Michael. Don had this trip to China, and he left
Frank and me with a few pages of what his ideas were
for implementing — what he would like us to imple-
ment over the summer. (I actually wonder whether I
still have those pages somewhere. I tend to keep stuff
so it’s possible — that would be interesting.) Frank
was tasked with the hyphenation, and I was tasked
with building up starting with storage allocation, I
guess (the very bottom), the macro processor, and
up through . . . I think by the time he got back it
was about ready to start implementing some of the
line breaking stuff. I guess Frank was also working
on the output — the printer driver end of this so we
were able to make some prints by the end of that
summer. One thing I remember is with the macro
language the way Don had spec’d it out, I did some
experiments, and he decided it was too powerful —
that you could get too tricky with it and do too many
things. So he redesigned it to be much more token
oriented than it was in the original.

Moderator. Frank, do you have anything to add
to that?

Frank. Well, what I remember in addition to the
hyphenation which actually I did while Don was here
was that, after looking at his notes, Mike decided —
he was sort of in charge — we decided to split it up
and I would do the output and he would do the rest.
And I said this didn’t sound like much. At the time
he thought output sounded pretty difficult because
maybe he didn’t know how to do it right off the bat,
and of course I had already been playing around
with the XGP so I knew how to do it. So for me
actually it wasn’t that much work and he ended up
with much more than he thought. What he gave me

was a list of boxes, graphics boxes, and I said, okay,
I’ll just put them on the printer so that wasn’t much
work for me. Obviously we way underestimated how
much work it was going to be and it was two more,
or several more years of Don’s work later.

Moderator. I have a followup question. In
Michael’s interview, on the TUG web site, he says
that after Don got back, then he rewrote it all. And
so my question for Don is, you didn’t like Frank and
Michael’s work?

Don. Oh, no, actually I liked it, although there
were basic changes made. I think control sequences
were sort of considered as one character at a time
instead — this tokenization idea was coming along
at the end — so really the main thing is it gave me
the idea for an architecture for the program. But I
never expected that I was actually going to use that
exact code. I wanted to see it in place; I wanted
to see how big it was, what kind of subroutines you
needed, and things like that, so that was a key step
in getting going. But I knew my sabbatical year was
coming up, and that during that time I would . . . I
always intended to look at what they had and then
work over again, and say, okay, now back to square
one. Now we know what it’s going to be like. Now
let’s design the right data structures that go with
this kind of architecture.

Moderator. Question for Oren or Luis or Joe?

Boris Veytsman. Question for Oren. I always
wanted to know, what was the inspiration for the
style of BibTEX language?

Oren Patashnik. For the style of the BibTEX
language?

Boris. No, for the BibTEX language itself — for
the .bst files.

Oren. Leslie Lamport needed somebody to do a
bibliography program to go along with LATEX, and
his idea was to use, sort of as a model, Scribe — it
had a bibliography program. So he and I sat down,
and he had some ideas about things that he’d want in
this .bst language. So he and I sat down and kind of
discussed it, and I was the one who implemented that.
So BibTEX itself is really, to a first approximation,
an interpreter for this .bst language. That’s really
what BibTEX is.

Leslie Lamport — I think the main ideas for
what (he had thought about it before) what was
going to go into that language, came from Leslie.
And then I implemented it.

I just wanted actually to follow up, in addition
to the discussion of literate programming from earlier
[Bart Childs’s presentation, “Thirty years of literate

David Walden, moderator

TUGboat, Volume 31 (2010), No. 2 129

programming and more?”, pp. 183–188], I sort of
thought about this a little bit over the break, and
I went up to my room and got this — it’s my copy
of bibtex.web. I think tex.web is probably the
largest piece of software in WEB, and bibtex.web is
maybe the second or third, I’m not sure. But it’s a
third or maybe two-fifths the size of TEX. Actually,
I hadn’t — all the stuff I’ve been doing with BibTEX
since, has been looking at the stuff with the .bst

language, and not with BibTEX itself. The only bugs
have been really, really minor, except for one; there
was one kind of majorish bug, which is that it didn’t
handle URLs.

Well, back when BibTEX was written, there were
no URLs, so I didn’t have a chance to test it out on
that. I think I misunderstood something that either
Don said, or Dave said, I don’t remember, about
how control sequences are handled, and so basically,
BibTEX doesn’t handle the line-breaking right for
very long URLs; that’s the issue. And so finally, I was
convinced that I should . . . , and rather than release
a version of BibTEX with all these kind of minorish
things, that’s probably not worth wasting people’s
time to install a new version for that. Rather than
just doing that, I thought I would finally release a
new version of BibTEX that had as its only change
that change to how BibTEX handled the long URLs.
And so I recently did that a couple of months ago —
I was working with Karl. And this is getting back to
the literate programming in WEB. Every time I look
at BibTEX itself — sometimes I look at the bits on
my computer, sometimes I look at the hard copy —
every time I look at it I think, kind of, what’s going
on here? But pretty quickly I then sort of get into
it. But I hadn’t really had to make a change before,
until this time. And I realized . . . same experience,
I looked at it, I knew I’d taken a peek at this, and
I thought, well it’s not completely trivial, so I’ll do
this eventually. So now is the time to do it; we finally
decided now’s the time to fix that bug.

I looked at the code, and after not very much
time — it always takes me a long time to do context
switching — I looked at it and said, oh, gee!, the
structure of what’s going on in the program became
completely clear. It was like I was in a zone; you hear
athletes talk about “being in the zone”, a basketball
player, all of a sudden the basket looks huge, and
it’s easy for them to make a basket, or a baseball
player, the pitch coming in from the pitcher looks
like a grapefruit, and it’s easy for them to hit it,
or a soccer player knows they’re going to have a
28-yard direct free kick, bend it around the wall
and bury it into the upright corner of the net. I
mean, talk about athletes getting into the zone, and

I sort of felt like that was the experience I had here:
After a little bit of looking at this program, all of a
sudden the structure and what was going on became
completely clear, and it was really easy for me to
make the change.

I had just switched computers, so I didn’t ac-
tually have a TEX implementation on my computer,
and I had to use Karl as my debugger —KBDB or
something like that — so in the change I made there
was one minor mistake. So it took two passes. But I
was amazed at how, initially you look at this code
and think, what’s going on? But very quickly I
completely realized the structure.

I think what happens is, when you do literate
programming, it imposes in your mind a map of
what’s going on in the program. It had been 22 years
since I’d looked at this code, I think; after 22 years,
it didn’t take very much, and all of a sudden it was
crystal clear. I’ve never felt that experience before.
When looking at .bst code, that doesn’t happen to
me. [laughter] But with a literate program, I think
it’s because literate programming imposes on you a
structure that, even when you haven’t looked at it
for 22 years, it comes back; it’s still there.

Moderator. Don, you have something to say?

Don. Well, speaking of literate programming re-
minds me of a question for Joe Weening, because
it was Joe who suggested the idea of mini-indexes
that I used in the TWILL program for literate pro-
grams, and Joe made some mockups, so maybe he
can remember something more than I can.

Joe Weening. I remember them, but I don’t
think there’s much to say beyond what you just
said. It’s a pretty simple idea: looking at a page of
a literate program, there’d be a lot of names you
hadn’t seen before — names of variables, names of
other sections, and so on — and so rather than go
from each page to an index and then to another page,
the idea was, let’s go there directly. Of course, this
was before hyperlinking. You must have heard about
hyperlinking! Nowadays, what you’d want to do, you
would be looking at this on line, and you’d just click
on something. That’s probably what [. . .]

Don. Certainly we do have the hyperlinks and
the clicking now, but a lot of times there’s still a
value for this in hard copy, when you have a book
and you’re sitting in your chair, or you want to keep
coding without clicking to the other part. But the
thing was, you not only suggested the idea, but you
also showed a really nice way to present it. I guess
it seems simple to you, but it was a real revelation
to me.

David. TWILL?

TUG 2010 Panel: Don Knuth & Stanford TEX Project members

130 TUGboat, Volume 31 (2010), No. 2

Don. Yeah, TWILL. It’s on my web site. It’s not
that easy to use, so I don’t advertise it much. It
requires running in several passes. When you have a
literate program and you have a variable called ‘x’,
there might be thirty variables named ‘x’, so you
have to disambiguate which one you’re talking about,
at least when you write code the way I do, which
is maybe not the best. So you have to go through
several passes, and then give hints, and say “No, I
didn’t mean that ‘x’, I meant this ‘x’.” And you
have to tell it to say “This is something in such-and-
such a C library.” So there’s a bit of hand-tuning
that goes on, and it’s not a trivial thing. I just went
through a book coming out later this year called
Selected Papers on Fun and Games. In there I have
a hundred pages — I took the original program of
“Adventure”, the cave game, of Don Woods, and I
rewrote it as a literate program. And it appears
with these mini-indexes, but I had to go through
carefully and do it. But the original program used
to do Volume B and Volume D, you know, TEX: The
Program, METAFONT: The Program, it was called
TWILL. And now I have CTWILL.

David. Wasn’t there an early version of WEB? Did
Luis work on it? Wasn’t there a version of WEB that
was before WEB?

Moderator. Perhaps one of you could speak a bit
about that? Luis, perhaps?

Don. Yes, I was going to ask Luis about the origi-
nal . . . I mean Luis was involved with this project so
early on that you don’t know any more all the key
things that happened. There are, for example, ques-
tions of how did we port TEX to a hundred different
computers and get the tapes out and everything like
this. People were asking about Maria Code the other
day, and somebody said they didn’t know if she was
a real person. And also, you might be able to also
speak as to what Ignaki [Ignacio Zabala] did — he’s
the main person of the original team who isn’t here
today.

Luis Trabb Pardo. The question about the lit-
erate programming, it was originally a much more
mundane thing. We were distributing tapes, and peo-
ple wanted to know where was the “Main”, where
does the program start? I said, “At the bottom.”
And my primary function at the TEX Project was to
answer the phone. And I essentially answered that
question, “It’s at the bottom.” In some discussions
with Don Also, there was the issue of docu-
mentation. So, the idea of blending that came very
naturally as the necessity to not answer questions
but have the questions essentially be answered by

what you said. That was the suggestion; essentially
Don did the whole thing.

The issue about what Ignaki worked on origi-
nally was to start thinking in terms of graphic objects
that were going to be put on a workstation. We were
in an environment at Stanford that was a timeshared
system, and we didn’t have much . . . well, we did
have interesting things going on there, but the con-
cept of a resource available to you like we have today,
on our desktop, on our personal computers, was not
there. So he started working from that component.
He actually put together a system that had all kinds
of graphic things. He called them graphic objects.
And you could do what you could do today in a
display environment on an existing system. I think
that answers more or less the level of what Ignaki
did.

Unknown. Was Maria Code a real person?

David. I believe that was Ron Code’s wife. I
remember dealing with Ron more than Maria. The
ARPAnet was there, but that was only academic and
government institutions, so it used to be, you’d send
in a tape to, I think, Ron and Maria Code, who were
entrepreneurs, I suppose; I don’t know how they
hooked up with us. And they would spin off a copy
for you and send it.

Unknown. So they weren’t members of the Stan-
ford CS department?

David. No, no, I saw them in person.

Moderator. The statement from a member of
the audience [Gio Wiederhold] is that Ron [Code]
worked for him in medical information systems.

Gio Wiederhold. Maria did all the hard work,
and Ron managed her.

David. I believe I gave him the tapes after a while,
whenever there was a new release. Following up on
the thing that Luis said, when he stopped answering
the phone, I was the one who started answering the
phone.

John. Actually, I answered the phone for you.

David. I apologize. [laughter] It turns out, there’s
really only five questions that anybody ever asks, so
after awhile, if you called, and you happened to get
me, you could start asking your question, and I’d be
able to answer it before you were done. And, not
only that, after awhile it got so I could say, “And, by
the way, the next question you’re going to ask”
So people thought I was brilliant from this, but it
turns out it’s all fake.

Moderator. There’s a question out there.

Didier Verna. Something totally different. The
first part of this question is probably for Don, and

David Walden, moderator

TUGboat, Volume 31 (2010), No. 2 131

the second part for everyone. I would like to know
why TEX was designed as a macro expansion system,
and the second part of the question is for all of you:
How do you regard that design decision thirty years
later?

Don. The way TEX was designed was the following.
I thought I would have a language for myself and my
secretary, and I sat down one night and I wrote out —
I chose about seven pages of The Art of Computer
Programming that had different kinds of features on
them, and I said, how, if I were entering this into a
computer, how would I like to do it? And I wrote that
down; it’s all there in the book Digital Typography,
the memo that I stayed up late one night writing it
out. And then I figured out, I changed it a little bit
to something I thought I could implement, and gave
it to Michael and Frank while I went to China. But
the design, it was natural to have macros rather than
procedure calls, the way I looked at things, because
of the way I could conceive of writing this program.

So, the second question is, is it worthwhile?
Well, you’ll have to wait for my next talk. But
I don’t know what the other people on the panel
[think].

Moderator. Does anybody else have a comment
on that?

David. Yeah. One of the things to keep in mind,
people going, oh, my gosh, how can you possibly fit it
in 640 K back in the PC days? Well, it’s important to
realize that the big DEC-10 that it was developed on
was a 36-bit-word machine — let’s call that 4 bytes,
more or less — and you only got 218 of those, so
that’s only a megabyte. And the whole thing, even
in the big version, fit in a megabyte, and, boy, when
you look at a lot of the decisions, at least from my
perspective, it was driven by that. It’s amazing that
you can do that much in that little memory.

Don. But when I got to METAFONT, it was macros
gone berserk, because I had object-oriented macros
in there.

Moderator. Another question from the audience?

Hartmut Henkel. This is for Don Knuth. Was it
backslash from the beginning? Why, actually, is it
backslash introducing any TEX command?

Moderator. The question is, was it always the
backslash that introduced TEX commands?

Don. You can see exactly what it always was just
by reading that chapter — I guess it’s two chapters —
in the book Digital Typography. It answers every
question about what was there in the beginning.

Actually, I think, in my very first draft I did not
have reserved words, because I was thinking of nroff.

They didn’t have any backslashes, so then I wouldn’t
be able to use certain words. But that didn’t last
very long.

Moderator. Question over here.

Unknown. This is partly for Don, but partly for
anybody else. When did you first become aware of
the PostScript language or its predecessor JAM and
to what extent was there any influence of that design
to TEX, or perhaps backwards?

Moderator. Michael has an answer, maybe?

Michael. After I graduated from Stanford I started
at Xerox PARC in the lab where Chuck Geschke and
John Warnock were, and at the time JAM was in use.
By that time, they had already translated TEX78
into Mesa, so it could run on Altos and the other
machines in use there. So I really don’t know how
much they influenced each other, but I think the
TEX stuff probably predated a lot of the . . .

John. I did learn JAM one summer very early
in my graduate career, but it was just part of my
education.

Don. I didn’t look at PostScript very much myself,
but I did visit PARC rather often, and I saw, well I
remember one of the first times I went there, going by
a room, somebody sitting by a terminal, and there
was a big letter “B” he was measuring. So when
I took my sabbatical year, that first year in 1978,
I asked Xerox PARC if I could work there, to do
my font work. And I was going to measure all the
letters in my book, and fit splines and everything,
and they said, well, that would be fine, but then
all of your fonts belong to Xerox. So I went back
to the Stanford AI lab and decided to do it myself.
So there was a lot of work going on at PARC. And
Warnock actually brought his stuff from Utah before,
which I only learned later. But then the other main
influences — afterwards, in the ’80s I’m meeting the
leaders of the font industry. Mike Parker comes from
Mergenthaler, and says, boy, there’s some guys over
. . . that have this PostScript language that renders
fonts in an incredibly fast way from outlines, and
things like this. And he was all excited about it.
And they had new ways of tuning the fonts to the
raster dynamically; hints, they call it now. And so
that’s when I first learned, myself, about that kind
of work, the PostScript.

Moderator. I have a question. When in his
interview, John Hobby says he worked with Don
on METAFONT, that he primarily worked on the
algorithms, and Don did the coding himself, I’m
wondering with Frank and Michael, with hyphenation
and paragraphing, was it the same situation there,

TUG 2010 Panel: Don Knuth & Stanford TEX Project members

132 TUGboat, Volume 31 (2010), No. 2

or did any of the rest of you actually touch the TEX
code?

Don. So, let me say that they were watching me,
over my shoulder. [laughter] Especially David. But
if you look at the error log you’ll see, for example, like
I think there will be several entries that say “HWT”,
and that’s Howard Trickey, and so on. And the error
log is also printed in Digital Typography. So the
idea was, really, I was the filter and the final end.
And we had this group that would meet once a week,
and we would discuss over lunch, maybe two or three
hours, and we would toss around whatever the topic
of the week was — everybody was participating and
looking at these decisions during that time, and then
I would have to go back. Usually I would have a new
chapter of the manual with me that they would look
at, and say “Well, why did you do that?” Or they
would shoot ideas, “Let’s put this feature in.” But
then I didn’t want the project to diverge, so I always
decided basically, okay, we’re going to make sure this
is a little bit unified by being the only person who
wrote the code. And I guess it’s also because I guess
I’m a little afraid of using something that I don’t
really understand all the way through.

Moderator. Anybody else want to comment on
the collaboration with Don?

David. Let me just follow up quick with that. You
know for awhile when I was answering the phone,
I was also kind of the gatekeeper — people thought
they found a bug, which frequently they hadn’t, but
when they reported it, I’d go, okay, I’d check it out,
and see that it seemed like it didn’t work, and I’d
go into the code — it didn’t happen that often — but
I’d try and come up and find the exact line that was
the problem and come up with a suggested solution,
you know, in real code and test it out, and then I’d
send it along to Professor Knuth, and not once did
a corrected version come back that matched what I
had suggested. [laughter] Never happened. It’s all
his code.

Moderator. Luis?

Luis. I think I have a comment in the opposite
direction, which is the influence of what was happen-
ing, what Don’s area of work and expertise meant
to all of us who were working in there. I want to
counter that with my experience in industry later on.

One of the things that you see in the devel-
opment of TEX and METAFONT is the concurrent
solution of a large body of problems that were not
solved in a particularly efficient way, or were solved
in different places. And many algorithms were re-
done, or adopted or whatever, but there was always
this . . . this group of people is the group of people

who had learned about algorithms and about how to
do them efficiently, and to solve complex algorithms,
not trivial [ones], and solve them in an efficient way,
not just take the trivial answer and be just happy
with it. One of the things I’ve seen repeatedly in my
experience in industry is that many, many engineers
just decide, “Oh, it works. Bye.” If you try TEX
or METAFONT that way, it will not work, because
maybe some things will be solved, but the entirety
will not work.

The other thing is the issue about efficiency and
optimality of things. My own little experience on
this was, at the beginning we needed to interface
things. And I remember a conversation with the
engineers at Canon, who had brought to Stanford
a printer, an OEM printer with no controller, and
they said, “We did the printer, but the controller is
very difficult.” So we said, “We’ll do the controller.
Can you give us the printer?” We had a discussion
about it. And what we did in there was essentially
to think about how to use things that we had, like
a little microprocessor, and built a few things, and
we got a controller in there. The industry was not
willing to go that way. They would say, “Oh, it’s a
complicated thing, we need a lot of memory, a lot of
power,” Well, what we had at that point were
the people around who just figured out how to solve
it with the things that they had there. And I guess
that that’s what made it possible.

Moderator. Karl?

Karl Berry. I guess this is a question for everybody
except Don, per his request. Given all the comments
about literate programming, both by Don and now
by Oren, I wonder if any of you have seen literate
programming after your TEX life? [silence] I was
afraid of that. [laughter]

Moderator. Has anybody seen literate program-
ming in their life after Stanford, after TEX?

Karl. Used by, done by somebody else?

Tom. I don’t claim to be capable of writing very
well, but on a number of our projects I have used
literate programming techniques for a delivered prod-
uct. In my modern life, I don’t. For fun, I do, but
not for anything I do commercially, or anything like
that. But for a number of projects I delivered both
during and after grad school, I based on literate
programming ideas. I didn’t necessarily use CWEB.
For instance, one project I did — it was a SCHEME-
language program — I did use CWEB for that. But
certainly the concept of the linear exposition of the
ideas, small sections, and focusing the effort on al-
lowing readers to understand the program was the
goal I was shooting for, as opposed to just letting

David Walden, moderator

TUGboat, Volume 31 (2010), No. 2 133

the compiler accept it and letting it pass all the unit
tests and stuff like that.

Moderator. Luis?

Luis. I think if you just take a sample of what
you have out there, you would say that probably
documentation is never done within two or three
years of release of a project. So essentially, there is
no priority anywhere in the workplace to anything
close to this idea of presenting the totality, of the
concept, the implementation details, and the actual
implementation in one place. You’ll be fired if you
try to do it.

Moderator. There’s a question back there?
Oh, wait a second, Don wanted to say something.

Hold that question.

Don. About 20 years ago when Bill Gates visited
Stanford I gave him a copy of the book Literate
Programming. I just wonder, Frank, if anybody in
Redmond ever saw it.

Frank. Twenty years ago I think I had already left
Microsoft. My office was right next to Bill Gates’s
for about a year. But I hardly ever saw him except
he would walk by in the morning and he would
walk out in the evening. So I’m sorry. We used at
Microsoft, when I was there, we had all our own
development system which was kind of inspired by
another Stanford graduate, Charles Simonyi. He
had something called Hungarian. I don’t now how
many of you are familiar with that. We used those
conventions at Microsoft in the early days. Now the
organization is so huge I don’t really know.

Moderator. Let’s go back to the question there. . . .

Idris Hamid. This is a question for Donald Knuth,
and it relates to, I guess, what we might loosely
call the mysticism or spirituality of TEX, what I
would loosely call the mysticism or the spirituality
of the topic. One of the classes that I teach in the
philosophy department is religions of the West. And
in the Christianity segment, I actually used Bible
Texts Illuminated. We don’t have time to read the
whole Bible, and of course that covers a number of
religions, and even if it only covered Christianity
we wouldn’t have enough time to cover the entire
Bible. But taking your own approach, this is one
of the texts I used in that class. And, before I
ask the question, I want to make one more brief,
contextual comment about this. In my own work,
which involves the study of Arabic manuscripts, a
lot of which relate to spiritual literature, one of the
things that I’ve encountered is the need to begin to
deal philosophically with the æsthetics, for example,
of the Arabic script. And then I start coming across

certain sayings in my own tradition, as a Muslim, for
example, a beautiful script makes the reality that
it represents become more obvious. Or, that God
is beautiful, and he loves beauty, loves to see his
creation create beauty. So my question for you is,
when you reflect on your years of work developing
TEX, and when you look at your interaction with the
written word, what spiritual or æsthetic reflections
or wisdoms would you like to share at this juncture,
given these years of digression that turned into such a
beautiful product; what kind of spiritual or æsthetic
reflections or philosophical reflections would you like
to share with us?

Don. So, in the first place, it sounds like we’re
on the same page with respect to our feelings about
the primacy of having beautiful things. The second
thought that came to mind quickly was, when TEX
itself became a reality was the moment that it had a
name, and that also goes into the religious concepts,
of naming something. When Duane Bibby came
along, it actually got more of some kind of a soul;
I don’t know. But anyway, the project from the
beginning was definitely driven by the idea that I
wanted to have the things that I myself was writing
would be something that people would enjoy looking
at — not just reading, but also somehow the idea that
I liked it enough to also present it well. I would dot
the ‘i’s and cross the ‘t’s and care about ligatures and
things like that, instead of just getting [inaudible].
So that’s not shared by everybody, and all of these
questions are very personal; so also, I think that the
Muses would agree with this kind of opinion.

Moderator. Bart?

Bart Childs. This is for everybody except Don.
When Don was about to release, started in to do 3.0,
several of us got an e-mail, “are there any features
that you think should be added to 3.0?” I sent a
list off, and later I thought, well, Don, mine didn’t
make it, but did any of you say, “here are features
that you ought to be putting in TEX” that didn’t get
there, and, if so, what were they?

John?. I remember one that made it there, which
was the one-character font name argument. I remem-
ber the day we all yelled about that back and forth,
and it was nice to get multiple character font names.

Don. No, that was before 1.0. The original TEX78,
there was \font a, \font b, \font c; there wasn’t
room for storing more than 32 fonts, so why should
we allow multiple [character font names]?

Joe. I was trying to remember, what year was TEX
3.0? 1990. Yes, and the big thing was 256-character
fonts and features like that. I think most of us were

TUG 2010 Panel: Don Knuth & Stanford TEX Project members

134 TUGboat, Volume 31 (2010), No. 2

gone from Stanford by then. Tom — maybe you were
still around.

Don. What ideas did you guys propose at our
weekly meetings that I ignored? [laughter]

Joe. I think I wanted to make control sequence
names not be case sensitive, and you insisted that
they be case sensitive. [audience: why?] Just a
matter of personal preference. [audience: I agree
with Don! laughter] I guess I was just a Fortran
programmer for too long.

Moderator. I have kind of a follow-on question
here. The question that was asked was kind of a
legacy question. I have a slightly more down-to-earth
legacy question — I’ll direct it to Tom, but I think
it’s probably true for all the rest of you in one way
or another. Tom, at one time you developed WEB2C,
and you developed DVIPS, and then somehow you
got somebody else to take it over, or somebody else
took it away from you. How do you feel about the
separation, and the continuing life [of your project]?

Tom. Oh, boy. Appreciative, I guess, is the word.
And truly so! I mean, not actively using that much,
actively supporting a bunch of people — it’s a differ-
ent world when you get out of it. And it was hard for
me to deal with some of the problems people were
having, because I wasn’t even running anything like
that. And there were a number of issues with DVIPS.
Part of it was that there was a certain effort to make
it be GNU, and at the same time I really wanted to
keep it free of the copyleft. And it turned out to be
what I ended up doing. But I really tried to keep a
separation there for awhile, and it turned out to be
a bad idea I’m just really grateful that people
took up the leadership role and made it all happen
and kept it all working ’cause I wasn’t doing it.

John. I could add a comment to that, in that I
clearly also gave up a leadership role. In my case,
clearly I was eager to give it up simply because I
didn’t have time to adequately maintain the program.
But anyway, I think we’re all glad to give up the
leadership role.

David. Oren needs to comment on that. [laughter]

Oren. Yeah. My comment was that I never let
that stop me. [laughter]

Moderator. You have a new release of BibTEX
coming out?

Oren. BibTEX 1.0 is going to come out any decade
now. [laughter]

Moderator. Another question from the audience,
please? There’s one way back there. Frank — is it
Frank?

Frank Quinn. Leslie Lamport has been a big
influence on all of these developments. Could you
perhaps comment on how you saw his motivation,
and what sort of interaction he had with the group?

Oren. Well, I’ll comment a little bit, since my
real first Other people here really know more
of the TEX internals, everybody else does than I do,
and so my first contact with a lot of the TEX stuff
was through Leslie, and as I said before, he needed
somebody to do a bibliography processor for LATEX.
And I know his thinking was, he kind of liked the
path that Brian Reid took with Scribe; it was kind
of a very simple interface, you could describe things
fairly succinctly. Somebody who’s an English major
could easily use it and get nice output. And so, I
think that was the first contact I had was with him.
I don’t know how much he was involved with the
TEX project before that. I think people at — where
was he then? I think he was at SRI— he had written
some macros that people liked there, and I think they
encouraged him to do something with it. I’m not
sure where his other influences were, but certainly,
once he got going, I think people, obviously they’re
fairly happy with it.

Moderator. Anybody else?

Don. He’s a very independent spirit, like I am.
He does a lot of work on his own. Every once in a
while he would run into something he couldn’t do,
and so then I would have to put in another feature,
while kicking and screaming. But it was totally
independent work from Stanford.

Moderator. Right here — front row.

Robert Cristel. We know how the problem of
. . . The Art of Computer Programming [printing]
caused TEX to be more [æsthetic]. So my question
really is, apart from making The Art of Computer
Programming more beautiful, how, in other ways,
did TEX affect The Art of Computer Programming?

Don. Well, it set it back about fifteen years. [laugh-
ter] On the other hand, I’m writing a little bit faster
now, so maybe it’ll save twenty years if we amortize
the whole thing.

I thought you were going to ask about other
things besides The Art of Computer Programming.

Robert. I mean the stuff that’s inside, not neces-
sarily the other.

Don. To my great surprise, right from the get-
go for example, Barbara Beeton came with a few
other people during the summer of 1978,1 and she
showed me all the kind of things that she wanted
to do with Math. Reviews, and then also the AMS

1 Actually 1980.—bb

David Walden, moderator

TUGboat, Volume 31 (2010), No. 2 135

was having trouble typesetting their journals and
things like this, so I started looking at applications
of other users. And so then this meant that TEX had
to grow in lots of ways. But it was sort of going from
one user to ten users, and then from ten users to a
hundred users, from a hundred users to a thousand
users, . . . each time the language had to change in
some way. And I think the fact that all these things
had to be filtered, had come down to me, helped to
keep the thing from diverging, although of course
for complicated systems . . . it would have been a lot
worse if we hadn’t done it that way.

Moderator. Frank?

Frank Mittelbach. A question for Michael, I
guess. I consider the paragraph algorithm as one of
the very central algorithms within what actually has
been achieved with TEX. It grew in time. I know
your thesis, and I’ve seen other papers around it. My
question is, as far as anybody can remember, have
there been things you were sort of experimenting with
that you would like to have in addition to that kind
of algorithm, like in parameterization or something
that you either never got around to doing, or found
too difficult, or got shut down for other reasons?
Is this the ultimate thing you wanted to have, as
a group, in terms of being able to do this kind of
thing, or is there some stuff that back then was not
possible for some reason, but conceptually was on
the horizon?

Michael. A lot of the features that were built
into the line-breaking algorithm itself that’s in TEX,
I think Knuth ended up putting in there based on
experience. As far as the actual coding of the algo-
rithm, he did that. The origin of the problem was
actually in the first graduate seminar programming
class, where there was a problem for doing this; I
guess he was thinking ahead a little bit to a sabbat-
ical year at that time. But that was for breaking
up — I think the problem was musical composition,
if I remember right, but it’s a very similar thing.

I guess as far as something that it would be nice
if more of it were used in practice is the stuff that’s
in my thesis about arranging figures, moving figures
from page to page, which at the time, it was certainly
way too expensive to actually consider using in a real
typesetting program. Maybe today it’s not.

Don. So homework problem, Frank, go look at
Michael’s paper. He wrote a short version of our
joint paper, which was published in another book
about typography at the time. He generalized what
we had and had an idea of a kerf (spelled ‘k e r f’),
and I don’t remember what it was, except that it
was good.

Moderator. A kerf is something to do with a saw,
in real life.

Don. Okay, but anyway, it was in his paper, and I
can’t remember it today either, but anyway, I think
it’s worth resurrecting.

I wanted to mention something before I forget
it. Although I wrote the main code that people saw,
for TEX and METAFONT, there were also drivers and
many other programs that had to be written, like
TFTOPL and all kind of other what we call utility
things. And Tom Rokicki did the things associated
with PK fonts, for example. But David remarked
briefly about having to take all the TEX code and
convert it to C; well, he wrote a long WEB program
that did this, and then I modified it slightly so that
it would make profiles of the TEX system, so that
it could instrument the whole program and find out
how many times every instruction was done. And
then David worked out a very clever thing that would
work on our computer, and it — I think Joe Ween-
ing worked on this too — there would be daemons
that would keep track of these statistics, and so
over a whole year’s time, every time anybody ran
TEX at Stanford, these statistics were kept, and the
counts were accumulated, and carefully saved, with
machines crashing every day, but still pretty good
stuff altogether. And then, using David’s profiling
program, I could make a pretty-printed version which
would associate with every line of TEX exactly how
many times people had used that line. And it was
really important, for example, how many times did
each error message get issued during the year. And
we could figure out what the bottlenecks were. So
anyway, to make a long story short, there’s lots of
other programs that were written at that time that
were necessary for the development, that didn’t go
out to the world.

Moderator. Is there another comment down
there?

Joe. I had completely forgotten all about that; it
sounds familiar. I don’t remember the details.

Don. The DEC-20 had memory that was divided
into two parts, and there was one part that was sort
of always there for the system libraries and things
like this, and that’s where all these statistics were
living. There might be ten people using TEX, but
only one copy of TEX is running somehow on the
machine. And that took a lot of system wizardry,
and I have no idea how they did it.

David. You wanna know? [laughter] So this was
actually on the DEC-10, which had the WAITS op-
erating system, which was custom-built at Stanford.
That 218 address space, it was half code, half data.

TUG 2010 Panel: Don Knuth & Stanford TEX Project members

136 TUGboat, Volume 31 (2010), No. 2

And the code segments were all shared, so if many
people on this time-sharing system were running TEX
at the same time, or any program — you know, the
editor, the system editor — there’d only be in phys-
ical memory one copy of the code, but everybody
had their own separate data, so I was editing my file,
and you’re editing your file. Well, the trick was, we
wanted to count every execution of every basic block
of TEX — every line of code, more or less. So the
compiler used on that machine was this terrible thing
from Hamburg — half the comments were in German,
which I suppose was okay, but the compiler was not
very good — but I managed to modify it so that —
what! a lot of modified compilers here [laughter] — so
that it would spit out little increment, atomic incre-
ment instructions every time it entered a basic block.
The trick was that the place, the memory locations it
would increment were in what should have been the
read-only code segment that was shared among all
the users. Yeah, right. People who know hardware
are raising their eyebrows. [laughter] So that was
fun, and every day or so, it would save itself out to
disk, and there was special code that could retrieve
this stuff out of the code segment, and it would ac-
tually increment; if the program counter was dot, it
would increment dot plus two and then jump over it.
So there was enough room for all the data. So that
was another great piece of fun; this was back in the
day . . . the point is that the resources were really
tight, and it was hard to get stuff in, and you had
to do all sorts of hackery.

Moderator. I think we may be getting a little
overly sentimental now. [laughter]

Well, over the last couple of days, trying to help
this panel go more smoothly, we invited questions
to be submitted in advance. And I have two, so I’d
better ask them, or else I’ll be very rude. And I’m
going to combine them, in a sense.

The one question is, in your legacy, where does
your work with TEX stack up? Now, that’s kind of a
TEX-centric question, but that’s the question. And
the other question is, because people are curious,
what are you doing now? I think those two questions
go well together — you’ve done a lot of things since
then. Where does TEX fit into your life adventure?
If anybody would like to answer that.

John. You say you’d like us all to answer?

Moderator. No, no, anybody who wants to an-
swer. . . . We don’t have to have everybody answer.

John. Well, okay, I’ll give you the answer first of
all. Certainly, METAPOST is one of the most visible
things I’ve done. I’d sort of not like it to be the
highlight of my scientific career, but all I can say

is, sure, it was a great experience and I’m happy to
have worked on it, and I’m not surprised that it can
somehow overshadow a little bit of the other stuff.

Tom. Well, let’s see. Coming and working on the
TEX project for me was absolutely changing, because
TeXas A&M . . . I was a bit of a cowboy, I wasn’t
really — I wasn’t CS, I was EE. I was always pushing
electronics, not bits. But I enjoyed programming a
lot, and I learned a lot myself, and all that, but com-
ing to Stanford and being with some of these people
really taught me a lot about how to program cor-
rectly, and the importance of literate programming,
and that sort of thing. So, absolutely critical. As
far as what I’m doing now — I’m a web programmer
nowadays. I’ve got a little startup down in Santa
Clara. We write huge enterprise applications for
Fortune 500 companies.

As far as legacy, you know, I could not ask for
anything better than to be associated with this group
of people and this project. So I have absolutely no
problem with this being “the big thing”.

Moderator. Anybody else have a comment? Not
required. Luis?

Luis. It essentially sent me in a direction in life
that I had never expected to be. I was a student of
Don’s, and I was going to do something academically
“tainted”. [laughter] And I ended up in industry.
And essentially, the one thing I think I have the
most . . . what I recall my time at Stanford as part
of the project is the quality of what was being done.
The point I was never able to achieve in industry,
because I want into the printing industry, who were
creating laser printers and doing some architecture
for that. You can never do it; you can never go back
to that level of excellence and I have to thank all the
people here and of course Don, for that.

Howard. I was going to say something. I’m
think that I’m very proud to be associated with
this because there’s the comparison between things
like Scribe and things like TEX when the kind of
utilitarian thing that was easy to use and then TEX
appealed to me because of the beauty part of it,
which I mentioned earlier. And I’m proud to have
been part of something that brought a lot of beauty
to texts for many, many years, that everybody has
been producing. I think the world would have been
a much uglier place if we hadn’t done what we had
done, but especially, of course, Don, to do this. I like
the fact that many, many people have run a piece of
code that I have written because of this project; so
that’s the legacy part there.

David Walden, moderator

TUGboat, Volume 31 (2010), No. 2 137

Now I work on Google maps, and wrote business
ranking code, which maybe is starting to exceed the
number of instructions executed.

Joe. Yeah, I guess just thinking about that, what
I enjoyed the most — it’s always been sort of part of
what I like to do — is to see something that I like and
make it better by adding features or doing things
that I would like to see in my project. And I think
that all of us at this table have done that. So we were
each able, in our own way, to contribute to the TEX
project, and just thinking of it in the larger sense,
this is what Don has done for this whole community,
is to take what he needed and what he wanted to
see for his books and then make a really big software
project out of that, that had a lasting [effect]. So I
think we’re all proud to be part of it in that sense.

Moderator. I think we’re almost at time out, and
I’d like to make an observation. I joined the TEX
community, I don’t know, ten years ago, roughly,
something like that. And at the time, it seemed to

me that there was some depression I sensed. You
know, things weren’t changing; things were getting
. . . . Of course, a lot of development was going on
all the time, but today, at this meeting, I have a
sense that it’s a very active development community.
People are excited about things, and I’m just so
impressed that something that started thirty-two
years ago was done in a way that enabled that group
of people to pass it on to another set of people, that
group of people to pass it on to yet another set of
people — I’m not sure what generation we’re on now.
Surely there’s some people who have been involved
more or less the whole time. And today it remains
a vibrant community trying to achieve the beauty
that this group of people set out to achieve.

With that, I think we should call an end to this
session. The panelists — I’d like to thank you all
for both your participation today and for everything
you’ve done for us, that led us to be here today.

[applause]

From left: Luis Trabb-Pardo, Michael Plass, Tom Rokicki, John Hobby, David Fuchs,
Don Knuth, Howard Trickey, Oren Patashnik, Joe Weening, Frank Liang.

TUG 2010 Panel: Don Knuth & Stanford TEX Project members

