
TUGBOAT

Volume 32, Number 1 / 2011

General Delivery 3 From the president / Karl Berry

4 Editorial comments / Barbara Beeton

Opus 100; BBVA award for Don Knuth; Short takes; Mimi

6 Mimi Burbank / Jackie Damrau

7 Missing Mimi / Christina Thiele

9 16 years of ConTEXt / Hans Hagen

17 TUGboat’s 100 issues—Basic statistics and random gleanings
/ David Walden and Karl Berry

23 TUGboat online / Karl Berry and David Walden

27 TEX consulting for fun and profit / Boris Veytsman

Resources 30 Which way to the forum? / Jim Hefferon

Electronic Documents 32 LATEX at Distributed Proofreaders and the electronic preservation
of mathematical literature at Project Gutenberg / Andrew Hwang

Fonts 39 Introducing the PT Sans and PT Serif typefaces / Pavel Farář

43 Handling math: A retrospective / Hans Hagen

Typography 47 The rules for long s / Andrew West

Software & Tools 56 Installing TEX Live 2010 on Ubuntu / Enrico Gregorio

62 tlcontrib.metatex.org: A complement to TEX Live / Taco Hoekwater

68 LuaTEX: What it takes to make a paragraph / Paul Isambert

77 Luna—my side of the moon / Paweł Jackowski

LATEX 83 Reflections on the history of the LATEX Project Public License (LPPL)—
A software license for LATEX and more / Frank Mittelbach

95 siunitx: A comprehensive (SI) units package / Joseph Wright

99 Glisterings: Framing, new frames / Peter Wilson

104 Some misunderstood or unknown LATEX2ε tricks III / Luca Merciadri

LATEX3 108 LATEX3 news, issue 5 / LATEX Project Team

Book Reviews 109 Book review: Typesetting tables with LATEX / Boris Veytsman

Hints & Tricks 110 The treasure chest / Karl Berry

113 ‘Magic’ comments in TEXworks 0.4 / Joseph Wright

Abstracts 114 Eutypon: Contents of issue 24–25 (October 2010)

115 MAPS: Contents of issue 41 (2010)

116 The PracTEX Journal : Contents of issue 2010-2

117 Die TEXnische Komödie: Contents of issues 4/2010–1/2011

118 ArsTEXnica: Contents of issue 10 (October 2010)

Advertisements 119 TEX consulting and production services

Letters 120 Is TEX obsolete? / Jonathan Fine

TUG Business 121 TUG institutional members

121 TUG financial statements for 2010 / David Walden

123 2011 TEX Users Group election / Jim Hefferon

News 127 Calendar

128 TUG2011 announcement

TEX Users Group

TUGboat (ISSN 0896-3207) is published by the TEX
Users Group.

Memberships and Subscriptions

2010 dues for individual members are as follows:
Ordinary members: $95.
Students/Seniors: $55.

The discounted rate of $55 is also available to
citizens of countries with modest economies, as
detailed on our web site.

Membership in the TEX Users Group is for the
calendar year, and includes all issues of TUGboat

for the year in which membership begins or is
renewed, as well as software distributions and other
benefits. Individual membership is open only to
named individuals, and carries with it such rights
and responsibilities as voting in TUG elections. For
membership information, visit the TUG web site.

Also, (non-voting) TUGboat subscriptions are
available to organizations and others wishing to
receive TUGboat in a name other than that of an
individual. The subscription rate is $100 per year,
including air mail delivery.

Institutional Membership

Institutional membership is a means of showing con-
tinuing interest in and support for both TEX and
the TEX Users Group, as well as providing a dis-
counted group rate and other benefits. For further
information, see http://tug.org/instmem.html or
contact the TUG office.

TEX is a trademark of the American Mathematical
Society.

Copyright c© 2011 TEX Users Group.

Copyright to individual articles within this publication

remains with their authors, so the articles may not be

reproduced, distributed or translated without the authors’

permission.

For the editorial and other material not ascribed to

a particular author, permission is granted to make and

distribute verbatim copies without royalty, in any medium,

provided the copyright notice and this permission notice are

preserved.

Permission is also granted to make, copy and distribute

translations of such editorial material into another language,

except that the TEX Users Group must approve translations

of this permission notice itself. Lacking such approval, the

original English permission notice must be included.

Board of Directors

Donald Knuth, Grand Wizard of TEX-arcana
†

Karl Berry, President∗

Kaja Christiansen∗, Vice President

David Walden∗, Treasurer
Susan DeMeritt∗, Secretary
Barbara Beeton
Jon Breitenbucher
Jonathan Fine
Steve Grathwohl
Jim Hefferon
Klaus Höppner
Ross Moore
Steve Peter
Cheryl Ponchin
Philip Taylor
Boris Veytsman
Raymond Goucher, Founding Executive Director †

Hermann Zapf, Wizard of Fonts†

∗member of executive committee
†honorary

See http://tug.org/board.html for a roster of all
past and present board members, and other official
positions.

Addresses

TEX Users Group
P.O. Box 2311
Portland, OR 97208-2311
U.S.A.

Telephone

+1 503 223-9994

Fax

+1 206 203-3960

Web

http://tug.org/

http://tug.org/TUGboat/

Electronic Mail

(Internet)

General correspondence,
membership, subscriptions:
office@tug.org

Submissions to TUGboat,
letters to the Editor:
TUGboat@tug.org

Technical support for
TEX users:
support@tug.org

Contact the Board
of Directors:
board@tug.org

Have a suggestion? Problems not resolved?

The TUG Board wants to hear from you:
Please email board@tug.org.

[printing date: May 2011]

Printed in U.S.A.

The ideal proofreader should be, in my opinion,
knowledgeable about every aspect of spelling, punctuation,
and grammar, while being slightly dyslexic.

Isaac Asimov, It’s Been a Good Life (2002)
edited by Janet Jeppson Asimov

COMMUNICATIONS OF THE TEX USERS GROUP

EDITOR BARBARA BEETON

VOLUME 32, NUMBER 1 • 2011
PORTLAND • OREGON • U.S.A.

TUGboat

This regular issue (Vol. 32, No. 1) is the first issue
of the 2011 volume year. No. 2 will be another
regular issue, with reprints from the EuroBachoTEX
conference, and No. 3 will contain papers from the
TUG 2011 conference in Trivandrum, India.

TUGboat is distributed as a benefit of member-
ship to all current TUG members. It is also available
to non-members in printed form through the TUG

store (http://tug.org/store), and online at the
TUGboat web site, http://tug.org/TUGboat. On-
line publication to non-members is delayed up to
one year after an issue’s print publication, to give
members the benefit of early access.

Submissions to TUGboat are reviewed by vol-
unteers and checked by the Editor before publica-
tion. However, the authors are still assumed to be
the experts. Questions regarding content or accu-
racy should therefore be directed to the authors,
with an information copy to the Editor.

Submitting items for publication

The deadline for receipt of final papers for the next
issue is June 30, and for the proceedings issue is
October 31.

As always, suggestions and proposals for TUG-

boat articles are gratefully accepted and processed
as received. Please submit contributions by elec-
tronic mail to TUGboat@tug.org.

The TUGboat style files, for use with plain

TEX and LATEX, are available from CTAN and the
TUGboat web site. We also accept submissions
using ConTEXt. More details and tips for authors
are at http://tug.org/TUGboat/location.html.

Effective with the 2005 volume year, submission
of a new manuscript implies permission to publish
the article, if accepted, on the TUGboat web site,
as well as in print. Thus, the physical address
you provide in the manuscript will also be available
online. If you have any reservations about posting
online, please notify the editors at the time of
submission and we will be happy to make special
arrangements.

2 TUGboat, Volume 32 (2011), No. 1

TUGboat editorial board

Barbara Beeton, Editor-in-Chief
Karl Berry, Production Manager

Boris Veytsman, Associate Editor, Book Reviews

Production team

William Adams, Barbara Beeton, Karl Berry,
Kaja Christiansen, Robin Fairbairns,
Robin Laakso, Steve Peter, Michael Sofka,
Christina Thiele

Other TUG publications

TUG is interested in considering additional manu-
scripts for publication, such as manuals, instruc-
tional materials, documentation, or works on any
other topic that might be useful to the TEX com-
munity in general.

If you have any such items or know of any
that you would like considered for publication, send
the information to the attention of the Publications
Committee at tug-pub@tug.org.

TUGboat advertising

For information about advertising rates and options,
including consultant listings, write or call the TUG

office, or see our web pages:
http://tug.org/TUGboat/advertising.html

http://tug.org/consultants.html

Trademarks

Many trademarked names appear in the pages of
TUGboat. If there is any question about whether
a name is or is not a trademark, prudence dictates
that it should be treated as if it is. The following list
of trademarks which commonly appear in TUGboat

should not be considered complete.

METAFONT is a trademark of Addison-Wesley Inc.
PostScript is a trademark of Adobe Systems, Inc.
TEX and AMS-TEX are trademarks of the American

Mathematical Society.

TUGboat, Volume 32 (2011), No. 1 3

From the President

Karl Berry

Election

After four terms as TUG president, I decided to
run for director this year. Long-time board member
Steve Peter expressed his desire and willingness to
serve as president, and I fully support him.

As this TUGboat was in preparation, the elec-
tion results came in, and there were no contested
positions. The official board changes will not occur
until October, but I take this opportunity to welcome
Michael Doob and Taco Hoekwater to the board. See
the election item in this issue for full details.

Conferences

The TUG 2011 conference will take place in Trivan-
drum, Kerala, India, hosted by River Valley Tech-
nologies: http://tug.org/tug2011. The deadline
to receive abstracts is July 15, the early bird registra-
tion discount ends August 1, and the conference takes
place October 19–21. (And thanks to Namboodiri of
RVT for the conference drawings used throughout.)

Other upcoming conferences: the fifth ConTEXt
user meeting in Porquerolles, France, Sept. 19–24
(http://meeting.contextgarden.net/2011); and
TEXperience 2011 in Zelezna Ruda, Czech Repub-
lic, Sept. 28–Oct. 2 (http://striz9.fame.utb.cz/
texperience). EuroBachoTEX 2011 will have passed
by the time this issue is mailed; we expect to reprint
selected articles from that conference in the next
issue of TUGboat.

One final note on the 2010 TUG conference: a
report by Dave Walden has been published as “User
Group Celebrates Major Anniversary of TEX” in the
IEEE Annals of the History of Computing, vol. 33,
no. 1, January–March 2011, pp. 78–79.

Software

As I write this, work toward the TEX Live 2011
release is well underway, with most of the major
program updates (LuaTEX, MetaPost, DVIPDFMx,
. . .) already committed to the source tree. We have
begun trial builds and are aiming to freeze updates
in June. We plan to deliver the final images to
manufacturing in July. The editors of the MacTEX,
proTEXt, and CTAN components are also preparing
their respective releases.

Interviews

Since my last column, Dave Walden has interviewed
Boris Veytsman, Herb Schulz, Malcolm Clark, and
Norbert Preining for the TUG Interview Corner
(http://tug.org/interviews).

The book of interviews we published in 2009
is available at http://tug.org/store/texpeople.
The full PDF for the book is also available in the
TUG members area.

About the cover

For the cover of this 100th issue of TUGboat, we
made a selection of previous notable or unusual cov-
ers, from volume 1, issue 1 in 1980 (upper left), to
this issue #100 (lower right). (We arbitrarily ended
the recursion after one level; the PDF file size was
already getting out of hand!) Most of the drawings
are by Duane Bibby, but by no means all— several
of the conference drawings were done by local artists.
As it turned out, there were exactly 32 such covers.

At the center of it all is, of course, Barbara
Beeton in full TUGboat work mode. She has been
the editor of this journal since volume 4, issue 2, and
shows no signs of slowing down. The drawing here
was made by Duane and presented to Barbara at
the TUG 2003 conference. (A companion drawing
was made for Mimi Burbank at the same time; it is
included here a couple of pages further on.)

Thanks to Robin Laakso, Stephen Moye, Mare
Smith, and Dave Walden, as well as the crew at
Cadmus (TUGboat’s printer for many years now),
for their help with putting together this special cover.

In memoriam

Sadly, we’ve had news since my previous column of
two members of our extended community passing
away: Randy Kobes and Mimi Burbank.

Randy died on September 18, 2010, at his home
in Manitoba, Canada. He set up the http://mirror.
ctan.org redirector for CTAN, following (much more
extensive) work he did for the Perl archive, CPAN,
and for GNU (http://ftpmirror.gnu.org). I had
the pleasure to work with him on the CTAN and GNU

setup, among other small projects, and was always
impressed with his attention to detail and willingness
to spend time to improve the user experience. He will
be missed. (Aside: the CTAN and GNU redirectors
remain available, now hosted at savannah.gnu.org.)

Mimi died on November 28, 2010, in Uganda.
She was the backbone of TUGboat production for
many years, among many other TEX and TUG efforts.
It was my pleasure to correspond with her extensively
as I got up to speed with TUGboat; her unique
personal style always made my day. I’ll leave the full
memorial to the other reminiscences we are printing
in this issue; suffice it to say, she will be greatly
missed.

⋄ Karl Berry

http://tug.org/TUGboat/Pres/

4 TUGboat, Volume 32 (2011), No. 1

Editorial comments

Barbara Beeton

Opus 100 1

To my surprise and delight, TUGboat has reached
its 100th issue, and this just after the celebration of
TEX’s 25th birthday—both causes for great celebra-
tion. In this column, I shall set down some musings
about the past, and a bit of speculation on the future.

As an aside, Dick Palais, the principal instiga-
tors for the adoption of TEX at the AMS, and the
first Chair (the office that preceded President) of
TUG, turns 80 this year. A celebration in honor of
the event, a conference on Geometry and its Applica-
tions, is announced at www.math.uci.edu/~scgas/
Palais-birthday/. Happy birthday, Dick!

TEX has become firmly established in the math
and physics community. LATEX (with many varia-
tions) has become the workhorse for production of
books and journals by a number of scientific soci-
eties and some commercial publishers as well. TEX
algorithms have been adopted for use by other text
processing software— line-breaking in InDesign, and
the math approach in the implementation of math
tables for OpenType fonts. ConTEXt has made its
mark on interactive on-line educational materials as
well as on paper. And pdfTEX and LuaTEX now pro-
vide features not available from the original engine.
This is the visible state of things.

There are occasional attempts to make TEX
more visible. Karl’s column cites the report by Dave
Walden to the IEEE Computer Society, and represen-
tatives of the various European TEX groups regularly
participate in gatherings of GNU/Linux and similar
groups. There is an active TEX linguistics discussion
forum, and at least some recognized typographers
acknowledge TEX’s existence when asked. But these
are all specialists, and thus exceptions.

In these pages we have reported a number of
“undercover” uses, where the batch capabilities of
(LA)TEX have been leveraged to generate various
forms from databases or interactive entry by users
who are completely unaware that TEX is involved.
An example of the latter, quite different from the
“form” concept, was called to my attention by Will-
iam Adams: www.customstoriesinc.com/, based
on X ETEX. This is the likely growth area for TEX as
I see it—TEX won’t disappear, it will just go further
underground.

1 Title stolen from an admired author, Isaac Asimov:

en.wikipedia.org/wiki/Opus_100. I still remember fondly

the reception I got at his book signing.

I hope someone will look back in 2042—on
TEX’s 2

6th birthday—to see whether this prediction
comes to pass.

BBVA award for Don Knuth

The BBVA Foundation in Madrid has announced
that Don will be one of the recipients of a Frontiers
of Knowledge Award, in the area of Information and
Communication Technologies. The announcement
on their web page reads, in part,

U.S. scientist Donald E. Knuth takes the award
for making computing into a science. His The
Art of Computer Programming systematizes
the way that human beings talk to machines
and is considered the seminal work on com-
puter science.

For complete information about the 2010 awards,
see www.fbbva.es/TLFU/tlfu/ing/microsites/

premios/fronteras/index.jsp.
The BBVA Foundation “expresses the engage-

ment of financial group BBVA with the cause of social
responsibility in the societies where it does business,
in pursuit of a better quality of life for all citizens.”
The awards program “seek[s] to recognize and encour-
age world-class research and artistic creation, prizing
contributions of lasting impact for their originality,
theoretical significance and ability to push back the
frontiers of the known world.” The 2010 awards will
be presented in Madrid on June 6.

Short takes

The occasion of Matthew Carter’s MacArthur Fel-
lowship has resulted in an open season on articles
and interviews. In The Economist he is billed as “the
most-read man in the world”: www.economist.com/
blogs / babbage / 2010 / 12 / doyen_type_design&

fsrc=nwl. An interview with imprint on “How do
you design a great typeface?” is shared by Salon at
http://shar.es/HtKeu.

In the past, fonts tended to be taken for granted,
just part of the landscape. With a computer on
nearly everyone’s desk or lap, they are coming out
of the shadows. The Museum of Modern Art in
New York has added a number of typefaces to their
permanent collection and mounted an exhibition
on their place in modern design, as reported here:
observatory.designobserver.com/feature/

standard-deviations-types-and-families

-in-contemporary-design/26428/.
Handwriting, although it is becoming more and

more a “thing of the past”, is still found to be worthy
of study—especially past forms: nationalarchives.
gov.uk/palaeography/.

Barbara Beeton

TUGboat, Volume 32 (2011), No. 1 5

Most of these news bits were reported in the
TYPO-L discussion list. It’s a fairly low traffic list,
populated by an interesting bunch of type observers
and managed by Peter Flynn, who has just launched
a discussion on the pros and cons of ragged right
setting for dissertations. Subscription requests can
be sent to TYPO-L-subscribe-request@LISTSERV.

HEANET.IE.
The scientific publisher Springer has launched

a new resource for mathematical typesetting: www.

latexsearch.com. This site is populated with sev-
eral million LATEX code snippets containing math-
ematical text, drawn from their numerous publica-
tions. Much of the material seems not to be edited
for quality of the LATEX code; it is unclear whether all
examples are exactly as input by authors, or might
have been constructed with the “help” of various
front-end software. In any event, if one wants to find
uses of particular symbols or constructs, here is a
place to look.

We should also mention that Don Knuth has
found some errors in the book prepared for TUG’s 25

anniversary. A list is posted on the TUG web site, at
tug.org/store/tug10/errata.html; if you don’t
have a copy of the book in which to mark the errors,
the book can be obtained as described at tug.org/
store/tug10, and members can read it online from
a link on that page.

Finally, it’s not so often that a popular tune
is animated entirely by typography. “Shop Vac”,
animated by Jarrett Heather, can be viewed at vimeo.
com/17419652. Delightful, both the interpretation
and the use of visual allusions.

Mimi

The passing of Mimi Burbank is reported by sev-
eral other friends in this issue, and is the subject
of several memorials on the web, among them www.

portaltotheuniverse.org/blogs/posts/view/

85412/ by Thilina Heenatigala, coordinator of the
Global Astronomy Month and the Astro Book Drive,
and kasesestreetkids.blogspot.com/2010/11/

sad-news-mimi-has-died.html by some of the in-
dividuals involved with the effort to create an organi-
zation for rescuing and educating the many orphans
and street kids in western Uganda.

Here I would like to reminisce a bit on what
Mimi meant to me.

By 1995, the year in which the annual meet-
ing was held in St. Petersburg, Florida (with Mimi

in charge of arrangements), TUGboat was falling
behind schedule with longer and longer delays (a
consequence in part of concentrating too much re-
sponsibility in the hands of one person). Mimi
stepped forward and offered her site for production
and archiving. She rescued our vessel! From then un-
til her retirement in 2005, Mimi was our production
manager—always there when needed, a tactful but
determined nag, more concerned, it seemed, about
the responsibility she had taken on than her own
immediate interests. In other words, a good and
devoted friend.

For the most part, our communications were
by e-mail; we had met earlier only at a few TUG

meetings, and we hadn’t really had a chance to just
sit down and talk. In 1996, we got that opportunity,
traveling together to attend the meeting in Russia—
and used the time well! We were met at the Moscow
airport by Irina Makhovaya, who most generously
accommodated us in her apartment until it was time
to proceed to Dubna, and gave us a personal tour
of Moscow. It was on this trip that I learned how
readily Mimi connected with people. She made a
number of friends among the Russian attendees, and
remained in touch long after we had returned home.

When she decided to retire, Mimi dutifully off-
loaded all the TUGboat backlog from the SCRI com-
puter at Florida State by moving it to the TUG box
in Denmark, and turned it over to Karl. But she
didn’t disappear. Oh, no! Her communications just
changed from TUGboat-related topics to news about
her new home and friends in Kasese, Uganda. Her
stories about goats (she admitted to a weakness for
them) were believable only because they came from
Mimi.

We last corresponded just a few days before
her death. Although she had suffered some health
setbacks, and a shipment of her medications “disap-
peared” as it came through customs, she kept her
sunny outlook and showed her Ugandan family how
an American Thanksgiving was celebrated. A few
days later, we received the news from her son Charles
that his mother had passed away.

Mimi was a person who made a difference. I
miss her greatly, but treasure the honor and privilege
it was to have known her.

⋄ Barbara Beeton

http://tug.org/TUGboat

tugboat (at) tug dot org

Editorial comments

6 TUGboat, Volume 32 (2011), No. 1

Mimi Burbank

Jackie Damrau

Mimi Burbank and I met during one of my early TEX
User Group conferences in the mid-1980s. We even
shared a room at Stanford during that TUG confer-
ence and served on the Board of Directors together.
We became instant friends as we were both engaged
in our careers working for scientific laboratories or
university departments. During my ten years as a
TUG member, Mimi was always enjoyable to be with,
encouraged me to give my best to the Group, and to
step outside of my comfort zone. After my departure
from TUG as my career moved from the use of LATEX
to other desktop publishing software, Mimi and I
stayed in touch. As the years slipped away, though,
we lost track of each other.

Yet, Mimi was doing a Google search one day
and found one of my old TUG conference proceedings
papers. She emailed me; we talked for a while on the
phone and got caught up on our life stories. That
was not too long ago when she was working on a
TUG conference proceedings.

My fondest memories of Mimi were that she
always had a great smile and funny laugh and her
penchant for giving to and serving the TEX User
Group. She advocated the use of TEX even in her
semi-retirement years. Mimi was a wonderful person
that will be truly missed.

⋄ Jackie Damrau

STC

jackie dot damrau (at) comcast dot net

TUGboat, Volume 32 (2011), No. 1 7

Missing Mimi

Christina Thiele

My last exchange with Mimi Burbank was Nov. 19,
2010. I’d seen a CTAN notice about a new package,
excel2latex—it just sounded so neat, that I thought
she’d like to see it. Turned out that she actually
needed something just like it:

I’ve got lots of files I’d love to add to

my latex files - but can’t because of the

excel spreadsheet junk... but now it looks

like I can ;-) may have to give it a try...

And the very next day:

attached is a PDF file - not finished of

course, but I’m so glad I’ve got this pkg

now...

need to remember how to do landscape and

all sorts of things... and need to read

some more directions - but this file is one

I have to send to donors in the UK all the

time, and doing it

using a google email "docs" page is not my

favorite way to do things....

so glad you sent the the info on it...

mimi

Typical!

* * *

Ten days later, on the 29th, I got a call from Charles
Burbank—Mimi Burbank had died the night before,
in Kasese, Uganda, at the age of 69. She was buried
there three days later, in St. Paul’s Cathedral ceme-
tery. She had two sons, Charles and Bill. And a
world of friends.

* * *

I’ve been struggling to write this piece, which Karl
suggested a few months ago, and I think it’s because,
for me, Mimi’s not really ‘gone’. She lives on, in a
way that could never have been imagined (much less
possible) 30 years ago—she ‘lives’ on the ’net, in
web pages and in e-mail that’s spread around the
entire planet.

She’s a permanent presence on my computer,
in yearly folders of e-mail I’ve kept, both personal
and TUG-specific, that date back to 1991. I’ve been
re-reading some of our exchanges and they make
me smile, or laugh outright. The woman had a
sense of humour that would always, at the end of
the day, make any short-lived storm revert to its
proper dimensions as a tempest in a teapot—or a
real problem which needed to be addressed head-on.
The sheer quantity of mail also reminds me that,
during the ’90s, we didn’t seem to have anything in
our lives other than our jobs and TUG :-).

And that’s just between us two! My machine is
only one small home where SCRIMING MIMI can be
found—she’s present in so many more places.

Sometimes our exchanges would get lost on her
monitor, as she’d have over a dozen windows open
on her computer, both work and correspondence in
progress, on-site and off, working on issues ranging
from system or software or administrative matters, to
TEX questions and TUG work. I have to say, Mimi
never met a question she didn’t want to find an
answer to, either from her own extensive experience
or someone else’s! And what she didn’t know, she’d
find someone to solve it. Or she’d figure it out herself.
She was tireless when it came to getting a job done
. . . getting many jobs done!

Indeed, one of Mimi’s greatest qualities was her
lack of fear— learning new programs, installing new
software, working with new hardware . . . whereas I
have always met ‘the new’ with varying degrees of
hesitation and reluctance. I’ve always admired that
quality in her, and continue to remind myself of it.

* * *

Mimi and I both started attending TUG meetings
in 1987, but I didn’t actually meet her until the
1991 Dedham meeting in Massachusetts.1 I was on
the Program Committee, and had been asked to
join Hope Hamilton’s editorial team as well, for the
proceedings.2 Along with Dian De Sha from CalTech,
Mimi and I were her editorial assistants, each of us
given articles to work on. Working through our
assigned articles, we all got to know one another
via e-mail, and Mimi and I took off like a house on
fire, as they say. It was that collaborative work on
the proceedings that cemented our friendship, and
she subsequently joined TUG’s board in 1993 (I’d
been a member since 1988). And it was Mimi who
initiated an as-yet unpublished article on the whole
experience, entitled “A Tale of 4 Witties”, which I’d
in fact just re-sent her in mid-October of last year,
to her great amusement.

We had both become intensely interested in
TUG’s conference proceedings and program commit-
tees, and eventually were part of the move to expand
the production team approach to regular TUGboat

issues. A great stimulus for this was Mimi’s having
found a way to arrange that SCRI, her work site (the
Supercomputer Computations Research Institute in

1 We continued attending together until the 1995 meeting

in Florida, which we jointly oversaw; she went to one more,

in Russia in 1996; and my last one was the 1999 Vancouver

meeting.
2 I’d been proceedings editor for both the 1988 and 1989

meetings; Lincoln Durst was editor for the one in 1990, and

Hope and I had met when lending him a hand with it.

Missing Mimi

8 TUGboat, Volume 32 (2011), No. 1

Tallahassee, Florida), provide computer space and
access for team members to work remotely.3 We
had Robin Fairbairns, Sebastian Rahtz, and Michel
Goossens over in Europe, and then Barbara, Mimi,
and me in North America—we were like a round-
the-clock service bureau :-).

Our deep involvement with TUG activities car-
ried on throughout the ’90s, gradually returning to
just the TUGboat production team by the start of
the new millennium. During my term as TUG presi-
dent, I leaned heavily upon her support and advice,
both of which always evinced common sense laced
with humour.

Gradually, though, we each eased out of our
TUG roles, me by 2000 and Mimi by 2005. Mimi had
become increasingly active in her church, St. Peter’s
Anglican Church, in Tallahassee, which culminated
in her decision to leave the States permanently, for
St. Peter’s mission in Uganda. Now that was a
big surprise—Mimi, whose first trips outside the
country had been the Aston meeting in 1993 (we
drove around Wales for a week after that!), the 1996
Dubna meeting in Russia, and a week’s vacation
here in Ottawa in August of 1998, deciding to move

permanently to Uganda. Wow!
Before she left, Mimi wrote up her TUG experi-

ences in an interview with Dave Walden for TUG’s
Interview Corner. One of her non-TUG activities
that should be mentioned is that of providing on-line
support for Y&YTEX, along with Robin and myself,
in the early 2000s. The list we started, yandytex, is
now on the TUG server, having moved there after
Y&Y finally ceased operations.

* * *

Within weeks of having left for Uganda, Mimi was
again on-line with correspondence to everyone ‘back
home’—she’d just changed jobs, that’s all! The
stories had changed, from systems and software and
administrative matters, to the travails of her car, the
beauty of the countryside, and the generosity of its
people, who fast became her new family. And Mimi
herself was being transformed, into Mama Mimi,
who applied all her skills not just from SCRI and
TUG, but from even before then, when she’d gone
to nursing school. And what she didn’t know, she’d
search for, via the web, to hammer away at a life
that was so different from the States, and so much
more in need.

Many of us would send her packages with items
she said were desperately needed, books and school

3 Reading the Production Notes for issues 15:2 through

16:1 will provide a quick snapshot of the fundamental changes

that were wrought in the latter part of 1994 and into 1995.

supplies above all. I’d fill in the spaces with a few
things for her, too—seeds, spices she couldn’t find
locally, toiletries, even some candies from time to
time :-). In return, Mimi would send us photos
and stories about so many daily events. She even
joined in the fun of a school project my daughter had,
of sending a ‘Flat Stanley’ cut-out to Kasese, and
snapping photos of the ‘cardboard boy’ in various
locations around town.

She would write these great, long messages to us
(sometimes there were over 60 cc’s on such mail!), and
then finally decided to pull them all into a journal
structure—using pdfTEX, in fact. She also set up
a web page at the St. Peter’s site, remotely, from
Uganda (!), as well as working on the local site for
the South Rwenzori Diocese. Eventually she became
a Skype user, much to her son Charles’ delight.

Mimi went back to the States a couple of times,
for health reasons, and finally these became too much
for her. She died in the night of Nov. 28, having
turned 69 on the 24th and celebrated Thanksgiving
on the 25th.

Of the many causes, be they formal or simply
benevolent, Mimi felt passionate about, I know of
two: BUFO (Base Camp United Christian Founda-
tion), and the Astro Book Drive. A donation to
either would be a fitting memorial to this best of
friends, most constant of colleagues—a single person
whose life has not ceased to make a difference.

⋄ Christina Thiele

15 Wiltshire Circle

Nepean, ON K2J 4K9, Canada

cthiele (at) ncf dot ca

References and resources

1. Interview Corner, TUG web site:
www.tug.org/interviews/burbank.html

2. Mimi’s website and journals: www.saint-
peters-archives.org/files/mamamimi/

3. Mimi’s Facebook page: www.facebook.com/
people/Mimi-Burbank/1063046798

4. Articles about Mimi’s work in Kasese, Uganda:
www.liquida.com/kasese

kasesestreetkids.blogspot.com/2010/12/

burial-of-dear-mimi.html

5. St. Peter’s Anglican Church, Tallahassee:
www.saint-peters.net

6. South Rwenzori Diocese: www.southrd.org
7. Base Camp United Christian Foundation and

contact person: www.basecampngo.org
8. Astro Book Drive and contact person:

astrodrive.lakdiva.net and bit.ly/f8M3Gt

9. Mailing list for the Y&Y TEX system:
lists.tug.org/yandytex

Christina Thiele

TUGboat, Volume 32 (2011), No. 1 9

16 years of ConTEXt

Hans Hagen

1 Introduction

When Karl Berry asked me to wrap up something
for the 100th issue of TUGboat I didn’t hesitate too
long to agree. Of course you then end up with the
dilemma of what to write down and what to omit,
but it’s worth a try.

When you’re asked to look back it is sort of
unavoidable to also look forward. In this article I
will reflect on some of ConTEXt’s history and spend
a few words on its future. First I will try to describe
the landscape in which we have ended up.

2 Perceptions

After being present for some 16 years, about half the
lifespan of the TEX community and its TUGboat,
there has been enough published about ConTEXt to
give the reader at least an impression of what it is
about. However, to some it might (still) be confusing,
especially because for a long time in TEX publicity,
‘TEX’ was viewed as nearly equivalent to LATEX. In
itself this is somewhat troublesome, because TEX
is a generic system but such is the situation. On
the other hand, nowadays banners for conferences,
cartoons and other promotional material mention
multiple engines, MetaPost, LATEX and ConTEXt,
fonts and more, so the landscape is definitely more
varied.

Over the past decades I have run into descrip-
tions of ConTEXt that are somewhat curious and
they give a good impression of what ConTEXt users
run into when they have to defend their choice.

• “It is a package that can be loaded in LATEX.”
This perception is natural for LATEX users as
packages are part of their concept. On the other
hand, for ConTEXt users, the package concept is
alien as we have an integrated system. A quick
look at the way ConTEXt is embedded in the
TEX directory structure will learn that it does
not relate to LATEX and I’m sure that a simple
test will show that loading it as a style will fail.

• “It is a variant of plain TEX and has similar
concepts, capabilities and limitations.” For sure
there are a couple of commands that have the
same name and similar functionality but there
it stops. We used to load plain TEX as a base
because it provides some infrastructure, but even
there most was overloaded. On the other hand,
we feel that when a user reads The TEXbook, he
or she should not get an error on each command
that is tried, especially not math.

• “It is meant for and depends on pdfTEX.” Ac-
tually, we started out using DVI and when we
switched to using outline fonts we used DVIPS-

ONE. Other DVI backends were also supported,
but when pdfTEX came around it was pretty con-
venient to have all functionality in one program.
Maybe because we were involved in pdfTEX de-
velopment, or maybe because ConTEXt always
supported the latest PDF tricks, this myth arose,
but all functionality was always available for all
backends.

• “It is best used for presentations.” It is a fact
that at user group meetings, the presentation
aspect was quite present, if only because I like
making new styles as part of preparing a talk.
However, it is just a matter of styling. On the
other hand, it has drawn some users to ConTEXt.

• “I don’t see you using math and you’re dis-
cussing features that I never needed, so why
use TEX at all?” This comment was given af-
ter I gave a presentation about ConTEXt doing
MathML where I explained that I liked content
markup more than presentational markup.

• “I’ve been present at talks but only recently re-
alized that you were talking about an integrated
macro package that is independent of other pack-
ages.” This kind of remark is of course an indi-
cation that I’d forgotten to explain something.
It also says something about TEX marketing in
general.

• Some comments are baffling, like “I saw you
talking to Frank. Isn’t that competition?” As
far as I know there is no competition, maybe
different audiences at most. The community is
large enough for multiple solutions. And most
of all, we don’t sell anything and I always try
to keep my own (commercial) work separated
from presenting ConTEXt.

• “We don’t need this, we’re satisfied with the way
we do it now.” Remarks like that occasionally
come up when someone presents something new.
I don’t care too much about it myself because in
most cases I know that I can achieve more with
TEX than the person making such a remark, but
it can be very demotivating for those doing their
first presentation.

I’m sure that ConTEXt is not alone in getting
such comments. I remember that there have been
discussions about embedding the PDF backend into
the TEX engine and strong argument for keeping it
separated. Especially when arguments come up like
“We should keep TEX as it is”, which boils down to
“We should not change Don’s work”, it gets nasty. It

16 years of ConTEXt

10 TUGboat, Volume 32 (2011), No. 1

is a fact that the DVI backend is just an example of
a backend and there can be many others. The same
is true for the \pdfsomecommand extensions: deep
down they use whatsits and these are definitely meant
for extensions. Any argument for using specials
exclusively is wrong as specials themselves are an
extension.

Right from the start Don Knuth made clear
that extending TEX and friends was part of creating
solutions. When Volker Schaa and I presented the
Latin Modern fonts to Don Knuth, one of his first
comments was “Why didn’t you fix the mu?”. He
could not do it himself because Computer Modern
is as frozen as pure TEX, but that does not mean
that it cannot be done elsewhere! It’s interesting
to hear users defend a status quo while those they
think they are defending definitely keep moving on.
I’m sure that I don’t speak for myself alone when I
say that Don Knuth is one of the main reasons why
I’ve chosen the TEX route and keep following it. It
makes TEX and its community special in many ways.

The reason for mentioning this is that when
you are part of the flow of developments around
TEX, you also have to deal with conservatism. In
itself this is understandable as TEX is a tool that
you will use forever once you’ve typeset more than a
few documents with it. And there is a nice aspect
worth mentioning here: as pure TEX will always
be there, and as derived engines are as closely as
possible downward compatible, you can stick to 25-
year-old methods and customs as long as you keep
your macros and fonts around! No one is forcing you
to update or switch to another engine or use another
macro package. And you can still produce the same
perfect output as years ago. The best proof of that is
the author of TEX himself, and you can bet that he
knows pretty well what developments happen around
TEX and friends.

In the following story I will mention some of the
design decisions and reasons for going the ConTEXt
route. I will use two qualifications there: ConTEXt
MkII, the version meant for pdfTEX and X ETEX, and
ConTEXt MkVI, the new version for LuaTEX. (More
about these in the last section.) The MkVI variant
is a complete rewrite and as part of the process I
threw away lots of code that I had always before
considered to be final. Code that I spent weeks or
more perfecting, and that evolved along with getting
more experienced in the macro language, code that
has been optimized to the max, code that I got
emotionally attached to because I know for what
occasion I wrote it. It gets frozen into MkII and is
never used again by myself, but it can be run forever
anyway. That’s what TEX is about: accumulating

experiences. In a few weeks I will travel to BachoTEX
again. There, among TEX friends, it will be clear
once more that we’re still moving forward, that a
30-year-old TEX is not yet ready for retirement, even
if some of its first time users are getting close to that.

3 Running into TEX

I always take 1996 as the year that ConTEXt showed
up in public. That year sits between the two first
international TEX conferences that I attended: Euro-
TEX 1995 in Arnhem and TUG 1997 in San Francisco.
That means that this year ConTEXt is about 16 years
old and as a consequence only half of all TUGboat

publications can contain articles that refer to it.
We started using TEX a bit earlier. I still re-

member the bookshelves in the store where I first saw
volumes A to E and because at that time I was pro-
gramming in Pascal and Modula the content looked
quite familiar. However, as I was neither involved
in typesetting nor a mathematician it did look in-
triguing. Nevertheless I bought The TEXbook, and
reading something without the ability to run the
related program is somewhat special. In successive
years, whenever I picked up the The TEXbook I was
able to understand more of the neat tricks described
in there.

4 The first experiments

The real reason for using TEX came when I was
involved in a project where we had to get some
advanced math on paper. The customer used a
special typewriter for this but I remembered TEX
and considered it a better tool for the job. We
bought a copy of the program from Addison Wesley
and got ourselves a decent printer only to find out
that our customer preferred the typewriter method
over typesetting.

This didn’t stop us, and we decided to use TEX
for typesetting our own reports and the courses that
we developed along with experts in the field. I did
an inventory of alternatives but they were either
too expensive or closed (and obsolete within years
after that moment) so in retrospect the choice for
TEX was not that bad. Using TEX at that time
definitely made our budgets for hardware rise: faster
computers, larger disks, better and faster printers,
suitable connections between them, etc.1

There is one thing that keeps coming back when
I think about those times: we were acting in complete

1 Before free versions of TEX came to desktops we had to
actually buy TEX and friends. Interestingly I’m quite sure
that it still accumulates to the largest amount of money we
ever spent on software, but competing systems ran into five
digit numbers so it was no big deal at that time.

Hans Hagen

TUGboat, Volume 32 (2011), No. 1 11

isolation. There was no Internet the way there is
now, and when it came our way, using it as a resource
was no option with slow modems. We had no email
and were unaware of user groups. The university
that I had attended, and especially our department
had top of the line equipment but TEX was simply
unknown. We used ASCII terminals and I had written
a formatter for the mainframe that helped making
reports and could paginate documents: poor man’s
styling, pseudo-floats, tables of contents. I think that
I still have the source somewhere. However, no one
ever bothered to tell the students that there were
formatters already. And so, when we moved on with
our business we were quite unaware of the fact that
something like TEX was part of a bigger whole: the
TEX community.

5 Personal usage

In fact this is also the reason why the first steps to-
wards a macro package was made. The floppies that
we bought carried LATEX but the rendered output
was so totally un-Dutch that I had to change files
that I didn’t understand at all. Of course some local-
ization had to happen as well and when we bought
an update I had to do all that again. After a while I
figured out how to wrap code and overload macros
in a more permanent way. Itemizations were the first
to be wrapped as we used lots of them and the fact
that they got numbered automatically saved us a lot
of time.

Because we were involved in writing course mate-
rial, we had workflows that boiled down to investigat-
ing learning objectives, writing proposals, collecting
and editing content, and eventually delivering a set
of related materials. It is therefore no surprise that
after a while we had a bunch of tools that helped us
to do that efficiently. It was only around that time
that we ourselves actually profited from a TEX-based
workflow. We had our own editor2 that provided
project support based on parsing structure, syntax
highlighting, as well as a decent edit–view cycle.

In my job I could chair a session, drive home,
sit down and wrap up the progress in a document
highlighting the most recent changes and the partici-
pants would have a print on their desk next morning.
The time spent on writing new macros was nicely
compensated by efficiency.

We’re speaking of the beginning of the nineties
now. We already had dropped LATEX after a few doc-
uments and via the more easily configurable LAMS-
TEX moved on to INRSTEX which was even more
configurable. The fact that these variants never

2 The editor was called texedit and was written in Modula,
while its follow-up, called texwork, was written in Perl/TK.

caught on is somewhat sad, as it indicates that in
spite of TEX being so flexible only a few macro pack-
ages are available.3 Around 1995 we had a decent
shell around INRSTEX and much code was our own.
I didn’t understand at all what alignments were all
about, so for tables we used Wichura’s TABLE pack-
age and as output routines were also beyond me, we
stuck to the INRSTEX page builder for quite a while.
We called the beast pragmaTEX simply because we
needed a name and it didn’t occur to us that anybody
else could be interested.

6 A larger audience

It was around that time that I became aware of user
groups and we also joined the Internet. Because we
had to do a lot of chemical typesetting, in particular
courses for molding latex and plastic, I had written
a macro set for typesetting chemical structure for-
mulas for my colleague (who coincidentally had a
background in chemistry). As there was interest for
this from Germany, represented by Tobias Burnus,
it was the first piece of code that went public and
because we used macros with Dutch names, I had to
come up with a multilingual interface. Tobias was
the first international user of ConTEXt.

In the meantime I had become a member of the
NTG as well as of TUG. Around that time the 4TEX
project was active and it carried the first version of
the renamed macro set: ConTEXt. It is at that time
that Taco Hoekwater and I started teaming up our
TEX efforts.

We started publishing in MAPS and TUGboat

and after being introduced to the Polish and German
user groups also in their journals. So, around 2000
we were better aware of what was happening in the
larger community.

At some point I had ordered copies of TUGboats
but I have to admit that at that time most of it
simply made no sense to me so I never really read
that backlog, although at some moment I did read
all Don’s articles. It might be fun actually going
back in time once I retire from writing macros. But
the fact that there were journals at least gave me a
sound feeling that there was an active community.
I do realize that much of what I write down myself
will not make sense either to readers who are not at
that moment dealing with such issues. But at least
I hope that by skimming them a user will get the
impression that there is an active crowd out there
and that TEX keeps going.

3 Of course TEX is not unique in this: why should billions
of users use only a few operating systems, editors, drawing
programs or whatever?

16 years of ConTEXt

12 TUGboat, Volume 32 (2011), No. 1

7 How ConTEXt evolved

For this reflective article, I spent some time hunting
up the past before actually sitting down to write
. . . here we go. The first version of ConTEXt was
just a few files. There was some distinction between
support macros and those providing a more abstract
interface to typesetting. Right from the start consis-
tency was part of the game:

• there were define, setup, and start-stop mecha-
nisms

• keywords and uniform values were used for con-
sistent control

• layout definitions were separated from content
• there were projects, products, components and
environments

• the syntax was such that highlighting in an
editor could be done consistently

• we had support for section numbering, descrip-
tions and of course items

• content could be reused (selectively) and no
data or definition was keyed in more than once
(buffers, blocks, etc.)

As a consequence of the structure, it was rela-
tively easy to provide multiple user interfaces. We
started out with Dutch, English (the first translation
was by Sebastian Rahtz), and German (by Tobias
Burnus). Because Petr Sojka gave students the op-
portunity to do TEX-related projects, Czech followed
soon (David Antos). Currently we have a few more
user interfaces with Persian being the latest.

There is an interesting technical note to make
here. Because ConTEXt is keyword-driven and uses
inheritance all over the place it put some burden on
memory. Just in time we got huge emTEX and I
think in general it cannot be underestimated what
impact its availability had: it permitted running a
decent set of macros on relatively powerless personal
computers. Nevertheless, we ran out of string space
especially but since the hash was large, we could store
keys and values in macros. This was not only space-
efficient but also faster than having them as strings
in the source. It is because of this property that
we could relatively easily provide multiple interfaces.
Already in an early stage a more abstract description
in XML format of the interface was added to the
distribution, which means that one can easily create
syntax highlighting files for editors, create helpers
and include descriptions in manuals.

Right from the start I didn’t want users to even
think about the fact that a TEX job is in most cases a
multipass activity: tables of contents, references, in-
dexes and multipass optimization means that unless
the situation didn’t change, an extra run is needed.

It is for this reason that a ConTEXt run always is
managed by a wrapper. When I realized that Con-
TEXt was used on multiple platforms I converted
the Modula version of texexec into Perl and later
into Ruby. The latest version of ConTEXt uses a
wrapper written in Lua.4 I think that the fact that
ConTEXt came with a command line utility to drive
it for quite a while set it apart. It also created some
myths, such as ConTEXt being dependent on this or
that language. Another myth was that ConTEXt is
just a little more than plain TEX, which probably
was a side effect of the fact that we kept most of the
plain commands around as a bonus.

It was long after using LATEX that I understood
that one of its design decisions was that one should
write styles by patching and overloading existing
code. In ConTEXt it has always been a starting point
that control over layout is driven by configuration
and not by programming. If something special is
needed, there are hooks. For instance, for a very
special section title users can hook in macros. Ideally
a user will not need to use the macro language, unless
for instance he or she wants some special section
header or title page, but even then, using for instance
layers can hide a lot of gory details.

I think that switching from one to the other
macro package is complicated by the fact that there
are such fundamental differences, even if they provide
similar functionality (if only because publications
have so much appearance in common). My impres-
sion is that where LATEX draws users because they
want (for instance) to submit a paper in a standard
format, the ConTEXt users come to TEX because
they want to control their document layout. The
popularity of for instance MetaPost among ConTEXt
users is an indication that they like to add some
personal touch and want to go beyond pure text.

As a consequence of consistency ConTEXt is
a monolithic system. However, special areas are
dealt with in modules, and they themselves are also
monolithic: chemistry, MathML, presentations, etc.
For a long time being such a big system had some
consequence for runtime or at least loading time.
Nowadays this is less an issue and with the latest
and greatest MkIV we even seem to get the job done
faster, in spite of MkIV supporting Unicode and
OpenType. Of course it helps that after all these
years I know how to avoid bottlenecks and optimize
TEX code.

As I’m somewhat handicapped by the fact that
in order to understand something very well I need to

4 One can argue that this is a drawback but the fact that
we use TEX as a Lua interpreter means that there are no
dependencies.

Hans Hagen

TUGboat, Volume 32 (2011), No. 1 13

write it myself, I have probably wasted much time
by (re)inventing wheels. On the other hand, finding
your own solution for problems that one deals with
can be very rewarding. A nice side effect is that after
a while you can ‘think’ in the language at hand and
know intuitively if and how something can be solved.
I must say that TEX never let me down but with
LuaTEX I can sometimes reimplement solutions in
a fraction of the time I would have needed with the
pure TEX way.

8 Fonts and encodings

When we started with TEX a matrix printer was
used but soon we decided to buy a decent laser
printer (duplex). It was a real surprise to see that
the Computer Modern Fonts were not that bold. Our
first really large printer was an OCE office printer that
was normally sold to universities: it was marketed
as a native DVI printer. However, when we tried
to get it running, we quickly ran into problems. By
the time the machine was delivered it had become
a PostScript printer for which we had to use some
special driver software. Its successor has already
been serving us for over a decade and is still hard
to beat. I think that the ability to print the typeset
result properly was definitely a reason to stick to
TEX. The same is true for displays: using TEX with
its font related capabilities is much more fun with
more pixels.

At the time of the switch to OCE printers we
still used bitmaps (and were not even aware of Post-
Script). First of all, we needed to tweak some pa-
rameters in the generation of bitmap fonts. Then we
ran into caching problems due to the fact that each
DVI file relates id’s differently to fonts. It took the
support people some time to figure that out and it
tricked me into writing a DVI parser in Lisp (after
all, I wanted to try that language at least once in my
lifetime). We decided to switch to the Y&Y previewer
and PostScript backend combined with outline fonts,
a decision that we never regretted. It was also the
first time that I really had to get into fonts, especially
because they used the texnansi encoding and not the
usual 7-bit TEX encoding. It must be said: that
encoding never let us down. Of course when more
language support was added, also more encodings
had to be supported. Support for languages is part
of the core so users don’t have to load specific code
and font loading had to fit into that approach.

In traditional ConTEXt the user can mix all
kind of fonts and input encodings in one document.
The user can also mix collections of fonts and have
several math font setups in parallel and can have
different math encodings active at the same time. For

instance the Lucida fonts had a different setup than
Computer Modern. The pattern files that TEX uses
for hyphenation are closely related to font encodings.
In ConTEXt for languages that demand different font
encodings in the same document we therefore load
patterns in several encodings as well.5 Because we
mostly used commercial fonts as part of MkII we
provide some tools to generate the right font metrics
and manipulate patterns.

The reason for mentioning all this is that a font
subsystem in a TEX macro package always looks
quite complex: it has to deal with math and due
to the 8-bit limitations of traditional TEX this au-
tomatically leads to code that is not always easy to
understand, especially because it has to suit limita-
tions in memory, be efficient in usage and behave
flexibly with respect to weird fonts. In MkIV we’re
using Unicode, OpenType, and wide Type 1 fonts so
much of the complexity is gone. However, font fea-
tures introduce new complexities if only because they
can be buggy or because users want to go beyond
what fonts provide.

As a side note here, I want to mention the font
projects. The real reason why Volker Schaa and I
took the first initiative for such a project (currently
Jerzy Ludwichowski is leading the project team) is
that we came to the conclusion that it made no sense
at all that macro packages were complicated by the
fact that for instance in order to get guillemets in
French, one has to load fonts in an encoding most
suitable for Polish just for these glyphs. Because in
ConTEXt by default all languages are loaded and no
additional special language packages are needed, this
was quite noticeable in the code. What started out
as a normalization of Computer Modern into Latin
Modern Type 1 fonts and later OpenType variants,
moved on to the Gyre collection and currently is
focusing on OpenType math fonts (all substantially
funded by TEX user groups). The ConTEXt users
were the first to adopt these fonts, not only because
they were more or less enforced upon them, but also
because the beta releases of those fonts are part of the
so called ConTEXt-minimals distribution, a subset of
TEX Live.

9 Interactivity

The abovementioned Y&Y previewer supported hy-
perlinks and we used that in our workflow. We even
used it in projects where large and complex docu-
ments had to be related, like the quality assurance

5 It was one of the reasons why we moved on to patterns
in UTF encoding so that users were free to choose whatever
encoding they liked most. Nowadays UTF encoded patterns
are standard in TEX distributions.

16 years of ConTEXt

14 TUGboat, Volume 32 (2011), No. 1

manuals fashionable at that time. As a result, by the
time that PDF showed up, we already had the whole
machinery in place to support Adobe Acrobat’s inter-
active features. At that time PDF had two different
audiences: prepress (printing) and online viewing
and we were able to provide our contact at Adobe
with advanced examples in the second category.

Unfortunately, with a few exceptions, none of
our customers were much interested in that kind
of documents. I even remember a case where the
IT department of a very large organization refused
to install Acrobat Reader on their network so we
ended up with products being distributed on floppies
using a dedicated (ASCII) hypertext viewer that we
built ourselves.6 The few projects that we used it for
were also extremes: hundreds of interlinked highly
interactive documents with hundreds of thousands
of links. Those were the times that one would leave
the machine running all night so that in the morning
there was some result to look at. At that time we set
up the first publishing-on-demand workflows, using
either TEX input or XML.

One of the more interesting projects where inter-
activity came in handy was a project where we had
to identify lots of learning objectives (for some 3000
courses) that needed to be categorized in a special
way so that it became possible to determine overlap.
With TEX we generated cross-linked dictionaries with
normalized descriptors as well as documents describ-
ing the courses. It was a typical example of TEX
doing a lot of work behind the screens.

Personally I use the interactive features mostly
in presentations and writing a (new) style for an
upcoming presentation is often the first step in the
preparation. In my opinion the content and the form
somehow have to match and of course one has to
avoid coming up with the same style every time.7

Maybe ebooks will provide a new opportunity, given
that they get better quality screens. After all, it’s
a pretty trivial and brain-dead activity to produce
ebooks with TEX.

10 XML

There is some magic that surrounds XML, and it is
often part of a hype. I can waste pages on stories
about structure and non-structure and abuse of XML

and friends, but I guess it’s not worth spending too
much energy on it. After all, the challenges can be
interesting and often the solutions come right on

6 In the beginning even the reader cost money so it is no
surprise that it took a while before PDF took off.

7 This is especially true when I know that Volker Schaa,
one of my benchmarks in the TEX community, will be present.

time, although I admit that there is some bias to
using tricks you’ve just implemented.

Currently most of what we do involves XML

one way or the other which is a consequence of the
fact that ConTEXt can process it directly. As TEX
is rather related to math typesetting we supported
MathML as soon as it came around, and although we
use it on projects, I must say that most publishers
don’t really care about it.

Apart from the fact that angle brackets look cool,
advanced reuse of content seldom happens. This is
no real surprise in a time where the content changes
so fast or even becomes obsolete so that reuse is no
option anyway. On the other hand, we manage some
workflows for publishers that need to keep the same
(school) method around for more than a decade, if
only because once a school starts using it, you have
to support it for some five years after the first year.
In that respect it’s hard to find a system that, after
some initial investments, can stay around for so long
and still provide occasional updates as dirt cheap
as a TEX can. Unfortunately this way of thinking
is often not present at publishers and the support
industry happily sells them pages (each time) instead
of workflows (once set up the price per page is close
to zero). It does not help that (driven by investors)
publishers often look at short term profits and accept
paying a similar amount each year instead of paying
a bit more upfront to save money later.

Maybe I’m exaggerating a bit but most projects
that we run involve someone with vision on the other
end of the table. Some of our customers take real
risks by introducing solutions that go against the flow
of time. The simple fact that TEX-based systems
somehow guarantee a constant result (and at least
some result) makes that succeed. Already several
times we were surprised by the fact that by using
TEX a solution could be provided where all previous
attempts so far had failed: “This is the first auto-
mated publishing project that actually works.” This
might come as a surprise for TEXies who see such
automation daily.

We also support companies that use ConTEXt as
part of a workflow and the nice thing about that is
that you then deal with experts who know how to run,
update and integrate TEX. Of course specific code
written for such customers finally ends up somewhere
in ConTEXt so that maintenance is guaranteed.

11 Design

In the beginning we used TEX mostly in products
where we were responsible for the result: no one
really cared how it looked like in the end (read: no
money could be spent on typesetting) so it was just

Hans Hagen

TUGboat, Volume 32 (2011), No. 1 15

an added value and we had complete freedom in
design. For the last decennium we have dealt only
with the rendering of whatever input we get (often
XML) that no one else can render conforming to the
specs of the customer. We implement the styles we
need and set up workflows that can run for ages
unattended. Of course we do use TEX for everything
we need to get on paper, so there’s also the personal
fun aspect.

In that respect there is an interesting shift in
usage of ConTEXt: for a long time we ourselves were
the ones that drove new functionality, but nowadays
it’s regular TEX users that request specific exten-
sions. So, where for us an efficient XML machinery
is relevant, for users high-end typesetting in their
specific field can be the focus. Of course we can do
what is asked because most functionality has already
been there for a while and often extending boils down
to adding a key and a few lines of code. It is my
impression that ConTEXt users really like to come
up with a personal touch to their documents’ look
and feel, so fun is definitely part of the game.

Currently there are interesting developments
related to the Oriental TEX project which in turn
trigger critical edition support and more modern
follow-ups on that kind of typesetting. Currently
Thomas Schmitz is taking the lead in this area and
I expect interesting challenges in the next few years.

12 The upgrade

A couple of years into this millennium I ran into
a rather neat scripting language called Lua. This
language is used as extension language in the SciTE
editor that I use most of the time and after a while
I wondered how it would be to have something like
that available in TEX. As I don’t touch the engine
myself I asked Hartmut Henkel to patch pdfTEX
into LuaTEX and after some experiments it didn’t
take much to convince Taco to join in: the LuaTEX
project was born.

While initially just a little bit of access to some
registers as well as a way to print back data to the
TEX input was provided, we quickly started opening
up the whole machinery. Once the potential became
clear it didn’t take much before the decision was
made to make a special version of ConTEXt for Lua-
TEX. It was at the second ConTEXt user meeting that
those present already agreed that it made much sense
to freeze the ConTEXt for pdfTEX and X ETEX and
focus development on the next version for LuaTEX.

Although I have used pdfTEX for a long time
(and was also actively involved in the development)
I must admit that already for some years I only run
it when a user reports a problem. In that respect

we have already crossed the point of no return with
ConTEXt. Since I never used X ETEX myself, support
for that engine is limited to additional font support
in the MkII code and I know of some users using it,
if only because they needed Unicode and OpenType
while waiting for MkIV to reach a more stable state.
Of course we will forever support the older engines
with MkII.

Let me stress that the LuaTEX project is not
about extending TEX but about opening up. Of
course there are some extensions, for instance in the
math engine as we need to support OpenType math,
but the fundamentals are unchanged. Hard coding
more solutions into the core engine makes no sense
to me. First of all it’s quite convenient to use Lua
for that, but most of all it saves endless discussions
and makes maintenance easier.

I would like to stress that the fact that most
users having already switched to this version helped
a lot. I’m pretty sure that the beta version is more
popular than the regular (current) version. This is
not only a side effect of active development, but also
of the fact that the so-called minimals are quite pop-
ular. The original minimals were our self-contained,
ConTEXt-only subset of TEX Live that we also put on
the website, but at some point Mojca Miklavec and
friends adopted it and already for some years it is the
de facto reference implementation that can easily be
synchronized to your personal workstation. Another
important factor in the support chain is the Wiki,
also known as the ConTEXt garden, an initiative by
Patrick Gundlach. One of its spin-offs is Taco’s ad-
ditional TEX Live package repository. The minimals
and garden also play an important role in providing
up-to-date binaries of LuaTEX and MetaPost.

A for me quite interesting experience was that
a few years ago on the ConTEXt list some users
showed up who know the ConTEXt source pretty
well. For a long time only Taco and I touched
the code, apart from language related issues, where
users sent us corrections of label translations. Most
noticeable is Wolfgang Schuster. Not only is he
posting many solutions on the list and writing nice
modules in a style that perfectly matches the code
base, but he’s also amazingly able to nail down
problems and I can integrate his patches without
checking. Another developer worth mentioning is
Aditya Mahajan. It’s great to have someone in the
team who knows math so well and his website http:
//randomdeterminism.wordpress.com is worth vis-
iting. I could and should mention more, like Luigi
Scarso, who is always exploring the frontiers of what
is possible, or Thomas Schmitz, who not only makes
beautiful presentations but also is a great tester. And

16 years of ConTEXt

16 TUGboat, Volume 32 (2011), No. 1

of course Willi Egger, the master of layout, composi-
tion and binding. And we are lucky to be surrounded
by specialists on fonts and PDF standardization.

13 The future

So, what is the current state of ConTEXt? As we
now have a complete split of the code base between
traditional ConTEXt (MkII) and the new version
(MkIV) we can go further in upgrading. Although one
of the objectives is to be as compatible as possible,
we can try to get rid of some inconsistencies and
remove mechanisms that make no sense in a Unicode
age. Some parts are rewritten in a more modern and
flexible way and there are cases that more Lua code
is used than TEX code (although of course at the Lua
end we also use TEX core functionality). Also, all the
tools that come with ConTEXt have been migrated
to Lua. Eventually the code base will be completely
redone.

In addition to coding in TEX a user can code
in Lua using a user interface similar to the one in
TEX, so if you know the ConTEXt commands, you
can also use Lua and create so-called ConTEXt Lua
Documents. At the TEX end we go a step further.
Apart from some upgraded interface-related macros,
for instance we have a better although somewhat
less efficient inheritance model, we also support some
extensions to the macro coding, like more extensive
namespace support and named parameters. Files
using these features are classified as MkVI. This
numbering scheme is not a ratio scale—although
one can argue that MkIV is twice as good as MkII,
the difference between MkIV and MkVI is mostly
cosmetic. It is an interval scale, so MkVI is definitely
a bit better than MkIV. So for the moment let’s

qualify it as a nominal interval scale of numbering,
one that also works out quite well in file names.

Some of the adventurous module writers (like
Aditya and Wolfgang) have adopted this strategy
and provide useful input to the directions to choose.
It must be noted that at the time of this writing
it is because of the active participation of Aditya,
Luigi, Mojca, Peter, Taco, Thomas, Willi, Wolfgang
and whomever I forget to mention that we can un-
dertake such a major rewrite. On the agenda is a
rewrite of code not yet scrutinized, of output routines
(including various multi-column support) additional
(rewritten or extended) support for tables, better
access to the internal document model, an extension
of the multiple stream model, maybe some CSS and
DOM support, and whatever else comes up. Even-
tually most code will be in MkVI format. As we
proceed, for sure there will be articles about it in
this journal.

Of course I should mention my colleague Ton
Otten, who has always been very supportive and
patient with whatever I came up with. He is respon-
sible for convincing potential customers to follow our
TEX route to solutions and often he is the first to
suffer from updates that for sure come with bugs.
Without him we would not be where we are now.

That leaves me mentioning one person who has
always been extremely supportive and open to new
developments: Karl Berry. Without him you would
not be reading this and I would not even have con-
sidered wrapping this up.

⋄ Hans Hagen

http://pragma-ade.com

Hans Hagen

TUGboat, Volume 32 (2011), No. 1 17

TUGboat’s 100 issues—Basic statistics

and random gleanings

David Walden and Karl Berry

Abstract

TUG was founded to provide an organization for peo-
ple who are interested in typography and font design,
particularly those interested in Don Knuth’s TEX
typesetting system. TUG’s print journal TUGboat,
now at its 100th issue over 32 years (certainly a note-
worthy run), has been and remains an important
component in carrying out TUG’s mission.

1 Remembering Knuth’s 3:16 book

Casting about for an appropriate article for the 100th

issue of TUGboat, we remembered Donald Knuth’s
book entitled 3:16 Bible Texts Illuminated.1 In that
book Knuth describes studying the Bible by looking
at chapter 3, verse 16 of each of 59 books of the Old
and New Testaments of the Bible (he left out books
that were so short they don’t have a verse 3:16—
if the book was long enough but stopped short of
verse 16 in chapter 3, he kept counting from the last
verse of chapter three into chapter four until he got
to the sixteenth verse). For each such arbitrarily
(randomly) selected verse, Knuth’s book has four
pages: (1) a sketch of the book as a whole; (2) a
calligraphic transcription of the verse (each from
a different renowned calligrapher), (3–4) Knuth’s
restatement of the verse in contemporary English
and a description of his research and analysis of the
verse and placing it in context.

In the book’s foreword and afterword, Knuth
discusses how his random sampling approach (a math-
ematician and computer scientist’s approach) might,
and in fact did, produce a revealing picture of the
Bible more generally. This suggested to us that a
random sampling approach might also be an inter-
esting way to get an overall picture of the first 100
issues of TUGboat. Also, there would be a certain
symbolism in using a method promulgated by Knuth.

2 Our random sampling approach

We first considered choosing the 100th page (symbolic
of this 100th issue) of each yearly volume. However,
that had the problem that a couple of volumes didn’t
have as many as 100 pages. Furthermore, the order
of papers in issues is not random, being organized in
categories, such as “Macros” and “Fonts”, in an order
more or less consistent from issue to issue. Always
using page 100 reduces the chances of selecting a

1 A-R Editions, Inc., Middleton, WI, 1991.

total physical random
vol year pages issues page notes

1 1980 23 1 21
2 1981 267 3 219
3 1982 88 2 31
4 1983 132 2 118
5 1984 168 2 79
6 1985 174 2 140
7 1986 198 3 125
8 1987 352 3 93
9 1988 342 3 256

10 1989 765 4 102
11 1990 693 4 494
12 1991 588 3 167 four logical issues
13 1992 544 4 396
14 1993 445 4 213
15 1994 508 4 359
16 1995 443 4 110
17 1996 411 4 263
18 1997 321 4 245
19 1998 440 4 427
20 1999 404 4 286
21 2000 440 4 427
22 2001 376 3 60
23 2002 359 3 41 four logical issues
24 2003 624 3 285
25 2004 232 2 106 excludes TUG’04

conference preprints
26 2005 302 3 26
27 2006 268 3 268
28 2007 384 3 208
29 2008 488 3 38
30 2009 183 3 40
31 2010 340 3 249
32 2011 128 1 37 one 2011 issue

Total pages: 11430
Total issues: 100
Average pages/issue: 117
Average pages/year: 365

Figure 1: TUGboat statistics and information
(average page figures are based on extrapolation of first
2011 issue size to the full year).

page in a category that typically appears before page
100 of the first issue of a volume.

Thus we decided to select a random page from
each volume, summing the page totals on the rare
occasions when an issue 2–4 started over at page 1,
and for the remaining volumes using the largest
page number in the table of contents (TOC) of the
last issue of the year, as found in the online TUG-

boat TOCs (http://tug.org/TUGboat/Contents).
These preparations for finding a random page in
each issue immediately gave us some statistics about
TUGboat. This is all summarized in Figure 1.

We also patched our program that generates the

TUGboat’s 100 issues—Basic statisticsand random gleanings

18 TUGboat, Volume 32 (2011), No. 1

all-TUGboat tables of contents and lists (see our
companion article in this issue) to count the number
of titles and authors across all 100 issues. The result
was 3,127 titles and 2,446 authors which equals, for
what it’s worth, an average of 31 titles and 24 authors
per issue. These numbers are generous, since they
include each independent item on the TOC pages,
such as the front cover, complete issue PDF, etc.

Volumes of TUGboat include the TUG annual
conference proceedings for 1989–2010, excluding 2004
which was published as a Springer-Verlag book, three
PracTEX conference proceedings, four EuroTEX con-
ference proceedings, one combined EuroBachoTEX
conference proceedings, and one NorthEast U.S. con-
ference proceedings.

The described random selection method has the
bias of leaving out unnumbered pages at the ends of
some issues which at various times included TUG job
opening notices, the TUG mailing list, TUG member-
ship and ordering information, TUGboat submission
information, TEX and METAFONT errata, the mem-
bership list, an order form for the book Joy of TEX,
other advertisements, an AMS-TEX panel discussion,
profiles of TEX installations, Computers and Type-

setting errata, changes and supplements, and other
miscellany. However, sticking to numbered pages was
easier than having to logically renumber all pages in
a volume to include unnumbered pages.

Also, the largest page number listed in the online
TOCs might leave out a follow-on page to the last
TOC entry since article start pages and not page
intervals are given in the online TOCs. The cover
pages (c1–c4) were also ignored. Finally, as of issue
100 we only have the first issue of volume 32, and we
did the random page selection from the 124 pages
of that single issue (once we were pretty sure of the
number of pages in the issue including this article).

For the computations, we used an online random
number generator (http://quantitativeskills.
com/sisa/calculations/random.htm), rather than
programming, for instance, the linear congruence
pseudo-random number generator described by Knuth
in The Art of Computer Programming, Volume 2:

Seminumerical Algorithms, Chapter 3, “Random
Numbers”— just because it was the easier path.

The reader might well ask, “Would it not have
been more symbolic to choose a random page from
each of the 100 issues rather than from each of the
32 volumes, and this could also have provided a
usefully larger sample?” We answer, “Perhaps, but
we were writing a journal article, not a book; it would
also have taken considerably more effort— though we
acknowledge that deliberately choosing the less-effort
approach departs from the Knuthian way.”

3 The selections and notes

In this article for a single journal issue we cannot
follow Knuth’s model of four pages for each sample.
Instead we made a copy of each article containing
a randomly selected page, and then we thoughtfully
(no longer randomly) made appropriate comments on
the randomly selected page, the paper more generally,
the author, and/or what it suggested about TUG

and TUGboat.
Even someone who has never seen another is-

sue of TUGboat may get a reasonable idea of its
coverage from the following set of samples. On the
other hand, long-term readers of TUGboat may be
reminded of favorite articles, or other TUGboat arti-
cles not included in the random samples. We have
also included notes on and references to current de-
velopments relating to the selected papers.

The randomly selected page numbers shown in
column 5 of Figure 1 result in the papers below being
chosen for each volume. Links to this set of selected
articles may be found on the TOC page for this issue,
http://tug.org/TUGboat/tb32-1.

1. Questions & Answers; Letters; Miscellaneous, 1:1,
p. 21.

On pages 2–3 of the first issue of TUGboat

(the only issue in the first volume), editor Robert
Welland explains, “The TEX Users Group (TUG) met
at Stanford University in February of 1980 . . . and
among other things decided that the group would
publish a newsletter to assist the distribution of
TEXpertise.” These pages are worth reading (http:
//tug.org/TUGboat/tb01-1/tb01edit.pdf) and
include some justification for the name TUGboat.
The first issue appeared in October 1980, and covered
a variety of early TEX and TUGboat topics, including
reports from the February users group meeting.

Our randomly selected page from that issue con-
tains requests that committees organized at the users
group meeting identify themselves and that people
send reports on TEX sites, introduces two letters
from satisfied users, and mentions a TEX Errata list
and the TUG mailing list. The “newsletter” was up
and was finding its way.

2. “TEX for the HP 3000”, by Lance Carnes, 2:3,
pp. 25–26.
3. “TEX-news from Pisa”, by L. Aiello and S. Pavan,
3:1, pp. 31–32.

The randomly selected pages for both volumes 2
and 3 were in the Site Reports area (http://www.
tug.org/TUGboat/Contents/listkeyword.html#

CatTAGSiteReports), an important TUGboat fea-
ture for a decade or more as the TEX community
spread The selected article in volume 2 covered 13

David Walden and Karl Berry

TUGboat, Volume 32 (2011), No. 1 19

TEX sites in 15 pages, and the volume 3 report cov-
ered 5 sites in 5 pages.

Lance Carnes has remained a notable figure in
the TEX community ever since, first as the “small
TEX” department editor for TUGboat and later (and
still) as the vendor of PCTEX, a well-known commer-
cial distribution of TEX.

4. “Summary of AMS-TEX”, by Michael Spivak, 4:3,
pp. 103–126.

The first issue of TUGboat included an article
on AMS-TEX, one of the first large macro formats
created for TEX. by its creator, Michael Spivak.
Here, he gives an update consistent with TEX82.

5. “First principles of typographic design for
document production”, by Richard Southall, 5:2,
pp. 79–90.

Richard Southall was a type designer and typog-
rapher, invited to be part of the digital typography
group at Stanford in the early 1980s. Of this paper
he says, “Leslie Lamport and I taught a two-day
course on ‘First principles of typographic design for
document production’ as a preliminary to the TUG

meeting at Stanford University, August 13–14, 1984.
What follows is an expansion, somewhat revised and
restructured, of my lecture notes.” We can speculate
that this content influenced the way that Lamport
thought about the design of LATEX.

6. “Assembling a moderately-priced, high-perfor-
mance clone of the IBM PC for running TEX”, by
M. Pfeffer and A. Hoenig, 6:3, pp. 14–145.

Running TEX on smaller and smaller comput-
ers was an ongoing topic in TUGboat until personal
computers became logically big. This article is the
first instance of a column entitled “Typesetting on
Personal Computers”, and it starts at the begin-
ning by providing an instruction manual for buying
and assembling the parts of an appropriate personal
computer.

7. Title page, 7:3, p. 125.
TUGboat title pages are generally given regular

page numbers in sequence, and this one was randomly
selected for our sample (Figure 2). We can see that
Barbara Beeton was already three years into her
almost thirty year (and still counting) tenure as
TUGboat editor. From TUG’s address, we also have
a hint of the major role AMS played in the early
years of TEX (and continues to play, in that Barbara
and other TEX developers are AMS employees).

8. Advertisements, 8:1, pp. 87–96.
This issue of TUGboat included 10 pages of

TEX-related advertisements. For many years TEX
was a leading-edge development, and many people
hoped to make money from TEX.

Figure 2: Title page of volume 7, issue 3.

9. “TEX output devices”, by Don Hosek, 9:3,
pp. 251–260.

In the days before PDF, a big issue was making
TEX (and DVI) work with a wide variety of out-
put devices; thus, for a while TUGboat had reg-
ular reports on output devices for TEX (http://
tug.org/TUGboat/Contents/listkeyword.html#

CatTAGOutputDevices). This particular report con-
sisted of 10 pages of charts and tables about various
output devices.

10. “Contents of archive server as of 16 January
1989”, by Michael DeCorte, 10:1, pp. 97–102.

With the advent of the Internet and FTP, natu-
rally it made sense to have online archives of content,
in this case relating to LATEX. DeCorte wrote five arti-
cles from 1988–1990 on the content and organization
of this archive, hosted at Clarkson University, along
with providing contact information to acquire TEX
material on diskettes, etc. The TEX archives spread,
through collaboration and independent development,
becoming CTAN today (http://www.ctan.org).

TUGboat’s 100 issues—Basic statisticsand random gleanings

20 TUGboat, Volume 32 (2011), No. 1

11. “Comments on the future of TEX and META-
FONT”, by Nelson Beebe, 11:4, pp. 490–494.
11. “Editorial Comment”, by Barbara Beeton, 11:4,
pp. 494–496.

There are two articles on the randomly selected
page (page 494) of volume 11—one article ending
and one starting. In the context of Knuth’s then-
recent announcement that he had finished his work
with TEX and METAFONT, Nelson Beebe discussed
TUG’s ongoing role, TEX’s place in the world, the
need for continuing TEX and TEX-related develop-
ments, and so on.

As if to emphasize the continuing viability of
TEX and related activities, Barbara Beeton touched
on a significant number of TUG and TEX meetings,
TUGboat activities, etc. TEX, TUG, and TUGboat

were continuing with or without Knuth.

12. “Some TEX manuals”, by Angela Barden, 12:1,
pp. 166–170.

Author Barden critiques five early well-known
books on TEX and LATEX (she likes Leslie Lamport’s
LATEX manual) and mentioned a couple of others.
She discusses her struggle to learn TEX and sum-
marizes her philosophy of what would make a good
tutorial book on TEX. In other words, her article
is indicative of a long-standing problem with TEX,
that has never fully been solved, particularly given
the open-endedness of the TEX world (so different
from a highly specified commercial product).

13. The Donald E. Knuth Scholarship: 1992 Scholar
and 1993 announcement, 13:3, pp. 395–396.

Named for Don Knuth, the scholarship was
aimed at recognizing and promoting the use of TEX
by “support” personnel (as opposed to professors
and programmers). Up to $2000 was provided to-
ward attending the TUG conference. In keeping
with other changes in the TEX world, the scholarship
has not been awarded since 1997 (http://tug.org/
committees.html).

14. “A format compilation framework for Euro-
pean languages”, by Laurent Siebenmann, 14:3,
pp. 212–221.

The author developed a package to enable TEX
formats (Knuth’s word for a set of macros such as
those that define plain TEX) to include hyphenation
patterns for many languages, along with other mul-
tilingual support. Over the years TUGboat has
published papers on many interesting ideas or experi-
ments that never saw wide-spread use and where the
perceived problem was later more or less solved by a
more general capability. (In the TEX distributions of
today, all suitable hyphenation patterns are included
by default.)

15. “TEX innovations at the Louis-Jean printing
house”, by Maurice Laugier and Yannis Haralambous,
15:4, pp. 438–443.

Over the years since the creation of TEX, various
publishers, typesetters, and printers have made use of
TEX, particularly as a component in automating their
processes. Some of these entities have created their
own tools to move between TEX and other document
processing systems, and this article describes one
such case.

16. “A practical introduction to SGML”, by Michel
Goossens and Janne Saarela, 16:2, pp. 103–145.

The authors of this 43-page article explained,
“This article discusses the basic ideas of SGML and
looks at a few interesting tools. It should provide
the reader with a better understanding of the latest
developments in the field of electronic documents in
general, and of SGML/HTML in particular.” The
article was one of seven articles that made up TUG-

boat 16:2 (June 1995), grappling with how TEX
would fit into the rather new world of SGML, HTML,
hyperlinks, and so on.

17. “TEX in Russia: ab ovo, or About the TEXnical
evolution in Russia”, by Irina A. Makhovaya, 17:3,
pp. 259–264.

As TEX spread and became multi-lingual, the
TEX world became regionalized to a considerable
extent. This paper sums up the situation in Russia
ca. 1995.

18. “Typographers’ Inn”, by Peter Flynn, 18:4,
pp. 242–245.

This was the first of now a dozen or so columns
(still continuing) with this title, about typography as
much TEX, that Peter Flynn has written for TUG-

boat. In this first installment, Flynn addressed some
concerns that TUGboat should be exclusively focused
on TEX.

19. “Hey—It Works!”, by Jeremy Gibbons, 19:4,
pp. 426–427.

This column contained hints and tricks for doing
things with TEX with items from a variety of people.
This column had been in the separate publication
TEX and TUG News publication (http://tug.org/
pubs.html), and continued for four more years in
TUGboat. The complete collection is available online
at http://tug.org/TUGboat/hiw.

Our random selections for volumes 18 and 19
are to columns that appeared over a period of time.
A few other columns that have appeared more of
less regularly for a period of time are: the already
mentioned “Site Reports” and “Output Devices”;
Victor Eijkhout’s “Bag of [macro] Tricks”; Peter
Wilson’s “Glisterings”; “The Treasure Chest” with

David Walden and Karl Berry

TUGboat, Volume 32 (2011), No. 1 21

several editors over the years; and Aditya Mahajan’s
“ConTEXt Basics for Users”.

20. “MathKit : Alternatives to Computer Modern
mathematics”, by Alan Hoenig, 20:3, pp. 282–289.

Much activity in the TEX world has been about
using other fonts than Knuth’s Computer Modern
set. Math fonts have been of particular interest to
the community. Author Hoenig developed a tool
to allow people to create their own math fonts to
match existing fonts, e.g., Baskerville. Like a num-
ber of other ideas suggested in TUGboat, this in-
teresting approach didn’t survive the years, as more
fonts included math from the outset. (At http://
mirror.ctan.org/info/Free_Math_Font_Survey

is a nearly-comprehensive survey of free math fonts
currently available for TEX.)

21. “Micro-typographic extensions to the TEX
typesetting system”, by Hàn Thé̂ Thành, 21:4,
pp. 317–434.

Hàn Thé̂ Thành’s success in making TEX use
PDF as a native output format, in parallel with DVI,
was perhaps the most important step in sustaining
TEX in the world since the creation of LATEX. It was
fitting that TUGboat publish his full Ph.D. thesis
on this work as an issue of TUGboat. Now, a decade
later, his micro-typographic extensions are finally
available and commonly used in all the major TEX
distributions.

22. “The status quo of the NTS project”, by Hans
Hagen, 22:1–2, pp. 58–66.

TUGboat has often included items on various
distributions of TEX, TEX engines, and so forth. NTS
was a reimplementation of TEX in Java using an
object-oriented approach that had significant support
from the TEX user groups. This thoughtful article
by Hans Hagen reviews the project and draws a
number of interesting conclusions. We speculate that
this analysis by Hans helped him sort out his own
thinking about opening up and extending TEX, with
resulting major developments in LuaTEX, MetaPost,
and ConTEXt.

23. “FarsiTEX and the Iranian TEX community”,
by Behdad Esfahbod and Roozbeh Pournader, 23:1,
pp. 41–45.

Among the more difficult directions TEX has
been pushed has been the desire for typesetting Per-
sian and Arabic text.

24. Abstracts from MAPS 28, Fall 2002, 24:2,
pp. 283–285.

As the TEX world expanded, many other TEX
user groups came into being, especially in Europe,
some with their own journals, typically with all or
most articles in the language of the particular coun-

try. Thus TUGboat was (and is) no longer the
only publication with a focus on TEX and related
things, and it was appropriate for TUGboat to in-
clude abstracts of articles from these other journals,
such as these from MAPS, the journal of the Dutch
group NTG (Nederlandstalige TEX Gebruikersgroep).
A list of all such journals, past and extant, is at
http://tug.org/pubs.html.

25. “The ℵ (Aleph) project”, by Giuseppe Bilotta,
25:1, pp. 105–107.

ε-TEX was an extension of the TEX engine, pri-
marily implemented by Peter Breitenlohner, that
added right-to-left typesetting among a variety of
other new features. Omega was an effort by John
Plaice and Yannis Haralambous to move TEX more
into a multi-cultural, multi-lingual world, including
native support for Unicode. Aleph was an effort by
Giuseppe Bilotta to produce a more stable version
of Omega. The lasting impact of Omega and Aleph
now resides in LuaTEX, while the ε-TEX extensions
were incorporated into pdfTEX and are widely used
and available.

26. “Using the RPM package manager for (LA)TEX
packages”, by Tristan Miller, 26:1, pp. 17–28.

Managing the plethora of (LA)TEX packages and
organizing distributions has long been an issue. Au-
thor Miller proposed an approach using the RPM

tools standard in the GNU/Linux world.

27. TEX consulting and production services, 27:2,
pp. 285.

A regular feature in TUGboat is advertisements
for companies and people wishing to provide TEX-
related consulting and production services for a fee.
Some ads have run for many years. One can find
the original ads from each issue in the whole-issue
PDFs on the TUGboat web site (http://tug.org/
TUGboat). (The links from each issue’s table-of-
contents page go to the current list of advertisers,
http://tug.org/consultants.html.)

28. “Installing ConTEXt expert fonts: Minion Pro”,
by Idris Samawi Hamid, 28:2, pp. 200–209.

Installing fonts and accessing them within TEX
is another common theme through TUGboat’s run.
These days, there are at least four domains of such
font installation articles: for plain TEX, standard
LATEX, X ETEX and LuaTEX with their OpenType
support, and the ConTEXt system. Author Hamid is
also deeply involved with the current Oriental TEX
project for Arabic typesetting on which he works
closely with Hans Hagen, creator of ConTEXt.

29. “Do we need a font system in TEX?”, by Hans
Hagen, 29:1, pp. 28–33.

TUGboat’s 100 issues—Basic statisticsand random gleanings

22 TUGboat, Volume 32 (2011), No. 1

Hans Hagen and Taco Hoekwater, along with
a cadre of other workers, are probably pushing the
opening up of TEX (and in effect contemporary rewrit-
ing) harder than anyone else. Hans is fond of intrigu-
ing and provocative titles for his papers, which are
typically thoughtful and full of new ideas and wise
ways of thinking about things. As Hans says in the
introductory paragraph of the present article, “. . .
working on LuaTEX and ConTEXt MkIV. . . gives us
much time and opportunity to explore new frontiers
and reconsider existing ConTEXt features.”

30. “Managing bibliographies with LATEX”, by Lapo
Mori, 30:1, pp. 36–48.

Managing bibliographies well is one of TEX’s
strong suits, thanks to the BibTEX program devel-
oped by Oren Patashnik as part of the original Stan-
ford TEX project. Several definitive (for the time)
articles have appeared in TUGboat about managing
bibliographies. Author Mori provided a reasonably
comprehensive overview of the available methods.

31. TUG 2010 abstracts, 31:2, pp. 248–249.
Not infrequently, presenters at TUG annual con-

ferences decline to provide a written paper to be
included in the TUGboat proceedings for the con-
ference. In most of these instances, an abstract is
included in its place. Fortunately, in recent years
some TUG conferences have been videotaped (thanks
to the efforts of Kaveh Bazargan at River Valley
Technologies), and thus videos of some unpublished
presentations are available on the Internet (http:
//river-valley.tv).

32. “LATEX at Distributed Proofreaders and the
electronic preservation of mathematical literature
at Project Gutenberg”, by Andrew Hwang, 32:1,
pp. 32–38.

Our thirty-second and final randomly selected
paper is a particularly appropriate “choice”. It brings
TUGboat’s reporting about TEX and the TEX world
back around to Knuth’s original purpose for cre-
ating TEX: the creation of well-typeset books, es-
pecially math books (a capability that was being
lost as early computer typesetting systems replaced
pre-computer typesetting processes). In this arti-
cle, Andrew Hwang describes a project to create,
using LATEX, electronic versions of classic mathe-
matics books published in the 19th and early 20th

centuries. Knuth used TEX to preserve the quality
of pre-computer typesetting in newly-written math
books. This part of the Distributed Proofreaders
project is using TEX’s high quality of typesetting in
the electronic preservation of pre-computer mathe-
matics books themselves.

4 Reflections

These random samples from 32 volumes of TUGboat

suggest the breadth of the journal’s coverage of the
TEX world, while still leaving many specific categories
unmentioned. http://tug.org/TUGboat/Contents
points to a comprehensive list of topic areas used
over the years by TUGboat to categorize its articles,
and full author and title lists, as well as the issue-
by-issue tables of contents. Scanning these gives an
even greater sense of TUGboat’s diversity.

Of course TUGboat has served as a newsletter
for the TEX Users Group (and the broader TEX
world) about projects, events, and people. It has
simultaneously provided tutorial material for various
levels of TEX practitioners, a forum for new ideas to
be suggested and experiments to be described, and
a place where major new developments in the TEX
world can be permanently documented. TUGboat

articles have been peer-reviewed, but it has never
been a journal of pure academic scholarship; it has
served the typical role of a scientific or engineering
journal in allowing participants in the field to learn
about and build on (or create alternatives to) the
work of others, thus extending to practice and ed-
ucation as well as the occasional theoretical article.
Furthermore, it has played a role beyond TEX, reg-
ularly dealing with non-TEX issues of typography,
design, document preparation and display.

Don Knuth has stated that computer science de-
partments had to exist because there was a group of
people who thought in a certain way which didn’t fit
within the confines of either traditional math or engi-
neering departments. Perhaps because it evolved out
of a creation by Knuth, TUGboat serves a similarly
unique role for a collection of people who have inter-
ests in or needs for typography, font design, and a
powerful typesetting system, and who in many cases
want to go beyond the capabilities allowed to users of
commercial typesetting systems. Users of TEX and
related technologies are a somewhat self-selecting
community, and TUGboat exists and is edited to
serve broadly the interests of that community.

Acknowledgments

Thanks to Barbara Beeton, who edited and proofread
this article, as always. Also, over its 32 years literally
thousands of people have contributed to TUGboat

as authors, columnists, editors, members of the pro-
duction team, creators of the web site, and so on.
The TUGboat vessel is a significant community of
its own within the worldwide TEX community.

⋄ David Walden and Karl Berry
http://tug.org/TUGboat/Contents

David Walden and Karl Berry

TUGboat, Volume 32 (2011), No. 1 23

TUGboat online

Karl Berry and David Walden

1 Introduction

TUGboat has traditionally been, and remains, a
print journal. Its history was described and pro-
fusely illustrated in Barbara Beeton’s 2006 paper
(“How to Create a TEX Journal: A Personal Jour-
ney”, TUGboat 28:1, 2007, pp. 29–49, http://tug.
org/TUGboat/tb28-1/tb88beet-keynote.pdf).

Since the web came into being, TUGboat has
also existed online. This article sketches the evolu-
tion of the online version of TUGboat.

2 First steps

TUGboat has been part of the TUG web site since
the web site’s beginning. To a large extent, the
original pages remain, with the basic description of
the journal, editor’s wish list, information for authors,
and so on.

It was apparent from the outset that it would
be useful to publish back issues on the web. Mimi
Burbank began the process of scanning paper copies.
In a few cases articles were reprocessed, or DVI con-
verted to PDF, but in the main, sources, figures, and/
or fonts were lacking, so no systematic reprocessing
could be attempted. Scanning to PDF was the only
viable approach.

As the work proceeded, Mimi created table of
contents files in HTML by hand. The scanning took
so much more time than writing the HTML, and
was proceeding so slowly, there was no need to think
about any tools.

As the years passed, additional volunteers came
forward. In particular, Brooks Moses (with the sup-
port of his department at Stanford) ended up doing
the bulk of the scanning. Robin Laakso in the TUG

office also made significant contributions. Most of
the issues were scanned by 2006, though the pro-
cess was not completely finished until 2009, so the
scanning overlapped with the other work we describe
below. (Even now, additional work remains—some
of the early issues were scanned at 150 dpi, some
pages are crooked, a few pages are missing, etc.)

Once enough back issues had become available,
the question arose of how best to make the material
accessible on the web. Our attempts to answer that
question are described in the rest of this article.

3 Two steps toward automating generation

of TUGboat tables of contents

3.1 The PracTEX Journal

In 2004, TUG, at the suggestion of Lance Carnes,

sponsored a TEX conference explicitly focused on
practical use of TEX. Near the end of the conference,
Tim Null and Robin Laakso discussed developing
a section of the TUG web site that would contain
introductory material on TEX organized by category.
In an exchange of emails between Tim Null and
Karl Berry after the conference, Tim came up with
the alternative idea of an online journal. Lance
Carnes became the editor of that journal, and other
people volunteered or were recruited to join the new
journal’s editorial board.

The Editorial Board’s planning discussions nat-
urally were centered on issues such as the target
audience, look and feel, and frequency and schedule.
Meanwhile, Karl hand-crafted HTML for a prototype
web site for the new journal, and other members of
the editorial board made many comments on it. We
then embarked on a collaboration to build a produc-
tion program to generate a web site similar to the pro-
totype. The initial issue of The PracTEX Journal was
published (posted at http://tug.org/pracjourn,
which remains the journal’s home) on January 15,
2005. This web site includes a table of contents for
each issue with links to the PDFs of the papers, and
author, title, and BibTEX lists covering all issues.

The relevance of the PracTEX Journal effort
to TUGboat online is that it forced us to think
extensively about how a program to generate the
web site for an online journal would work. Dave
wrote a lot of code, and we noted some things to be
done better or differently if another journal web site
generation program was ever written.

3.2 Contents, ordered by difficulty

In early 2005 Dave and Karl began discussing the
possibility of creating an additional table of contents
for each issue of TUGboat that would be organized
by level of difficulty. Karl took the issue to Barbara
Beeton and the other members of the TUGboat

production group, who supported the idea. TUGboat

Volume 25 (2005), No. 2 (TUGboat issue 81) was
the first issue that included this additional table
of contents: see http://tug.org/TUGboat/tb25-2/
cover3.pdf. The design was discussed extensively
in advance, and has had only minor refinements since
that first appearance.

From the beginning, we knew we would want
this information to be available online (in HTML) as
well as in print (via PDF). So, we devised a format
for the source file that both could be compiled by
TEX to produce PDF, and would also be plausible to
parse with a Perl program to generate HTML for the
online contents page. We informally refer to these
dual-purpose source files as “capsule files”.

TUGboat online

24 TUGboat, Volume 32 (2011), No. 1

The capsule files begin with some prologue defi-
nitions relevant only to TEX, followed by the main
material: a sequence of \capsule commands, each
one a capsule summary of an item in the table of
contents. The \capsule entries are in the order they
would appear in the printed level-of-difficulty table
of contents (since Perl can do reordering more easily
than TEX). The \capsule command evolved over
time, eventually having nine arguments:

1. The difficulty rating— follows \capsule on first
line (example given below).

2. The TUGboat category, possibly with a “sub-
argument” replace or add, as described below.
Arguments 2–7 are always alone on their lines.

3. The author(s).

4. The title.

5. A one-line description for the item.

6. The page number, possibly with an offset sub-
argument.

7. The URL of the item’s PDF.

8. Optional subtitles. These can be multiple lines.

9. Optional additional text for the HTML. This
can also be multiple lines.

(Some of the subtleties of the \capsule command’s
interpretation will be described in the next section.)

For ease of parsing by the Perl program, the ar-
guments to \capsule are mostly on a single line (the
exceptions are the last two, which can be multiple
lines, as noted above). Here’s an example from the
present issue:

\capsule{Introductory}

{Resources}

{Jim Hef{}feron}

{Which way to the forum?}

{review of the major online help forums}

{\getfirstpage{heff}}

{/TUGboat/!TBIDENT!heff.pdf}

{}

{}

4 Writing a program to generate

TUGboat contents pages

Even given the prior experience with The PracTEX

Journal (described in section 3.1), the program to
generate the TUGboat contents pages and lists of
authors, titles, and categories/keywords evolved over
a fairly long period. As we handled more of TUG-

boat’s 100 issues, we continually learned of more
variations with which we had to cope.

4.1 The series of steps

Our memory of the evolution is as follows.

a. Dave first cobbled together a program to convert
the capsule files (which only existed from issue 81 on)

into tables of contents for new issues as they came
out. In this way, we began to understand the task at
hand and had real examples to review as we decided
what to do next.

For this program, Dave reworked parts of the
PracTEX Journal program. In particular, for this and
all additional evolutions of the project he used a pair
of template routines he developed (originally to gen-
erate HTML for the PracTEX Journal effort), in order
to avoid learning about Perl’s template capabilities;
see http://walden-family.com/public/texland/
perl-common-code.pdf.

b. Then we started to process issues prior to #81.
The material we had to work with was (a) the online
contents pages, which existed as hand-crafted HTML

(mentioned in section 2); and (b) the so-called “.cnt
files” created by Barbara Beeton; these are TEX files,
covering (at the time) the tables of contents for all
but the last few years prior to issue 81.

(Aside: The .cnt files are also used by Nel-
son Beebe to produce his TUGboat bibliography
files. Both are available on CTAN at http://mirror.
ctan.org/info/digests/tugboat.)

c. Where only HTML files existed, Dave converted
the HTML into capsule files using a combination
of Perl programming, editor macros, and manual
editing. At this point, the URLs for the PDFs of
the individual papers already existed in the HTML

for transfer to the capsule files. (When posting the
scans, Karl had updated the HTML contents files
with these links to PDFs for individual items.)

d. For the years which had a .cnt file available,
Dave wrote another Perl program for conversion
into capsule files. In this case, Dave then looked at
the HTML files for those issues and transferred the
URLs for the PDFs into the capsule files. Dave did
this manually, looking at each PDF file as he went
along, spotting instances of multiple short or related
papers in a single PDF file such that the same URL

would be the argument to more than one \capsule
command. (This happened because sometimes Karl
had combined several items into one PDF, according
to his subjective idea of when splitting would be more
hindrance than help to readers.) In a few instances,
we split PDF files that had previously been combined.

e. At this point, we had capsule files for all issues,
and some insight into the special cases that needed to
be handled. Dave then did a major renovation and
expansion of the main conversion program (para-
graph a). In addition to generating the tables of
contents for each issue, the new version of the pro-
gram created author, title and keyword lists across
all issues.

Karl Berry and David Walden

TUGboat, Volume 32 (2011), No. 1 25

f. Dave reran the new version of the program on the
latest issues (see paragraph a) to make sure those
capsule files still converted correctly.

g. Starting with the first issue, Dave then ran the
new version of the program on successive issues, fairly
often discovering new situations the program had
to be augmented to handle and discussing possible
solutions with Karl. Some of these situations and
solutions are described in the next sections.

h. Karl and Barbara reviewed the results and sug-
gested additional refinements. Some of these just
required fixes to the capsule files to the program.
Others required changes to the program.

i. Finally, we felt ready to make the full set of
computer-generated web pages publicly available.
They are all linked from http://tug.org/TUGboat/

contents.html.
Over time, as new TUGboat issues have been

produced a little additional program maintenance
and improvement has been required. Altogether
there have been about 50 iterations of the program.

4.2 Program structure

The program is driven by several plain text files:

• A file giving translations of words with diacriti-
cal marks, etc., both from TEX into HTML for
web site display and from TEX into plain text
for alphabetic sorting.

• A file for unifying both (a) different versions
of the same author’s name, defining a single
version of the name which is used for all when
sorting items for the author list), and (b) dif-
ferent versions of the same TUGboat article
category (e.g., ‘Fonts’, ‘Font Forum’, ‘Font De-
sign and New Fonts’, and ‘Fonts and Tools’),
again defining a single version which is used for
the category/keyword list.

• A file listing the TUGboat issues to be processed
in this run.

• The capsule file for each issue.

Examples of all the files discussed here can be seen
at http://tug.org/TUGboat/tb32-1/tubonline.

The program reads the first two files to prime
its data structures and then begins processing the
third file, one issue number at a time, which in turn
involves processing the capsule file for that issue. As
each capsule file is processed, the necessary infor-
mation is saved for the title, author, and keyword/
category lists. The HTML contents page for each
individual issue is also output in turn. After all the
issues have been processed, the saved information for

the three types of lists is sorted appropriately, and
the web pages for these lists are created.

Thus, the program is not unusual: parsing, pro-
cessing, output. It is inherently a bit messy because
of different combinations of situations that must be
handled in different ways, for example, the different
combinations of the title, author, TUGboat cate-
gory, and PDF URL that may be present, resulting
in different output formats.

The web site generation program skips over the
TEX at the beginning of the file until it reaches
the first of the few TEX commands it understands,
for instance, \issue{25}{2}{81}{2004}{}{} which
indicates the year, volume number and issue number
within the volume, and overall issue sequence number,
starting at 1 for the first issue of TUGboat.

4.3 Program capabilities

Some of the capabilities of the program have already
been mentioned, such as its conversion of the TEX
with diacritical marks for a person’s name into HTML

with its equivalent diacritics for display on the web
pages, and also into the strictly English A–Z and a–z
alphabet for sorting. Unifying different variations
of author names and TUGboat categories has also
been previously mentioned.

The program must display slightly different ta-
ble of contents pages for proceedings than for non-
proceedings issues. Additionally, twice (to date)
something that was not a normal TUGboat issue
was distributed by TUG such that we nevertheless
wanted to handle it as if it were a TUGboat issue: the
preprints for the 2004 proceedings (which filled the
role of TUGboat issue #79), and the EuroTEX 2005
proceedings (which filled the role of TUGboat issue
#85). These instances require different formatting.

Sometimes a capsule file has text to be included
in the online table of contents that doesn’t appear
in the printed edition (argument #9 to \capsule,
see section 3.2). This is typically used for links to
videos of conference presentations and supplementary
information for an article. Our program handles
these commands by simply passing along the HTML

to the output; the TEX macros for generating the
printed cover ignore these commands.

We want the items in the online contents to be
ordered according to their appearance in the issue.
However, from issue 81 on, the items in the cap-
sule file are in the correct order for generating the
level-of-difficulty table of contents, so the program
has to resort them by page number. The items in
capsule files before issue 81 are generally in page
number order, but even then, sometimes the start-
of-article page numbers are insufficient. Multiple

TUGboat online

26 TUGboat, Volume 32 (2011), No. 1

items can appear on the same page, some page num-
bers have a non-numeric format, e.g., c3 for cover
page 3 (the inside back cover), and other occasional
special cases. Thus, an optional \offset{.1}, (or
{.2}, etc.), parameter may follow a page number in
the page-number argument to a \capsule command,
and these values are used to adjust the order of
things in the page-number sort. \offset is ignored
by TEX.

Another feature eliminates a potential source
of error. In the example at the end of section 3.2,
the page number is not given directly: it’s specified
as \getfirstpage{heff}. Seeing that, the program
looks for an auxiliary file heff/firstpage.tex, as
our production directory is arranged. TEX itself
creates that file automatically when an issue is run,
thus avoiding manually entering page numbers.

The example shows one more small feature: the
URL is given as /TUGboat/!TBIDENT!heff.pdf in-
stead of /TUGboat/tb32-1/tb100heff.pdf. The cu-
rious directive !TBIDENT! came about after we had
been creating capsule files for new issues for some
time. We realized that (naturally enough) new cap-
sule entries were usually created by copying old ones,
and it was regrettably easy to neglect updating the
issue number (32-1), the sequence number (100), or
both. !TBIDENT! simply expands to that sequence;
the actual values needed for the program to do the ex-
pansion are given in the \issue command mentioned
above.

We also added some consistency checking to the
program for more help in discovering typos, etc.:

• the PDF files specified in the URLs must actually
exist (this assumes the program is being run on
tug.org itself with full access to the archive of
PDFs of individual articles);

• everything in the capsule file must end up in
the output, i.e., no two items have identical
page numbers (we manually differentiate with
\offset when that would otherwise be the case).

5 Opportunities

Having the archives of TUGboat available online
made it possible for people to access articles in old
issues without having to find a physical copy of the
issue. The attendant full lists of authors, titles, and
keywords are particularly useful to researchers (our-
selves included) trying to find things in the TUGboat

archive. For example, we have used those lists in do-
ing background research for the TUG interview series

(http://tug.org/interviews), and in creating the
book TEX’s 2

5 Anniversary, which involved creating
lists of papers from TUGboat. (A fuller description
of how that latter book came about is at http://
tug.org/store/tug10/10paper.pdf.)

From the outset of TUGboat online, issues more
than a year old were made publicly available. A year
after the publication of each new issue, it was posted
to the TUGboat web site. Following this precedent,
we immediately put all older issues online in full as
the material became available.

Having so much more of TUGboat available on-
line brought home the question of the extent to which
non-members of TUG would have access. Eventually,
the TUG board of directors decided to put each issue
online for members to access as soon as the paper
copy was published, but to wait a year before making
it available to non-members. At about the same time,
members were offered a membership option (with a
discount from the regular cost of membership) where
they were not sent paper copies of TUGboat and
only accessed it online. About 15 percent of members
choose this option.

In general it seems that having TUGboat online
is good for both TUG members and other people
interested in TEX, typography, and fonts. Having
TUGboat online is consistent with TUG’s mission:

TUG is a not-for-profit organization by, for, and

of its members, representing the interests of TeX

users worldwide and providing an organization

for people who are interested in typography and

font design.

As for the specifics that we’ve presented here,
having the machine readable capsule files for all issues
of TUGboat allows easier reuse of TUGboat data in
other, perhaps as yet unforeseen, contexts.

Acknowledgments

Barbara Beeton, Mimi Burbank, and Christina Thiele
all searched their memories and archives to help us.

As described in the beginning of the article,
Mimi initiated the process of getting TUGboat issues
online (among many other TUGboat and TUG and
TEX efforts). We’d like to dedicate this article to her
memory; sadly, she passed away late last year (a full
memorial appears elsewhere in this issue).

⋄ Karl Berry and David Walden

http://tug.org/TUGboat/Contents

Karl Berry and David Walden

TUGboat, Volume 32 (2011), No. 1 27

TEX consulting for fun and profit

Boris Veytsman

1 About this article

At TUG 2008 I made a talk about my experiences
as TEX consultant. Sometimes I have been asked
to write it down. While the video of that talk is
available [7], it might still be worthwhile to put to
paper my observations and the lessons I learned
during the years of paid consultancy. Thus I decided
to write down some things I discussed in 2008—and
some new thoughts and observations.

It goes without saying that everything in this ar-
ticle is based on my personal experience and reflects
my tastes and opinions. When I mention “lessons”,
they are lessons for me: the reader is free to consider
them either trivial or erroneous (or even both simul-
taneously). Also, the words I, my, me are used in
this paper more frequently than is usual in technical
or scientific literature; again this is caused by the
chosen genre of personal reminiscences.

I am grateful to Karl Berry, who encouraged
me to write this paper, to Dave Walden whose in-
terview [8] rekindled my memories, to my numerous
customers, who provided many valuable lessons, and
to the TEX community, without whose energy and
dedication my career as a consultant would be im-
possible.

2 First steps

I started to use TEX in the middle of the 1990s, and
quickly fell in love with it. In the first years TEX was
for me synonymous with LATEX; my first book about
TEX was Lamport’s manual [5]. I quickly appreci-
ated the possibilities for extension and customization
in the TEX system, and decided to write my own
packages. I’ve read the Guide [1] and the first edi-
tion of the Companion [3]— the one that featured
St. Bernard with a barrel on the cover. I remember
spending a whole day reading the descriptions of all
the LATEX packages on CTAN—it was still possible
then to do this in one day.

My first packages were just this— something for
my own use. I was sending out many letters (a usual
pastime for a postdoc), so I wrote the envlab package
for printing envelopes. A journal where my co-author
and I published a paper required an alphabetic list
of symbols used in equations, so I wrote the first
version of the nomencl package (later its development
was taken over by others). LATEX programming re-
quires a working knowledge of TEX, so I studied The

TEXbook [4]. I still often consult it and the great
reference manual by Victor Eijkhout [2].

After several years of personal use and occa-
sional packages published on CTAN, I got used to
giving TEX advice to colleagues and students. Once
I opened TUGboat at the page with the advertising
rates for TEX consultants, and found out that they
were ridiculously low: $35 for a full year of listing
both in the print and web editions. Thirty five dol-
lars is a nice sum for an experiment: even if you fail,
it is not too much to lose, and even one consulting
engagement would justify many years of advertise-
ment. Thus I sent money to TEX Users Group. This
was in the end of 2005. The first offer came in about
six months after this.

My ideas about the consulting were rather nebu-
lous. Probably something along the lines of interpret-
ing cryptic TEX error messages. However, my first
engagement was completely different: a publisher of
scientific journals wanted to train the help desk staff
to troubleshoot authors’ problems with LATEX. This
was a rather lucky beginning for me: I have been
teaching physics on different levels from grade school
to graduate school since the 1980s. It was relatively
easy for me to create a course (mostly based on the
great book by Oetiker et al. [6]) and teach it in a
two-day seminar. By the way, I was pleasantly sur-
prised by the help desk staff: they turned out to be
smart people, interested in learning and asking great
questions. It was a fun assignment. I spent some
time in preparing the materials, but then I was able
to use them several times more for other audiences:
TEX training turned out to be an important part of
my business.

In 2007 I got a couple more engagements. They
were from publishers; I was to program a LATEX style
based on their design. Actually this activity turned
out to be the main part of my consulting. Again, I
was lucky: from the beginning I got to know very
good designers and learned to interact with them.

This does not mean that I never got to “in-
terpreting TEX error messages”: occasionally I get
desperate pleas for help from people stuck with com-
pilation of their documents. Unfortunately for me
(and fortunately for them), these problems are usu-
ally easy to solve. More often than not they are
subject to my “15 minutes rule”: I do not charge
for an occasional quick advice that takes less than
a quarter hour of my time. The main drivers of my
business are packages for publishers and seminars for
TEX users.

3 Some lessons learned

3.1 Fun and profit

While doing anything it is useful to reflect why you
do it, what do you want to get from the activity?

TEX consulting for fun and profit

28 TUGboat, Volume 32 (2011), No. 1

The title of this article includes the words “fun and
profit”; let us discuss them.

As to the profit, I found out that TEX consulting
brings more than I thought when I sent these $35 to
TUG. It easily pays for travel to TUG conferences,
for books about typography, fonts and typesetting
etc. Even after these business expenses there is some
money left. On the other hand, this consulting is
definitely not something one would retire upon or
quit the day job for. Of course, I never put much
effort into expanding my business; the advertising
budget is still dominated by the yearly TUGboat ad.
I wanted this consulting to be a modestly paying
hobby, and I got pretty much what I wanted.

The fun element is much more prominent in this
business. I enjoy learning new stuff—and I learned
a lot! I now program in TEX much better than I did
when I wrote only for myself. I learned many odds
and bits of typesetting: what do Hebrew books use
for front matter page numbers, why Hans Straßer
becomes Hans Straßer in small caps font, what is
the difference between early Tschichold and mature
Tschichold, how many degrees are in the humanist
axis tilt, and many other exciting things. If you
like book-related trivia, consulting is a good way to
collect it. Also, it is a good way to meet interesting
people and get acquainted with many different busi-
nesses. Among my customers were editors, engineers,
geologists, mathematicians, philosophers, physicians,
publishers, statisticians, typographers, . . . —and I
learned a bit from each of them.

3.2 Why TEX is not enough

While learning non-TEXnical things is a part of the
fun of consulting, it is also a requirement of the job.
The customers rarely have purely TEXnical prob-
lems: more often than not they want solutions for
other aspects of their typesetting or even the general
information processing work flow. If a consultant
can help them with these, he or she becomes more
valuable. For example, most customers expect you
to edit their .bst files. They may or may not realize
that the language there is completely different from
TEX—you are supposed to know both. Similarly you
should be ready to answer questions about graphics
and graphics manipulation, typography, options for
Ghostscript runs, and many other things.

Sometimes these questions become rather exotic.
One of my customers wanted to put hyperlinks from
the table of contents and the index into a PDF file.
While the hyperref package, of course, would do this
easily, the customer wanted to work with the PDF

created by quite different tools. An evening reading
PDF specifications gave me the idea how to do this.
This probably was as far from TEX as one can get
on this job.

3.3 People one meets

The success or failure of a consultant ultimately de-
pends on the customers. Somehow I (almost always)
met really good customers, and most of my projects
were a pleasure. In this section I would like to talk
about these customers.

Since I have no permission to name the names
(and it would probably not be ethical for me to do
so), I will talk about composite categories of the
people I worked with.

I learned many things from the typographic de-

signers. These are the people who write the specifi-
cations for the styles I coded. In the ideal case the
designer understands the ways of TEX; unfortunately
such designer is a rarity. Thus it is the job of a
TEXnician to learn to understand the designers and
follow their ideas. I was lucky to meet really good
designers and to have a privilege to work with them.

Technical editors are the primary consumers of
the code I wrote. A consultant has to learn how they
work, what do they expect, their customs and conven-
tions. The good and trusting communication with
the editors is probably one of the most important
things in this line of business.

Of course, another class of consumers is the
authors. Most TEX-writing authors think that they
know TEX, and some of them really do. For the
author of a package they are the tireless testers and
submitters of bug reports. No editor ever gives such
stress test to my styles as an author wanting to use
a dozen incompatible packages with it. The best
author, of course, is the one who reads the manual.
Unfortunately, many authors never bother to do this.
I provide lifetime support for my packages; more
often than not my answers to the queries include the
phrase “as explained on page NN of the manual. . . ”
Still, it is worth remembering that we work for the
authors, not the other way round.

A separate category is the self-publishing au-

thors, i.e. the authors who are simultaneously editors
and publishers of their works. Usually these are
students preparing their theses for submission. In
this case they have rather harsh deadlines and strict
requirements for the output. Often they are very
anxious whether they can satisfy these deadlines and
requirements, so a part of the job is to reassure them
that everything is going to be done in time and right.

Boris Veytsman

TUGboat, Volume 32 (2011), No. 1 29

3.4 Some tips

During the years of my consulting I learned some
things which turned out to be useful outside this
occupation.

When you work simultaneously on many differ-
ent projects, it is necessary to keep track of the things
you are doing. Therefore a version control system
is indispensable. I made a habit of putting all code
and documentation under version control from the
beginning of the project, and regularly committing
changes. This habit has saved me many times.

Another important thing is to write detailed
documentation. It is difficult to keep in mind all the
details of all the projects. Many times when I got an
e-mail from an author or editor with the questions
about a style written several years before, I appreci-
ated the fact that everything was documented and
commented. Of course, for this to work the documen-
tation should closely correspond to the code—that
is why literate programming is essential for this work.
Fortunately, the standard LATEX tools for class and
package writers (see [1]) provide a simple interface
for literate programming. It is useful to write the
user manual first, and then implement it in the code.

Artists learn to paint by studying old master-
pieces. I found that reading the code of TEX wizards
is one of the most direct ways to improve my skills
and understanding of TEX.

I never had any business before I started this
consulting, so my business advice may seem näıve.
Still, I’ll offer a couple of tips.

Many customers are worried about the long-
term deployment of the code. I usually offer free
lifetime support and bug fixing— this helps to allevi-
ate these worries. As mentioned earlier, I also have
the “15 minutes rule”: if I can answer a question in
15 minutes or less, my advice is free; perhaps that’s
also part of the advertising budget.

Most of the customers do not know much of
TEX. They do not understand what is easy and what
is difficult to do. Well, if they did, they would not
need consulting. In my opinion this means a certain
responsibility on behalf of a consultant: to be fair,
honest and to think about the customers’ interests.
For example, you can get and offer to write code
for something which can be done by using existing
packages. It would be much better for your self-
esteem and for your relationship with the customer
to point out that she or he can save money by reusing
the existing solutions rather than paying you.

4 Conclusions

Looking back at these years of TEX consulting I feel
it was a lucky idea to send an ad to TUGboat. I
learned much about TEX and many other related
and not so related things. Some of this knowledge
and skills helped me in other endeavors. And it has
been a lot of fun.

References

[1] LATEX3 Project. LATEX2ε For Class and Package

Writers, 2006. http://mirrors.ctan.org/

macros/latex/doc/clsguide.pdf.

[2] Victor Eijkhout. TEX by Topic. Lulu,
2007. http://eijkhout.net/texbytopic/

texbytopic.html.

[3] Michel Goossens, Frank Mittelbach, and
Alexander Samarin. The LATEX Companion.
Addison-Wesley Professional, Boston, 1993.

[4] Donald Ervin Knuth. The TEXbook. Computers
& Typesetting A. Addison-Wesley Publishing
Company, Reading, MA, 1994. Illustrations by
Duane Bibby.

[5] Leslie Lamport. LATEX: A Document

Preparation System. Addison-Wesley Publishing
Company, Reading, MA, 2nd edition, 1994.
Illustrations by Duane Bibby.

[6] Tobias Oetiker, Hubert Partl, Irene Hyna,
and Elisabeth Schlegl. The Not So Short

Introduction to LATEX2ε, Or LATEX2ε in 141

Minutes, May 2008. http://mirrors.ctan.

org/info/lshort.

[7] Boris Veytsman. Observations of a TEXnician
for hire. TUGboat, 29(3):484, 2008. http:

//www.tug.org/TUGboat/Articles/

tb29-3/tb93abstracts.pdf. The talk is
available at http://river-valley.tv/
observations-of-a-texnician-for-hire/.

[8] Dave Walden. Boris Veytsman [interview at
TEX interview corner]. http://www.tug.org/
interviews/veytsman.html, January 2011.

⋄ Boris Veytsman

Computational Materials Science

Center, MS 6A2

George Mason University

Fairfax, VA 22030

borisv (at) lk dot net

http://borisv.lk.net

TEX consulting for fun and profit

30 TUGboat, Volume 32 (2011), No. 1

Which way to the forum?

Jim Hefferon

The TEX and LATEX community is formed, in part,
through forums, online places where we get together.

Old-timers often hang out where they always
have been and beginners may not know where they
could go, so both groups might benefit from a brief
summary of the current options.

I will focus on places where you can get a TEX
question answered, sticking to those sites with a
good number of posts,1 and not including specialized
lists such as TEX Live’s or package-specific ones. I
will also focus on English-language options, simply
because that is what I know.

1 texhax

This was the first real mailing list for TEX and
friends—the earliest post is from 1986. Many of
those early posts are about acquiring TEX so they
remind us how far we have come.

There are now about a dozen posts a day. Many
of the list contributors are long-time and knowledge-
able members of the community. This list’s atmo-
sphere is polite, pleasant, and helpful. Almost never
does a post go without an answer.

You do not have to subscribe to the list in order
to post or to read the archives. The list is not
moderated, that is, there is no one who approves
every post in order to, for instance, keep out spam.
But posts from an address that the list has never seen
before must be approved, whether from a subscriber
or not; the resulting delay is usually less than a day.

This list is now hosted by TUG. Subscribing or
reading the archives is easy; see the signup page.2

2 comp.text.tex

This is a Usenet group so it has a feel rather like
texhax’s. It also has been around a long time, since
at least February 1990.

This forum is well enough known to have a
common abbreviation, ctt. It seems to me to be the
place that is most often recommended when a person
new to TEX asks where to get questions answered.
As with texhax, many of the names that you will
see here are well-known TEX experts and there is an
overlap of members between the two.

This list has two to three dozen postings a day
(many are announcements from CTAN). Almost all
posts get answered but in my experience posting
late on a Friday afternoon is not your best strategy.

1 For example, I have omitted Google’s LATEX Users Group

and Yahoo’s TEX and LATEX group.
2 http://lists.tug.org/texhax

It is not moderated. The atmosphere is polite and
helpful, although once in a great while an exchange
can get sharp.

Few people today have Usenet access so the most
popular way to read the list is through Google’s
interface.3 This interface makes the forum easily
searchable and with the length of time it has been
around you can expect that the great majority of
questions have already been answered. So if you have
a question then you may not even have to ask.

However, this interface has the disadvantage
that some spam messages appear. Another thing
about this interface that some people may consider
an issue is that as a commercial site, Google puts ad-
vertisements on this page (called “Sponsored links”).

3 tex.stackexchange.com

This is a new forum and it is built with a web browser
in mind rather than an email reader. It is part of a
family of such sites, Stack Exchange,4 and inherits
its features from the common code base.

As with the traditional forums above, someone
asks a question and other people send answers. Here,
though, other readers vote on the answers and the
ones with the most votes move to the top of the
page. Thus a person reading a list of responses gets
some guidance about which posts others find most
valuable. You don’t have to register but if you do
(it is free) and your answers are consistently rated
highly then you get reputation points—web cred.

High reputation users become ‘trusted’ and the
forum is moderated by its trusted users (other users
can flag something for a moderator to examine). One
unusual aspect here is that trusted users may edit
the questions and answers of other users, so you can
find that what you wrote has been altered.

The area for TEX and friends is called {TEX}.
5

The larger family of sites is commercial and has
advertisements, although at the moment ads do not
seem to appear on this TEX area.

The interface is attractive, with the amenities
that a modern surfer expects. For instance, you can
search for questions that have already been answered.
However, this community is new so there is not the
decades-long background as with texhax or ctt. But
it is growing fast; the number of postings seems to
me to be at least comparable to that of the older
forums. There are people hanging out on this site
who are quite knowledgeable and most questions get
answered quickly and reliably. I find the tone here
professional as well as helpful.

3 http://groups.google.com/group/comp.text.tex
4 http://stackexchange.com
5 http://tex.stackexchange.com/

Jim Hefferon

TUGboat, Volume 32 (2011), No. 1 31

4 latex-community.org

Like the prior one, this new resource is directed to
a web browser. Here the forum is a part of a larger
site for LATEX users6 that offers articles, RSS feeds,
and a number of other features.

This forum7 is grouped into subtopics. A group-
ing has advantages and disadvantages; for myself, I
find that while lurking on an all-purpose list I of-
ten pick up bits and pieces that I find useful later,
whereas if I only read what I am interested in to-
day then I miss those. But you may feel that the
grouping helps you zero in on exactly what you want.

It seems to my visitor’s eyes that the great ma-
jority of questions get answered but that the total
number of daily posts is not as large as for the Stack
Exchange site.

The LATEX Community has advertisements. Dis-
cussions are moderated.

I find the conversation here to be both helpful
and knowledgeable.

5 latex.reddit.com

The popular social news site Reddit8 has a forum
for LATEX.

9 (Full disclosure: I moderate the Reddit
TEX forum, although it gets so little traffic that I
won’t discuss it.)

As with other modern sites, readers can vote the
posted links up or down and the winners float to the
top of the page. In addition, visitors can comment
on the links and reply to other commentators.

If you regularly visit Reddit then you can add
the LATEX sub-reddit to your stream so that items
from it appear on your front page. This makes this
forum part of your daily routine.

6 http://www.latex-community.org
7 http://www.latex-community.org/forum
8 http://www.reddit.com
9 http://latex.reddit.com

Reddit is a commercial operation and there are
advertisements. Material is moderated (users can
flag something for a moderator to examine).

This forum does not get many topics posted,
two or three a day, and the number of responses to
topics is also small, perhaps six or eight a day. Some
of the posts are links to articles about LATEX but the
majority are questions. Most of the questions get
answered, but in my experience for some it may take
a couple of days or they may not get answered at all.

The tone is gentle and compared to the fo-
rums above there is more a feel here of beginner-
to-beginner, or perhaps of intermediate-to-beginner.
One thing that is great about this forum is that many
of the posts are from obviously enthusiastic members
of a new generation of TEX and LATEX users.

6 Summary

The historical forums, texhax and comp.text.tex

are still going strong. They have a good number of
daily posts and support active communities.

The newer options, Stack Exchange and LATEX
Community, offer modern conveniences such as a
system for voting on posts and answers. Both have
built a regular group of contributors and are exciting
additions to the online TEX landscape.

The Reddit LATEX subsite is like the prior two,
although with fewer posts and contributors. If a
person is already a frequent visitor to the main site
then becoming a member of this subsite is convenient.

Thus, in total, even with the limitations I put on
which forums I’d consider here, TEX users have many
options. To me, this says something very good about
the strength and adaptability of the community of
users of TEX and friends.

⋄ Jim Hefferon

Saint Michael’s College

Colchester, VT USA

jhefferon (at) smcvt dot edu

Which way to the forum?

32 TUGboat, Volume 32 (2011), No. 1

LATEX at Distributed Proofreaders

and the electronic preservation

of mathematical literature

at Project Gutenberg

Andrew Hwang

Abstract

A small but growing effort is underway at the volun-
teer web site Distributed Proofreaders (DP, at www.
pgdp.net), with the goal of creating high-quality
LATEX files of selected public domain mathematical
books for distribution by Project Gutenberg (PG).
This article introduces DP and PG, describes how
books are transcribed at DP, and gives an overview
of current LATEX coding strategies.

1 Introduction

Public domain mathematical works are a precious
resource. Electronic preservation potentially makes
historical mathematical literature available to anyone
with a computer. By contrast, printed books and
journals stored in university libraries suffer from
constraints ranging from limited access to physical
degradation.

This article describes a small but growing ini-
tiative to harness “crowdsourcing” for the purpose
of transcribing public domain mathematical works
into LATEX. The existing web-based infrastructure is
provided by Distributed Proofreaders (DP, at www.
pgdp.net). The completed books are distributed
by Project Gutenberg (PG, at www.gutenberg.org).
The LATEX work at DP and the availability of LATEX
source files for mathematical projects at PG are not
widely-known. Please share this article with inter-
ested students and colleagues, and explore the sites
yourself.

Since 2008, more than fifty LATEX books have
been produced at DP [1]. Recently-completed exam-
ples range in subject matter and sophistication from
popular accounts to textbooks to research mono-
graphs. Titles include:

• Mathematical Recreations and Essays by W. W.
Rouse Ball,

• Philosophiae Naturalis Principia Mathematica

by Sir Isaac Newton,

• A Short Account of the History of Mathematics

by W. W. Rouse Ball,

• Calculus Made Easy by Sylvanus P. Thompson.

The medium-term goals for LATEX book produc-
tion at DP are twofold: First, to recruit and build a
community of LATEX-knowledgeable volunteers; and
second, to select and prepare suitable books from
the mathematical literature of the 19th and early

20th Centuries. Further, DP can process any book
for which copyright clearance is obtainable. Authors
willing and able to grant perpetual, non-exclusive,
worldwide rights to distribute their books in elec-
tronic form on a royalty-free basis can, at no cost to
themselves, have their books converted to electronic
form and made available at PG. A self-sustaining
LATEX community at DP stands equipped to generate
a lasting scientific, cultural, historical, and educa-
tional resource.

2 Techniques of ebook production

Broadly speaking, “electronic preservation” may re-
fer to anything from scanning a book and distributing
bitmap image files (jpegs or pngs) to preparing an ac-
curate, archival-quality textual representation, such
as a well-designed LATEX source file.

Scanning a book is relatively cheap and fast. A
book of a few hundred pages can be scanned manually
and non-destructively in about an hour by one indi-
vidual without special skills or expensive equipment.
Books can also be scanned destructively in bulk at
high speed by cutting off the spine and running the
pages through a mechanical feeder. At this writing
and for the foreseeable future, the vast majority of
mathematical ebooks consist of bulk-scanned images.

Once a book has been scanned, raw text may be
extracted fairly easily with optical character recog-
nition (OCR) software. Not surprisingly, however,
mathematics is rendered poorly by OCR. As a re-
sult, raw OCR text of a mathematical book is all but
unusable for a casual reader.

At DP, OCR text is the input material. Human
volunteers carefully proofread the text against the
page scans, then add LATEX markup. The end result
is an accurate textual and semantic representation
of the book. Though producing a high-quality LATEX
source file requires on the order of an hour of skilled
work per page, the benefits are substantial. For the
typical reader, a LATEX-produced PDF file is text-
searchable, magnifiable on screen without loss of
quality, easily-hyperlinked, and yields camera-quality
printed output. To the benefit of readers without
fast Internet access, a LATEX-produced PDF file is
about one-tenth the size of a collection of page scans;
a compressed source file is smaller still. Thousands
of textual books can be fit onto a DVD, compared
with a couple hundred books made from scanned
images. A good-sized library can therefore be easily
and inexpensively distributed worldwide by ordinary
post. Finally, if the coding is well-planned, a LATEX
source file can serve as an archival representation of
the book.

Andrew Hwang

TUGboat, Volume 32 (2011), No. 1 33

2.1 Project Gutenberg and

Distributed Proofreaders

Founded by Michael Hart at the University of Illinois
in 1971, Project Gutenberg is the world’s oldest
electronic library. PG is dedicated to the storage and
distribution of public domain ebooks.

Distributed Proofreaders was founded in 2000
by Charles Franks to produce ebooks for PG. The
site source code, written in PHP, is free software
released under the GNU GPL. The project home-
page is dproofreaders.sourceforge.net. At this
writing, there are at least six independent “DP sites”
using some version of the code base. In addition
to the DP site at www.pgdp.net, there are smaller
“sister” DP sites based in Canada and Europe, which
operate under the copyright laws of their respective
regions. Due to lack of infrastructure and volun-
teers, LATEX projects are currently processed only
at www.pgdp.net, and the present article describes
only activities at this DP site.

DP currently boasts a few hundred volunteers
active on a near-daily basis, and produces a little
over half of the new ebooks in PG’s collection. At
this writing, the number of volunteers who work
on LATEX is about 1% of the “population”, and on
average about 20 new LATEX books are posted to PG

every year.
The DP site at www.pgdp.net was designed and

built entirely by volunteers, and is currently staffed
by volunteers. DP-Canada, DP-Europe, and Project
Gutenberg are also largely or entirely built and run
by volunteers.

DP process overview

An ebook starts its life at DP as raw OCR output.
The page-length pieces of OCR text and the page
scans are loaded into a database hosted at DP. Work-
ing one page at a time, volunteers at the DP web
site are presented with a scanned page image side-by-
side with the corresponding OCRed text in an editor
window. After correcting the text and adding LATEX
macros, proofreaders check the page back into the
database. Once all the pages of a book have been re-
viewed and corrected, the site software concatenates
the pages into a raw ebook file. A single volunteer
performs final polishing and verification, then sub-
mits the completed ebook to Project Gutenberg.

The actual path of a book through DP is a bit
more involved. The distributed work is separated
into “proofing” and “formatting” stages. Proofing fo-
cuses on verifying the correctness of the raw words in
the text, the general dictum being “match the scan”.
Because most DP volunteers do not speak LATEX,
the text file at the end of the proofing rounds omits

most of the mathematical markup, and is far from
being machine compilable. The formatting rounds
add the necessary markup, including mathematics,
footnotes, and sectional divisions. The output of
the formatting rounds is, with minor modifications,
machine compilable once the appropriate preamble
has been prepended, but is still far from a completed
ebook. The remaining work on a project, generically
termed “post-processing” and typically comprising
about 25–35% of the total production time, is per-
formed off-line.

2.2 Coding for longevity

Data formats are a troublesome fact of life for long-
term electronic encoding and storage of information.
Electronic documents become useless when there
is no easy, reliable way to recover the textual and
presentational information stored in a file format.

Storage in an open, non-proprietary, plain text
format guards against lossage due to lack of decoding
software. The textual content of a LATEX source file
will remain accessible as long as computers can read
plain text in a present-day encoding. However, LATEX
markup alone does not guarantee longevity; far from
it. Used as a WYSIWYG tool, even the most capable
markup language cannot capture more than a book’s
visual appearance.

For longevity, flexibility, and ease of mainte-
nance, a source file needs to separate four interrelated
but distinct aspects: (i) textual content (maintaining
readability by both people and machines), (ii) seman-
tic structure, (iii) visual presentation and layout, and
(iv) implementation in terms of typesetting software.

Carefully-planned macros meet all four require-
ments, embodying these multiple layers of structure,
both clarifying the code and simplifying the task
of future maintainers who wish to convert today’s
LATEX files into source files suitable for the typeset-
ting software of 2050 and beyond. Technical details
of DP’s current practices are surveyed in Section 4
below.

3 The structure of DP

Since the production of mathematical ebooks at DP

takes place within an infrastructure designed primar-
ily for HTML-formatted projects, it is worth describ-
ing the general organization and operation of DP in
parallel with the special requirements and practices
of the LATEX community.

DP is primarily an English-language site. For
LATEX projects, English-language books are gener-
ally preferred, though a number of books in French
and German have also been produced. The site
code currently restricts source files to the Latin-1

LATEX at Distributed Proofreaders

34 TUGboat, Volume 32 (2011), No. 1

(iso 8859-1) encoding, so a book’s language must
be representable in Latin-1. (DP-Canada and DP-
Europe can handle utf-8 with some limitations.)

There are four major phases of ebook production
at DP: content providing, proofing, formatting, and
post-processing. Each has its own time commitments,
skill set, and access requirements [2].

3.1 Content providing

A content provider (CP) conveys a collection of page
scans, possibly including OCR output, to an experi-
enced DP volunteer known as a “project manager”.
Scans may be “harvested” from a third party such as
the Internet Archive, or may be scanned by the CP. A
“copyright clearance” must be obtained from Project
Gutenberg before scans are uploaded to DP [4].

If you would like to have a specific work tran-
scribed at DP, please contact the author of this
article or post in the “LATEX Typesetters Team” in
the DP forums.

Selecting suitable books

Books should normally be selected primarily for ex-
pected popularity or value as scholarly references. A
new LATEX project should not be initiated unless a
volunteer expresses the commitment to post-process.

Given the current size of the LATEX community
at DP, the best books are in the vicinity of 250 pages
or fewer, and contain mostly uniform, straightfor-
ward typography, and only mathematics that can be
easily typeset using the AMS math environments.

Books should generally be avoided if they con-
tain extensive typography that is relatively difficult
to render in LATEX, such as long division, tabular
data with many multi-row or multi-column align-
ments, multi-column lists of exercises and answers,
typography that changes at each paragraph (as in a
geometry textbook), or large numbers of illustrations,
particularly inset diagrams.

3.2 Proofing

The “distributed” portion of ebook production at
DP has well-developed guidelines designed to allow
most pages of most books to be processed uniformly.
When questions arise of how to handle unusual con-
structs, volunteers may communicate with each other
and with the project manager via phpBB bulletin
boards. Each project has a dedicated discussion
thread. There are also dozens of forums for general
questions.

Normally, each page of a book passes through
three rounds of proofing, named P1–P3, with succes-
sive passes made by volunteers having greater expe-
rience and ability at catching errors. Once all pages

of a project have completed a round, the project is
made available in the next round. At any given time,
a project is “in” a specific round, and each page of a
project is proofed the same number of times.

In the proofing rounds, volunteers ensure that
the characters in the text file match the characters
in the page scan. In other words, the focus is on
content.

In a LATEX project, the first proofing round typi-
cally involves considerable “type-in”, or manual entry
of characters, because OCR handles mathematics so
poorly. A single page may require 10 or 15 minutes’
work, a substantial fraction of the expected total
preparation time.

3.3 Formatting

After the proofing rounds, each page goes through
two rounds of formatting, F1 and F2. The formatting
rounds capture the book’s structure: chapter and
section headings, quotations, footnotes and sidenotes,
tables, and figures. In LATEX projects, mathematics
is coded primarily by the formatters.

For a LATEX project, F1 entails a similar amount
of type-in to P1. Additionally, a “formatting coordi-
nator” (see Section 4) provides a “working preamble”
for the project. Volunteers are expected to test-
compile each page before marking it as “done”, and
to check the compiled code visually against the page
scan. This amount of work makes F1 the most time-
consuming round for LATEX, about 10–20 minutes’
work per page.

3.4 Post-processing

After a project leaves the rounds, the distributed
phase is complete. The remaining work is done by a
volunteer playing the role of “post-processor” (PPer).

A PPer downloads the formatted concatenated
text and polishes it into an ebook, regularizing and
finalizing the LATEX code. Normally, a PPer becomes
involved with a project before the project reaches the
formatting rounds and serves as the formatting coor-
dinator, ensuring the project is formatted according
to the PPer’s wishes.

PPing is complex and time-consuming, requiring
fairly extensive planning and about 10–20 minutes’
work per page for a modestly-complex book. At the
same time, PPing provides an outlet for organiza-
tional creativity and typographical artistry, and is
therefore one of the most satisfying and intellectually
challenging tasks at DP.

3.5 Access requirements

Access to various activities at DP is granted according
to time on site, number of pages processed, and/or

Andrew Hwang

TUGboat, Volume 32 (2011), No. 1 35

peer review of one’s work. Each DP site has its own
set of certification requirements. Criteria for the DP

site at www.pgdp.net are described here.
New volunteers are immediately granted access

to P1. Access to P2 is granted once a volunteer
has been registered for 21 days and has proofed at
least 300 pages. Certification to work in the third
round of proofing is granted by application only,
upon satisfactory performance under detailed human
evaluation of the volunteer’s proofing work. In order
to apply for P3, a volunteer must have been registered
at DP for at least six weeks, and have proofed at least
150 pages in P2, and formatted at least 50 pages.

F1 access is granted with access to P2. F2 certi-
fication is granted by application only, after detailed
human evaluation of the volunteer’s formatting work.
In order to apply for F2, one must have been regis-
tered at least 91 days and have formatted at least
400 pages.

Access to PP is granted pro forma by request af-
ter 400 pages have been formatted. New PPers must
submit their completed projects for detailed inspec-
tion by an experienced “PP Verifier” (PPVer). The
PPVer assigns a “grade” to the project based on its
length and difficulty, and the number of errors present
in the uploaded project. After completion of eight
consecutive projects with sufficiently high grade, a
PPer is given “direct upload” status, and may upload
projects directly to PG without supervision.

Time commitments

Volunteers at DP devote as little or as much time
to the site as they like. A page is the smallest unit
of proofing or formatting, and for a LATEX project
typically entails 5–20 minutes’ work. Many volun-
teers do just one page whenever they can, perhaps
every week or few. Others find the work mildly but
pleasantly addictive, and work an hour or more at a
sitting, several times per week.

Compared to proofing and formatting, PPing
involves an extended commitment of time and energy.
An experienced PPer may be able to complete a 150-
page book in as little as 40 hours, but longer or
more complex books can easily absorb upward of
100 hours.

Documentation and LATEX requirements

The guidelines for proofing, formatting, and post-
processing LATEX are detailed in a set of manuals [5].
These and other LATEX-related information applicable
to DP may be found in the DP wiki [3].

4 DP LATEX coding strategies

This section discusses, in some technical detail, cur-

rent practices for coding LATEX at DP. Most of these
ideas are not new, but neither do they seem widely-
articulated. These strategies need not be studied
except by volunteers who intend to post-process, but
their rationale must be consciously and continually
remembered when working at DP, where the page-at-
a-time interface naturally leads a formatter to focus
detrimentally on small-scale document structure.

4.1 Textual content

When a scanned page is OCRed, the output text
contains the same line breaks as the printed book.
Of course, the original pagination and line breaks
need not and cannot be retained in a compiled PDF

file. To the extent possible, however, line and page
breaks are retained in the LATEX source file. At DP,
hyphenated words are rejoined, but otherwise there is
no rewrapping of lines. Page separators are retained
as LATEX comments. The source file is therefore a
reasonable visual copy of the original book, facilitat-
ing the tasks of proofreaders and eventual document
maintainers.

Page and footnote numbers depend upon the
document’s pagination, and are not retained in the
compiled output file. Other than this, textual con-
tent is retained in the document body. Particularly,
LATEX’s auto-numbering is suppressed. Chapters, sec-
tions, numbered items, theorems, and equations are
tagged manually, usually with the original number-
ing or labels represented as macro arguments. These
labels have been assigned in the print version, and
are de facto part of the original text.

Structural macros, e.g. \Chapter, \Section,
\Figure, \begin{Theorem} and \end{Theorem}, or
\Proof, normally generate text similar to the macro
name, and do not generate more text than necessary.
For example, even if most proofs begin with the
phrase: “Proof : We must show that. . . ”, a \Proof

macro would generate the word “Proof” in boldface,
but would not generate the phrase “We must show
that”. The aim of LATEX coding at DP is to sepa-
rate content and typographical presentation in the
document body and preamble, respectively. To the
extent possible, the source file should be searchable
for words and phrases appearing in the original book.
Detailed knowledge of the preamble should not be
prerequisite to reading the textual content of the
book from the document body.

4.2 Semantic structure

A document body should contain few commands
explicitly specifying how a piece of text is to be type-
set. Instead, the body contains mostly mnemonic,

LATEX at Distributed Proofreaders

36 TUGboat, Volume 32 (2011), No. 1

high-level structural information: “this is a chapter”,
“this is a theorem”, “this is a figure”, and so forth.

The goal of semantic coding frequently turns
out to be non-trivial to implement. Proofers and
formatters see only one page of a book at a time.
How, without inspecting a large fraction of pages,
is a formatter to know the meaning of a boldface,
run-in heading, or of centered italics? What if only
some theorem statements are italicized; are the italics
significant, or was the typesetter merely inconsistent?

At DP, a “formatting coordinator” inspects the
entire book before the project leaves the proofing
rounds, notes the major semantic structures and any
typographical irregularities, then writes a “working
preamble” for use during the formatting rounds. Ide-
ally, the working preamble macros satisfy a number
of disparate requirements. They are easy to remem-
ber, do not require formatters to type much, give a
good approximation to the page scan when a format-
ter test-compiles a single page, and capture enough
information to match the book’s global typography
(running heads, table of contents entries, PDF book-
marks, hyperlinks, and the like) in post-processing.
For example, the text of a chapter heading might
progress through the proofing and formatting rounds
like this:

CHAPTER III: Curvature % Proofed

\CHAPTER{III: Curvature} % Formatted

\Chapter{III}{Curvature} % Uploaded

All the typographical work is centralized in macro
definitions.

As suggested by this code snippet, structural
macros in the working preamble should not normally
be standard LATEX commands such as \chapter. Sec-
tioning commands of LATEX’s document classes are
designed with different aims than than are required
at DP: They provide unwanted numbering, and are
often non-trivially integrated into the document class
using modern typographical assumptions. In a DP-
era book, for example, a new chapter might not re-set
the running head, might not start recto, and might
not even begin on a new page. However, redefining
the \chapter command accordingly also changes the
behavior of the table of contents, preface, appendices,
and index, probably in undesired ways.

Instead, it’s preferable to add an interface layer
between structural macros in the body and their
implementation in terms of LATEX commands. A
\Chapter command in the working preamble might
be implemented with the LATEX \section* com-
mand. In post-processing, only the macro definition,
not the formatters’ code, needs to be modified in
order to achieve the necessary typographical and

cross-referencing effects.
This technique beneficially centralizes the doc-

ument’s dependence on the compilation engine. If
typesetting software changes, only the macro defini-
tions need modification, not every occurrence in the
document body. Amplifications of this strategy are
used at DP to help ensure stylistic uniformity, and
to match the original typography with relative ease.

4.3 Visual presentation

DP volunteers express a wide range of opinions on
how much effort should be spent making a book
resemble the original, or whether ebooks should be
optimized for printing (two-sided layout, generous
margins) or for ebook readers (single-sided layout,
very tight margins, colored hyperlinks).

There is an obvious trade-off between attractive
layout on one hand and flexibility in accommodating
different ebook readers on the other. This trade-off
is strongly dependent on the original book; floating
tables and illustrations, or even complex mathemati-
cal displays, are difficult to lay out well unless the
text block size is known. As ebook readers with
varying screen sizes proliferate, post-processors will
encounter increasing difficulty in ensuring that fin-
ished ebooks look good on a variety of hardware.

Centralized structural coding described above
facilitates the task of creating a flexible, camera-
quality ebook.

Structural coding also sidesteps an issue that
plagues WYSIWYG authors: Ensuring visual consis-
tency. If section headings are printed in centered
boldface type and these typographical attributes are
specified explicitly for each section, the section head-
ings are all but impossible to make identical, or to
tweak and maintain.

These facts of document design are easy to see
at the level of authoring an entire document, but
are remarkably easy to forget when one is working
one page at a time in the DP formatting rounds.
The experience of years past shows that even experi-
enced LATEX coders incline toward hard-coding visual
markup under real-life circumstances.

4.4 Implementation

In addition to the previously-noted benefits of sep-
arating structure, presentation, and content, well-
planned semantic coding and encapsulating interfaces
can guard against changes to external software.

A LATEX source file obviously depends for com-
pilability on external packages and the LATEX kernel
itself. For the LATEX kernel and “core” packages,
the need for backward compatibility helps ensure
that user interfaces do not change. By contrast,

Andrew Hwang

TUGboat, Volume 32 (2011), No. 1 37

kernel and package internals are all but guaranteed
to be re-written beyond recognition on a time scale
of decades.

On occasion in years past, LATEX-knowledgeable
post-processors at DP have concluded that a book’s
typography can be matched elegantly by redefining
macros in a standard document class. In retrospect,
this strategy is ill-advised: It relies on software in-
ternals over which the post-processor has no control.

At DP, the goals of structural markup and con-
sistent visual presentation are achieved through fac-
toring of typographical “responsibilities”. A three-
level scheme, inspired by object-oriented program-
ming, has proven itself over dozens of projects.

Structural macros At the highest level, used in
the document body, are purely structural macros
needed to mark the book’s semantics: \Chapter,
\Section, \Proof, and the like.

Semantic operations In even a moderately com-
plicated book, multiple sectioning commands need to
perform identical abstract typographical operations,
such as “set the running heads”, “write an entry to
the table of contents”, “create a PDF bookmark”,
“include a graphic with a default width from a speci-
fied directory”, or “get to a recto page, clearing the
stale running head on the preceding verso page if nec-
essary”. For flexibility, visual consistency, and ease
of maintenance, these operations should be factored
out. Macros at this second level are not normally
called directly in the document body, but only in the
preamble, in the definitions of structural macros.

Depending on the book’s complexity, common
features among semantic macros may be best fac-
tored out as well. Generally, therefore, even second-
level macros might not be implemented directly in
terms of LATEX commands.

Visual implementation The commands used to
effect the visual presentation lie at the third level.
These include both abstract operations such as “set
the format and location of the page numbers” or
“select the font of the running heads”, and specific,
concrete operations such as “make this text boldface”.
These macros, at last, are implemented in terms
of standard LATEX commands, including facilities
provided by external packages.

4.5 Remarks and caveats

Abstraction and encapsulation do not always buy
flexibility, and should not be used needlessly. Stan-
dard LATEX macros, such as mathematical symbols,
AMS displayed math environments, and \footnote

commands are used routinely.

Naturally, a macro system must be designed
from the top downward, based on inspection of the
entire book. First determine the necessary semantic
structures, then find and factor out typographical
and cross-referencing operations common to two or
more structural operations, and finally implement
any common operations in terms of LATEX commands.

The three layers of abstraction above are impor-
tant mostly when one wishes to mimic the printed
appearance of the original book. When a project
warrants this level of coding, the typographical ap-
pearance can be fine-tuned easily, accurately, and
consistently.

For simpler projects, this scheme may be overly
elaborate. Further, if the default appearance of a
standard document class is acceptable, coding seman-
tically in terms of LATEX’s sectioning macros may be
entirely workable.

Using primarily structural macros in the docu-
ment body helps ensure the book will be machine-
convertible to other formats, even formats not yet in
existence, with as little fuss as possible. No one holds
the illusion that DP’s LATEX projects can be trivially
converted to other formats. However, a thoughtfully-
coded ebook should be convertible to a new format
with perhaps a few hours’ work, compared to the
dozens or hundreds of hours required to digitize the
project initially.

Floats and inset illustrations

Figures, tables, and complex displayed mathemat-
ics are simply a problem for current ebook readers,
whose screens may be only a few inches wide.

Inset illustrations are a common cause of “brit-
tle” documents, code whose compiled quality de-
pends sharply on the size of the text block. The
wrapfig package is powerful, but has relatively tight
constraints on how it can place diagrams. In partic-
ular, a single paragraph cannot contain more than
one wrapfigure environment, and mid-paragraph
placement requires manual coding.

It is currently considered acceptable at DP to
hard-code the placement of wrapped illustrations,
but arguably it is more robust (though less pleasant
typographically) to use ordinary figure environ-
ments instead.

DP-specific coding tricks

Proofers and formatters at DP commonly make in-
line notes regarding misspellings, visual obscurities,
notational inconsistencies, even factual errors. Two
simple macros, \DPnote and \DPtypo, are used to
leave notes in the source file. \DPnote is a one-
argument null macro. \DPtypo accepts two argu-

LATEX at Distributed Proofreaders

38 TUGboat, Volume 32 (2011), No. 1

ments, the original text and the putative correction.
Changes are trivially switched on (or off) by chang-
ing one line of preamble code. Future maintainers
can easily review all such changes by searching the
source file for the macro name.

DP post-processors commonly use the ifthen

package and a boolean switch to control layout suit-
able for printing or for an ebook reader. Again, the
behavior is trivially toggled by editing one line in
the source file. The scope of this technique is limited,
however. Unless a book contains few or no inset
diagrams, the respective print and screen layouts
must in practice have the same text block size.

5 The future

This is potentially an exciting era for LATEX at DP;
training guidelines have been written and a stable
work flow has emerged after an early period that
relied on the skills of specific individuals. Whether
or not DP contributes substantially to the preserva-
tion of mathematical literature in the coming years
depends on its ability to build a self-sustaining com-
munity of dedicated volunteers.

Future projects should be chosen according to
criteria ranging from scholarly or pedagogical value
to expected popularity. Content providers must can-
didly evaluate a book’s “value” and typographical
needs, and appraise whether or not the book justifies
the necessary labor to produce in LATEX.

LATEX-capable formatters are needed simply to
distribute large amounts of work among many vol-
unteers. What takes one formatter a month can be

done by ten volunteers in a few days. Encouraging
students to work at DP can both provide valuable
LATEX coding practice and serve as an introduction
to document design and planning.

For students writing a thesis, post-processing
can be an avenue to working with book-length man-
uscripts. Naturally, PPing at DP has distinctive
requirements from “ordinary” mathematical author-
ship, but many skills are transferable.

The contribution of just one proofed or format-
ted page per day from a dozen new volunteers would
substantially increase DP’s current LATEX through-
put. Thoughtful suggestions for new content will
help ensure that important mathematical works will
be available electronically for posterity.

References

[1] The catalog of LATEX projects produced at DP,
http://www.pgdp.net/wiki/List_of_LaTeX_

projects/Posted.

[2] The DP wiki, http://www.pgdp.net/wiki/
Main_Page.

[3] The DP wiki LATEX links, http://www.pgdp.
net/wiki/LaTeX_Links.

[4] The Project Gutenberg copyright clearance
page, http://www.gutenberg.org/wiki/
Gutenberg:Copyright_How-To.

[5] LATEX documentation for DP, http://mathcs.
holycross.edu/~ahwang/pgdp/dptest/index.

html.

Andrew Hwang

TUGboat, Volume 32 (2011), No. 1 39

Introducing the PT Sans and PT Serif

typefaces

Pavel Farář

Abstract

This article introduces the high quality typefaces PT

Sans and PT Serif released by ParaType. They cover
many languages written in Latin or Cyrillic scripts.

1 Introduction

I was looking for some time for a good free font
that could be used for both the Czech and Russian
languages. This is not so easy as it might seem.

Most fonts containing the Latin alphabet are
unsatisfactory for the Czech language due to a single
accent—a special type of caron. This accent must
be seen in the context of the whole word, not just
one letter. We will see more about this later.

Some fonts are usable for the Czech language
and do contain a Cyrillic alphabet, but with some-
what questionable quality.

After some time I found PT Sans. It was created
by Russian professionals and therefore the high qual-
ity of the Cyrillics was no surprise to me. Moreover
it was also very good for the Czech language and the
font was nice. PT Serif appeared later and I decided
to make these fonts available for the TEX community.

2 About the project

Both these typefaces were designed for the project
“Public Types of Russian Federation”. This project
was founded on the occasion of the anniversary of the
reform of the Russian alphabet by Peter the Great
in 1708–1710 and was financially supported by the
Federal Agency for Press and Mass Communications.
The main aim of the project is to make it possible
for the people of the Russian Federation to read and
write in their native languages.

The idea to create a free font for all people and
nationalities of the Russian Federation has existed
for a long time. And the reason was simple—the
existing fonts that most people could use had some
problems. The fonts distributed with operating sys-
tems did not cover all languages. Moreover, they were
usually done in western countries and this resulted
in unsatisfactory quality for the Cyrillic alphabet,
especially when used in print, that is, at higher reso-
lutions. There have also been some projects creating
free fonts for many languages, but they had similar
problems.

People behind this project wanted to avoid all
the shortcomings of existing fonts and so they for-
mulated several requirements for the new fonts:

• They should be free of charge, with clear licens-
ing; the usage should not be restricted.

• They should support as many languages as pos-
sible.

• They should be created by a professional, native,
type designer.

• They should be universal typefaces for a wide
range of use.

• They should be of high quality.
• They should be financially supported by the

authorities of the Russian Federation.

The fonts were created by the professional font
company ParaType by Alexandra Korolkova and
Olga Umpeleva under supervision of Vladimir Yefi-
mov. The first font that appeared was PT Sans;
one year later came PT Serif, and there are plans
for a monospaced font. The fonts are available in
TrueType format and also as web fonts.

The work on these fonts took many months and
many people helped with this project. Some insti-
tutions were asked for their opinions and needs. It
was necessary to find as much information about
the languages and their characters as possible — the
fonts needed to contain letters that the designers
had never seen before. Western designers were con-
sulted about the Latin part of the fonts. There was
much more work, and all this resulted in very nice
professional fonts.

The fonts were first released under ParaType
Free Font License, but the company was willing to
release them also under other free licenses if needed.
Therefore the fonts later appeared also under OFL.
Both these licenses are very similar. The fonts can be
modified and the modified version can be distributed,
but not under the original name without explicit
written permission from ParaType.

I have no plans to extend the fonts, I just needed
to convert them from TrueType to Type 1 for the best
usability in TEX and I wanted to keep the original
name. So I asked for this permission and I used the
fonts released under the original license.

3 Scripts of minority languages

The fonts cover all main and most minority languages
that are used in the Russian Federation and also
many languages of the neighbouring countries. Some
of these minority languages are used by very few
people and some letters used in these languages are
therefore not very common. This makes these fonts
uniquely valuable, but it brings some problems at
the same time. The problems are mostly related to
the fact that there is bad support for some letters.

The first type of problem is the standardization
of these letters. Some letters are not included in

Introducing the PT Sans and PT Serif typefaces

40 TUGboat, Volume 32 (2011), No. 1

Unicode or the Adobe Glyph List. They therefore
have non-standard Unicode values and are located
in the private area. This is true not only for Cyrillic,
but also for some Latin letters:

� � � � � � � � 	

� � � � � � � � 	
Figure 1: Some non-standard letters

The second type of problem is that some Cyril-
lic and Latin letters contained in the fonts are not
supported by the font encodings in TEX. This is
intentional for some accented Cyrillic letters because
there are too many such letters and they can be
constructed with quite satisfactory results from the
unaccented letter and accent. But this is not true
for all letters. Some uncommon Latin letters with
the acute accent give very bad results. Compare
the following letters with added acute accent to the
letters precomposed in the PT fonts (figure 1):

t́ v́ b́ t́ v́ b́
Figure 2: Composing characters with acute

There is another problem in the Cyrillic font
encodings. The encodings contain several letters
with descender or hook, but none with tail. The
letters with tail and descender are somewhat similar,
but they are used for different languages.

�����������
Figure 3: Cyrillic el with tail, descender and hook

For example, the Khanty language should use
the Cyrillic letter el with descender, while the Itelmen
language uses the same letter with tail. The encoding
T2B should cover both these languages, but contains
only the letter with descender.

There are several solutions to these problems,
but the easiest is certainly the usage of Unicode-
aware engines such as X ETEX.

Another possibility is to create new font encod-
ings covering all the missing languages — at least one
Latin and one Cyrillic. This would take some time
just for the PT fonts, and even more if it should be
usable also for other fonts. But it would probably not
be worth all the effort when there is a different and

simpler solution. The future will probably belong to
these new Unicode-aware engines.

4 About the fonts

Both typefaces have a fairly neutral design, with
some modern humanistic features. This allows usage
for many purposes and the fonts also have their own
modern character.

The fonts can be used for both screen and print.
PT Sans has four basic styles, two narrow styles
and two caption styles. You can use PT Sans for
electronic documents or the Internet, but also for
printed matter of general destination. It is also well
suitable for communication design like road signs or
information boards.

PT Sans Regular PT Sans Bold

PT Sans Italic PT Sans Bold Italic

PT Sans Narrow PT Sans Narrow Bold

PT Sans Caption PT Sans Caption Bold

Figure 4: The styles of PT Sans

PT Serif has four basic styles and two caption
styles. It is suitable for business documents and
publications in various fields, including advertising
and display typography.

PT Serif Regular PT Serif Bold
PT Serif Italic PT Serif Bold Italic
PT Serif Caption PT Serif Caption Italic

Figure 5: The styles of PT Serif

Both PT Serif and PT Sans have true italics.
This is not so common, especially for sans serif type-
faces. There are more differences between the regular
and italic shape in the Cyrillic alphabet.

a e в г д и т
a e в г д и т
Figure 6: True italics in PT Sans

a e в г д и т
a e в г д и т
Figure 7: True italics in PT Serif

There is also another thing that is not so com-
mon in many fonts: the accents for capital and small

Pavel Farář

TUGboat, Volume 32 (2011), No. 1 41

letters have different shapes. This has a good prac-
tical reason— it allows tighter linespacing. The ac-
cents for capital letters have smaller height than
those for small letters and there are therefore fewer
collisions between these accents and the descenders
of letters above them.

Šš Éé Ôô Šš Éé Ôô
Figure 8: Different shapes of accents

Although the families are harmonized and can
be used together, PT Sans is not just PT Serif with-
out serifs. For example the letter g is open in PT
Sans and closed in PT Serif. The open letterform
is suitable for display purposes, the closed form is
good for running text.

g g g g g g g g
Figure 9: Different shapes of letter g

PT Serif Caption is a font for small sizes. It
has the usual changes that improve the readability
of small sizes, but the designers did not stop there.
They also changed some details like serifs or accents.
You could overlook it for small sizes but when you
use it at bigger sizes, the differences are quite obvious
and you get a font with its own new character.

E á g д т
E á g д т

Figure 10: PT Serif and enlarged PT Serif Caption

Although the fonts were designed for the Russian
Federation, their coverage of the encoding T1 is very
good; only a few characters such as Ŋ and ŋ are
missing. Therefore the fonts can be used for most
Latin-based European languages. On the other hand,
not all Cyrillic based languages are supported and
the Cyrillic encodings in TEX are not fully covered.
Again, just few characters are missing.

The fonts have over 700 characters, but they
do not have everything. They have only ligatures fi
and fl and there is only the Cyrillic em-dash that is
somewhat shorter than the English one.

5 About the caron

I would like to say also some words about one usually
misunderstood accent. This is the special type of

caron used in small letters with ascenders. The usual
type of caron could not be in the same height as it is
in the letters without ascenders. Therefore a special
accent is used that looks more like an apostrophe
than like the usual caron.

č ř ň ď ť ľ č ř ň ď ť ľ
Figure 11: Different shapes of caron

It is important to realize that this is not an
apostrophe. It is usually more subtle and the most
important difference is that words containing this
accent should be compact, whereas apostrophe quite
clearly separates the letters on the left from those
on the right.

žluťoučká laťka
it’s apostrophe

Figure 12: Caron and apostrophe in PT Sans

ďáblova loďka
Fred’s book

Figure 13: Caron and apostrophe in PT Serif

It looks very easy and it certainly is, but never-
theless most fonts are bad in this respect — and it is
not just a TEX-related problem.

See also the Slovak language sample in sec-
tion B.1 where you can see the letter l with caron.

6 Summary

The described typefaces have some properties that
can make them a very useful part of TEX distribu-
tions:

• They are of professional quality.

• They are universal typefaces and can be used
for many purposes.

• They cover many western and central European
languages and they can hardly be surpassed
for coverage of the languages of the Russian
Federation.

The fonts are ideal for multilingual texts where
you need consistent appearance for all languages.
The coverage of many languages makes the fonts
somewhat similar to projects like TEX Gyre, but
they also contain Cyrillic letters.

Introducing the PT Sans and PT Serif typefaces

42 TUGboat, Volume 32 (2011), No. 1

A PT Sans Samples

A.1 English

All human beings are born free and equal in dignity
and rights. They are endowed with reason and con-
science and should act towards one another in a spirit
of brotherhood.

All human beings are born free and equal in dig-

nity and rights. They are endowed with reason and con-

science and should act towards one another in a spirit

of brotherhood.

A.2 Serbian

Cвa људскa бићa рaђajу сe слoбoднa и jeднaкa у

дoстojaнству и прaвимa. Oнa су oбдaрeнa рaзумoм

и свeшћу и трeбa jeдни прeмa другимa дa пoступajу

у духу брaтствa.

Cвa људскa бићa рaђajу сe слoбoднa и jeднaкa у

дoстojaнству и прaвимa. Oнa су oбдaрeнa рaзумoм

и свeшћу и трeбa jeдни прeмa другимa дa пoступajу

у духу брaтствa.

A.3 French

Tous les êtres humains naissent libres et égaux en
dignité et en droits. Ils sont doués de raison et de

conscience et doivent agir les uns envers les autres

dans un esprit de fraternité.

A.4 Spanish

Todos los seres humanos nacen libres e iguales en

dignidad y derechos y, dotados como están de razón

y conciencia, deben comportarse fraternalmente los

unos con los otros.

A.5 Czech

Všichni lidé se rodí svobodní a sobě rovní co do dů-

stojnosti a práv. Jsou nadáni rozumem a svědomím a

mají spolu jednat v duchu bratrství.

A.6 Ukrainian

Всi люди народжуються вiльними i рiвними у своїй

гiдностi та правах. Вони надiленi розумом i совiстю

i повиннi дiяти у вiдношеннi один до одного в дусi

братерства.

B PT Serif Samples

B.1 Slovak

Všetci ľudia sa rodia slobodní a sebe rovní, čo sa tý-
ka ich dôstojnosti a práv. Sú obdarení rozumom a
svedomím a majú navzájom jednať v bratskom du-
chu.

Všetci ľudia sa rodia slobodní a sebe rovní, čo sa
týka ich dôstojnosti a práv. Sú obdarení rozumom a
svedomím a majú navzájom jednať v bratskom duchu.

B.2 Russian

Все люди рождаются свободными и равными в
своем достоинстве и правах. Они наделены ра-
зумом и совестью и должны поступать в отно-
шении друг друга в духе братства.

Все люди рождаются свободными и равными
в своем достоинстве и правах. Они наделены ра-
зумом и совестью и должны поступать в отноше-
нии друг друга в духе братства.

B.3 German

Alle Menschen sind frei und gleich an Würde und
Rechten geboren. Sie sind mit Vernunft und Gewis-
sen begabt und sollen einander im Geist der Brü-
derlichkeit begegnen.

B.4 Danish

Alle mennesker er født frie og lige i værdighed og
rettigheder. De er udstyret med fornuft og samvit-
tighed, og de bør handle mod hverandre i en bro-
derskabets ånd.

B.5 Polish

Wszyscy ludzie rodzą się wolni i równi pod wzglę-
dem swej godności i swych praw. Są oni obdarzeni
rozumem i sumieniem i powinni postępowaćwobec
innych w duchu braterstwa.

B.6 Hungarian

Minden emberi lény szabadon születik és egyenlő
méltósága és joga van. Az emberek, ésszel és lelki-
ismerettel bírván, egymással szemben testvéri szel-
lemben kell hogy viseltessenek.

B.7 Abkhaz

Дарбанзаалак ауаҩы дшоуп ихы дақәиҭны. Ауаа
зегь зинлеи патулеи еиҟароуп. Урҭ ирымоуп
ахшыҩи аламыси, дара дарагь аешьеи аешьеи
реиҧш еизыҟазароуп.

References

[1] Omniglot. http://www.omniglot.com.

[2] ParaType. English: http://www.paratype.com;
Russian: http://www.paratype.ru.

[3] Unicode Consortium. http://unicode.org.

⋄ Pavel Farář

Prague, Czech Republic

pavel dot farar (at) centrum dot cz

Pavel Farář

TUGboat, Volume 32 (2011), No. 1 43

Handling math: A retrospective

Hans Hagen

In this article I will reflect on how the plain TEX
approach to math fonts influenced the way math has
been dealt with in ConTEXt MkII and why (and how)
we diverge from it in MkIV, now that LuaTEX and
OpenType math have come around.

When you start using TEX, you cannot help
but notice that math plays an important role in this
system. As soon as you dive into the code you will
see that there is a concept of families that is closely
related to math typesetting. A family is a set of
three sizes: text, script and scriptscript.

a
b
c

=
d

e

The smaller sizes are used in superscripts and
subscripts and in more complex formulas where in-
formation is put on top of each other.

It is no secret that the latest math font tech-
nology is not driven by the TEX community but by
Microsoft. They have taken a good look at TEX and
extended the OpenType font model with the informa-
tion that is needed to do things similar to TEX and
beyond. It is a firm proof of TEX’s abilities that after
some 30 years it is still seen as the benchmark for
math typesetting. One can only speculate what Don
Knuth would have come up with if today’s desktop
hardware and printing technology had been available
in those days.

As a reference implementation of a font, Mi-
crosoft provides Cambria Math. In the specification
the three sizes are there too: a font can provide
specifically designed script and scriptscript variants
for text glyphs where that is relevant. Control is
exercised with the ssty feature.

Another inheritance from TEX and its fonts is
the fact that larger symbols can be made out of
snippets and these snippets are available as glyphs
in the font, so no special additional (extension) fonts
are needed to get for instance really large parentheses.
The information of when to move up one step in size
(given that there is a larger shape available) or when
and how to construct larger symbols out of snippets
is there as well. Placement of accents is made easy
by information in the font and there are a whole lot
of parameters that control the typesetting process.
Of course you still need machinery comparable to
TEX’s math subsystem but Microsoft Word has such
capabilities.

I’m not going to discuss the nasty details of
providing math support in TEX, but rather pay some
attention to an (at least for me) interesting side effect

of TEX’s math machinery. There are excellent arti-
cles by Bogus law Jackowski and Ulrik Vieth about
how TEX constructs math and of course Knuth’s
publications are the ultimate source of information
as well.

Even if you only glance at the implementation
of traditional TEX font support, the previously men-
tioned families are quite evident. You can have 16 of
them but 4 already have a special role: the upright
roman font, math italic, math symbol and math ex-
tension. These give us access to some 1000 glyphs
in theory, but when TEX showed up it was mostly a
7-bit engine and input of text was often also 7-bit
based, so in practice many fewer shapes are available,
and subtracting the snippets that make up the large
symbols brings down the number again.

Now, say that in a formula you want to have a
bold character. This character is definitely not in
the 4 mentioned families. Instead you enable another
one, one that is linked to a bold font. And, of course
there is also a family for bold italic, slanted, bold
slanted, monospaced, maybe smallcaps, sans serif,
etc. To complicate things even more, there are quite
a few symbols that are not covered in the foursome
so we need another 2 or 3 families just for those.
And yes, bold math symbols will demand even more
families.

a + b + c = d + e + F

Try to imagine what this means for implement-
ing a font system. When (in for instance ConTEXt)
you choose a specific body font at a certain size,
you not only switch the regular text fonts, you also
initialize math. When dealing with text and a font
switch there, it is no big deal to delay font loading
and initialization till you really need the font. But
for math it is different. In order to set up the math
subsystem, the families need to be known and set
up and as each one can have three members you
can imagine that you easily initialize some 30 to 40
fonts. And, when you use several math setups in a
document, switching between them involves at least
some re-initialization of those families.

When Taco Hoekwater and I were discussing
LuaTEX and especially what was needed for math, it
was sort of natural to extend the number of families
to 256. After all, years of traditional usage had
demonstrated that it was pretty hard to come up
with math font support where you could freely mix
a whole regular and a whole bold set of characters
simply because you ran out of families. This is a
side effect of math processing happening in several
passes: you can change a family definition within
a formula, but as TEX remembers only the family

Handling math: A retrospective

44 TUGboat, Volume 32 (2011), No. 1

number, a later definition overloads a previous one.
The previous example in a traditional TEX approach
can result in:

a + \fam7 b + \fam8 c = \fam9 d + \fam10 e

+ \fam11 F

Here the a comes from the family that reflects
math italic (most likely family 1) and + and = can
come from whatever family is told to provide them
(this is driven by their math code properties). As
family numbers are stored in the identification pass,
and in the typesetting pass resolve to real fonts you
can imagine that overloading a family in the middle
of a definition is not an option: it’s the number that
gets stored and not what it is bound to. As it is
unlikely that we actually use more than 16 families
we could have come up with a pool approach where
families are initialized on demand but that does not
work too well with grouping (or at least it complicates
matters).

So, when I started thinking of rewriting the
math font support for ConTEXt MkIV, I still had this
nicely increased upper limit in mind, if only because
I was still thinking of support for the traditional
TEX fonts. However, I soon realized that it made
no sense at all to stick to that approach: Open-
Type math was on its way and in the meantime we
had started the math font project. But given that
this would easily take some five years to finish, an
intermediate solution was needed. As we can make
virtual fonts in LuaTEX, I decided to go that route
and for several years already it has worked quite
well. For the moment the traditional TEX math
fonts (Computer Modern, px, tx, Lucida, etc) are
virtualized into a pseudo-OpenType font that follows
the Unicode math standard. So instead of needing
more families, in ConTEXt we could do with less.
In fact, we can do with only two: one for regular
and one for bold, although, thinking of it, there is
nothing that prevents us from mixing different font
designs (or preferences) in one formula but even then
a mere four families would still be fine.

To summarize this, in ConTEXt MkIV the previ-
ous example now becomes:

U+1D44E + U+1D41B + 0x1D484 = U+1D68D + U+1D5BE

+ U+02131

For a long time I have been puzzled by the
fact that one needs so many fonts for a traditional
setup. It was only after implementing the ConTEXt
MkIV math subsystem that I realized that all of
this was only needed in order to support alphabets,
i.e. just a small subset of a font. In Unicode we
have quite a few math alphabets and in ConTEXt we
have ways to map a regular keyed-in (say) ‘a’ onto

a bold or monospaced one. When writing that code
I hadn’t even linked the Unicode math alphabets
to the family approach for traditional TEX. Not
being a mathematician myself I had no real concept
of systematic usage of alternative alphabets (apart
from the occasional different shape for an occasional
physics entity).

Just to give an idea of what Unicode defines:
there are alphabets in regular (upright), bold, italic,
bold italic, script, bold script, fraktur, bold fraktur,
double-struck, sans-serif, sans-serif bold, sans-serif
italic, sans-serif bold italic and monospace. These are
regular alphabets with upper- and lowercase charac-
ters complemented by digits and occasionally Greek.

It was a few years later (somewhere near the end
of 2010) that I realized that a lot of the complications
in (and load on) a traditional font system were simply
due to the fact that in order to get one bold character,
a whole font had to be loaded in order for families to
express themselves. And that in order to have several
fonts being rendered, one needed lots of initialization
for just a few cases. Instead of wasting one font
and family for an alphabet, one could as well have
combined 9 (upper and lowercase) alphabets into one
font and use an offset to access them (in practice we
have to handle the digits too). Of course that would
have meant extending the TEX math machinery with
some offset or alternative to some extensive mathcode
juggling but that also has some overhead.

If you look at the plain TEX definitions for the
family related matters, you can learn a few things.
First of all, there are the regular four families defined:

\textfont0=\tenrm \scriptfont0=\sevenrm

\scriptscriptfont0=\fiverm

\textfont1=\teni \scriptfont1=\seveni

\scriptscriptfont1=\fivei

\textfont2=\tensy \scriptfont2=\sevensy

\scriptscriptfont2=\fivesy

\textfont3=\tenex \scriptfont3=\tenex

\scriptscriptfont3=\tenex

Each family has three members. There are some
related definitions as well:

\def\rm {\fam0\tenrm}

\def\mit {\fam1}

\def\oldstyle{\fam1\teni}

\def\cal {\fam2}

So, with \rm you not only switch to a family (in
math mode) but you also enable a font. The same
is true for \oldstyle and this actually brings us to
another interesting side effect. The fact that oldstyle
numerals come from a math font has implications
for the way this rendering is supported in macro
packages. As naturally all development started when
TEX came around, package design decisions were

Hans Hagen

TUGboat, Volume 32 (2011), No. 1 45

driven by the basic fact that there was only one math
font available. And, as a consequence most users
used the Computer Modern fonts and therefore there
was never a real problem in getting those oldstyle
characters in your document.

However, oldstyle figures are a property of a font
design (like table digits) and as such not specially
related to math. And, why should one tag each
number then? Of course it’s good practice to tag
extensively (and tagging makes switching fonts easy)
but to tag each number is somewhat over the top.
When more fonts (usable in TEX) became available
it became more natural to use a proper oldstyle font
for text and the \oldstyle more definitely ended
up as a math command. This was not always easy
to understand for users who primarily used TEX for
anything but math.

Another interesting aspect is that with Open-
Type fonts oldstyle figures are again an optional
feature, but now at a different level. There are a
few more such traditional issues: bullets often come
from a math font as well (which works out ok as
they have nice, not so tiny bullets). But the same
is true for triangles, squares, small circles and other
symbols. And, to make things worse, some come
from the regular TEX math fonts, and others from
additional ones, like the American Mathematical
Society symbols. Again, OpenType and Unicode will
change this as now these symbols are quite likely to
be found in fonts as they have a larger repertoire of
shapes.

From the perspective of going from MkII to
MkIV it boils down to changing old mechanisms that
need to handle all this (dependent on the availability
of fonts) to cleaner setups. Of course, as fonts are
never completely consistent, or complete for that
matter, and features can be implemented incorrectly
or incompletely we still end up with issues, but (at
least in ConTEXt) dealing with that has been moved
to runtime manipulation of the fonts themselves (as
part of the so-called font goodies).

Back to the plain definitions, we now arrive at
some new families:

\newfam\itfam \def\it{\fam\itfam\tenit}

\newfam\slfam \def\sl{\fam\slfam\tensl}

\newfam\bffam \def\bf{\fam\bffam\tenbf}

\newfam\ttfam \def\tt{\fam\ttfam\tentt}

The plain TEX format was never meant as a
generic solution but instead was an example of a
macro set and serves as a basis for styles used by
Don Knuth for his books. Nevertheless, in spite of
the fact that TEX was made to be extended, pretty
soon it became frozen and the macros and font defini-
tions that came with it became the benchmark. This

might be the reason why Unicode now has a mono-
spaced alphabet. Once you’ve added monospaced
you might as well add more alphabets as for sure in
some countries they have their own preferences.1

As with \rm, the related commands are meant
to be used in text as well. More interesting is to see
what follows now:

\textfont \itfam=\tenit

\textfont \slfam=\tensl

\textfont \bffam=\tenbf

\scriptfont \bffam=\sevenbf

\scriptscriptfont\bffam=\fivebf

\textfont \ttfam=\tentt

Only the bold definition has all members. This
means that (regular) italic, slanted, and monospaced
are not actually that much math at all. You will
probably only see them in text inside a math formula.
From this you can deduce that contrary to what I
said before, these variants were not really meant
for alphabets, but for text in which case we need
complete fonts. So why do I still conclude that we
don’t need all these families? In practice text inside
math is not always done this way but with a special
set of text commands. This is a consequence of the
fact that when we add text, we want to be able to
do so in each language with even language-specific
properties supported. And, although a family switch
like the above might do well for English, as soon
as you want Polish (extended Latin), Cyrillic or
Greek you definitely need more than a family switch,
if only because encodings come into play. In that
respect it is interesting that we do have a family for
monospaced, but that \Im and \Re have symbolic
names, although a more extensive setup can have a
blackboard family switch.

By the way, the fact that TEX came with italic
alongside slanted also has some implications. Nor-
mally a font design has either italic or something
slanted (then called oblique). But, Computer Mod-
ern came with both, which is no surprise as there is a
metadesign behind it. And therefore macro packages
provide ways to deal with those variants alongside.
I wonder what would have happened if this had not
been the case. Nowadays there is always this regular,
italic (or oblique), bold and bold italic set to deal
with, and the whole set can become lighter or bolder.

In ConTEXt MkII, however, the set is larger
as we also have slanted and bold slanted and even

1 At the Dante 2011 meeting we had interesting discussions

during dinner about the advantages of using Sütterlinschrift

for vector algebra and the possibilities for providing it in the

upcoming TEX Gyre math fonts.

Handling math: A retrospective

46 TUGboat, Volume 32 (2011), No. 1

smallcaps, so most definition sets have 7 definitions
instead of 4. By the way, smallcaps is also special. if
Computer Modern had had smallcaps for all variants,
support for them in ConTEXt undoubtedly would
have been kept out of the mentioned 7 but always
been a new typeface definition (i.e. another fontclass
for insiders). So, when something would have to be
smallcaps, one would simply switch the whole lot to
smallcaps (bold smallcaps, etc.). Of course this is
what normally happens, at least in my setups, but
nevertheless one can still find traces of this original
Computer Modern-driven approach. And now we are
at it: the whole font system still has the ability to
use design sizes and combine different ones in sets, if
only because in Computer Modern you don’t have all
sizes. The above definitions use ten, seven and five,
but for instance for an eleven point set up you need
to creatively choose the proper originals and scale
them to the right family size. Nowadays only a few
fonts ship with multiple design sizes, and although
some can be compensated with clever hinting it is a
pity that we can apply this mechanism only to the
traditional TEX fonts.

Concerning the slanting we can remark that
TEXies are so fond of this that they even extended
the TEX engines to support slanting in the core ma-
chinery (or more precisely in the backend while the
frontend then uses adapted metrics). So, slanting is
available for all fonts.

This brings me to another complication in writ-
ing a math font subsystem: bold. During the de-
velopment of ConTEXt MkII I was puzzled by the
fact that user demands with respect to bold were
so inconsistent. This is again related to the way a
somewhat simple setup looks: explicitly switching
to bold characters or symbols using a \bf (alike)
switch. This works quite well in most cases, but
what if you use math in a section title? Then the
whole lot should be in bold and an embedded bold
symbol should be heavy (i.e. more bold than bold).
As a consequence (and due to limited availability of
complete bold math fonts) in MkII there are several
bold strategies implemented.

However, in a Unicode universe things become
surprisingly easy as Unicode defines those symbols
that have bold companions (whatever you want to

call them, mostly math alphanumerics) so a proper
math font has them already. This limited subset is
often available in a font collection and font designers
can stick to that subset. So, eventually we get one
regular font (with some bold glyphs according to the
Unicode specification) and a bold companion that
has heavy variants for those regular bold shapes.

The simple fact that Unicode distinguishes reg-
ular and bold simplifies an implementation as it’s
easier to take that as a starting point than users who
for all their goodwill see only their small domain of
boldness.

It might sound like Unicode solves all our prob-
lems but this is not entirely true. For instance, the
Unicode principle that no character should be there
more than once has resulted in holes in the Unicode
alphabets, especially Greek, blackboard, fraktur and
script. As exceptions were made for non-math I see
no reason why the few math characters that now
put holes in an alphabet could not have been there.
As with more standards, following some principles
too strictly eventually results in all applications that
follow the standard having to implement the same
ugly exceptions explicitly. As some standards aim
for longevity I wonder how many programming hours
will be wasted this way.

This brings me to the conclusion that in practice
16 families are more than enough in a Unicode-aware
TEX engine especially when you consider that for a
specific document one can define a nice set of families,
just as in plain TEX. It’s simply the fact that we
want to make a macro package that does it all and
therefore has to provide all possible math demands
into one mechanism that complicates life. And the
fact that Unicode clearly demonstrates that we’re
only talking about alphabets has brought (at least)
ConTEXt back to its basics: a relatively simple, few-
family approach combined with a dedicated alphabet
selection system. Of course eventually users may
come up with new demands and we might again end
up with a mess. After all, it’s the fact that TEX gives
us control that makes it so much fun.

⋄ Hans Hagen

http://pragma-ade.com

Hans Hagen

TUGboat, Volume 32 fl2011ffi, No. 1 47

e rules for long s

Andrew West

Abstract

is article describes the rules for the long s fl ffi in Eng-
lish, French, Italian, and Spanish. It appeared rst on-
line in the BabelStone blog in 2006, with subsequent up-
dates.

e online PDF contains links to facsimile scans of
many of the cited books, many of which are accessible
via Google Book.

1 Introduction

In a post in my blog about the grand old trade of basket-
making I included several extracts from some 18th cen-
tury books, in which I preserved the long s fl ffi as used
in the original printed texts. is got me thinking about
when to use long s and when not. Like most readers
of this blog I realised that long s was used initially and
medially, whereas short s was used nally flmirroring
Greek practice with regards to nal lowercase sigma

and non- nal lowercase sigma ffi, although there were,
I thought, some exceptions. But what exactly were the
rules?

Turning rst to my 1785 copy of omas Dyche s
bestselling A Guide to the English Tongue fl rst pub-
lished in 1709, or 1707 according to some, and reprinted
innumerable times over the centuryffi for some help from
a contemporary grammarian, I was confounded by his
advice that:

e long mu never be u ed at the End of a Word ,

nor immediately a er the short s .

Well, I already knew that long s was never used at
the end of a word, but why warn against using long s

a er short s when short s should only occur at the end
of a word?

e 1756 edition of Nathan Bailey s An Universal

Etymological English Dictionary also gives some advice
on the use of long s flalthough this advice does not seem
to appear in the 1737 or 1753 editionsffi:

A long mu never be placed at the end of a word ,

asmaintain , nor a ort s in the middle of a word , as

conspires .

Similarly vague advice is given in James Barclay s
A Complete and Universal English Dictionary flLondon,
1792ffi:

All the mall Con onants retain their form , the long

and the ort s only excepted . e former is for the

mo part made u e of at the beginning , and in the

middle of words ; and the la only at their termina-

tions .

Editor s note: Werner Lemberg transformed the original blog post
flwith minor modi cationsffi into this paper.

Figure 1: e Blind Beggar of Bethnal Green in Robert

Dodsley s Tri es flLondon, 1745ffi. In roman typefaces f

and are very similar but are easily distinguished by the

horizontal bar, which goes all the way through the vertical

stem of the le er but only extends to the le of the

vertical stem of the long s; and in italic typefaces long s

is even more clearly distinguished from the le er as it

usually has no horizontal bar at all.

I felt sure that John Smith s compendious Printer s
Grammar flLondon, 1787ffi would enumerate the rules for
the le er s , but I was disappointed to nd that although
it gives the rules for R Rotunda, the rules for long s are
not given, save for one obscure rule flsee Short st lig-
ature a er g belowffi which does not seem to be much
used in practice.

So, all in all, none of these contemporary sources
are much help with the ner details of how to use
long s. e Internet turns up a couple of useful docu-
ments: Instructions for the proper se ing of Blacklet-

ter Typefaces discusses the rules for German Fraktur
typese ing; whilst 18th Century Ligatures and Fonts

by David Manthey speci cally discusses 18th century
English typographic practice. According to Manthey
long s is not used at the end of the word or before an
apostrophe, before or a er the le er , or before the
le ers b and k , although he notes that some books
do use a long s before the le er k . is is clearly not
the entire story, because long s does commonly occur
before both b and k in 18th century books on my
bookshelves, including, for example, omas Dyche s
Guide to the English Tongue.

To get the bo om of this I have enlisted the help of
Google Book Search flsee Note on methodology at the
end of this articleffi to empirically check what the usage
rules for long s and short s were in printed books from
the 16th through 18th centuries. It transpires that the

e rules for long s

48 TUGboat, Volume 32 fl2011ffi, No. 1

rules are quite complicated, with various exceptions,
and vary subtly from country to country as well as over
time. I have summarised below my current understand-
ing of the rules as used in roman and italic typography
in various di erent countries, and as I do more research
I will expand the rules to cover other countries. At
present I do not cover the rules for the use of long s in
bla le er or fraktur typography, but plan to do so in
the future.

2 Rules for long s in English

e following rules for the use of long s and short s are
applicable to books in English, Welsh and other lan-
guages published in England, Wales, Scotland, Ireland
and other English-speaking countries during the 17th
and 18th centuries.

short s is used at the end of a word fle.g. his, com-

plains, succe sffi

short s is used before an apostrophe fle.g. clos d,
us dffi

short s is used before the le er fle.g. atisfaction,
misfortune, transfu e, trans x, transfer, succe sfulffi

short s is used a er the le er fle.g. o setffi, al-
though not if the word is hyphenated fle.g. o - etffi

short s is used before the le er b in books pub-
lished during the 17th century and the rst half
of the 18th century fle.g. husband, Sha sburyffi, but
long s is used in books published during the second
half of the 18th century fle.g. hu band, Sha buryffi

short s is used before the le er k in books pub-
lished during the 17th century and the rst half of
the 18th century fle.g. skin, ask, risk, maskedffi, but
long s is used in books published during the second
half of the 18th century fle.g. kin, a k, ri k,ma kedffi

Compound words with the rst element ending in
double s and the second element beginning with s

are normally and correctly wri en with a divid-
ing hyphen fle.g. Cro s- it ,¹ Cro s- a ²ffi, but very
occasionally may be wri en as a single word, in
which case themiddle le er s is wri en short fle.g.
Cro s it ,³ cro s a ffi.

long s is used initially and medially except for the
exceptions noted above fle.g. ong, u e, pre s, ub i-

tuteffi

long s is used before a hyphen at a line break fle.g.
nece - ary, plea -edffi, even when it would normally

¹ A Critical Enquiry into the Present State of Surgery fl1754ffi,
p. 286.

² Epitome of the Art of Navigation fl1770ffi, p. 262.
³ e Spectator, No. 377 fl13th May 1712ffi, in Harrison s British

Classicks fl1786ffi, p. 760.
e new and complete dictionary of the English language fl1795ffi,

entry for Jacobsta .

be a short s fle.g. Sha -bury and hu -band in a
book where Sha sbury and husband are normalffi,
although exceptions do occur fle.g. Mans- eldffi

short s is used before a hyphen in compoundwords
with the rst element ending in the le er s fle.g.
cro s-piece, cro s-examination, Pre s-work, bird s-

ne ffi

long s is maintained in abbreviations such as . for
ub antive, and Gene . for Gene is flthis rule means
that it is practically impossible to implement fully
correct automatic contextual substitution of long s
at the font levelffi

Usage in 16th and early 17th century books may
be somewhat di erent see Rules for long s in early
printed books below for details.

3 Rules for long s in Fren

e rules for the use of long s in books published in
France and other French-speaking countries during the
17th and 18th centuries aremuch the same as those used
in English typography, but with some signi cant di er-
ences, notably that short s was used before the le er h .

short s is used at the end of aword fle.g. ils, hommesffi

short s is used before an apostrophe fle.g. s il and
s e ffi

short s is used before the le er fle.g. atisfaction,
toutesfoisffi

short s is used before the le er b fle.g. presbyterffi

short s is used before the le er h fle.g. déshabiller,
déshonnêteffi

long s is used initially and medially except for the
exceptions noted above fle.g. ans, e , ub ituerffi

long s is normally used before a hyphen at a line
break fle.g. le -quels, pa - er, dé -honneurffi, although
I have seen some books where short s is used fle.g.
les-quels, pas- er, dés-honneurffi

short s is normally used before a hyphen in com-
pound words fle.g. tres-bienffi, although I have seen
long s used in 16th century French books fle.g. tre -
bienffi

long s is maintained in abbreviations such asGene .
for Gene is

4 Rules for long s in Italian

e rules for the use of long s in books published in Italy
seem to be basically the same as those used in French
typography:

short s is used at the end of a word

short s is used before an apostrophe fle.g. s infor-
ma ero, fu s egliffi

short s is used before an accented vowel fle.g. pa sò,
ricusò, sù, sì, cosìffi, but not an unaccented le er fle.g.
pa o, iffi

Andrew West

TUGboat, Volume 32 fl2011ffi, No. 1 49

short s is used before the le er fle.g. oddisfare,
oddisfazione, tras gurazione, sfogo, sfarzoffi

short s is used before the le er b fle.g. sbaglio,
sbagliatoffi

long s is used initially and medially except for the
exceptions noted above

long s is used before a hyphen in both hyphenated
words and at a line break fle.g. re a - eroffi

e most interesting peculiarity of Italian practice
is the use of short s before an accented vowel, which is
a typographic feature that I have not noticed in French
books.

In some Italian books I have occasionally seen
double s before the le er i wri en as long s followed
by short s fle.g. utili sima, but on the same page as
compre ioni, pro ima, etc.ffi. And in some 16th century
Italian books double s before the le er i may be wri en
as a short s followed by a long s. See Rules for long s in
early printed books below for details.

5 Rules for long s in Spanish

It has been a li le more di cult to ascertain the rules
for long s in books published in Spain as Google Book
Search does not return many 18th century Spanish
books fland even fewer Portuguese booksffi, but I have
tried to determine the basic rules from the following
three books :

Estragos de la Luxuria flBarcelona, 1736ffi, see g-
ure 2

Autos sacramentales alegoricos, y historiales del

Phenix de los Poetas el Espanol flMadrid, 1760ffi

Memorias de las reynas catholicas flMadrid, 1770ffi

From these three books it appears that the rules for
Spanish books are similar to those for French books, but
with the important di erence that flin both roman and
italic typeffi the sequence s flnot a ligatureffi is used before
the le er i , whereas the sequence is used before all
other le ers fle.g. illu ri simos but confe oresffi:

In summary, the rules for Spanish books are:

short s is used at the end of a word

short s may be used before an accented vowel fle.g.
sí, sì, sé, sè, Apo asìa, Apo asía, abrasò, pa sòffi, but
not an unaccented le er fle.g. i, e, pa offi

short s is used before the le er fle.g. transfor-
mando e, trans gura, atisfaccionffi

short s is used before the le er b fle.g. presbyteroffi

short s is used before the le er h fle.g. deshone os,
deshone idadffi

short s is used a er a long s and before the let-
ter i fle.g. illu ri simo, pa sion, confe sion, po sibleffi,

Opere di Ambrogio Bertrandi fl1787ffi, p. 77.

Figure 2: Estragos de la Luxuria flBarcelona, 1736ffi.

but double long s is used before any le er other
than the le er i fle.g. exce o, comi ario, nece aria,
pa affi

long s is used initially and medially except for the
exceptions noted above

long s is used before a hyphen in both hyphenated
words and at a line break, even when it would nor-
mally be a short s fle.g. tran -formados, copio i - imoffi

As with Italian books, Spanish books usually use
a short s before an accented vowel, although from the
three books that I have examined closely it is not quite
clear what the exact rule is. For example, Memorias

de las reynas catholicas consistently uses short s before
an accented le er i fle.g. sí ffi, but consistently uses a
long s before an accented le er o fle.g. pa ó, ca ó, pre-
ci ó, Ca óleffi; whereas Estragos de la Luxuria uses short s
before both an accented le er i fle.g. sìffi and an accented
le er o fle.g. abrasò, pa sòffi.

6 Rules for long s in other languages

Other languages may use rules di erent from those
used in English and French typography. For example,
my only early Dutch book, Simon Stevin s Het Bur-

gerlyk Leven [Vita Politica] flAmsterdam, 1684ffi follows
the German practice of using short smedially at the end
of the elements of a compound word fle.g. misver ants,
Re tsgeleerden, wiscon ige, Straatsburg, Godsdien en,
misgaan, boosheyt, dusdonig and misbruykffi.

7 Rules for long s in early printed books

In 16th century and early 17th century books printed
in roman or italic typefaces flas opposed to bla le erffi
the rules for the use of long s may be slightly di erent
to those enumerated above. For example, in italic text
it was common to use a ligature of long s and short s

flßffi for double-s, whereas a double long s ligature was
normally used in roman text. is can be seen in g-
ure 3 which shows an extract from an English pamphlet
published in 1586, which has the words witneße, aßur-
ing, thankfulneße, goodneße and bleßings. But in that
part of the same pamphlet that is set in roman typeface

e rules for long s

50 TUGboat, Volume 32 fl2011ffi, No. 1

Figure 3: e True Copie of a Le er from the Qveenes

Maiestie flLondon, 1586ffi, p. A.ii.

Figure 4: e True Copie of a Le er from the Qveenes

Maiestie flLondon, 1586ffi, p. A.iv.

the words ble ngs and goodne e are wri en with a
double long s ligature, as shown in gure 4.

Figure 5 shows a French book published in 1615
which has Confeßions in italic type, but confe on in
roman type.

is ligature is still occasionally met with in a
word- nal position in italic text late into the 17th cen-
tury, for example in this page from Hooke s Micro-

graphia fl gure 6ffi, which has this example of the word
Addreß, although unligatured long s and short s are used
elsewhere at the end of a word fle.g. malne sffi as well
as occasionally in the middle of a word fle.g. a si ed,
alongside a i ancesffi in italic text.

Another peculiarity that is seen in some 16th cen-
tury Italian books is the use of short s before long s me-
dially before the le er i , but double long s before any
other le er; see gure 7.

Figure 5: Advis de ce qu il y a à réformer en la

Compagnie des Jésuites fl1615ffi, p. 13.

Figure 6: Micrographia flLondon, 1665ffi, p. 13.

Figure 7: I Discorsi di M. Pietro And. Ma hioli flVenice,

1563ffi. Note the words amplis ima, utilis ima, longhis imi,

diligentis imi, etc., but potenti i-mi at the end of the second

to last line; cf. nece aria, Pra agora, trapa o.

Andrew West

TUGboat, Volume 32 fl2011ffi, No. 1 51

Figure 8: Title page to Metoposcopia flLeipzig, 1661ffi. Note

the words completis ima, de ideratis ima, arti cio is imè,

jucundis ima, utilis ima.

is typographic feature can also be seen in some
later books flas shown in gure 8ffi, though I am not yet
sure how widespread it was.

8 Short s before and a er f

In 17th and 18th century English and French typo-
graphy the main exceptions to the rule that short s is
not used at the start of a word or in the middle of a
word is that short s is used next to a le er instead of
the expected long s flso misfortune and o set, but never
mi fortune or o etffi. e reason for this must be related
to the fact that the two le ers and f are extremely
similar, although as the combination of the two le ers
does not cause any more confusion to the reader than
any other combination of long s and another le er flthe
combinations and l are far more confusableffi it does
not really explain why long s should be avoided before
or a er a le er , other than perhaps for aesthetic
reasons. In all probability the rule is inherited from
bla le er usage, as is evidenced by the 1604 pamphlet
shown in gure 9 about a mermaid that was sighted in
Wales, which has atisfaction.

Whatever the reasons, this is an absolute rule, and
Google Book Search only nds a handful of exceptions
from the 17th and 18th century, most probably typo-
graphical errors flor in the case of the Swedish-English
dictionary due to unfamiliarity with English rulesffi:

mi fortune in Anglorum Speculum flLondon, 1684ffi
[but misfortune elsewhere]
ati e and ati ed in e Decisions of the Lords

of Council and Session flEdinburgh, 1698ffi
mi fortune in e annals of the Church flLondon,
1712ffi [but misfortune elsewhere]
mi fortune inAnHistorical Essay Upon the Loyalty
of Presbyterians fl1713ffi [but misfortune elsewhere]
ati faction in An Enquiry Into the Time of the

Coming of the Messiah flLondon, 1751ffi [but on the
same page as atis ed]
mi fortune in Svenskt och engelskt lexicon fl1788ffi

Figure 9: 1604 pamphlet about a mermaid.

Similarly, Google Book Search nds 628 French
books published between 1700 and 1799 with atisfac-

tion but only two books with ati faction.

9 Short s before b and k

As a general rule English books published in the 17th
century and the rst half of the 18th century have a
short s before the le ers b and k flso husband and askffi,
whereas books published during the second half of the
18th century have a long s flso hu band and a kffi. is is
not a hard and fast rule, as it is possible to nd examples
of books from the 17th and early 18th century that show
hu band and a k, but they are few and far between. For
example, whereas Google Book Search nds 138 books
published between 1600 and 1720 with husband, Google
Book Search only nds nine genuine books from this
period that have hu band flexcluding false positives and
hyphenated hu -bandffi, and in almost all cases hu band

is not used exclusively :

e Dutch Courtezan flLondon, 1605ffi [mostly hus-

band but a couple of instances of hu band]

e breast-plate of faith and love flLondon, 1651ffi
[mostly husband but one instance of hu band]

Tryon s Le ers, Domestick and Foreign, to Several

Persons of ality flLondon, 1700ffi

e Present State of Trinity College in Cambridge

flLondon, 1710ffi [mostly husband but one instance
of hu band]

Dialogue between Timothy and Philatheus flLon-
don, 1711ffi [one instance each of husband and hu -

band]

e Universal Library; Or, Compleat Summary of

Science fl1712ffi [two instances of hu band]

e Works of Petronius Arbiter flLondon, 1714ffi
[mixture of both husband and hu band]

Le ers Writ by a Turkish Spy flLondon, 1718ffi
[mostly husband but a couple of instances of hu -

band]

An Historical Essay Concerning Witchcra flLon-
don, 1718ffi [mostly husband but one instance of
hu band]

Likewise, it is possible to nd books from the late
18th century that use long s but show husband and ask,

e rules for long s

52 TUGboat, Volume 32 fl2011ffi, No. 1

D
at
e

h
u
sb

an
d

h
u
b
an

d

as
k

a
k

p
re
sb

y
te
rfl
effi

p
re

b
y
te
rfl
effi

1640-1649 6 0 4 0 1 0

1650-1659 12 3 12 1 1 0

1660-1669 4 1 10 2 1 0

1670-1679 5 1 10 1 0 1

1680-1689 12 0 22 0 3 0

1690-1699 4 0 5 0 2 0

1700-1709 39 1 54 0 3 0

1710-1719 42 8 74 7 8 2

1720-1729 49 8 78 11 7 1

1730-1739 53 25 87 36 13 1

1740-1749 44 46 50 66 11 0

1750-1759 37 168 43 201 12 2

1760-1769 36 286 30 307 11 2

1770-1779 22 320 21 342 26 5

1780-1789 27 337 21 368 37 1

1790-1799 65 404 71 464 21 1

Table 1: Change of spellings.

..0 .
50

.

100

.

150

.

200

.

250

.

300

.

350

.

400

.

450

.

16
40

16
49

.

16
50

16
59

.

16
60

16
69

.

16
70

16
79

.

16
80

16
89

.

16
9
0

16
9
9

.

17
00

17
09

.

17
10

17
19

.

17
20

17
29

.

17
30

17
39

.

17
40

17
49

.

17
50

17
59

.

17
60

17
69

.

17
70

17
79

.

17
80

17
89

.

17
9
0

17
9
9

.
husband

. hu band

Figure 10: husband vs. hu band 1640 1799.

but these are relatively few in number. For example,
whereas Google Book Search nds 444 books published
between 1760 and 1780 that have hu band, it only nds
60 that have husband flexcluding false positives on HUS-

BANDffi.
e results of Google Book Search searches on the

two spellings of husband and ask flas well as presbyter(e)
in French booksffi from 1640 to 1799 are shown in table 1
in ten-year segments flmatches for HUSBAND and ASK

have been discounted, but otherwise gures have not
been adjusted for false positives such as hu -bandffi.

e change in the usage of short s to long s before
b and k appears even more dramatic if these gures
are plo ed on a graph, as displayed in gures 10 and 11.

But for French books, no change in rule occurred
in the middle of the century, and short s continued to be
used in front of the le er b throughout the 18th cen-
tury, as can be seen from the distribution of the words
presbyter(e) and pre byter(e) in gure 12.

..0 .
50

.

100

.

150

.

200

.

250

.

300

.

350

.

400

.

450

.

500

.

16
40

16
49

.

16
50

16
59

.

16
60

16
69

.

16
70

16
79

.

16
80

16
89

.

16
9
0

16
9
9

.

17
00

17
09

.

17
10

17
19

.

17
20

17
29

.

17
30

17
39

.

17
40

17
49

.

17
50

17
59

.

17
60

17
69

.

17
70

17
79

.

17
80

17
89

.

17
9
0

17
9
9

.
ask

. a k

Figure 11: ask vs. a k 1640 1799.

..0 .
5

.

10

.

15

.

20

.

25

.

30

.

35

.

40

.

16
40

16
49

.

16
50

16
59

.

16
60

16
69

.

16
70

16
79

.

16
80

16
89

.

16
9
0

16
9
9

.

17
00

17
09

.

17
10

17
19

.

17
20

17
29

.

17
30

17
39

.

17
40

17
49

.

17
50

17
59

.

17
60

17
69

.

17
70

17
79

.

17
80

17
89

.

17
9
0

17
9
9

.
presbyterfleffi

. pre byterfleffi

Figure 12: presbyter(e) vs. pre byter(e) 1700 1799.

So why then did the change in rule for s before b
and k happen in England during the 1740s and 1750s?
According to John Smith s Printer s Grammar, p. 45, the
Dutch type that was most commonly used in England
before the advent of the home-grown typefaces of Wil-
liam Caslon did not have b or k ligatures, and that it
was Caslon who rst cast b and k ligatures. So with
the growth in popularity of Caslon s typefaces ligatured
b and k took the place of sb and sk but further

research is required to con rm to this hypothesis.
As to why this rule flas well as the French rule of

short s before h ffi developed in the rst place, I suspect
that it goes back to bla le er usage, but that is some-
thing for future investigation flall I can say at present is
that Caxton s Chaucer fl1476, 1483ffi seems to use long s

before the le ers , b and k ffi. It is perhaps signi c-
ant that the le ers b , k and h all have the same initial
vertical stroke, but quite what the signi cance of this is
I am not sure.

10 Short s before h

French and English typographic practice di ers in one
important respect: French fland also Spanishffi typo-
graphy uses a short s before the le er h , whereas
English typography uses a long s.

For example, Google Book Search nds 86 books
with déshabiller or its various grammatical forms fldés-
habillé, déshabillée, déshabille, déshabilles, déshabillez

Andrew West

TUGboat, Volume 32 fl2011ffi, No. 1 53

or déshabillentffi during the period 1700 1799, but only
a single book that uses long s: dé habillé occurs three
times in Appel a l impartiale postérité, par la citoyenne

Roland flParis, 1795ffi.
On the other hand, for the period 1640 1799

Google Books nds 54 books with dishonour and 196
books with di honour, but closer inspection shows that
almost every single example of dishonour in pre-1790
books is in fact di honour or DISHONOUR in the actual
text. Similar results were obtained when comparing
the occurrences of worship and wor hip. us it seems
that short s was not used before the le er h in English
typography.

11 Short st ligature a er g

According to John Smith s e Printer s Grammar, rst
published in 1755, there is a particular rule for italic text
only: that a short st-ligature is used a er the le er g
in place of a long st-ligature flp. 23 24ffi:

In the mean time , and as I have before declared ;

Italic di covers a particular delicacy , and ews a ma-

thematical judgement in the Le er-cu er , to keep the

Slopings of that tender-faced Le er within uch de-

grees as are required for each Body , and as do not de-

triment its individuals . But this precaution is not

always u ed ; for we may ob erve that in ome Italics

the lower-ca e g will not admit another g to and

a er it , without pu ing a Hair- pace between them ,

to prevent their pre ng again each other : neither

will it give way to and the ligature ; and therefore

a round st is ca to ome Italic Founts , to be u ed

a er the le er g ; but where the round st is wanting

an st in two pieces might be u ed without di credit to

the work , rather than to u er the long to cau e a

gap between the g and the aid ligature .

However, I have thus far been unable to nd any
examples of this rule in practice. For example, Google
Book Search nds several examples of King on in italic

type, but no examples of Kingston in books that use a
long s:

An Universal, Historical, Geographical, Chronolo-

gical and Poetical Dictionary flLondon, 1703ffi

Athenæ Britannicæ, or, A Critical History of the

Oxford and Cambrige Writers and Writings flLon-
don, 1716ffi, p. 322

e History of England flLondon, 1722ffi, p. 78

Scanderbeg: Or, Love and Liberty flLondon, 1747ffi,
p. 92

An Introduction to the Italian Language flLondon,
1778ffi, p. 109

A Collection of Treaties flLondon, 1790ffi, p. 288

12 e demise of the long s

Long s was used in the vast majority of books published
in English during the 17th and 18th centuries, but sud-

Figure 13: William Martin s -free typeface.

denly and dramatically falls out of fashion at the end
of the 18th century, re ecting the widespread adoption
of new, modern typefaces based on those developed
by Bodoni and Didot during the 1790s. In England
this movement was spearheaded by the printer William
Bulmer, who set the benchmark for the new typograph-
ical style with his 1791 edition of e Dramatic Works

of Shakspeare, printed using a typeface cut by William
Martin. e -free typeface used by Bulmer can be seen
in the Advertisement to his 1795 edition of Poems by

Goldsmith and Parnell fl gure 13ffi.
Although throughout most of the 1790s the vast

majority of English books continued to use long s, dur-
ing the last two or three years of the century books
printed usingmodern typefaces started to becomewide-
spread, and in 1801 short s books overtook long s books.

e rise of short s and decline of long s, as measured
by the occurrences of the word those compared with
tho e in Google Book Search, is charted in table 2 and
gure 14.

e death knell for long s was nally sounded on
September 10th 1803 when, with no announcement or
any of the fuss that accompanied the typographic re-
form of October 3rd 1932 flsee the articles in the issues of
Sept. 26th and 27th 1932ffi, e Times newspaper quietly
switched to a modern typeface with no long s or old-
fashioned ligatures, as shown in gure 16 flthis was one
of several reforms instituted by JohnWalter the Second,
who became joint proprietor and exclusive manager of

e Times at the beginning of 1803ffi.

e rules for long s

54 TUGboat, Volume 32 fl2011ffi, No. 1

D
at
e

th
o
se

th
o
e

il
es
t

il
e

1780 2 140 1 126
1781 0 114 3 170
1782 0 112 4 161
1783 0 98 1 139
1784 3 131 8 230
1785 3 85 3 185
1786 5 132 20 180
1787 4 167 42 182
1788 4 174 59 194
1789 2 131 24 155
1790 7 191 58 124
1791 3 141 55 83
1792 9 192 80 130
1793 38 206 16 14
1794 46 292 8 14
1795 16 251 18 8
1796 44 199 51 16
1797 62 165 88 15
1798 57 152 97 12
1799 105 151 48 7
1800 108 224 86 6
1801 198 181 134 17
1802 210 202 154 4
1803 240 164 183 11
1804 336 118 131 8
1805 294 151 143 6
1806 328 130 173 9
1807 361 136 123 8
1808 418 54 166 2
1809 406 74 162 3
1810 492 66 223 4

Table 2: those vs. tho e and il est vs. il e .

..0 .
50

.

100

.

150

.

200

.

250

.

300

.

350

.

400

.

450

.

500

.

17
80

.

17
82

.

17
84

.

17
86

.

17
88

.

17
9
0

.

17
9
2

.

17
9
4

.

17
9
6

.

17
9
8

.

18
00

.

18
02

.

18
04

.

18
06

.

18
08

.

18
10

.
those

. tho e

Figure 14: those vs. tho e 1780 1810.

..0 .
25

.

50

.

75

.

100

.

125

.

150

.

175

.

200

.

225

.

250

.

17
80

.

17
82

.

17
84

.

17
86

.

17
88

.

17
9
0

.

17
9
2

.

17
9
4

.

17
9
6

.

17
9
8

.

18
00

.

18
02

.

18
04

.

18
06

.

18
08

.

18
10

.
il est

. il e

Figure 15: il est vs. il e 1780 1810.

By the second half of the 19th century long s had
entirely died out, except for the occasional deliberate
antiquarian usage flfor example, my 1894 edition of Cor-
idon s Song and Other Verses uses long s exclusively in
a medial position, with short s in both initial and nal
positionsffi.

As might be expected, the demise of long s in
France seems to have occurred a li le earlier than in
England. Based on the following Google Book Search
data for il est and il e , it seems that short s started
to gain popularity from the mid 1780s, and long s had
been almost completely displaced by 1793, as shown in
table 2 and gure 15 flmany of the post-1792 examples
of long s are from books published outside Franceffi.

13 Note on methodology

e statistics given here are based on the results re-
turned from searches of Google Book Search fl lter-
ing on the appropriate language and Full view only ffi,
which allows me to distinguish between words with
long s and words with short s only because the OCR

so ware used by Google Book Search normally recog-
nises long s as the le er , and so, for example, I can
nd instances of hu band by searching for hu and .

However, for a number of reasons the results obtained
are not 100% accurate.

Firstly, the search engine does not allow case-
sensitive searches, so whereas searching for hu and
only matches instances of hu band, searching for hus-
band matches instances of both husband and HUSBAND,
which skews the results in favour of short s.

Secondly, hyphenated words at a line break may
match with the corresponding unhyphenated word, so
searching for hu and may match instances of hu -

band, which is not relevant as long s is expected before
a hyphen flGoogle Book Search shows 583 matches
for huf-band, but only 3 for hus-band for the period
1700 1799ffi.

irdly, long s is sometimes recognised by the OCR

so ware as a short s, especially when typeset in italics.
Fourthly, the publication date given by Google

Book Search for some books is wrong flfor various reas-
ons which I need not go into hereffi, which I o en found
was the explanation for an isolated unexpected result.

Fi hly, when Google Book Search returns more
than a page s worth of results, the number of results
may go down signi cantly by the time you get to the
last page.

Finally, and to me this is most perplexing, Google
Book Search searches in March 2008 gave me over twice
as many matches than in May 2008 using the same
search criteria, so, for example, I got 438 matches for
husband and 956 matches for hu and for the period
1790 1799 in March, but only 187 and 441 matches

Andrew West

TUGboat, Volume 32 fl2011ffi, No. 1 55

Figure 16: e Times Issues 5810 ff 5811 flSeptember 9th and 10th 1803ffi. Compare the

words ub cribed/subscribed and Tue day/Tuesday in the rst paragraph.

respectively for the same search when redone in May
flnevertheless, the gures for March and May showed
exactly the same trends for husband versus hu bandffi.
For consistency, the gures shown for husband/huf-
band and ask/a are those that I obtained in May
2008. flI may try redoing this experiment in a year s
time providing Google Book Search does not improve
its OCR so ware to recognise long s in pre-19th century
books and see if the trends for husband versus hu -

band and ask versus a k are roughly the same or not.ffi

14 And nally

If you have managed to get this far, you may well be
interested in my brief, illustrated history of the long s

fl e Long and the Short of the Le er Sffi, which to most
people s surprise starts in Roman times.

And if the rules of long s are not enough for you,
try out my Rules for R Rotunda fla post that I think needs
some revision when I have the timeffi.

⋄ Andrew West

babelstone (at) gmail dot com

http://www.babelstone.co.uk/

e rules for long s

56 TUGboat, Volume 32 (2011), No. 1

Installing TEX Live 2010 on Ubuntu

Enrico Gregorio

Abstract

Is it possible to have TEX Live 2010 installed along
with the Ubuntu version of the GNU/Linux operating
system? Yes, and here’s how it may be done.

1 Introduction

A major drawback of the TEX packaging on Ubuntu
systems is that, due to a specific choice by the De-
bian developers, the maintenance program tlmgr is
missing. On the one hand this protects the user from
possible damages to the system; on the other hand, it
prevents dynamic updates of the TEX distribution, in
order to get bug fixes or to have available all the new
functions that ship almost every day. Moreover, as
of November 2010, the TEX Live provided by Ubuntu
(by Debian, one should say) is still the 2009 edition,
frozen as of October 2009.

We describe here a procedure to install TEX Live
2010 on a desktop Ubuntu system; this TEX Live will
have its tlmgr for maintenance and updates. And,
most important, it will not put anything dangerous
in system directories. Only two (or three) files will be
stored under /etc, in subdirectories already reserved
for system customization.

To revert to using the system TEX, the entire
TEX Live installation may be deleted from the system
by a simple

$ rm -fr /usr/local/texlive/2010

and optionally by deleting the added files under /etc.
The procedure we’ll describe can be adapted,

with suitable changes, also to other distributions
such as Fedora and OpenSUSE. Other Debian-based
distributions should work the same as Ubuntu. We
chose Ubuntu because it seems a frequently used
distribution found on desktop GNU/Linux systems.

An Italian version of this paper appeared also
on ArsTEXnica. My hope is that this article will
become an installation program: it shouldn’t be very
difficult for a Unix guru to turn this procedure into
a set of scripts for the various distributions.

2 A short introduction to the terminal

The procedure will require a certain familiarity with
the terminal, that is, the interface to the command
line. Anyone who hasn’t the slightest idea of what
the terminal is should stop reading here. However,
it’s not so difficult to copy the commands exactly as
they are written here. There are many introductions
to the command line, for example

https://help.ubuntu.com/community/

UsingTheTerminal

In what follows, a line such as

$ ls -l

denotes a command that must be typed on the termi-
nal, followed by a carriage return in order to execute
it. The symbol $ represents the system prompt,
on your terminal it may be different, for example
something like

enrico@ubuntu:~$

Normally, after these initial characters, there’s a
flashing box. Copy the commands starting after the
space following the $. Other $ characters that are
not at the start of the line must be typed. Sometimes
the commands will be too long to be printed on one
line in this article; they will be rendered with

$ command a b c \

d e f

The backslash denotes that the command continues
on the following line. The spaces (or lack thereof)
before the backslash are significant.

Answers by the system will be represented with-
out the $ symbol and underlined, for instance

bash: tix: command not found

says that the system would have executed the com-
mand tix, but it doesn’t exist. The prefix bash:

denotes the shell that’s trying to execute the com-
mands; ignore these details.

Almost always it’s not necessary to copy com-
pletely the various pieces of a command line: press
the tab key and, if the completion is unique, the
system will do it by itself.

Final advice: if your keyboard doesn’t have a ~

key, find a way to type this character—and get, as
soon as possible, a keyboard which has it.

◮ Notes for experienced users are introduced by this
triangle. This paper assumes that the default shell
is bash. Whoever uses a different shell qualifies as
‘experienced user’, and should be able to adapt the
commands presented here to their particular shell(s).

3 Preliminaries

Install Perl-Tk and Perl-doc with Synaptic. Then
open a terminal session and prepare a work directory,
for example,

$ mkdir ~/texlive-install

$ cd ~/texlive-install

The latter command will put you inside the directory
created with the former.

Now we’ll briefly describe the two main ways to
obtain TEX Live: the first works completely on-line,
the second can also be done off-line.

Enrico Gregorio

TUGboat, Volume 32 (2011), No. 1 57

4 Obtaining the distribution (on-line)

The simplest way to install TEX Live is through the
Internet. Download the needed compressed archive
by typing on the terminal

$ wget http://mirror.ctan.org/systems/\

texlive/tlnet/install-tl-unx.tar.gz

Now you have to uncompress the downloaded file.
The command is

$ tar zxf install-tl-unx.tar.gz

which will produce a new directory, where we’ll go:

$ cd install-tl-20100914

The final part of the name is the date when the
installation program has been produced, so it can be
different: the completion feature mentioned before
is what we need to find out the right suffix. Go to
section 6.

5 Obtaining the distribution (off-line)

If your link to the Internet does not suffice, you can
download an ISO image of the distribution, which
is a file equivalent to a DVD. The Web address to
contact is

http://mirror.ctan.org/systems/texlive/

Images/texlive2010.iso

It’s a 1.9GiB file; transfer it on a USB pen drive and
copy it onto the machine where the installation is
desired, or transform the ISO image to a DVD and
insert it in the machine.

There is also a ‘torrent’: go to http://www.tug.

org/texlive/acquire-iso.html and find the link
to click; this should start the Transmission program
that will download the image.

You can also get a physical DVD, either by join-
ing a TEX user group or purchasing one separately:
http://www.tug.org/texlive/acquire-dvd.html.

Ultimately, a double click on the ISO image
allows access to the virtual (or physical) disk. Open
a terminal session, create a work directory with

$ mkdir ~/texlive-install

and go to the texlive directory on the virtual (or
physical) disk with something like

$ cd /cdrom/TeXLive/texlive

Instead of “TeXLive” it might be something else; use
the automatic completion. Go to section 6.

6 Installing the distribution

Now you have to type the installation command:

$ sudo ./install-tl -gui \

-repository http://mirror.ctan.org/\

systems/texlive/tlnet

The system will ask for an administrator password
and a window similar to that in figure 1 will pop up.

Figure 1: Installation window

If your default paper size is Letter, press the cor-
responding ‘Toggle’ button (the default for TEX Live
is A4). At the bottom of the window, there’s the
Install TeX Live button. Press it and be confident
that the installation will arrive at completion.

Do not modify the default setting for “Create
symlinks in system directories”: it must remain set
to “No”.

When the installation is finished, go to section 8.

7 If something goes wrong

If the installation doesn’t finish, before retrying you
must delete everything has been already written on
your system:

$ cd /usr/local/texlive

$ ls

2010 texmf-local

$ sudo rm -rf 2010

$ cd -

Then retry. Pay attention because the command rm

is very dangerous, so carefully copy the commands.
The output from the second command (ls) should
be as shown, except possibly texmf-local may be
missing. If the answer is different, check the first
command and retype it correctly.

8 Touching up the installation

Now comes the difficult part: make the system know
where to find the TEX distribution programs. Don’t
touch the standard distribution on Ubuntu, so you’ll
have no problem in installing programs that depend
on it, such as Kile. There is some escape from this,
but it requires installing the equivs package with
Synaptic and doing some tricks that are very system
dependent.

Go back to your work directory by

$ cd ~/texlive-install

Installing TEX Live 2010 on Ubuntu

58 TUGboat, Volume 32 (2011), No. 1

and let’s face up to the operating system. Give the
mysterious commands

$ echo ’export PATH=/opt/texbin:${PATH}’ \

> texlive.sh

$ sudo cp texlive.sh /etc/profile.d/

$ sudo mkdir -p /opt

This creates a file texlive.sh containing the text
we have written between single quotes and copies
it into a system directory. The decisive step now
requires a choice which depends on the hardware
architecture of your machine; give one, and only one,
of the following commands

$ sudo ln -s /usr/local/texlive/2010/bin/\

i386-linux /opt/texbin

$ sudo ln -s /usr/local/texlive/2010/bin/\

x86_64-linux /opt/texbin

$ sudo ln -s /usr/local/texlive/2010/bin/\

powerpc-linux /opt/texbin

The author can’t know which one: you must select
the appropriate choice, depending on whether your
machine is based on a 32-bit Intel (or AMD) processor,
on a 64-bit x86 processor, or on a PowerPC chip. You
can discover this by typing the command

$ ls /usr/local/texlive/2010/bin

which will answer with the required string.

◮ The experienced user might ask why we don’t put
inside texlive.sh the name of the directory with
the executable programs, for example

export PATH=/usr/local/texlive/2010/\

bin/i386-linux:${PATH}

The idea is that when the TEX Live 2011 ships out,
it will be sufficient to type the command

$ sudo ln -s /usr/local/texlive/2011/bin/\

i386-linux /opt/texbin

after installation, without any other intervention.
Almost . . . see later.

Now do a logout, because the system must digest
the change. Then login again, open a terminal session
and check that everything is ok; the command

$ which tex

should answer with

/opt/texbin/tex

If it’s so, we are ready to update the distribution.
Otherwise seek help from a guru.

There are two ways to use tlmgr; it’s best to try
both. The first starts tlmgr from the terminal. Type
the command

$ gedit ~/.bashrc

and, in the window that opens, add, at the end,

.bashrc addition for TeX Live

function sutlmgr () {

if [[-z "$@"]]

then

sudo /opt/texbin/tlmgr -gui

else

sudo /opt/texbin/tlmgr "$@"

fi

}

alias mktexlsr=

’sudo /opt/texbin/mktexlsr’

alias updmap-sys=\

’sudo /opt/texbin/updmap-sys’

alias fmtutil-sys=\

’sudo /opt/texbin/fmtutil-sys’

The three dots represent what is already in the file
.bashrc, which must not be modified.

◮ The experienced user might prefer to make the
change in the file .bash_aliases.

Save the change with the proper menu entry,
exit gedit and at the terminal type

$. ~/.bashrc

$ sutlmgr

The tlmgr window will appear, after the system has
asked for a password. From now on the sutlmgr com-
mand will start tlmgr with administrator privileges.
Thus, a command such as

$ sutlmgr show --list xyz

directly executes the requested tlmgr action. With

$ texdoc tlmgr

you can access the documentation about tlmgr.
One may also create a small application on the

desktop (this holds for the Gnome window manager;
there may be something similar for KDE). Point
the mouse on the desktop, press the right button
and choose “Create Launcher . . . ”. In the window
that will show up, write ‘TeX Live Manager’ in the
‘Name’ box, and in the ‘Command’ box type

gksu -d -S -D "TeX Live Manager"

’/opt/texbin/tlmgr -gui’

(all on one line, please). After creating the applica-
tion a double click on its icon will ask for an admin-
istrator password and launch tlmgr.

There’s a last thing to do: make the system
aware of the OpenType fonts provided along with
TEX Live, in order to use them with X E(LA)TEX by
font name and not just file name.

$ sudo cp \

$(kpsewhich -var-value TEXMFSYSVAR)\

/fonts/conf/texlive-fontconfig.conf \

/etc/fonts/conf.d/09-texlive.conf

$ sudo fc-cache -fsv

Enrico Gregorio

TUGboat, Volume 32 (2011), No. 1 59

The commands for the procedure on a typical
Ubuntu 10 installation are repeated in the final ta-
ble 1; in italics are the parts that might be different;
the underlined lines represent answers from the sys-
tem, the one underlined and in italics represents what
to type in place of i386-linux in the following line;
the lines with actions written between angle brackets
describe maneuvers that must be done outside the
terminal.

9 OpenSUSE

The described procedure works with OpenSUSE, pro-
vided that Perl-Tk has been installed. There’s no
need to define a function to launch tlmgr, but you
have to remember to use the options -c to su and
-E to sudo. Thus call the maintenance programs as

$ su -c tlmgr -gui

$ sudo -E updmap-sys

$ sudo -E mktexlsr

10 Fedora

You can use the same procedure with Fedora, at least
for version 13. The Perl-Tk module isn’t included in
the standard distribution. You can retrieve it from

http://koji.fedoraproject.org/koji/

buildinfo?buildID=151517

The file /etc/profile.d/texlive.sh must be dif-
ferent and contain the following text:

#!/bin/bash

if ! echo $PATH |\

/bin/egrep -q "(^|:)/opt/texbin($|:)"

then

PATH=/opt/texbin:$PATH

fi

Another difference is that in Fedora only root is
the administrator, so the commands that in Ubuntu
are prefixed with sudo must be typed without it,
after having executed an su command.

11 Updating to TEX Live 2011

When the time comes, install the distribution as
described in section 6. Then do

$ sudo ln -s /usr/local/texlive/2011/bin/\

i386-linux /opt/texbin

$ sudo cp \

$(kpsewhich -var-value TEXMFSYSVAR)\

/fonts/conf/texlive-fontconfig.conf \

/etc/fonts/conf.d/09-texlive.conf

$ sudo fc-cache -fsv

That’s all (of course changing i386-linux if your
architecture is different). No need to log out, no
texlive.sh to write. Of course TEX Live 2011 has
not yet been released, but we are ready for it.

Appendix

In this appendix we assume that TEX Live has been
installed on Ubuntu, following the outlined procedure.
Change the commands related to tlmgr if you run
another distribution.

A Installing a personal package

Let’s assume we need a LATEX package that’s not
present in TEX Live; this might happen due to licens-
ing issues, or because we want to try an experimental
version. There are two places where you can put the
necessary files. First of all download the archive from
where it is hosted (CTAN or somewhere else) and
decompress it in a work directory. To give an exam-
ple, the package will be padua and the directory will
contain the files README, padua .ins, padua .dtx,
and padua .pdf (the parts in italics represent the
real name). Open a terminal session and type the
following command:

$ tex padua.ins

If the file with extension .ins is not present, then

$ tex padua.dtx

will probably do the same job. In both cases the
system will generate some files that we have to store
in the correct place. Of course these are simple
and generic instructions; some packages have a more
complex structure and the author’s directions should
be followed, adapting them to what is found here.

Now you have to decide whether to use the
personal tree or the local one. The main difference is
that in the second case the package will be available
to all users of the machine; of course you’ll need
administrator privileges to access the local tree.

The word ‘tree’ refers to a hierarchical directory
structure, necessary to be accessed efficiently by the
TEX system.

On GNU/Linux systems, the personal tree is
rooted at ~/texmf, that is, it’s a set of subdirec-
tories of your home. The local tree is rooted at
/usr/local/texlive/texmf-local. Actually it’s
not necessary to know where they are. We can define
a shorthand to stand for the location of the chosen
tree; for the personal tree the trick is to run

$ Local=$(kpsewhich -var-value TEXMFHOME)

while for the local tree the trick is

$ Local=$(kpsewhich -var-value TEXMFLOCAL)

The TEX system is set up in such a way that it can
know itself and the magic command is what stores
in the variable Local the location of the chosen tree.

Let’s now restart from where we stopped. We
create the necessary directories and copy the files in
them.

Installing TEX Live 2010 on Ubuntu

60 TUGboat, Volume 32 (2011), No. 1

$ mkdir -p $Local/source/latex/padua

$ cp README padua.ins padua.dtx \

$Local/source/latex/padua

$ mkdir -p $Local/doc/latex/padua

$ cp padua.pdf $Local/doc/latex/padua

$ mkdir -p $Local/tex/latex/padua

$ cp *.sty ... $Local/tex/latex/padua

That last line is intended to represent the files that
should be seen by (LA)TEX itself, which are typically
generated from the dtx.

B Installing a font family

There are many instruction sets around the world
about how to install new fonts we have bought or
found for free. Installing fonts in the personal tree
is not recommended, because it requires a constant
labour by the user when updates to TEX Live include
something related to fonts.

It’s best to follow the instructions contained in
the booklet “The font installation guide” by Philipp
Lehman, available in TEX Live with the terminal
command

$ texdoc fontinstallationguide

These instructions, by the author’s choice, end with
the preparation of the needed files. Let’s assume that
the font family is called ‘Padua’, with TEX family
name zpd . As usual the part to be changed will be
in italics. Lehman’s procedure creates a bunch of
files in the work directory, with various extensions:

.tfm .vf .pfb .afm .map .sty .fd

These files must be stored in the correct place in
the TEX system hierarchy. The correct place is the
already described local tree. Again we don’t need to
know where it is; let’s define a shorthand, create the
infrastructure, and store the files.

$ Local=$(kpsewhich -var-value TEXMFLOCAL)

$ sudo mkdir -p \

$Local/fonts/{afm,tfm,type1,vf}/padua

$ sudo cp zpd *.afm $Local/fonts/afm/padua

$ sudo cp zpd *.tfm $Local/fonts/tfm/padua

$ sudo cp \

zpd *.pfb $Local/fonts/type1/padua

$ sudo cp zpd *.vf $Local/fonts/vf/padua

$ sudo mkdir -p $Local/tex/latex/padua

$ sudo cp *.sty *.fd $Local/tex/latex/padua

$ sudo mkdir -p \

$Local/fonts/map/dvips/padua

$ sudo cp padua.map \

$Local/fonts/map/dvips/padua

$ mktexlsr

We have placed the furniture, now we must provide
the TEX system with the door key. There are two

cases: it’s the first time we are installing a new font
family, or we’ve already followed this procedure. In
the first case we have to create a file and store it in
a suitable place:

$ echo "Map padua.map" > updmap-local.cfg

$ mkdir -p $Local/web2c

$ sudo mv updmap-local.cfg $Local/web2c

$ sutlmgr generate --rebuild-sys updmap

In the second case, we only need to append a line to
an already existing file:

$ cp $Local/web2c/updmap-local.cfg .

$ echo "Map padua.map" >> updmap-local.cfg

$ sudo mv updmap-local.cfg $Local/web2c

$ sutlmgr generate --rebuild-sys updmap

(The last action, as well as the call to mktexlsr, can be
executed from the graphical interface of tlmgr.) By
doing so we can be certain that the door key won’t
be lost with TEX Live updates. See also http://

www.tug.org/fonts/fontinstall.html for a more
verbose description of the steps.

If, by chance, also the OpenType versions of our
new fonts are available, add the following couple of
lines:

$ sudo mkdir -p $Local/fonts/opentype/padua

$ sudo cp *.otf $Local/fonts/opentype/padua

to the similar ones seen before. Similarly, by chang-
ing opentype with truetype if the font files have
extension .ttf.

If it’s the first time you add OpenType, True-
Type or Type 1 fonts to the local tree, you have to
make the new location known to the system. Do

$ cp /etc/fonts/conf.d/09-texlive.conf \

09-texlive-local.conf

$ gedit 09-texlive-local.conf

In the window that will appear, change all the strings
‘2010/texmf-dist’ into ‘texmf-local’. Save and
type in the terminal

$ sudo mv 09-texlive-local.conf \

/etc/font/conf.d

$ sudo fc-cache -fsv

Now X E(LA)TEX will also be able to access the new
fonts. Only the fc-cache call is needed if you already
created the ‘local’ configuration file.

⋄ Enrico Gregorio

Dipartimento di Informatica

Università di Verona

enrico dot gregorio (at) univr

dot it

Enrico Gregorio

TUGboat, Volume 32 (2011), No. 1 61

Table 1: The whole procedure for Ubuntu

〈Install Perl-Tk and Perl-doc with Synaptic〉
〈Start terminal session〉
$ mkdir ~/texlive-install

$ cd ~/texlive-install

$ wget http://mirror.ctan.org/systems/texlive/tlnet/install-tl-unx.tar.gz

$ tar zxf install-tl-unx.tar.gz

$ cd install-tl-20100914

$ sudo ./install-tl -gui -repository http://mirror.ctan.org/systems/texlive/tlnet

〈Press ‘‘Toggle’’ for the paper format if you need to〉
〈Press ‘‘Install TeX Live’’〉
〈Wait until the installation is complete; drink a coffee, maybe two〉
〈Press ‘‘End’’〉
$ cd ~/texlive-install

$ echo ’export PATH=/opt/texbin:${PATH}’ > texlive.sh

$ sudo cp texlive.sh /etc/profile.d/

$ sudo mkdir -p /opt

$ ls /usr/local/texlive/2010/bin

i386-linux

$ sudo ln -s /usr/local/texlive/2010/bin/i386-linux /opt/texbin

〈Do a logout〉
〈After login, open a terminal〉
$ which tex

/opt/texbin/tex

〈If the answer is different, cry out ‘Help’〉
$ gedit ~/.bashrc

〈Append to the file〉
Additions for TeX Live

function sutlmgr () {

if [[-z "$@"]]

then

sudo /opt/texbin/tlmgr -gui

else

sudo /opt/texbin/tlmgr "$@"

fi

}

alias mktexlsr=’sudo /opt/texbin/mktexlsr’

alias updmap-sys=’sudo /opt/texbin/updmap-sys’

alias fmtutil-sys=’sudo /opt/texbin/fmtutil-sys’

〈Save and exit from gedit〉
$ sudo cp $(kpsewhich -var-value TEXMFSYSVAR)/fonts/conf/texlive-fontconfig.conf \

/etc/fonts/conf.d/09-texlive.conf

$ sudo fc-cache -fsv

〈Relax and enjoy TEX Live 2010 〉

Notes.
(1) The date 20100914 is an example, it will likely be different.

(2) i386-linux corresponds to one of the possible architectures (a.k.a. platforms);
it may also be x86_64-linux or, less probably, powerpc-linux.

Installing TEX Live 2010 on Ubuntu

62 TUGboat, Volume 32 (2011), No. 1

tlcontrib.metatex.org: A complement to
TEX Live

Taco Hoekwater

Abstract

TLContrib is a distribution and associated web site
that hosts contributed, supplementary packages for
TEX Live.

The packages on TLContrib are those not dis-
tributed inside TEX Live proper for one or several
of the following reasons: because they are not free
software according to the FSF guidelines, because
they contain an executable update, because they are
not available on CTAN, or because they represent an
intermediate release for testing.

Anything related to TEX that cannot be in TEX
Live but can still legally be distributed over the
Internet can have its place on TLContrib.

Keywords: TEX Live, TLContrib, distribution,
contribution, packages

1 Introduction

Many readers will be familiar with TEX Live as an
easy way to install TEX. This distribution provides
a comprehensive TEX system with binaries for most
flavors of Unix, including GNU/Linux and MacOSX,
and also Windows. It includes all the major TEX-
related programs, macro packages, and fonts that are
free software, including support for many languages
around the world. The current version is TEX Live
2010.

TEX Live is distributed on DVD by most of
the local TEX user groups, but it also allows for
continuous package updates over the Internet using
the tlmgr program.

TEX Live is a wonderful tool, but there are a
few considerations to be aware of:

• it contains only FSF-defined ‘free software’ pack-
ages

• it uses CTAN as its primary source for packages
• it does not make interim executable updates
• it is not a suitable medium for package test
releases

Each of these limitations has a perfectly reasonable
cause:

• The TEX Live maintainers agree (at least for
the purposes of working on TEX Live) with the
principles and philosophy of the free software
movement. Therefore they follow the FSF guide-
lines on licensing.

Editor’s note: This article appeared originally (in slightly
different form) in MAPS 41, fall 2010.

• It is good for the TEX community if CTAN is
as complete as possible. That gives users one
place to look, for instance. Also, it makes it
more likely for separate distributions like TEX
Live and MiKTEX to be consistent with each
other. By using CTAN as the primary package
source, TEX Live promotes the use of CTAN.

A secondary reason for the use of CTAN is
that creating a large distribution like TEX Live
takes a lot of work, and the number of volunteers
is limited. Having a single place to check for
new package updates is a lot easier, because
this process can be automated to a large extent.
Using many separate sources would make this
task much more complicated.

• TEX Live ships binaries for 19 different computer
platforms, and something like 300 binaries need
to be compiled for each of those. Coordinating
the task of preparing these binaries is a major
effort.

• Because TEX Live is not just a network installa-
tion, but also shipped on DVD, it is important
that the included packages and binaries are as
stable as possible. After all, there is no guaran-
tee that the DVD users will ever update their
system after the initial installation.

Nevertheless, the limitations of TEX Live mean
that there is room for extension. This is the reason
for the existence of TLContrib.1

On TLContrib, anything that is freely distrib-
utable is acceptable, so packages that are not on
CTAN are fine, and TLContrib can and will contain
updates to executables (though not necessarily for
all platforms).

This is possible because the two major limita-
tions of TEX Live do not exist in TLContrib. Firstly,
TLContrib is a network-only distribution without
the limitations introduced by the physical medium.
Secondly, the problem of lack of human resources is
solved by offloading the burden of creating and main-
taining packages to the actual package maintainers.

Before going on to explain how to use TLContrib,
it is important to note the following:

• TLContrib is not a full TEX Live repository:
it is a complement and contains only its own
packages. This means TLContrib can only be
used as a secondary repository on top of an
existing TEX Live installation.

• TLContrib is not maintained by the TEX Live
team: the responsibility for the actual packages
lies with the package maintainers themselves,

1 The web site for TLContrib is http://tlcontrib.

metatex.org/

Taco Hoekwater

TUGboat, Volume 32 (2011), No. 1 63

and the server maintenance is handled by yours
truly.

There is no competition between TLContrib
and TEX Live, but as one of the goals of TLCon-
trib is to ease the workload of the TEX Live
team, it would not make much sense for them to
be the actual maintainers. For this reason there
is a separate mailing list dedicated to TLCon-
trib.2 Please address your questions related to
packages obtained from TLContrib there, and
not on the regular TEX Live list.

2 Using TLContrib as a distribution

First things first : before attempting to use TLCon-
trib, make sure that you have the latest (network)
update of TEX Live 2010, and in particular that
you run the latest tlmgr. During the development
of TLContrib, a small number of incompatibilities
were found in the tlmgr as distributed on the DVD

that have since been fixed. Furthermore, the current
version of TLContrib works only with TEX Live 2010
and not for any earlier versions of TEX Live.

And a warning : Executable packages are not
necessarily available for all platforms on TLContrib.
Unfortunately, it appears that the current TEX Live
update manager is not smart enough to correctly
detect versioning in dependencies. In practice, this
means that you should not update packages that
depend on executable package updates unless the
actual executable package update is also available
on TLContrib for your platform.

Keeping the above in mind, in order to use
TLContrib as an extra repository in the TEX Live
2010 package manager (tlmgr), there are two options,
depending on whether you prefer to use the command
line version or the GUI version of the TEX Live 2010
package manager.

2.1 Graphical interface usage

In the GUI version of the package manager, select
the menu item Load other repository . . . from within
the tlmgr menu. Set the value to

http://tlcontrib.metatex.org/2010

There is currently no way to save this setting.
Besides not being able to save the TLContrib

setting, when using the graphical user interface it is
not always easy to see whether executable package
updates are available. For this reason you should
consider using the command line version of the pack-
age manager for use with TLContrib, even if you are
accustomed to using the GUI interface.

2 The mailman page for the mailing list is http://www.

ntg.nl/cgi-bin/mailman/listinfo/tlcontrib.

2.2 Command line usage

The simplest approach is to just start tlmgr from
the command line with an extra option:

$ tlmgr --repository \

http://tlcontrib.metatex.org/2010

If you plan to use TLContrib regularly, it makes
sense to define a shell alias to save you some typing
(this trick is courtesy of Will Robertson). To do
so, put the following into your .bash_profile or
equivalent (this has to be on a single line):

alias tlc="tlmgr --repository

http://tlcontrib.metatex.org/2010"

You can then view what is available in the TLContrib
repository with standard tlmgr commands such as

$ tlc list

to see what is currently available for installation.
Packages can be updated to their pre-release versions
by typing, say,

$ tlc update siunitx

If an update performed in this way ‘goes bad’ and
you’d like to revert to the official release, execute

$ tlmgr install siunitx --reinstall

and things will be back to normal.

3 Using TLContrib for distribution

The rest of this article describes further details impor-
tant for a package maintainer aiming to use TLCon-
trib for distribution.

Before you decide to add a package to TLCon-
trib, please bear this in mind:

• It is not the intention of TLContrib to replace
either TEX Live or CTAN: if a package is not
blocked from TEX Live for one of the reasons
mentioned earlier, and can be made available on
TEX Live or CTAN, then it should not be part
of TLContrib at all.

In order to be able to upload packages to TLCon-
trib, you have to be a registered user. You can
register as a user via the TLContrib web site, and,
not by coincidence, this is also the place where you
create new packages and package releases.

After registration is complete, you can log into
TLContrib by following the member section link.

If you do upload a package to TLContrib, please
also subscribe to the TLContrib mailing list, because
any questions about your package are likely to be
made there.

3.1 Package creation example

This quick start guide uses an update of the
context-lettrine

tlcontrib.metatex.org: A complement to TEX Live

64 TUGboat, Volume 32 (2011), No. 1

package as an example of how to create a package. In
the following, you need to replace context-lettrine
by the actual package name that you are updating,
of course.

Besides being logged in to TLContrib, the first
thing you need to do is to create your updated pack-
age source. In this case, the easiest way is to start
from the current TEX Live version, so first you have
to fetch the current context-lettrine archive(s)
from the network distribution of TEX Live. The
base URL is: http://www.ctan.org/tex-archive/
systems/texlive/tlnet/archive.

In fact, for this example, there are two archives
to be downloaded:

context-lettrine.tar.xz

context-lettrine.doc.tar.xz

For some TEX Live packages there is even a third
archive file named 〈package〉.source.tar.xz. This
is because the distribution system of both TEX Live
and TLContrib splits the contribution into run-time
files, documentation files, and source files. Users can
ask the installer not to install the last two file types
to save on disk space and network traffic.

You have to create a single local archive file with
the combined and updated content of the two down-
loaded archives. After extracting both tar.xz files
in the same directory, you will have a tree structure
that looks like this:

doc/

context/

third/

lettrine/

lettrine-doc.pdf

lettrine-doc.tex

W.pdf

tex/

context/

interface/

third/

lettrine.xml

third/

lettrine/

t-lettrine.tex

tlpkg/

tlpobj/

context-lettrine.doc.tlpobj

context-lettrine.tlpobj

First, delete the whole tlpkg sub-tree. The
tlpobj files contain meta-data specific to each par-
ticular revision of a package, and the information in
the downloaded version of these files will henceforth
be no longer applicable. New versions of the tlpobj
files will be generated automatically by TLContrib’s
distribution creation tool.

You may now update the other files in the tree,
and create the archive file (the acceptable formats
are tar.gz, tar.xz, and zip). Please read the next
section, ‘About package sources’, carefully before
finalizing the archive.

The TLContrib context-lettrine package will
use the newly created archive as source for the pack-
age, so make doubly sure you use the right files. Start-
ing with the existing TEX Live package archive(s) is
just so you get an idea of what goes where: sometimes
TEX Live packages contain more files and symbolic
links than you initially expect. You can build the
source package completely from scratch if you want,
but it is easy to forget files if you don’t check.

Incidentally, while the base name of the local
archive file does not matter, you have to make sure
that the extension is .tar.gz, .tar.xz, or zip, oth-
erwise the upload will fail.

Now go to http://tlcontrib.metatex.org in
your browser, log in, and click new package. As the
new package is an update to TEX Live, make sure
you select that option, and the proper package name
from the drop-down (context-lettrine).

In the next screen, most of the needed input
will be automatically filled in for you, based on the
current TEX Live revision of the package.

Edit the rest of the input form to have a proper
version and set the source to File upload. Its value has
to be set to the new archive that was created earlier.
Adjust the Release state drop-down so it is set to
public. It is also wise to check the license field, for
it does not always import correctly due to database
mismatches.

Then press submit new revision, verify the upload,
and submit again to finalize the new package.

Assuming all went well, all that is needed for now
is to wait until the hour has passed: your package
should be available from the TLContrib repository
after that.

The TLContrib distribution system works asyn-
chronously: the front-end data that you as a package
maintainer can create and modify is exported to the
user-side TLContrib repository by a cron job that
runs independent of the actual web site. Currently
this cron job runs hourly, on the hour.

3.2 About package sources

Please note: Currently only the tar.gz, tar.xz, and
zip archive formats are supported in the File upload
and HTTP URL methods, and there are further strict
requirements on the archive itself:

For a non-executable package, it should con-
tain a complete TDS (TEX Directory Structure; see
http://www.tug.org/tds/) sub-tree. In TEX Live,

Taco Hoekwater

TUGboat, Volume 32 (2011), No. 1 65

normally all macro files go under texmf-dist, and,
in that case, this directory level can be skipped in
the archive (it will be added automatically by the
TLContrib publication system). Be advised that, in
general, uploading a CTAN zipped folder will not
work, because CTAN packages are almost never in
TDS format.

For an executable package, you can also use the
TDS layout (with the binaries in bin/$ARCH/), but if
you only have files inside the binaries folder, you can
skip the directory structure completely: in this case,
the TLContrib publication system will automatically
add the needed structure.

Make sure that your archive contains only files
that belong to your package, and especially that it
does not accidentally overwrite files owned by other
packages.

Also, check twice that the archive contains only
files that belong in the TDS: Delete backup files, and
remove any special files that may have been added
by the operating system (MacOSX especially has
a very bad habit of adding sub-directories for its
Finder that really do not belong in the package).

It is not always simple to guess what should go
into a TEX Live update package. If you are building
such an updated package, it is always wise to start
from the existing TEX Live sources.

TLContrib accepts no responsibility for package
contents: the system does run some sanity checks,
but ultimately, you as maintainer are responsible
for creating a correctly functioning package. Badly
behaving or non-working packages will be removed
on executive decision by the TLContrib maintainer(s)
without prior notice.

3.3 Package creation in detail

When you create a new package, a short wizard will
help present itself to help you set up the package
type. There are two types of packages: those that
are updates of existing TEX Live packages, and those
that are standalone. The wizard screen presents you
the choice between these two types, and a drop-down
listing TEX Live packages. The list of existing TEX
Live packages is updated daily. Once this decision
is made, it becomes fixed forever: the Id field of a
package cannot be edited afterwards.

The Id field is the internal identifier of the pack-
age. An Id should consist of a single ‘word’, with
a length of at least two characters, that contains
only alphanumerics, dashes, and underscores. It can
optionally followed by a platform identifier, which is
then separated from the first part by a single dot.

Also note that when Release state becomes public
(as explained below), it will no longer be possible

to edit that particular release of the package. All
further edits will force the creation of a new release,
with a new revision id, and needing new sources.

Yet another note: If you intend to create an
executable package, you have to be really sure you
know what you are doing. Creating portable binaries
for any platform is far from trivial. Paraphrasing
Norbert Preining from the TLContrib mailing list:

If you have NO experience with compiling,
preparing binaries for various platforms,
distributing, etc., JUST DO NOT GO THERE!

Macro packages are much easier; for those you need
only a good understanding of how the TDS works.

3.4 Package editing

After the initial New package wizard screen, or after
pressing Edit in the your package list for pre-existing
packages, you will be presented with a fairly large
edit screen.

During the initial TLContrib package creation
process, if the package is updating an existing TEX
Live package, certain fields will have been filled in
automatically from the TEX Live package database.
Otherwise you will have to fill in everything yourself.

Title

The human-readable name of your package.

Description

This is a description in a few sentences of what
the package does.

Package type

Even though the drop-down is long, really there
are only two choices in the drop-down: A pack-
age is either a Macro package, or na Executable
package. The distinction is important because
the required package source structure is different
for each of the two types, as explained below.

TLMGR directives

A list of tlmgr directives, e.g. addMap or add-
Format. A better interface is planned, but, for
the moment, you have to make sure you know
what you are doing. Have a look at the exist-
ing TEX Live package database (the file named
texlive.tlpdb) for examples.

You only have to specify the directives; do
not add execute at the start.

TL dependencies

Package Ids of other TEX Live packages on which
this package depends, one per line. Unless you
know exactly what is needed, it is probably best
to leave this field blank, but in any case:

You only have to specify the package Ids; do
not add depend at the start. If your package

tlcontrib.metatex.org: A complement to TEX Live

66 TUGboat, Volume 32 (2011), No. 1

depends on an executable package, for exam-
ple luatex, write the Id as luatex.ARCH. Doing
so will make tlmgr automatically select the
appropriate executable package for the user’s
platform.

TL postactions
A list of tlmgr post-install actions, e.g. short-

cut or fileassoc. A better interface for this is also
planned, but, for the moment, you have to make
sure you know what you are doing here as well.
Have a look at the existing TEX Live package
database (texlive.tlpdb) for examples.
You only have to specify the actions, do not

add postaction at the start.
License

Pick one from the two drop-downs, and set the
radio button accordingly. If you need to use
Other free license or Other non-free license, please
drop me an email. I am sure the list is incom-
plete. In this context, Free means: according to
the Debian Free Software Guidelines.

Log message
This field is just for release notes: it will not be
exported to the TLContrib repository. The SVN

URL and GIT URL methods will automatically
refill in this field with the remote revision and
log message. For other source methods, you can
fill in whatever seems appropriate.

Release state
Only packages that are public are exported, but
this also has side-effects. Once the Release state
is public, it is no longer possible to edit a package
release on the spot. Submitting the form in that
case will always create a new release.

On edits, you will see some extra information:
Synch state and rev. The first is the current
status of a package release with respect to the
published repository, the second is the revision
number that has been assigned to this release.

Version
This is the user-visible version field.

Source
Here things get interesting. There are five ways
to put the source of a package release into the
database, as explained in the next sections.
• As previous revision

If you are editing an already existing pack-
age, then it is possible to re-use the up-
loaded source from the revision you are
editing as the source for the new revision
that will be created.

• File upload
Upload of a local archive file via CGI. Be
warned that if there are other errors in your

form, you will have to re-select the local file
after fixing those other errors. Contrary to
the other fields, local file selection is not
persistent across form submits.

• HTTP URL

This asks the system to do a wget of an
archive file on a specific URL, which could
be either HTTP or FTP. If you need remote
log-in information to access the file, please
encode the user name and password in the
URL, exactly as you would do when using
wget on the command line.

• SVN URL

This asks the system to do an svn checkout
of a specific URL. In this case, you may
also need SVN Username and SVN Pass-
word. Also, some repositories may need
anonymous as the user name for anony-
mous access. The top-level checkout folder
will be stripped away before creating the
package. This is so that you can give,
e.g. http://foundry.supelec.fr/svn/

metapost/trunk/texmf/, as the URL with-
out getting an extra directory level.

• GIT URL

This asks the system to do a git clone of a
specific URL. It is very similar to SVN URL,
just using a different versioning system. In
this case, you may also need GIT Branch.

Please verify package contents
The first time the edit form is loaded, this will
only display a message, but after the initial
submit (assuming everything else went well), it
will display the full list of files that will become
the source of your package.
Please check this list carefully! TLContrib

does run some tests on the package contents
and will refuse to accept package sources that
are horribly wrong, but it does not check the
actual contents of any of the files, and of course
it cannot test for every possible problem.

3.5 Package transfer

It is possible for the maintainer of a package to
transfer the package to another user completely. To
do so, follow the Share link in your package list. See
the help text in that form for details.

3.6 Package sharing

It is also possible for the maintainer of a package to
share the package maintenance with other users.

To set up package sharing for a package you
maintain, follow the Share link in your package list.
See the help text in that form for details.

Taco Hoekwater

TUGboat, Volume 32 (2011), No. 1 67

When someone else has shared a package with
you, then you will see new entries in your package
list. These will have the user id of the actual package
maintainer added after the Date field. You can edit
such packages (and thus create new revisions), but
the new revisions will become property of the actual
package maintainer.

In other words: a package can have only one
actual maintainer, and that maintainer is responsi-
ble for all revisions of the package. However, the
maintainer can allow other users to help with the
actual creation of new revisions.

3.7 Package deletion

In the list of your packages and in the view screen
of one of your package releases, there are two links
that delete items:

• Del / Delete revision

This link deletes a single revision of a package.

• Delete package (in view screen only)

This link removes a whole package completely,
including all revisions of it.

Both links show a confirmation screen first.

3.8 Remote revision creation
(advanced usage)

Once a package has been created (there must be at
least one revision record present already), and under
the conditions that it has a source method of HTTP
URL, SVN URL, or GIT URL, it is possible to submit a
new revision by fetching a special URL from a remote
location or script. Using this method, there is no
need to be logged in at all.

The URL template looks like this:

http://tlcontrib.metatex.org

/cgi-bin/package.cgi/action=notify

/key=〈key〉
/check=〈md5 〉
?version=〈version〉

Please note that version is preceded by a question
mark, but everything else is separated by slashes,
and, of course, the actual URL should be a single
line, without any spaces. All three fields are required.
The three special fields have to be filled in like this:

〈key〉

This is the Id of the package. For example, we’ll
use luatex.i386-linux.

〈md5 〉

This is a constructed checksum, created as fol-
lows: it is the hexadecimal representation of
the md5 checksum of the string created by com-

bining your userid, your password, and the new
version string, separated by slashes.

For example, let’s assume that your userid is
taco and your password is test, and that the
new release that you are trying to create has
version 0.64.0. On a Unix command line, the
checksum can then be calculated like this:

$ echo taco/test/0.64.0 md5sum

c704f499e086e0d54fca36fb0abc973e -

The value of 〈md5 〉 is therefore:

c704f499e086e0d54fca36fb0abc973e

〈version〉

This is the version field of the new release.

Note: if this contains spaces or other char-
acters that cannot be used in URLs, then you
either have to escape the version string in the
URL, or use POST instead of GET. In any case,
do not escape the version while calculating the
checksum string.

There is no need to do any URL escaping
in our case, so our value of 〈version〉 will be
0.64.0.

Using the example variables given above, the
final URL that would have to be accessed is (again
without line breaks or spaces):

http://tlcontrib.metatex.org

/cgi-bin/package.cgi/action=notify/

key=luatex.i386-linux

/check=c704f499e086e0d54fca36fb0abc973e

?version=0.64.0

Accessing this URL will cause TLContrib to fetch
the HTTP or SVN or GIT URL source in the package’s
top-level revision (regardless of what its publication
state is), and create a new revision based on the
fetched file(s) and the supplied version string. All
other fields will remain exactly the same as in the
original top-level revision.

This new package revision will appear in the
web interface just like any other revision, there is
nothing special about it other than what is already
mentioned.

4 Final remark

TLContrib is a fairly new project, and some improve-
ments are definitely possible, especially in the edit
forms on the web site. But I hope that even in the
current state, it will be a useful addition to the whole
TEX Live experience.

⋄ Taco Hoekwater

http://tlcontrib.metatex.org

tlcontrib.metatex.org: A complement to TEX Live

LuaTEX: What it takes to make a paragraph

Paul Isambert

Introduction

The road that leads from an input to an output
document is rather eventful: bytes must be read,
interpreted, executed, glyphs must be created, lines
must be measured . . . With LuaTEX those events
can be monitored and their courses can be bent;
this happens in callbacks, points in TEX’s processing
where custom code can be inserted. This paper
will look at the callbacks involved from reading an
input line to releasing the product of the paragraph
builder to a vertical list. The callbacks that we will
be looking at are the following:

process_input_buffer

How TEX reads each input line.

token_filter

How TEX deals with tokens.

hyphenate

Where discretionaries are inserted.

ligaturing

Where ligatures happen.

kerning

Where font kerns are inserted.

pre_linebreak_filter

Before the paragraph is built.

linebreak_filter

Where the paragraph is built.

post_linebreak_filter

After the paragraph is built.

Actually, a few more callbacks are involved, but
these are most relevant to paragraph building.

Reading input lines

The process_input_buffer callback is executed
when TEX needs an input line; the argument passed
to the callback is the input line itself, and another
line, possibly the same, should be returned. By
default, nothing happens, and what TEX reads is
what you type in your document.

The code in this paper has been written and tested with
the latest build of LuaTEX. The reader probably uses
the version released with the latest TEX Live or MikTEX
distributions, and differences might occur. More recent
versions can be regularly downloaded from TLContrib, a
companion repository which hosts material that doesn’t
make it to TEX Live for whatever reason. Bleeding-edge
LuaTEX can also be built from the sources.

68 TUGboat, Volume 32 (2011), No. 1

A line in this context is actually a Lua string;
hence what the callback is supposed to do is string
manipulation. Besides, one should remember that
this line hasn’t been processed at all; for instance,
material after a comment sign hasn’t been removed,
and multiple spaces haven’t been reduced to one
space; of course, escape characters followed by
letters haven’t been lumped into control sequences.
In other words, the string is exactly the input line.

Can anything useful be done by manipulating
input lines? Yes, in fact the process_input_buffer
callback proves invaluable. Here I’ll address two
major uses: encoding and verbatim text.

Using any encoding. Unlike its elder brothers,
LuaTEX is quite intolerant when it comes to en-
codings: it accepts UTF-8 and nothing else. Any
sequence of bytes that does not denote a valid
UTF-8 character makes it complain. Fortunately,
ASCII is a subset of UTF-8, thus LuaTEX under-
stands most older documents. For other encodings,
however, input lines must be converted to UTF-8
before LuaTEX reads them. One main use of the
process_input_buffer callback is thus to perform
the conversion.

Converting a string involves the following steps
(I’ll restrict myself to 8-bit encodings here): map-
ping a byte to the character it denotes, more
precisely to its numerical representation in Unicode;
then turning that representation into the appropri-
ate sequence of bytes. If the source encoding is
Latin-1, the first part of this process is straightfor-
ward, because characters in Latin-1 have the same
numerical representations as in Unicode. As for the
second part, it is automatically done by the sl-

nunicode Lua library (included in LuaTEX). Hence,
here’s some simple code that allows processing of
documents encoded in Latin-1.

local function convert_char (ch)

return unicode.utf8.char(string.byte(ch))

end

local function convert (line)

return string.gsub(line, ".", convert_char)

end

callback.register("process_input_buffer", convert)

Each input line is passed to convert, which returns
a version of that line where each byte has been
replaced by one or more bytes to denote the same
character in UTF-8. The Lua functions work as
follows: string.gsub returns its first argument
with each occurrence of its second argument re-
placed with the return value of its third argument
(to which each match is passed). Since a dot
represents all characters (i.e. all bytes, as far as

Paul Isambert

Lua is concerned), the entire string is processed
piecewise; each character is turned into a numerical
value thanks to string.byte, and this numerical
value is turned back to one or more bytes denoting
the same character in UTF-8.

What if the encoding one wants to use isn’t
Latin-1 but, say, Latin-3 (used to typeset Turkish,
Maltese and Esperanto)? Then one has to map
the number returned by string.byte to the right
Unicode value. This is best done with a table in
Lua: each cell is indexed by a number m between
0 and 255 and contains a number n such that
character c is represented by m in Latin-3 and n
in Unicode. For instance (numbers are given in
hexadecimal form by prefixing them with 0x):

latin3_table = { [0] = 0x0000, 0x0001, 0x0002,

...

0x00FB, 0x00FC, 0x016D, 0x015D, 0x02D9}

This is the beginning and end of a table mapping
Latin-3 to Unicode. At the beginning, m and n
are equal, because all Latin-x encodings include
ASCII. In the end, however, m and n differ. For
instance, ‘ŭ’ is 253 in Latin-3 and 0x016D (365)
in Unicode. Note that only index 0 needs to be
explicitly specified (because Lua tables starts at 1
by default), all following entries are assigned to the
right indexes.

Now it suffices to modify the convert_char

function as follows to write in Latin-3:

local function convert_char (ch)

return unicode.utf8.char

(latin3_table[string.byte(ch)])

end

Verbatim text. One of the most arcane areas of
TEX is catcode management. This becomes most
important when one wants to print verbatim text,
i.e. code that TEX should read as characters to
be typeset only, with no special characters, and
things turn definitely dirty when one wants to
typeset a piece of code and execute it too (one
generally has to use an external file). With the
process_input_buffer callback, those limitations
vanish: the lines we would normally pass to TEX
can be stored and used in various ways afterward.
Here’s some basic code to do the trick; it involves
another LuaTEX feature, catcode tables.

The general plan is as follows: some starting
command, say \Verbatim, registers a function in
the process_input_buffer, which stores lines in
a table until it is told to unregister itself by
way of a special line, e.g. a line containing only
\Endverbatim. Then the table can be accessed
and the lines printed or executed. The Lua side

TUGboat, Volume 32 (2011), No. 1 69

follows. (About the \noexpand in store_lines:
we’re assuming this Lua code is read via \directlua
and not in a separate Lua file; if the latter is the
case, then remove the \noexpand. It is used here to
avoid having \directlua expand \\.)

local verb_table

local function store_lines (str)

if str == "\noexpand\\Endverbatim" then

callback.register("process_input_buffer",nil)

else

table.insert(verb_table, str)

end

return ""

end

function register_verbatim ()

verb_table = {}

callback.register("process_input_buffer",

store_lines)

end

function print_lines (catcode)

if catcode then

tex.print(catcode, verb_table)

else

tex.print(verb_table)

end

end

The store_lines function adds each line to a
table, unless the line contains only \Endverbatim (a
regular expression could also be used to allow more
sophisticated end-of-verbatims), in which case it
removes itself from the callback; most importantly,
it returns an empty string, because if it returned
nothing then LuaTEX would proceed as if the
callback had never happened and pass the original
line. The register_verbatim function only resets
the table and registers the previous function; it
is not local because we’ll use it in a TEX macro
presently. Finally, the print_lines uses tex.print
to make TEX read the lines; a catcode table number
can be used, in which case those lines (and only
those lines) will be read with the associated catcode
regime. Before discussing catcode tables, here are
the relevant TEX macros:

\def\Verbatim{%

\directlua{register_verbatim()}%

}

\def\useverbatim{%

\directlua{print_lines()}%

}

\def\printverbatim{%

\bgroup\parindent=0pt \tt

\directlua{print_lines(1)}

\egroup

}

They are reasonably straightforward: \Verbatim

launches the main Lua function, \useverbatim

LuaTEX: What it takes to make a paragraph

reads the lines, while \printverbatim also reads
them but with catcode table 1 and a typewriter
font, as is customary to print code. The latter
macro could also be launched automatically when
store_lines is finished.

What is a catcode table, then? As its name
indicates, it is a table that stores catcodes, more
precisely the catcodes in use when it was created. It
can then be called to switch to those catcodes. To
create and use catcode table 1 in the code above,
the following (or similar) should be performed:

\def\createcatcodes{\bgroup

\catcode‘\\=12 \catcode‘\{=12 \catcode‘\}=12

\catcode‘\$=12 \catcode‘\&=12 \catcode‘\^^M=13

\catcode‘\#=12 \catcode‘\^=12 \catcode‘_=12

\catcode‘\ =13 \catcode‘\~=12 \catcode‘\%=12

\savecatcodetable 1

\egroup}

\createcatcodes

The \savecatcodetable primitive saves the cur-
rent catcodes in the table denoted by the number; in
this case it stores the customary verbatim catcodes.
Note that a common difficulty of traditional verba-
tim is avoided here: suppose the user has defined
some character as active; then when printing code
s/he must make sure that the character is assigned
a default (printable) catcode, otherwise it might be
executed when it should be typeset. Here this can’t
happen: the character (supposedly) has a normal
catcode, so when table 1 is called it will be treated
with that catcode, and not as an active character.

Once defined, a catcode table can be switched
with \catcodetable followed by a number, or they
can be used in Lua with tex.print and similar
functions, as above.

As usual, we have set space and end-of-line to
active characters in our table 1; we should then
define them accordingly, although there’s nothing
new here:

\def\Space{ }

\bgroup

\catcode‘\^^M=13\gdef^^M{\quitvmode\par}%

\catcode‘\ = 13\gdef {\quitvmode\Space}%

\egroup

Now, after

\Verbatim

\def\luatex{%

Lua\kern-.01em\TeX

}%

\Endverbatim

one can use \printverbatim to typeset the code
and \useverbatim to define \luatex to LuaTEX.
The approach can be refined: for instance, here
each new verbatim text erases the preceding one,

70 TUGboat, Volume 32 (2011), No. 1

but one could assign the stored material to tables
accessible with a name, and \printverbatim and
\useverbatim could take an argument to refer
to a specific piece of code; other catcode tables
could also be used, with both macros (and not
only \printverbatim). Also, when typesetting, the
lines could be interspersed with macros obeying the
normal catcode regime (thanks to successive calls to
tex.print, or rather tex.sprint, which processes
its material as if it were in the middle of a line),
and the text could be acted on.

Reading tokens

Now our line has been processed, and TEX must
read its contents. What is read might actually be
quite different from what the previous callback has
returned, because some familiar operations have also
taken place: material after a comment sign has been
discarded, end-of-line characters have been turned
to space, blank lines to \par, escape characters and
letters have been lumped into control sequences,
multiple spaces have been reduced to one . . . What
TEX reads are tokens, and what tokens are read is
decided by the token_filter callback.

Nothing is passed to the callback: it must fetch
the next token and pass it (or not) to TEX. To do so,
the token.get_next function is available, which,
as its name indicates, gets the next token from the
input (either the source document or resulting from
macro expansion).

In LuaTEX, a token is represented as a table
with three entries containing numbers: entry 1 is
the command code, which roughly tells TEX what
to do. For instance, letters have command code 11
(not coincidentally equivalent to their catcode),
whereas a { has command code 1: TEX is supposed
to behave differently in each case. Most other
command codes (there are 138 of them for the
moment) denote primitives (the curious reader can
take a look at the first lines of the luatoken.w file
in the LuaTEX source). Entry 2 is the command
modifier: it distinguishes tokens with the same
entry 1: for letters and ‘others’, the command
modifier is the character code; if the token is a
command, it specifies its behavior: for instance,
all conditionals have the same entry 1 but differ in
entry 2. Finally, entry 3 points into the equivalence
table for commands, and is 0 otherwise.

To illustrate the token_filter callback, let’s
address an old issue in TEX: verbatim text as
argument to a command. It is, traditionally,
impossible, at least without higher-order wizardry
(less so with ε-TEX). It is also actually impossible

Paul Isambert

with LuaTEX, for the reasons mentioned in the
first paragraph of this section: commented material
has already been discarded, multiple spaces have
been reduced, etc. However, for short snippets, our
pseudo-verbatim will be quite useful and easy. Let’s
restate the problem. Suppose we want to be able to
write something like:

... some fascinating code%

\footnote*{That is \verb"\def\luatex{Lua\TeX}".}

i.e. we want verbatim code to appear in a footnote.
This can’t be done by traditional means, because
\footnote scans its argument, including the code,
and fixes catcodes; hence \def is a control sequence
and cannot be turned back to four characters. The
code below doesn’t change that state of affairs;
instead it examines and manipulates tokens in
the token_filter callback. Here’s the TEX side
(which uses "..." instead of the more verbose
\verb"..."); it simply opens a group, switches to
a typewriter font, and registers our Lua function in
the callback:

\catcode‘\"=13

\def"{\bgroup\tt

\directlua{callback.register("token_filter",

verbatim)}%

}

And now the Lua side:

function verbatim ()

local t = token.get_next()

if t[1] > 0 and t[1] < 13 then

if t[2] == 34 then

callback.register("token_filter", nil)

return token.create("egroup")

else

local cat = (t[2] == 32 and 10 or 12)

return {cat, t[2], t[3]}

end

else

return {token.create("string"), t}

end

end

It reads as follows: first we fetch the next token.
If it isn’t a command, i.e. if its command code
is between 1 and 12, then it may be the closing
double quote, with character code 34; in this case,
we unregister the function and pass to TEX a token
created on the fly with token.create, a function
that produces a token from (among others) a string:
here we simply generate \egroup. If the character
isn’t a double quote, we return it but change its
command code (i.e. its catcode) to 12 (or 10 if it is
a space), thus turning specials to simple characters
(letters also lose their original catcode, but that is
harmless). We return our token as a table with
the three entries mentioned above for the token

TUGboat, Volume 32 (2011), No. 1 71

representation. Finally, if the token is a command,
we return a table representing a list of tokens which
TEX will read one after the other: the first is
\string, the second is the original token.

If the reader experiments with the code, s/he
might discover that the double quote is actually seen
twice: first, when it is active (hence, a command),
and prefixed with \string; then as the result of
the latter operation. Only then does it shut off the
processing of tokens.

Inserting discretionaries

Now TEX has read and interpreted tokens. Among
the things which have happened, we will now be
interested in the following: the nodes that TEX has
created and concatenated into a horizontal list. This
is where typesetting proper begins. The hyphenate
callback receives the list of nodes that is the raw
material with which the paragraph will be built; it
is meant to insert hyphenation points, which it does
by default if no function is registered.

In this callback and others, it is instructive to
know what nodes are passed, so here’s a convenient
function that takes a list of nodes and prints their
id fields to the terminal and log (what number
denotes what type of node is explained in chapter 8
of the LuaTEX reference manual), unless the node
is a glyph node (id 37, but better to get the right
number with node.id), in which case it directly
prints the character:

local GLYF = node.id("glyph")

function show_nodes (head)

local nodes = ""

for item in node.traverse(head) do

local i = item.id

if i == GLYF then

i = unicode.utf8.char(item.char)

end

nodes = nodes .. i .. " "

end

texio.write_nl(nodes)

end

Let’s register it at once in the hyphenate callback:

callback.register("hyphenate", show_nodes)

No hyphenation point will be inserted for the
moment, we’ll take care of that later.

Now suppose we’re at the beginning of some
kind of postmodern minimalist novel. It starts with
a terse paragraph containing exactly two words:

Your office.
What list of nodes does the hyphenate callback
receive? Our show_nodes function tells us:

50 8 0 Y o u r 10 O f f i c e . 10

LuaTEX: What it takes to make a paragraph

First comes a temp node; it is there for technical
reasons and is of little interest. The node with id 8
is a whatsit, and if we asked we’d learn its subtype
is 6, so it is a local_par whatsit and contains,
among other things, the paragraph’s direction of
writing. The third node is a horizontal list, i.e.
an hbox; its subtype (3) indicates that it is the
indentation box, and if we queried its width we
would be returned the value of \parindent (when
the paragraph was started) in scaled points (to be
divided by 65, 536 to yield a value in TEX points).

The nodes representing characters have many
fields, among them char (a number), which our
show_nodes function uses to print something a little
more telling than an id number, width, height and
depth (numbers too, expressing dimensions in scaled
points), and font (yet another number: fonts are
internally represented by numbers). Their subtype
field will be of interest later.

Finally, the nodes with id 10 are glues, i.e.
the space between the two words and the space
that comes from the paragraph’s end of line (which
wouldn’t be there if the last character was immedi-
ately followed by \par or a comment sign). Their
specifications can be accessed via subfields to their
spec fields (because a glue’s specs constitute a node
by themselves).

Now, what can be done in this callback? Well,
first and foremost, insert hyphenation points into
our list of nodes as LuaTEX would have done
by itself, had we left the callback empty. The
lang.hyphenate function does this:

callback.register("hyphenate",

function (head, tail)

lang.hyphenate(head)

show_nodes(head)

end)

There is no need to return the list, because LuaTEX
takes care of it in this callback, as is also the case
with the ligaturing and kerning callbacks. Also,
those three callbacks take two arguments: head and
tail, respectively the first and last nodes of the list
to be processed. The tail can generally be ignored.

Now we we can see what hyphenation produces:

50 8 0 Y o u r 10 o f 7 f i c e . 10

As expected, a discretionary has been inserted with
id 7; it is a discretionary node, with pre, post and
replace fields, which are equivalent to the first,
second and third arguments of a \discretionary

command: the pre is the list of nodes to be inserted
before the line break, the post is the list of nodes
to be inserted after the line break, and the replace
is the list of nodes to be inserted if the hyphenation

72 TUGboat, Volume 32 (2011), No. 1

point isn’t chosen. In our case, the pre field contains
a list with only one node, a hyphen character, and
the other fields are empty.

A final word on hyphenation. The excep-
tions loaded in \hyphenation can now contain
the equivalent of \discretionary, by inserting
{pre}{post}{replace} sequences; German users
(and probably users of many other languages) will
be delighted to know that they no longer need to
take special care of backen in their document; a
declaration such as the following suffices:

\hyphenation{ba{k-}{}{c}ken}

Also, with a hyphen as the first and third arguments,
compound words can be hyphenated properly.

Ligatures

As its name indicates, the ligaturing callback
is supposed to insert ligatures (this happens by
itself if no function is registered). If we used the
show_nodes function here, we’d see no difference
from the latest output, because that callback im-
mediately follows hyphenate. But we can register
our function after ligatures have been inserted with
the node.ligaturing function (again, no return
value):

callback.register("ligaturing",

function (head, tail)

node.ligaturing(head)

show_nodes(head)

end)

And this returns:

50 8 0 Y o u r 10 o 7 c e . 10

Did something go wrong? Why is office thus
mangled? Simply because there is an interaction
between hyphenation and ligaturing. If the hyphen-
ation point is chosen, then the result is of-<fi>ce,
where <fi> represents a ligature; if the hyphenation
point isn’t chosen, then we end up with o<ffi>ce,
i.e. another ligature; in other words, what ligature
is chosen depends on hyphenation. Thus the discre-
tionary node has f- in its pre field, <fi> in post

and <ffi> in replace.
Ligature nodes are glyph nodes with subtype 2,

whereas normal glyphs have subtype 1; as such,
they have a special field, components, which points
to a node list made of the individual glyphs that
make up the ligature. For instance, the components
of an <ffi> ligature are <ff> and i, and the
components of <ff> are f and f. Ligatures can thus
be decomposed when necessary.

How does LuaTEX (either as the default be-
havior of the ligaturing callback or as the

Paul Isambert

node.ligaturing function) know what sequence
of glyph nodes should result in a ligature? The
information is encoded in the font: LuaTEX looks
up the ligatures table associated (if any) with
each character, and if the following character is
included in that table, then a ligature is created.
For instance, for f in Computer Modern Roman,
the ligatures table has a cell at index 105, that is
i, which points to character 12, which contains the
<fi> ligature. Thus, LuaTEX knows nothing about
ligatures involving more than two glyphs. Even the
<ffi> ligature is a ligature between <ff> and i.

However, fonts, especially of the OpenType
breed, sometimes define ligatures with more than
two glyphs; for instance, the input 3/4 is supposed
to produce something like 3/4 (a single glyph).
One can choose, when creating the font from the
OpenType file, to create a phantom ligature <3/>

and make 3/4 a ligature between <3/> and 4; then
LuaTEX can handle it automatically. It is more
elegant and less error-prone, though, to deal with
such ligatures by hand, so to speak: register a
function in the ligaturing callback which, given a
string of nodes, creates a ligature. It is also slower.

Also in this callback, such things as contextual
substitutions should take place. For instance, initial
and final forms of a glyph, be it in Arabic or in
some flourished Latin font, should be handled here.
In theory, that is quite easy: check the context of a
node, i.e. the surrounding nodes; if it matches the
context for a given substitution, then apply it. For
instance, if our example paragraph were typeset in
Minion (shipped gratis with Adobe Reader) with
the ss02 feature on, the r of Your and the e of office

would be replaced by their final variants, because
the contexts match: r is followed by a glue and e is
followed by a stop (technically, they’re not followed
by glyphs inhibiting the substitution, that is, glyphs
denoting a letter). In practice, however, things are
more complicated, if only because you have to read
such contextual substitutions from the font file.

However, we can perform a very simple type
of contextual substitution. Code used to load a
font in LuaTEX generally applies the trep feature
(inspired by X ETEX), so that the grave and single
quote characters are replaced with left and right
quotes; but one might want to be lazier still and
use " everywhere; then the proper quotation mark
should be substituted, depending on where the
double quote occur.

Here’s some simple code to implement this rule
for such substitutions: if " is found, replace it with ’
if the node immediately preceding (if any) is a glyph
and its character isn’t a left parenthesis; otherwise,

TUGboat, Volume 32 (2011), No. 1 73

replace it with ‘. (Here and elsewhere, I use not (x

== y) where x ~= y would be simpler, but ~ would
be expanded in \directlua, and x \noexpand~= y

isn’t so simple anymore.)

local GLYF = node.id("glyph")

callback.register("ligaturing",

function (head)

for glyph in node.traverse_id(GLYF, head) do

if glyph.char == 34 then

if glyph.prev and glyph.prev.id == GLYF

and not (glyph.prev.char == 40) then

glyph.char = 39

else

glyph.char = 96

end

end

end

node.ligaturing(head)

end)

Note that we still apply node.ligaturing. Now one
can use "word" to print ‘word’ and thus rediscover
the thrill of modern word processors.

Inserting kerns

Analogous to ligaturing, kerning is supposed to
insert font kerns, and again this happens by itself
if no function is registered. Furthermore, nothing
happens between the ligaturing and kerning

callbacks, so again, using show_nodes would be
uninformative. The equivalent function in this case
is node.kerning, so we can do:

callback.register("kerning",

function (head, tail)

node.kerning(head)

show_nodes(head)

end)

And the result is:

50 8 0 Y 11 o u r 10 o 7 c e . 10

What has changed is that a node of id 11, i.e. a
kern, has been inserted, because an o after a Y

looks better if it is moved closer to it. Compare
‘Yo’ and ‘Yo’. Such kerns are specified in the fonts,
like ligatures, which make sense, since kerns, like
ligatures, depends on the glyphs’ design.

Like contextual ligatures and substitutions,
there is contextual positioning. Kerns are encoded
in the font (as internalized by LuaTEX) like liga-
tures, i.e. glyphs have a kerns table indexed with
character numbers and dimensions (in scaled points)
as values; hence kerning is automatic with glyph
pairs only, and contextual positioning should be
made by hand. For instance, in ‘A.V.’, a (negative)
kern should be inserted between the first stop and

LuaTEX: What it takes to make a paragraph

the V ; however, this should happen only when the
stop is preceded by an A; if the first letter were T

(i.e. ‘T.V.’), the kern is much less desirable (or at
least a different amount of kerning should be used).

Finally, some hand-made kerning is to take
place here too. For instance, French typographic
rules require that a thin space be inserted before
some punctuation marks (not so thin, actually,
which sometimes verges on the ugly, but one is
free to adopt Robert Bringhurst’s ‘Channel Island
compromise’), but there are some exceptions: for
instance, although a question mark should be pre-
ceded by such a space, the rule obviously doesn’t
apply if the mark follows an opening parenthesis (?)
or another question mark. Technically, this could
be encoded in the font; in practice, it is much easier
to handle in the kerning callback. If one chooses to
do so, one should make sure all the newly inserted
kerns are of subtype 1, because kerns of subtype 0
are font kerns and might be reset if the paragraph
is built with font expansion.

One last callback before building

the paragraph

The previous callbacks apply no matter whether
we’re building a paragraph or creating an \hbox.
The ones we’ll see now are used only in the first
case, i.e. (TEXnically speaking) when a vertical
command is encountered in unrestricted horizontal
mode. The first of those is pre_linebreak_filter,
and if we use show_nodes on the list it is given, then
we notice that something has happened between the
kerning callback and now:

8 0 Y 11 o u r 10 o 7 c e . 12 10

First, the temporary node at the beginning of the
list has been removed; it is not needed anymore,
but from now on we should always return the
list. Hence, the show_nodes call would have been
embedded in:

callback.register("pre_linebreak_filter",

function (head)

show_nodes(head)

return head

end)

Second, a new node has been inserted, with id 12:
that is a penalty. If we queried its penalty field, it’d
return 10, 000. Where does the infinite penalty come
from? The reader might know that, when preparing
to build a paragraph, TEX removes a last space (i.e.
the last glue node) of the horizontal list and replaces
it with a glue whose value is \parfillskip, and
prefixes the latter with an infinite penalty so no line

74 TUGboat, Volume 32 (2011), No. 1

break can occur. That is what has happened here:
the last node is a glue (id 10), but not the same as
before, as its subtype (15) would indicate: it is the
\parfillskip glue.

Nothing in particular is supposed to happen
in the pre_linebreak_filter callback, and TEX
does nothing by default. The callback is used for
special effects before the list is broken into lines; its
arguments are the head of the list to be processed
and a string indicating in which circumstances the
paragraph is being built; relevant values for the
latter are an empty string (we’re in the main
vertical list), vbox, vtop and insert.

At last, building the paragraph!

Finally we must build the paragraph. To do so
we use the linebreak_filter callback; by default,
paragraph building is automatic (fortunately), but
if we register a function in the callback we should
break lines by ourselves. Well, more or less: as
usual, there is a function, tex.linebreak, which
does exactly that

The callback receives two arguments: a list of
nodes and a boolean; the latter is true if we’re
building the part of a larger paragraph before a
math display, otherwise it is false. Now, given
the list of nodes, one must return another list of
an entirely different nature: it should be made
of horizontal boxes (lines of text), glues (interline
glues), penalties (e.g. widow and club penalties),
perhaps inserts or \vadjust-ed material, etc. As
just mentioned, the tex.linebreak function does
all this; it can also take an optional argument, a
table with TEX parameters as keys (for instance
hsize, tolerance, widowpenalty), so paragraphs
can easily be built with special values.

As an example of paragraph building, let’s
address the issue of setting a paragraph’s first line
in small caps, as is often done for the first paragraph
of a chapter. We’re using LuaTEX, so we don’t want
any dirty trick, and we want TEX to build the best
paragraph (i.e. we don’t want to simply mess with
space in the first line), which includes the possibility
that the first line is hyphenated. The code below
is just a sketch, but it gives an overview of the
approach. First things first, we need a font, and we
need a macro to declare that the next paragraph
should be treated in a special way:

\font\firstlinefont=cmcsc10

\def\firstparagraph{\directlua{

callback.register("hyphenate", false)

callback.register("ligaturing", false)

callback.register("kerning", false)

Paul Isambert

callback.register("linebreak_filter",

function (head, is_display)

local par, prevdepth, prevgraf =

check_par(head)

tex.nest[tex.nest.ptr].prevdepth=prevdepth

tex.nest[tex.nest.ptr].prevgraf=prevgraf

callback.register("hyphenate", nil)

callback.register("ligaturing", nil)

callback.register("kerning", nil)

callback.register("linebreak_filter", nil)

return par

end)}}

First, we deactivate the first three node-processing
callbacks by registering false, because we want to
keep the original list of nodes with only the replace-
ments that occur before the pre_linebreak_filter
callback; we’ll do hyphenating, ligaturing and kern-
ing by hand. In practice, it would be preferable
to retrieve the functions (if any) that might be
registered in those callbacks and use those, because
there might be more than what is done by default.
We could do that with callback.find but won’t
bother here.

Next, we register linebreak_filter function
that calls check_par; the latter will return a
paragraph and the new value for prevdepth and
prevgraf, so we can set the values for the current
nesting level (the list we’re in) by hand (it isn’t done
automatically). Finally, we return the callbacks to
their default behavior by registering nil.

Before turning to the main check_par function,
here’s a subfunction that it uses to do the job we’ve
prevented LuaTEX from doing by itself: insert
hyphenation points, ligatures and kerns, and then
build the paragraph. There’s no need to set
head to the return value of lang.hyphenate, since
no new head can be produced (no hyphenation
point can be inserted at the beginning of the list),
and anyway lang.hyphenate returns a boolean
indicating success or failure. Besides the paragraph
itself, tex.linebreak also returns a table with
the values of prevdepth and prevgraf (and also
looseness and demerits). The last line of the
code retrieves the inner numerical representation of
the font we’ve chosen for the first line.

local function do_par (head)

lang.hyphenate(head)

head = node.ligaturing(head)

head = node.kerning(head)

local p, i = tex.linebreak(head)

return p, i.prevdepth, i.prevgraf

end

local firstlinefont = font.id("firstlinefont")

Now we can turn to the big one, called by
linebreak_filter. First, it builds a tentative

TUGboat, Volume 32 (2011), No. 1 75

paragraph; it works on a copy of the original list
because we don’t want to spoil it with hyphenation
points that might be removed later. Then it finds
the first line of the paragraph (the head of the
paragraph list might be a glue, or \vadjust-pre’d
material).

local HLIST = node.id("hlist")

local GLYF = node.id("glyph")

local KERN = node.id("kern")

function check_par (head)

local par = node.copy_list(head)

par, prevdepth, prevgraf = do_par(par)

local line = par

while not (line.id == HLIST) do

line = line.next

end

Next, in that first line, we check whether
all glyphs have the right font; as soon as we
find one which isn’t typeset in small caps (our
firstlinefont), we review all the glyphs in the
original list until we find the first one that isn’t
typeset in small caps, and we change its font as
we want it. The reader can perhaps see where this
is headed: we’ll rebuild the paragraph as often as
necessary, each time turning one more glyph of the
original horizontal list to a small capital, until all
the glyphs in the first line are small caps; that
is also why we must reinsert hyphenation points,
ligatures and kerns each time: fonts have changed,
so the typesetting process must be relaunched from
the start.*

local again

for item in node.traverse_id(GLYF, line.head)

do if not (item.font == firstlinefont) then

again = true

for glyph in node.traverse_id(GLYF, head)

do if not (glyph.font == firstlinefont) then

glyph.font = firstlinefont

break

end; end

break

end; end

If we must typeset again, free the paragraph
from TEX’s memory and start again with the
modified head:

if again then

node.flush_list(par)

return check_par(head)

* The user might wonder what line.head stands for in
the second line; that is the same thing as line.list, i.e. it
gets the contents of a list (its first node). Since LuaTEX
v.0.65, list has been replaced with head for reasons not so
clearly explained in my previous paper (see TUGboat 31:3);
list should remain (deprecated) until around v.0.8.

LuaTEX: What it takes to make a paragraph

Otherwise (our first line is good, all glyphs are small
caps), there’s one more thing to check; suppose the
last character we turned to small capital was x. By
definition, x is at the end of the first line before
its font is changed; but is it still the case after
the change? Not necessarily: TEX may very well
have decided that, given x’s new dimensions, it
should be better to break before—and perhaps not
immediately before x but a couple glyphs before.
So perhaps we ended up with small capitals in the
second line. They must be removed, but how? Turn
them back to lowercase and build the paragraph
again? No, definitely not, we’d be stuck in a loop
(lowercase in the first line, small caps in the second
line, and again . . .). The solution adopted here is to
turn those glyphs to the original font (say \tenrm)
and keep them where they are:

else

local secondline = line.next

while secondline

and not (secondline.id == HLIST) do

secondline = secondline.next

end

if secondline then

local list = secondline.head

for item in node.traverse_id(GLYF,list)

do if item.font == firstlinefont then

item.font = font.id("tenrm")

else

break

end; end

Now, what if those first glyphs in the second line
were f and i ; in small caps they presumably did
not form a ligature, but now? We should reapply
ligatures. And what about kerning? We should
remove all font kerns (they have subtype 0) and
also reapply kerning. Finally we should repack the
line to its original width, so that glues are stretched
or shrunken to the appropriate values. That is not
optimal, but such cases where small caps end up in
the second line are very rare.

The last lines delete the original list and return
the paragraph with the associated parameters.

list = node.ligaturing(list)

for kern in node.traverse_id(KERN, list)

do if kern.subtype == 0 then

node.remove(list, kern)

end; end

list = node.kerning(list)

secondline.head = node.hpack(

list, secondline.width, "exactly")

end

node.flush_list(head)

return par, prevdepth, prevgraf

end

end

76 TUGboat, Volume 32 (2011), No. 1

The reader may have spotted more than one
flaw in this code. A full solution would have greatly
exceeded the limits of this already quite long article.
So it is left as an exercise: work out a solution that
doesn’t rely on the assumption that no functions are
registered in the other callbacks, for instance. Or
give an alternative way to cope with small capitals
in the second line (rebuild the paragraph from that
line on?).

Handling the paragraph

The post_linebreak_filter callback is very calm
after all we’ve just been through: nothing happens
by default. It is passed what linebreak_filter

returns as its first argument, i.e. a list of horizontal
lists, penalties, glues, and perhaps interline material
(e.g. inserts). It also receives a second argument, a
string as with the pre_linebreak_filter callback.
In my previous paper, I gave examples of what
can be done here, for instance underlining. I
won’t give another example, but the reader looking
for practise could try to adapt to LuaTEX Victor
Eijkhout’s code in section 5.9.6 of TEX by Topic.

The callback should return a paragraph, pos-
sibly the same as the one it was passed. That
paragraph is then appended to the surrounded ver-
tical list, and what follows is the job of the page
builder. Our exploration ends here.

Conclusion

Most of the operations we have reviewed aren’t new
in TEX: LuaTEX simply gives access to them. Since
the very beginning, TEX has read lines and tokens
and built lists of nodes (although the hyphenating/
ligaturing pass has changed a lot in LuaTEX); that
is its job. Control over the typesetting process
is what makes TEX so good, perhaps better than
any other typography software; LuaTEX brings that
control one step further and allows manipulating
of the very atoms that make digital typography:
characters and glyphs, and a few other technical
bells and whistles. In view of the freedom that has
been gained, I sometimes tend to find TEX82 and
its offspring a bit dictatorial, in retrospect.

⋄ Paul Isambert

Université de la Sorbonne Nouvelle

France

zappathustra (at) free dot fr

Paul Isambert

Luna—my side of the moon

Paweł Jackowski

Perhaps everyone knows the pleasant feeling when
a long lasting project is finally done. A few years
ago, when I was almost happy with my pdfTEX
environment, I saw LuaTEX for the first time. So
instead of enjoying some relief, I had to take a
deep breath and start moving the world to the
Moon. The state of weightlessness thus caused is
such that I’m not able to walk on the “normal”
ground any more. But I don’t even think about
going back. Although I still haven’t settled for good
yet, the adventure is delightful. To domesticate a
new environment I gave it a name—Luna.

First thoughts

My first thought after meeting LuaTEX was “wow!”.
Scripting with a neat programming language, access
to TEX lists, an ability to hook some deep mecha-
nisms via callbacks, a font loader library on hand,
an integrated METAPOST library and more. All
this was tempting and I had no doubts I wanted to
go for it. At the first approach I was thinking of mi-
grating my workflows step-by-step, replacing some
core mechanisms with those provided by LuaTEX.
But these were not only the macros that needed to
change. It was considering TEX as a programming
language that needed to change. In LuaTEX I
rather treat TEX as a paragraph and page building
machine to which I can talk in a real programming
language.

There were a lot of things I had to face before
I was able to typeset anything, beginning with a
UTF-8 regime and a new TEX font representation,
a lot of work that I never wanted to do myself. So
just after “wow!” also “oops. . . ” had to come. In
this article I focus on things rather tightly related
to PDF graphics, as I find that part the most
interesting, at least in the sense of taking advantage
of Lua and LuaTEX functionalities.

\pdfliteral retires

TEX concentrates on text, providing only a raw
mechanism for document graphics features, such as
colors, transparencies or geometry transformations.
pdfTEX goes a little bit further in providing some
concept of a graphic state accessible for the user.
But the gear for the graphic control remains the
same. We have only specials in several variants.

This article appeared originally in slightly different
form in MAPS 41, fall 2010.

TUGboat, Volume 32 (2011), No. 1 77

What’s wrong with them? The things which
they do behind the scenes may hurt.

\def\flip#1{%

\pdfliteral{q -1 0 0 -1 20 6 cm}%

\hbox to0pt{#1\hss}%

\pdfliteral{Q}\hbox to20bp{\hss}}

\def\red#1{%

\pdfliteral page{q 0 1 1 0 k}%

#1\pdfliteral page{Q}}

The first macro applies a transformation to a

text

object, the second applies a color (red online,
gray in print). If used separately, they work just
fine. If used as \flip{\red{text}}, it’s still
ok:

text

. Now try to say \red{\flip{text}}.
The text is transformed and colored as expected.
But all the rest of the page is broken, as its
content is completely displaced! And now try
\red{\flip{text}?} (with a question mark at the
end of a parameter text). Everything is perfectly
ok again:

text

?
Here is what happens: when \pdfliteral

occurs, pdfTEX inserts a whatsit. This whatsit will
cause writing the data into the output PDF content
stream at the shipout time. If the literal was used in
a default mode (with no direct or page keywords)
pdfTEX first writes a transformation from lower-
left corner of the page to the current position,
then prints the user data, then writes another
transformation from the current position back to the
PDF page origin. Actually the transform restoration
is not performed immediately after writing the user
data, but at the beginning of the very next textual
node. So in the case of several subsequent literal
whatsit nodes, the transform may not occur where
the naive user expects it. Simplifying the actual
PDF output, we expected something like

q 0 1 1 0 k % save, set color

1 0 0 1 80 750 cm % shift to TeX pos

q -1 0 0 -1 20 6 cm % save, transform

BT ... ET % put text

Q % restore transform

1 0 0 1 -80 -750 cm % shift (redundant)

Q % restore color

but we got

q 0 1 1 0 k

1 0 0 1 80 750 cm

q -1 0 0 -1 20 6 cm

BT ... ET

Q

Q

1 0 0 1 -80 -750 cm

Luna—my side of the moon

In general, the behavior of \pdfliterals de-
pends on the surrounding node list. There are
reasons behind it. Nevertheless, one can hardly
control lists in pdfTEX, so it’s hard to avoid sur-
prises.

Does LuaTEX provide something better then
\pdfliterals? Yes; it provides \latelua. Very
much like \pdfliteral, a \latelua instruction in-
serts a whatsit. At shipout time, LuaTEX executes
the Lua code provided as an argument to \latelua.
The code may call the standard pdf.print() func-
tion, which writes raw data into a PDF content
stream. So, what’s the difference? The difference
is that in \latelua chunks we know the current
position on the page: it is accessible through the
pdf.h and pdf.v fields. We can use the position
coordinates explicitly in the literal content. To
simulate the behavior of \pdfliteral one can say

\latelua{

local bp = 65781

local cm = function(x, y)

return string.format(

"1 0 0 1 \%.4f \%.4f cm\string\n",

x/bp, y/bp

)

end

pdf.print("page", cm(pdf.h, pdf.v))

% special contents

pdf.print("page", cm(-pdf.h, -pdf.v))

}

now having the \latelua mechanism and the
pdf.print() function, I no longer need and no
longer use \pdfliteral.

Graphic state

Obviously writing raw PDF data is supposed to be
covered by lower level functions. Here is an example
of how I set up graphic features in a higher level
interface:

\pdfstate{

local cmyk = color.cmyk

cmyk.orange =

(0.8*cmyk.red+cmyk.yellow)/2

fillcolor = cs.orange

opacity = 30

linewidth = ’1.5pt’

rotate(30)

...

}

The definition of \pdfstate is something like

\long\def\pdfstate#1{%

\latelua{setfenv(1, pdf) #1}}

78 TUGboat, Volume 32 (2011), No. 1

The parameter text is Lua code. The setfenv()

call simply allows me to omit the ‘pdf.’ prefix
before variables. Without that I would need

\latelua{

pdf.fillcolor = pdf.color.cmyk.orange

pdf.opacity = 30

pdf.linewidth = ’1.5pt’

pdf.rotate(30)

...

}

pdf is a standard LuaTEX library. I extend its
functionality, so every access to special fields causes
an associated function call. Each such function
updates the internal representation of a graphic
state and keeps the output PDF graphic state
synchronized by writing appropriate content stream
data. But whatever happens underneath, on top
I have just key=value pairs. I’m glad I no longer
need to think about obscure TEX interfaces for that.
The Lua language is the interface.

I expect graphic features to behave more or
less like basic text properties, a font selection
and size. They should obey grouping and they
should be passed through page breaks. The first
requirement can be simply satisfied by \aftergroup

in conjunction with \currentgrouplevel. A simple
group-respecting graphic state could be made as the
following:

\newcount\gstatelevel

\def\pdfsave{\latelua{

pdf.print("page", "q\string\n")}}

\def\pdfrestore{\latelua{

pdf.print("page", "Q\string\n")}}

\def\pdflocal#1{

\ifnum\currentgrouplevel=\gstatelevel

\else

\gstatelevel=\currentgrouplevel

\pdfsave \aftergroup\pdfrestore

\fi \latelua{pdf.print"#1\string\n"}}

\begingroup \pdflocal{0.5 g}

this is gray

\endgroup

this is black

Passing a graphic state through page breaks is
relatively difficult due to the fact that we usually
don’t know where TEX thinks the best place to break
is. In my earth-life I abused marks for that purpose
or, when a more robust mechanism was needed, I
used \writes at the price of another TEX run and
auxiliary file analysis. And so we come to another
advantage of using \latelua. Recalling the fact
that Lua chunks are executed during shipout, we

Paweł Jackowski

don’t need to worry about the page break because
it has already happened. If every graphic state
setup is a Lua statement performed in order during
shipout and every such statement keeps the output
PDF state in sync through pdf.print() calls, then
after the shipout the graphic state is what should
be passed to the very next page.

In a well-structured PDF document every page
should refer only to those resources which were
actually used on that page. The pdfTEX engine
guarantees that for fonts and images, while the
\latelua mechanism makes it straightforward for
other resource types.

Note a little drawback of this late graphic state
concept: before shipout one can only access the
state of the beginning of the page, because recent
\latelua calls that will update the current state
have not happened yet. I thought this might be
a problem and made a mechanism that updates a
pending-graphic state for early usage, but so far I
have never needed to use it in practice.

PDF data structures

When digging deeper, we have to face creating
custom PDF objects for various purposes. Due to
the lack of composite data structures, in pdfTEX
one was condemned to using strings. Here is an
example of PDF object creation in pdfTEX.

\immediate\pdfobj{<<

/FunctionType 2

/Range [0 1 0 1 0 1 0 1]

/Domain [0 1] /N 1

/C0 [0 0 0 0] /C1 [0 .4 1 0]

>>}

\pdfobj{

[/Separation /Spot /DeviceCMYK

\the\pdflastobj\space 0 R]

}\pdfrefobj\pdflastobj

In LuaTEX one can use Lua structures to
represent PDF structures. Although it involves
some heuristics, I find it convenient to build PDF

objects from clean Lua types, as in this example:

\pdfstate{create

{"Separation","Spot","DeviceCMYK",

dict.ref{

FunctionType = 2,

Range = {0,1,0,1,0,1,0,1},

Domain = {0,1}, N = 1,

C0 = {0,0,0,0}, C1 = {0,.4,1,0}

}

}

}

TUGboat, Volume 32 (2011), No. 1 79

Usually, I don’t need to create an independent
representation of a PDF object in Lua. I rather
operate on more abstract constructs, which may
have a PDF-independent implementation and may
work completely outside of LuaTEX. For a color
representation and transformations I use my color
library, which has no idea about PDF. An additional
LuaTEX-dependent binding extends that library
with extra skills necessary for the PDF graphic
subsystem.

Here is an example of a somewhat complex
colorspace: a palette of duotone colors, each con-
sisting of two spot components with lab equivalent
(the PDF structure representing that is much too
long to be shown here):

\pdfstate{

local lab = colorspace.lab{

reference = "D65"

}

local duotone = colorspace.poly{

{name = "Black", lab.black},

{name = "Gold", lab.yellow},

}

local palette = colorspace.trans{

duotone(0,100), duotone(100,0),

n = 256

}

fillcolor = palette(101)

}

In the last line, the color object (simple Lua table)
is set in a graphic state (Lua dictionary), and its
colorspace (another Lua dictionary) is registered
in a page resources dictionary (yet another Lua
dictionary). The graphic state object takes care
to update a PDF content stream and finally the
resources dictionary “knows” how to become a PDF

dictionary.

It’s never too late

When talking about PDF object construction I’ve
concealed one sticky difficulty. If I want to han-
dle graphic setup using \latelua, I need to be
able to create PDF objects during shipout. Gen-
erally, \latelua provides no legal mechanism for
that. There is the pdf.obj() standard function,
a LuaTEX equivalent of the \pdfobj primitive,
but it only obtains an allocated PDF object num-
ber. What actually ensures writing the object
into the output is a whatsit node inserted by a
\pdfrefobj〈number〉 instruction. But in \latelua

it is too late to use it. We also cannot use the
pdf.immediateobj() variant within \latelua, as

Luna—my side of the moon

it writes the object into the page content stream
resulting in an invalid PDF document.

So what can one do? LuaTEX allows creating
an object reference whatsit by hand. If we know
the tail of the list currently written out (or any list
node not yet swallowed by a shipout procedure), we
can create this whatsit and put it into the list on
our own (risk), without use of \pdfrefobj.

\def\shipout{%

\setbox256=\box\voidb@x

\afterassignment\doshipout\setbox256=}

\def\doshipout{%

\ifvoid256 \expandafter\aftergroup \fi

\lunashipout}

\def\lunashipout{\directlua{

luna = luna or {}

luna.tail =

node.tail(tex.box[256].list)

tex.shipout(256)

}}

\latelua{

local data = "<< /The /Object >>"

local ref = node.new(

node.id "whatsit",

node.subtype "pdf_refobj"

)

ref.objnum = pdf.obj(data)

local tail = luna.tail

tail.next = ref ref.prev = tail

luna.tail = ref % for other lateluas

}

In this example, before every \shipout the very
last item of the page list is saved in luna.tail.
During shipout all code snippets from late_lua

whatsits may create a pdf_refobj node and insert
it just after the page tail to ensure writing them
out by LuaTEX engine.

Self-conscious \latelua

If every \latelua chunk may access a page list tail,
why not give it access to a late_lua whatsit node
to which this code is linked? Here is a concept of
the whatsit that contains Lua code that can access
the whatsit:

\def\lateluna#1{\directlua{

local self = node.new(

node.id "whatsit",

node.subtype "late_lua"

)

self.data = "\luaescapestring{#1}"

luna.this = self

80 TUGboat, Volume 32 (2011), No. 1

node.write(self)

}}

\lateluna{print(luna.this.data)}

Beyond the page builder

Self-printing Lua code is obviously not what I use
this mechanism for. It is worthy to note that if
we can make a self-aware late_lua whatsit, we
can access the list following this whatsit. It is too
late to change previous nodes, as they were already
eaten by a shipout and written to the output, but
one can freely (which doesn’t mean safely!) modify
nodes that follow the whatsit.

Let’s start with a more general self-conscious
late_lua whatsit:

\long\def\lateluna#1{\directlua{

node.write(

luna.node("\luaescapestring{#1}")

)

}}

\directlua{

luna.node = function(data)

local self = node.new(

node.id "whatsit",

node.subtype "late_lua"

)

local n = \string#luna+1

luna[n] = self

self.data =

"luna.this = luna["..n.."] "..data

return self

end

}

Here is a function that takes a text string, font
identifier and absolute position as arguments and
returns a horizontal list of glyph nodes:

local string = unicode.utf8

function luna.text(s, font_id, x, y)

local head = node.new(node.id "glyph")

head.char = string.byte(s, 1)

head.font = font_id

head.xoffset = -pdf.h+tex.sp(x)

head.yoffset = -pdf.v+tex.sp(y)

local this, that = head

for i=2, string.len(s) do

that = node.copy(this)

that.char = string.byte(s, i)

this.next = that that.prev = this

this = that

end

head = node.hpack(head)

Paweł Jackowski

head.width = 0

head.height = 0

head.depth = 0

return head

end

Now we can typeset texts even during shipout.
The code below results in typing it is never too

late! text with 10bp offset from the page origin.

\lateluna{

local this = luna.this

local text = luna.text(

"it is never too late!",

font.current(), ’10bp’, ’10bp’

)

local next = this.next

this.next = text text.prev = this

if next then

text = node.tail(text)

text.next = next next.prev = text

end

}

Note that when mixing shipout-time typeset-
ting (manually generated lists) and graphic state
setups (using pdf.print() calls), one has to ensure
placing things in order. Once a list of glyphs is
inserted after a late_lua whatsit, the embedded
Lua code should not print literals into the output.
All literals will effectively be placed before the text
anyway. Here is a funny mechanism to cope with
that:

\lateluna{

luna.thread = coroutine.create(

function()

local this, next, text, tail

for i=0, 360, 10 do

% graphic setup

pdf.fillcolor =

pdf.color.hsb(i,100,100)

pdf.rotate(10)

% glyphs list

this = luna.this next = this.next

text = luna.text("!",

font.current(), 0, 0)

this.next = text text.prev = this

text = node.tail(text)

% luna tail

tail = luna.node

"coroutine.resume(luna.thread)"

text.next = tail tail.prev = text

if next then

tail.next = next next.prev = tail

end

coroutine.yield()

TUGboat, Volume 32 (2011), No. 1 81

end

end)

coroutine.resume(luna.thread)

}\end

This is the output (regrettably grayscaled in print):

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Once the page shipout starts, the list is almost
empty. It contains just a late_lua whatsit node.
The code of this whatsit creates a Lua coroutine that
repeatedly sets some color, some transformation and
generates some text (an exclamation mark) using
the method previously shown. A tail of the text
is another late_lua node. After inserting the
newly created list fragment, the thread function
yields, effectively finishing the execution of the
first late_lua chunk. Then the shipout procedure
swallows the recently generated portion of text,
writes it out and takes care of font embedding.
After the glyph list the shipout spots the late_lua
whatsit with the code that resumes the thread and
performs another loop iteration, making a graphic
setup and generating text again. So the execution
of the coroutine starts in one whatsit, but ends
in another, which didn’t exist when the procedure
started. Every list item is created just before being
processed by the shipout.

Reinventing the wheel

Have you ever tried to draw a circle or ellipse using
\pdfliterals? It is very inconvenient, because
PDF format provides no programming facilities and
painting operations are rather limited in comparison
with its PostScript ancestors. Here is an example
of PostScript code and its output. The code uses
control structures, which are not available in PDF.
It also takes an advantage of the arc operator
that approximates arcs with Bézier curves. To
obtain elliptical arcs, it uses the fact that (unlike in
PDF) transformations can be applied between path
construction operators.

Luna—my side of the moon

/r 15 def

/dx 50 def /dy -50 def

/pos {day 7 mod dx mul week dy mul} def

/arx /arc load def

dx dy 4 mul neg translate

0.6 setgray 0.4 setlinewidth

1 setlinejoin 1 setlinecap

0 1 27 {

/day exch def /week day 7 idiv def

/s day 360 mul 28 div cos def

day 14 eq {

/arx /arcn load def

} {

gsave pos r 90 270 arx

day 7 eq day 21 eq or {

closepath

gsave 0 setgray stroke grestore

} {

s 1 scale

pos exch s div exch r 270 90 arx

gsave 0 setgray initmatrix stroke

grestore

} ifelse

fill grestore

} ifelse

} for

In LuaTEX one can hire METAPOST for draw-
ings, obtaining a lot of coding convenience. The
above program wouldn’t be much simpler, though.
As of now, METAPOST does not generate a PDF;
whatever it outputs still needs some postprocessing
to include the graphic on-the-fly in the main PDF

document.
As I didn’t want to invent a completely new

interface for graphics, I decided to involve Post-
Script code in document creation. Just to explain

82 TUGboat, Volume 32 (2011), No. 1

how it may pay off, after translating the example
above into a PDF content stream I obtain 30k bytes
of code, which is quite a lot in comparison with the
500 bytes of PostScript input.

PostScript support sounds scary. Obviously
I’m not aiming to develop a fully featured Post-
Script machine on the LuaTEX platform. A Post-
Script interpreter is supposed to render the page
on the output. In Luna I just write a vector data
string into a PDF document contents, so what I
actually need is a reasonable subset of PostScript
operators. The aim is to control my document
graphics with a mature language dedicated for that
purpose. The following two setups are equivalent,
as at the core level they both operate on the same
Lua representation of a graphic state.

\pdfstate{% lua interface

save()

fillcolor = color.cmyk(0,40,100,0)

...

restore()}

\pdfstate{% postscript interface

ps "gsave 0 .4 1 0 setcmykcolor"

...

ps "grestore"

}

A very nice example of the benefit from joining
typesetting beyond the page builder and PostScript
language support is this π-spiral submitted by Kees
van der Laan:

.1
4

1
5

9

5 5 8 9

9

8
4

4

895

8
8

4
1

9
1

9
9 9

5 1

5
8

9
4
9

4
459

8

1
4

8

8 9 9 8
8

4
8

5
4

1

1

98
1

4
8

8
5

1

8
4

9
8

4
4

9
5

5
581

5
5

9
4

8
1

8 4 8 1 1 1
4

5

8
4

1

1985
11

5
5

5
9

4
4

9 4 8 9 5 4 9

8
1

9
4
4

8819
5

5
9

4
4

1

8 4 5 4 8

8
8

1

5
1

19

9
1

4
5

4
8
5

9 4

4
8

1
4

5
4

481

9

4
9 1 4 1

4
5

8

155881

4
8

8
1

5
9

9 8
9

5
4

9
1

1
5

4
89

5

9
1

1

5 5 4 8 8

4
5

1

8
4149519

4
1

5
1

1
9
4

5

5
5

9
5

9
1
9

5

918
1

1

8
1

9

1
1

9 1
5 1

1
8

5
4

8
4
4

99

4
9

5
5

1
8

8
5

5 4 8

9
1

9
8
1

8

119491

..
.¼

(See http://gust.org.pl/projects/pearls/2010p.)

⋄ Paweł Jackowski

GUST

Paweł Jackowski

TUGboat, Volume 32 (2011), No. 1 83

Reflections on the history of the
LATEX Project Public License (LPPL)—
A software license for LATEX and more

Frank Mittelbach

Abstract

In August 2010 the LATEX Project Public License
(LPPL) was finally listed by the Open Source Initia-
tive (OSI) as a free software license. This marks the
endpoint of a long set of discussions around the TEX
community’s predominant license.

This article reflects on the history of the license,
the way it came about, and the reasons for its devel-
opment and content. It explains why it was chosen
even though alternative free licenses have been avail-
able at least from 1990 onwards.

Contents

1 Introduction: Why a special license? 83

1.1 The early days of the TEX community . . 83

1.2 Digression: The multicol license 84

1.3 The GNU GPL—A new star on the horizon 84

1.4 The move from LATEX 2.09 to LATEX2ε . . 85

1.5 Challenged by GPL evangelists 86
2 The evolution of the LPPL 87

2.1 An attempted cleanup 87

2.2 Digression: The GNUTEX 0.x project . . . 87

2.3 The issue with unmaintained packages . . 88

2.4 The Debian dispute 88

2.5 OSI certification 89
3 Conclusions 89

3.1 Thanks 90
A References 90
B The LATEX Project Public License 91

1 Introduction: Why a special license?

1.1 The early days of the TEX community

When Donald Knuth in 1982 published the TEX
program it was one of the first, if not indeed the
first, major program to be published as documented
source in its entirety. As such it forms an early
example of “free software”, well before this term
was more formally defined by Richard Stallman in
the free software movement, and well before one of
the most influential free software licenses— the GNU

GPL—was released in 1989.
Instead of a more elaborate license the source of

the TEX program contained (and still contains) the
interesting copyright and license information shown
in Figure 1 on the following page. The motivation for
this small set of clauses was to ensure that documents
written for the TEX engine would be readable for the
foreseeable future and indeed, TEX and its extensions

still compile documents written in the early 1980s
and produce output exactly as intended.

In those days, when the TEX community was
born, the Internet was mainly restricted to academics
and used for knowledge sharing. Commercial aspects
hadn’t yet entered the space and spam wasn’t a
known phenomenon. As a result, not much got for-
malized and there was a general trust that others
would respect your ideas and would together help
in improving and developing them. People spent
countless hours on developing code and ideas and
made them available (typically free of charge) to
others. Most people didn’t bother with any formal
copyright notice, some had statements like “Copy-
right date name All rights reserved” while others
explicitly placed their work in the “public domain”.

Legally, all such works that were developed with-
out granting explicit rights to others (e.g., by stating
those rights in a license, or by placing the mate-
rial into the public domain), didn’t offer anybody
a right to work with the material, or to use it for
private or commercial purposes without explicitly
obtaining this right from the copyright holder. So
the simple copyright line “Copyright (C) 1992 by

Leslie Lamport” (from the old LATEX 2.09 sources)
could probably have been used to go after anybody
who made use of LATEX whether for their PhD or for
typesetting books for publication and sale.

But of course, nobody understood those lines in
this way. They were correctly understood1 as only
marking the intellectual ownership of the code but
in the mind of the community and, I would think,
in the minds of most if not all of the developers, not
as a mechanism to restrict any “proper” use of the
material. Now the interesting part here is “proper”:
as most people spent considerable free time in devel-
oping their work, there was a base assumption in the
community (and other software communities) that
while such work should be freely available, those that
use it should also in one way or the other contribute
to the whole setup. Commercial use was frowned
upon by most as a way to take away the work of oth-
ers for profit without a benefit for the community, so
(not surprisingly) after a while works appeared that
explicitly stated “Freely usable for non-commercial
usage”, or “Commercial use not allowed” in addition
to a copyright notice.

Again, I would claim, back then nobody really
understood the implications and the legal situation
created with such statements— I certainly didn’t
when I developed my first packages for LATEX; I

1 In a legal sense this isn’t the correct interpretation as
just explained.

Reflections on the history of the LATEX Project Public License

84 TUGboat, Volume 32 (2011), No. 1

% This program is copyright (C) 1982 by D. E. Knuth; all rights are reserved.

% Copying of this file is authorized only if (1) you are D. E. Knuth, or if

% (2) you make absolutely no changes to your copy. (The WEB system provides

% for alterations via an auxiliary file; the master file should stay intact.)

% See Appendix H of the WEB manual for hints on how to install this program.

% And see Appendix A of the TRIP manual for details about how to validate it.

Figure 1: License of TEX, the program [3]

simply copied such lines that I had seen in other
works. Especially a statement like “No commercial
use allowed” was way over the top, since everybody
was happy if his or her package got used to produce
fine books or published articles and in most cases
that meant the work was commercially used.

1.2 Digression: The multicol license

The fact that such statements were not a dull sword
was something I learned to my surprise at one point
when I got approached by somebody for special ex-
tensions to multicol which took me quite some time
to implement. At several points in the discussions
I asked about the background for the requests and
finally got told that they had no intention of telling
me or anybody or making any of their part of the
work available to others as they wanted to make
money from it and that I should stop bothering
them. The way this was done got me slightly mad
and so I pointed out “heh, have you read the license
statement on multicol about commercial usage not
being allowed?” That made the email correspon-
dence come to an abrupt halt for a moment and then
a day or two later I had the company lawyers asking
for my phone number in Germany to discuss this and
reach some settlement and license agreement. Well, I
was certainly young and naive back then2 so I didn’t
come out rich from this and probably wouldn’t have
either way, but it sure felt good that I had a lever to
stop being taken for an absolute imbecile that could
be made to work for free under false premises.

This was about the first time I got some aware-
ness about the importance and power of licenses as
well as of the fact that what was out there wasn’t
really what people intended. As I wasn’t interested
in making money from LATEX software and normally
would have wanted to use my stuff freely and free of
charge, some refinements were really in order. Thus,
about to sell my soul and negotiate a special license
with this company I had to come up with some idea
of an acceptable license (including a license fee). I
ended up with a sort of psychological experiment,
which was partly my coward’s way out of not want-
ing to deal with license fees and partly some genuine

2 I can report the first attribute has changed since then.

interest on what would happen. The result was per-
haps the most curious license ever drawn up in that I
required for certain commercial usages of multicol
the licensee to determine the importance of it for his
or her circumstances and determine the license fee
from that.

I must say that the experiment as such was a suc-
cess as it provided me with some interesting insights
into human psychology, though I can’t recommend it
to anybody who wants to make money from software
or other works. Not that I want to imply that no
license fees got paid: over the years I got a number
of nice presents, a book in Japanese (with a 100
Deutschmark note inside I nearly overlooked as it
was hidden and nowhere mentioned), and a few other
things, so all in all, some pleasant surprises.

Somewhere around 2000 I changed the license
for multicol to the LPPL but to honor the history
(and to continue the experiment) I kept the previous
license now toned down to a “Moral Obligation” so
people are free to ignore it completely if they wish
to, while previously they were only free to set the fee
to zero by stating that this is the value they attach
to their use of multicol.3

1.3 The GNU GPL—A new star on
the horizon

Returning back to history: in 1989 Richard Stallman
published the first version of the GPL (General Pub-
lic License) [1] for use with programs released as part
of the GNU project. Richard intended the GPL to
become a license that could be used with any free soft-
ware project and in that he spectacularly succeeded
(Wikipedia reports for 2007 a penetration of roughly
70% on major sites such as SourceForge.net). Since
its first introduction the use of the GPL in the free
software development communities increased steadily
to reach these impressive figures, especially in com-
munities that were concerned with developing pro-
grams for individual use. The strong copyleft [2]
provided by the GPL gave the programmer who used
the license the confidence that their work would ben-
efit the whole world and any future development

3 Interested people can find the wording of this “Moral
Obligation” at the top of the multicol.sty or .dtx file [4]. It
is nearly identical to the earlier license statement.

Frank Mittelbach

TUGboat, Volume 32 (2011), No. 1 85

Our aim is that LATEX should be a system which can be trusted by users of all types to fulfill their
needs. Such a system must be stable and well-maintained. This implies that it must be reasonably
easy to maintain (otherwise it will simply not get maintained at all). So here is a summary of our
basic philosophy:

We believe that the freedom to rely on a widely-used standard for document interchange
and formatting is as important as the freedom to experiment with the contents of files.

We are therefore adopting a policy similar to that which Donald Knuth applies to
modifications of the underlying TEX system: that certain files, together with their names,
are part of the system and therefore the contents of these files should not be changed unless
the following conditions are met:

• they are clearly marked as being no longer part of the standard system;

• the name of the file is changed.

In developing this philosophy, and the consequent limitations on how modifications of the system
should be carried out, we were heavily influenced by the following facts concerning the current
widespread and wide-ranging uses of the LATEX system.

1. LATEX is not just a document processing system; it also defines a language for document
exchange.

2. The standard document class files, and some other files, also define a particular formatting of
a document.

3. The packages that we maintain define a particular document interface and, in some cases,
particular formatting of parts of a document.

4. The interfaces between different parts of the LATEX system are very complex and it is therefore
very difficult to check that a change to one file does not affect the functionality of both that
file and also other parts of the system not obviously connected to the file that has been
changed.

Figure 2: Excerpts from the 1995 document “Modifying LATEX” [5]

based on their code would remain free, rather than
being exploited by software companies that would
not return anything back to the community.

Within the TEX—and especially LATEX—com-
munity, however, the GPL played only a niche role.4

The community starship, the TEX program itself,
came with its own very specific license “change my
name if you want to change me” and many people (if
they had bothered with some explicit license at all)
had adopted a similar approach or had used lines
like “freely usable for non-commercial purposes” as
explained earlier.

1.4 The move from LATEX 2.09 to LATEX2ε

In 1993 the LATEX project released a fundamentally

4 This situation has changed only marginally over time.
The majority of the packages for LATEX now use the LPPL for
their license, though many of the executable support programs
and some package use the GPL. More precisely, in October
2010 we had 3849 products/packages listed on CTAN of which
592 (i.e., about 15%) were distributed under GPL and 1751
(i.e., about 45%) used the LPPL; the remainder (many of
them fonts) had other licenses. And even if you just look at
non-LATEX works, this means the GPL is used by about 28% so
still significantly less than in other free software communities.

new version of LATEX. This new version (LATEX2ε)
for the first time got an explicit license in the form
of a file called legal.txt which inside had the title
“LATEX2ε Copyright, Warranty and Distribution Re-
strictions”. One can think of this file as the very first
version of the LPPL, though it wasn’t called that in
those days and it was a lot simpler than the license
under which LATEX is made available today.

Perhaps the most important aspect of it (which
later on also turned out to produce the biggest con-
troversy) was the list of restrictions that apply when
producing changed versions of files from the LATEX
system, the most prominent being

* You rename the file before you make any
changes to it.

This was directly modeled after Don Knuth’s license
for TEX and within the TEX community there was
broad consensus this this was an adequate approach
to balance between the freedom of the individual to
be able to reuse and modify the code if so desired
and the importance of LATEX as a communication lan-
guage where people relied on being able to faithfully
reproduce a document written in one place elsewhere.

Reflections on the history of the LATEX Project Public License

86 TUGboat, Volume 32 (2011), No. 1

This license is an incomplete statement of the distribution terms for LATEX. As far as it goes,
it is a free software license, but incompatible with the GPL because it has many requirements
that are not in the GPL.

This license contains complex and annoying restrictions on how to publish a modified
version, including one requirement that falls just barely on the good side of the line of what is
acceptable: that any modified file must have a new name.

The reason this requirement is acceptable for LATEX is that TEX has a facility to allow you
to map file names, to specify “use file bar when file foo is requested”. With this facility, the
requirement is merely annoying; without the facility, the same requirement would be a serious
obstacle, and we would have to conclude it makes the program non-free.

The LPPL says that some files, in certain versions of LATEX, may have additional restrictions,
which could render them non-free. For this reason, it may take some careful checking to
produce a version of LATEX that is free software.

Figure 3: Excerpts from Richard Stallman’s analysis of LPPL 1.2 [6]

1.5 Challenged by GPL evangelists

While the TEX community was content with the
status quo, people in the “GPL” world who used
TEX and LATEX felt uncomfortable with the licenses
in use and started to lobby for using the GPL within
the TEX community, as they felt that it was an
unjustified restriction to be forced to change a file
name prior to making changes to it. The GPL doesn’t
pose any such restriction: you can modify a work
and distribute it without providing any easy visible
clue to its changed content.5

In essence two different world views on what
is “free software” and who should have what rights
clashed head-on for the first time. The GPL view is
largely focused on the individual programmer, with
the purpose of the GPL being to offer him or her a
maximum of rights on using and manipulating the
work as well as ensuring that such rights can’t subse-
quently be taken away. On the other hand, the TEX
program license and later the LPPL acknowledged
the fact that TEX and LATEX defined a language
for communication and that the definition of such
a language needs to remain stable to serve as the
means of communication, i.e., it tried to achieve a
balance between the individual right of a program-
mer to freely use the work and the community right
of the users of this language to rely on the work to be
faithfully representing the language itself and thus
making communication possible.

5 This is an oversimplification, as the GPL requires that
“You must cause the modified files to carry prominent notices
stating that you changed the files and the date of any change.”
However, in a context like LATEX where many files are loaded
in the background, this would mean a user would need to
check hundreds of files for modification information to ensure
that he or she is using the official versions when they get
loaded by \usepackage etc. In contrast, if a file name change
in case of modifications is required then this problem vanishes
as the documents by themselves identify what they expect.

In response to suggestions that the modification
and distribution conditions for the files constituting
the LATEX system should be similar to those implied
by Version 2 of the GPL, the LATEX project team
published the document “Modifying LATEX” [5] in an
attempt to clarify the position of the LATEX Project
team and to explain the rationale behind the license
decision. Some relevant excerpts from this docu-
ment are shown in Figure 2 on the previous page.
The document also gave explicit guidance on how
to freely change a LATEX system in any way desired,
either through customization or— if really needed—
through producing a new system only based on the
LATEX code.

In 1995 Chris Rowley and I also met face to face
with Richard Stallman to discuss the Free Software
Foundation (FSF) concerns about the LATEX license
and as a result of this meeting and some subsequent
email discussions (in which we discussed a number of
aspects of the license and clarified or changed several
of them), Richard acknowledged LATEX (and its at
that point somewhat incomplete license statement)
as free software.6

Nevertheless, Richard made it very clear that
he didn’t like the approach taken by TEX and LATEX
and published his viewpoint as an analysis of the
license on the GNU web pages [6] of which excerpts
are shown in Figure 3. (The current page states that

6 Looking through my email archives I found the following
beauty from the end of this discussion (the slanted text is
from Richard, the reply was from some member of the LATEX
project team who shall go unnamed):

Ok, I believe that the methods you’ve

described for modifying LaTeX 2e are

adequate, so that LaTeX 2e can be considered

free software.

Hoorah hooray, let the jubilation commence!

LaTeX is free software after all!

—as it turned out, this conclusion was a bit premature.

Frank Mittelbach

TUGboat, Volume 32 (2011), No. 1 87

this analysis applies to LPPL 1.2, but the excerpt
more or less corresponds to the wording that was on
the GNU web site at the time.)

I’m not going to attempt to defeat his points
here, some are certainly well taken and others are
a matter of opinion and anyway, time has moved
on because the license text has greatly evolved from
the legal.txt of 1993, via LPPL 1.0 in early 1999,
to LPPL 1.27 at the end of 1999, and ultimately to
LPPL 1.3 in 2003.

2 The evolution of the LPPL

2.1 An attempted cleanup

In the years between 1995 and 1999 a lot of new
software got written for LATEX and other flavors
of TEX. Most of this software was made available
through CTAN (the “Comprehensive TEX Archive
Network”) and regularly through TEX distributions
such as “TEX Live” or teTEX. One growing prob-
lem faced by these distributions was the number of
different licenses under which all such packages in
the distribution were made available. LATEX core
had its legal.txt but everything else had its own
license and though there was the general belief that
all or most of it was free software, depending on the
viewpoint this wasn’t true. In many cases, different
strings were attached to individual packages so that
a user of, say, LATEX would have been required to
look into every package used to understand what he
or she was allowed to do with it.

So in 1998 or thereabouts, an attempt was made
to ease this situation: People wanted to produce a
“free” TEX distribution for Debian, and to make such
a distribution in any way useful it was necessary to
ask for license changes in many packages or otherwise
exclude them as “non-free”. This was quite a heroic
act undertaken by a few individuals8 in their spare
time, as it often involved tracking down package
authors that had moved on to other pastures and had
completely forgotten that they had written some TEX
or LATEX package in their former lives. (According
to Karl Berry this kind of work continues to this day,
as legal terms unique to a given package continue
to be discovered, despite efforts at comprehensive
reviews.)

During that time the idea came up to turn
LATEX’s legal.txt into a generally usable license,

7
LPPL 1.1 lived for a very short time with only minor

differences in wording, but not content, from 1.2— in essence
we had to get our act together and that took some attempts
and some time.

8 Names that stick out in my memory are Sebastian Rahtz
and Thomas Esser, though I’m sure others have helped too.

so that package authors could simply refer to it as
the license they use for their works. So this was the
underlying reason for the attempt to write up the
LPPL and in March 1999 version 1.0 of this license
was made publicly available. But as you can imagine,
writing a license is a nontrivial act, thus we had many
discussions on how to express the intent behind the
license with the result that in fairly rapid succession
(all still in 1999) versions 1.1 and 1.2 appeared. Look-
ing back, the changes we made from legal.txt via
LPPL-1.0 to LPPL-1.1 to LPPL-1.2 were not all nec-
essarily for the better, so some of Richard’s criticism
certainly holds true for these early attempts. What
we changed for LPPL-1.3, with the help of some more
legally trained people from Debian, was ultimately
considerably more significant.

2.2 Digression: The GNUTEX 0.x project

Concurrently, but unrelated to the efforts mentioned
earlier, the GNU project (that was also quite heavily
using TEX in the form of Texinfo for documentation)
got interested in shipping a “free TEX distribution”
with the GNU software and was looking at which
of the existing distributions might fit the bill— to
which the answer was none.

As Richard later explained to us, he became
exceedingly concerned that none of the major TEX
distributions could be distributed by GNU so he ap-
proached Thomas Esser (maintainer of the teTEX
distribution) to ask if it would be possible to sepa-
rate the distribution into a free and a non-free part.
Thomas said yes, but that this would take quite some
time. So Richard asked within the GNU project if
there would be people to help Thomas with this.

At this point somebody came forward and sug-
gested that he would be interested but would prefer
to build a new free distribution from scratch instead
of helping to update teTEX. Richard gave his okay
and as a result a TEX distribution called GNUTEX
got produced. As it turned out (not really a surprise
given the license situation in the TEX world) the
first public beta of this distribution was very much
crippled, but what made matters worse was that it
completely ignored the existing license conditions of
the packages it included, for example, by not dis-
tributing the LATEX source documentation, i.e., its
.dtx files.

When this became known to the LATEX project,
David Carlisle tried to reason with the maintainer of
this new distribution and asked him to update it. Un-
fortunately this resulted in very strange statements,
such as that he would remove files written by David
and have people “write free replacements” for them,

Reflections on the history of the LATEX Project Public License

88 TUGboat, Volume 32 (2011), No. 1

continuing to bluntly disregard the LATEX license de-
tails that stated that LATEX had to be distributed as
a whole.

It came to a climax with some messages making
personal comments against the LATEX developers,
and in particular David. At this time I joined this
debate by asking Richard if this person was really
speaking for GNU, expressing my belief that if that
was indeed the case, then this would show that the
free software movement was in parts in a very sorry
state. In a very personal email Richard replied with
an apology for the damage that has been done in
the name of the GNU project and in particular the
verbal insults that some of the senior members of the
LATEX project team had to endure while defending
some core rights for which the GNU project and
the FSF were actually fighting. After some further
discussions, to get to the bottom of the dispute he
ensured that GNUTEX was taken off the archives and
that was the end of it.

What I took away with me from that episode
was that it is unfortunately very easy get carried
away with the idea that “free” means that others
have no rights worth preserving.

2.3 The issue with unmaintained packages

By the turn of the century many people thought that
the fight over licenses in the TEX world was over.
TEX and LATEX and many other packages had licenses
that were accepted as “free software licenses” by the
FSF and more and more authors of packages with
questionable licenses changed them or simply placed
their work under the LPPL from the beginning.

However, we now started to realize that the
LPPL in itself posed a problem for packages that
lost their author/maintainer because he or she lost
interest in the work or passed away as it sadly hap-
pened in some cases. As the LPPL required a name
change in case of modification, a new maintainer of a
previously unmaintained package couldn’t fix bugs or
extend the functionality without changing its name.
In this way, perfectly good names could get lost for
the LATEX language— just because of the attempt to
preserve the language integrity in the first place.

So in 2002 the idea was born to modify the LPPL

once more by including a maintenance clause that
would allow a person under certain circumstances
(normally when a work was orphaned) to take over
maintenance and in some sense ownership. The
clause was written in a way such that it was up to
the author of a work to allow or prevent this clause
to apply.

On the whole I believe that this proposed license
extension was a good idea as it further helped to

stabilize LATEX as a reliable language. But it had an
unfortunate9 side effect that everybody interested in
free software licenses started to take another look at
the LPPL.

The first person to ask was Richard, and I sent
him a draft of the intended changes and explained
their intentions. His reply was that he saw no issue
with any of them.

2.4 The Debian dispute

While a new draft of the LPPL that contained a first
version of the maintainers clause got discussed on
the LATEX project list one of its subscribers, Claire
Connelly, explained that within the Debian commu-
nity some people were unhappy about the LATEX
license and considered it nonfree (proposing to ban
LATEX from Debian distributions). She volunteered
to initiate a license review on the Debian-legal list
so that any issues with the license would be moved
from the level of vague rumor to a level of facts that
could be discussed intelligently.

However, a bit of a pity was that the first draft
of LPPL-1.3 got presented which was not very clear,
and thus added to the underlying misunderstandings
rather than helping to clear them up. For exam-
ple, one of the initial reviews remarked: “so my
one-line summary of the license would be ‘We hate
forking’ ” which doesn’t even remotely represent the
intentions behind the license. Eventually, all such
misunderstandings got resolved, but it took consider-
able effort. To be more precise, it took roughly 1600
messages (between July 2002 and June 2003) on the
debian-legal list and elsewhere to sort them out
and improve the wording to what in the end became
LPPL-1.3.

In retrospect it turned out to be fairly difficult
to identify the core reasons that led to this mas-
sive email exchange but from recollections there have
been two major sources: textual and legal deficiencies
in the license as such, and a head-on clash between
different interpretations of “freedom”. As a result,
the discussions on Debian-legal were essentially with
two only partly overlapping factions: a group of
people who seriously wanted to understand the in-
tentions behind the license and who where interested
in providing guidance on how to improve it, while
ensuring that it would meet the DFSG (Debian Free
Software Guidelines), and a second group of people
largely concerned about the rights of the program-
mer to modify code ad lib without any restrictions.
The tenor here was “a requirement to rename is a

9 Or perhaps fortunate when looking at the final outcome.
However, if I would have known beforehand the amount of
work that it took to get there, I would have let things lie.

Frank Mittelbach

TUGboat, Volume 32 (2011), No. 1 89

restriction” and therefore unacceptable. In other
words, an important requirement for “freedom” was
the ability to modify some work in situ. For many
situations this is an understandable requirement, e.g.,
when fixing bugs or when extending functionality.
It does, however, become a bit blurry when modi-
fications result in changing expected behavior. In
that case one can argue that there is also the right
of the recipient/user of the work to consider: to not
be deliberately misled.

As an example, an interesting thread within
the discussions spawned from a statement made by
Boris Veytsman: “I am FOR the freedom of speech.
However, I am against the freedom of my grocer to
call a 950g weight ‘a kilogram’.” The replies were
interesting and ranged from the opinion that the De-
bian project has no intention of supporting deliberate
fraud (i.e., in this respect supporting his position) all
the way to the claim that this would be acceptable
behavior and needs to be supported in the spirit of
freedom. Clearly there isn’t any way to bridge the
chasm between such widely different opinions with
a license text and that was not attempted, though
quite some energy was used on either side to argue
the respective positions.

Leaving aside the discussions around the more
extreme positions, the core point of dispute was the
attempt of the LPPL to protect LATEX as a language
for interchange. By the nature of the beast this
means acknowledging that in LATEX file names of
packages, classes, etc., are part of the (extensible)
LATEX language, i.e., each package extends or alters
the language and its name together with its func-
tionality becomes part of LATEX when it is loaded.
That is, by \usepackage{name} the user requests a
certain package with a specific behavior upon which
his document then relies.

To continue the above analogy, when a user loads
the hypothetical package weights for typesetting gro-
cery data then his document should not typeset 1kg
at some installations, but 950g at others, as that
would render LATEX as a language useless.

In the end we settled for a toned down version
of this requirement: although the LATEX Project still
strongly recommends a name change in case of modifi-
cations, the license alternatively allows for producing
in situ modifications of components provided the de-
rived work clearly and unambiguously identifies itself
as a modified version of the original component to
the user when used interactively in the same way the
original component would identify itself to the user
(Clause 6a of the license). In the case of a LATEX pack-
age that would typically be achievable through an
appropriate change of the \ProvidesPackage decla-

ration. However, the LATEX project team still recom-
mends to use the name change approach and within
the TEX community this is the predominantly used
method. Whenever documents are intended to be
exchanged this is the only safe way to ensure that
your document typesets as intended and remains so
over time. How powerful this approach is can be
seen in the fact that with a few exceptions TEX and
LATEX documents from the last two decades can be
still successfully typeset today.

Returning to the evolution of the license, on
June 18th 2003 the Debian legal community agreed
that LPPL 1.3 is a free software license with respect
to the DFSG guidelines. This marked the endpoint
of the active license development.

2.5 OSI certification

After the LPPL got accepted by Debian there was
some discussion about submitting it also for approval
through the Open Source Initiative, but effectively
we had run out of steam. It would have meant (an-
other) round of formal submissions and most likely
discussions about wording and content and at least I
didn’t feel up to it at that time. But it was a some-
what naggingly open issue that the license wasn’t
certified by OSI, given that the LPPL codified the
accepted behavior in a large and active free software
community.

Fortunately, Will Robertson, a new member in
the LATEX project, took up that task and on the
rather nice date 09/09/09 approval from the OSI was
sought in the category: “Licenses that are popular
and widely used or with strong communities”.

As it turned out my fears of a repetition of the
DFSG experience were groundless; it took about two
dozen email exchanges to get the license accepted
without any request for modification and only about
two months later on Wednesday, November 11, 2009
the OSI Board formally approved it [8]. It then took
nearly another year until the Open Source Initiative
updated their web site, but in August 2010 the license
finally appeared there [9].

3 Conclusions

From the history it seems fairly obvious that there
are a good number of reasons why it is helpful to have
a fairly uniform license landscape in a community like
the TEX world. Does it have to be the LPPL? That
question is less clear and as the discussions above
have shown a matter of opinion and controversy. But
on the whole I believe the answer is yes; the time
and effort was well spent and the community has
benefitted from it.

Reflections on the history of the LATEX Project Public License

90 TUGboat, Volume 32 (2011), No. 1

On the surface, languages like Perl or Python
have issues similar as LATEX. So why doesn’t LATEX
use the GPL as they do? I guess the answer lies in
the unique elements in the structure and usage of
LATEX (and perhaps its community?). It consists of
a very large and complete collection of third-party
packages in its standard form of distribution and
all of this forms the language which the community
expects to be able to use interchangeably. The other
important difference is that for a library in Perl or
Python that implements a set of functions it is nor-
mally well understood what represents a “correct”
implementation of these functions, e.g., a time con-
version function or a mathematical formula is either
implemented correctly or not—but it is not going
to be a matter of “taste”.

In the area of typography, however, “correctness”
has no reasonable definition and so it is not surpris-
ing that people have different opinion on what looks
good or how something should be improved. This is
perfectly acceptable and in fact encouraged through-
out the community but it needs to be channeled
in order to maintain the other important aspect of
the language: support for interchange. And that is
something that the GPL and similar licenses aren’t
able to ensure, while the LPPL approaches, and, as
we think, resolved that issue adequately.

One of the commenters for the OSI review re-
marked, “I think this license is trying to create or
enforce a policy for maintainership more than it con-
cerns itself with copying & use/patent issues. I’m
not convinced that this is a good idea, but TEX has
an active community and if this license seems to
work out for them, my level of concern isn’t so great
that I would second-guess that aspect.” He is prob-
ably right, as in the TEX community the copying
& use/patent issues play a minor role compared to
resolving how to best maintain the language as a
whole. Thus the idea of a maintainer and its rights
is quite prominent. We definitely think it helps in
that people know they are allowed to take over an
orphaned work— it would probably happen less if it
weren’t stated explicitly as a possibility.

Is the LPPL the best solution to the issues that
a community like the TEX community encounters?
I guess not, but it is the best that we have been
able to come up with after many (perhaps too many)
hours and attempts.

3.1 Thanks

A number of people from the TEX community and
from the Debian legal community have been instru-
mental in helping to make LPPL a better license and
I would like to thank them all— in particular I would

like to mention Jeff Licquia and Branden Robinson
from Debian legal10 with whom I had many fruitful
discussions over ways to improve it and shape in a
way that it properly expresses our intentions with-
out conflicting with other people’s thoughts on what
comprises a free software license.

From the TEX community I’d like to thank all of
my colleagues from the LATEX project team, in partic-
ular David Carlisle and Chris Rowley who shouldered
large proportions of the external discussions during
those years. And a heartfelt thanks to Will Robert-
son who single-handedly got the license OSI-approved
when the other team members had run out of steam
to even attempt it.

Many other people from the TEX community
contributed in one way or the other, be it on latex-l,
debian-legal, or in private communication and it
is impossible to list them all. As a representative
of this huge group I should perhaps mention Boris
Veytsman who wrote over one hundred messages on
the subject during the debate with Debian.

Last not least I’d like to thank Richard Stallman
for initiating the first round of discussions and draw-
ing our intentions to the flaws of the initial license
as well as opening at least my eyes to the complexity
and difficulties behind free and open source software
licensing.

⋄ Frank Mittelbach
LATEX Project
http://www.latex-project.org

A References

[1] The GNU GPL 1.0 can be found at: www.gnu.
org/licenses/old-licenses/gpl-1.0.txt

[2] en.wikipedia.org/wiki/Copyleft

[3] License for TEX at the top of mirror.ctan.
org/systems/knuth/dist/tex/tex.web

[4] Moral obligation clause for the multicol

package at the top of mirror.ctan.org/
macros/latex/required/tools/multicol.dtx

[5] The document “Modifying LATEX”: mirror.
ctan.org/macros/latex/doc/modguide.pdf

[6] Comments on software licenses by the FSF:
www.gnu.org/licenses/license-list.html

[7] lists.debian.org/debian-legal/

[8] opensource.org/minutes2009111

[9] www.opensource.org/licenses/lppl

10 There are a few more people from Debian legal should
perhaps be named but any list would naturally be incom-
plete. For those interested I suggest reading through the
debian-legal archives [7] from that time; you will find this a
lengthy but illuminating read in parts.

Frank Mittelbach

TUGboat, Volume 32 (2011), No. 1 91

B The LATEX Project Public License

LPPL Version 1.3c 2008-05-04

Copyright 1999, 2002–2008 LATEX3 Project

Everyone is allowed to distribute verbatim copies
of this license document, but modification of it is
not allowed.

Preamble

The LATEX Project Public License (lppl) is the primary
license under which the LATEX kernel and the base LATEX
packages are distributed.

You may use this license for any work of which you
hold the copyright and which you wish to distribute.
This license may be particularly suitable if your work is
TEX-related (such as a LATEX package), but it is written
in such a way that you can use it even if your work is
unrelated to TEX.

The section ‘whether and how to distribute

works under this license’, below, gives instructions,
examples, and recommendations for authors who are
considering distributing their works under this license.

This license gives conditions under which a work may
be distributed and modified, as well as conditions under
which modified versions of that work may be distributed.

We, the LATEX3 Project, believe that the conditions
below give you the freedom to make and distribute mod-
ified versions of your work that conform with whatever
technical specifications you wish while maintaining the
availability, integrity, and reliability of that work. If
you do not see how to achieve your goal while meeting
these conditions, then read the document ‘cfgguide.tex’
and ‘modguide.tex’ in the base LATEX distribution for
suggestions.

Definitions

In this license document the following terms are used:

Work Any work being distributed under this License.

Derived Work Any work that under any applicable
law is derived from the Work.

Modification Any procedure that produces a Derived
Work under any applicable law – for example, the
production of a file containing an original file associ-
ated with the Work or a significant portion of such
a file, either verbatim or with modifications and/or
translated into another language.

Modify To apply any procedure that produces a De-
rived Work under any applicable law.

Distribution Making copies of the Work available from
one person to another, in whole or in part. Dis-
tribution includes (but is not limited to) making
any electronic components of the Work accessible
by file transfer protocols such as ftp or http or
by shared file systems such as Sun’s Network File
System (nfs).

Compiled Work A version of the Work that has been
processed into a form where it is directly usable on
a computer system. This processing may include

using installation facilities provided by the Work,
transformations of the Work, copying of components
of the Work, or other activities. Note that modifi-
cation of any installation facilities provided by the
Work constitutes modification of the Work.

Current Maintainer A person or persons nominated
as such within the Work. If there is no such explicit
nomination then it is the ‘Copyright Holder’ under
any applicable law.

Base Interpreter A program or process that is nor-
mally needed for running or interpreting a part or
the whole of the Work.

A Base Interpreter may depend on external com-
ponents but these are not considered part of the
Base Interpreter provided that each external com-
ponent clearly identifies itself whenever it is used
interactively. Unless explicitly specified when ap-
plying the license to the Work, the only applicable
Base Interpreter is a ‘LATEX-Format’ or in the case
of files belonging to the ‘LATEX-format’ a program
implementing the ‘TEX language’.

Conditions on Distribution and Modification

1. Activities other than distribution and/or modifica-
tion of the Work are not covered by this license;
they are outside its scope. In particular, the act of
running the Work is not restricted and no require-
ments are made concerning any offers of support for
the Work.

2. You may distribute a complete, unmodified copy
of the Work as you received it. Distribution of
only part of the Work is considered modification of
the Work, and no right to distribute such a Derived
Work may be assumed under the terms of this clause.

3. You may distribute a Compiled Work that has been
generated from a complete, unmodified copy of the
Work as distributed under Clause 2 above, as long
as that Compiled Work is distributed in such a
way that the recipients may install the Compiled
Work on their system exactly as it would have been
installed if they generated a Compiled Work directly
from the Work.

4. If you are the Current Maintainer of the Work, you
may, without restriction, modify the Work, thus
creating a Derived Work. You may also distribute
the Derived Work without restriction, including
Compiled Works generated from the Derived Work.
Derived Works distributed in this manner by the
Current Maintainer are considered to be updated
versions of the Work.

5. If you are not the Current Maintainer of the Work,
you may modify your copy of the Work, thus creating
a Derived Work based on the Work, and compile
this Derived Work, thus creating a Compiled Work
based on the Derived Work.

6. If you are not the Current Maintainer of the Work,
you may distribute a Derived Work provided the
following conditions are met for every component

Reflections on the history of the LATEX Project Public License

92 TUGboat, Volume 32 (2011), No. 1

of the Work unless that component clearly states
in the copyright notice that it is exempt from that
condition. Only the Current Maintainer is allowed
to add such statements of exemption to a component
of the Work.

(a) If a component of this Derived Work can be
a direct replacement for a component of the
Work when that component is used with the
Base Interpreter, then, wherever this compo-
nent of the Work identifies itself to the user
when used interactively with that Base In-
terpreter, the replacement component of this
Derived Work clearly and unambiguously iden-
tifies itself as a modified version of this compo-
nent to the user when used interactively with
that Base Interpreter.

(b) Every component of the Derived Work con-
tains prominent notices detailing the nature of
the changes to that component, or a prominent
reference to another file that is distributed as
part of the Derived Work and that contains a
complete and accurate log of the changes.

(c) No information in the Derived Work implies
that any persons, including (but not limited
to) the authors of the original version of the
Work, provide any support, including (but
not limited to) the reporting and handling of
errors, to recipients of the Derived Work unless
those persons have stated explicitly that they
do provide such support for the Derived Work.

(d) You distribute at least one of the following
with the Derived Work:

i. A complete, unmodified copy of the Work;
if your distribution of a modified compo-
nent is made by offering access to copy the
modified component from a designated
place, then offering equivalent access to
copy the Work from the same or some
similar place meets this condition, even
though third parties are not compelled to
copy the Work along with the modified
component;

ii. Information that is sufficient to obtain a
complete, unmodified copy of the Work.

7. If you are not the Current Maintainer of the Work,
you may distribute a Compiled Work generated
from a Derived Work, as long as the Derived Work
is distributed to all recipients of the Compiled Work,
and as long as the conditions of Clause 6, above,
are met with regard to the Derived Work.

8. The conditions above are not intended to prohibit,
and hence do not apply to, the modification, by
any method, of any component so that it becomes
identical to an updated version of that component
of the Work as it is distributed by the Current
Maintainer under Clause 4, above.

9. Distribution of the Work or any Derived Work in an
alternative format, where the Work or that Derived

Work (in whole or in part) is then produced by
applying some process to that format, does not
relax or nullify any sections of this license as they
pertain to the results of applying that process.

10. (a) A Derived Work may be distributed under
a different license provided that license itself
honors the conditions listed in Clause 6 above,
in regard to the Work, though it does not
have to honor the rest of the conditions in this
license.

(b) If a Derived Work is distributed under a differ-
ent license, that Derived Work must provide
sufficient documentation as part of itself to
allow each recipient of that Derived Work to
honor the restrictions in Clause 6 above, con-
cerning changes from the Work.

11. This license places no restrictions on works that are
unrelated to the Work, nor does this license place
any restrictions on aggregating such works with the
Work by any means.

12. Nothing in this license is intended to, or may be
used to, prevent complete compliance by all parties
with all applicable laws.

No Warranty

There is no warranty for the Work. Except when oth-
erwise stated in writing, the Copyright Holder provides
the Work ‘as is’, without warranty of any kind, either
expressed or implied, including, but not limited to, the
implied warranties of merchantability and fitness for a
particular purpose. The entire risk as to the quality and
performance of the Work is with you. Should the Work
prove defective, you assume the cost of all necessary
servicing, repair, or correction.

In no event unless required by applicable law or
agreed to in writing will The Copyright Holder, or any
author named in the components of the Work, or any
other party who may distribute and/or modify the Work
as permitted above, be liable to you for damages, in-
cluding any general, special, incidental or consequential
damages arising out of any use of the Work or out of
inability to use the Work (including, but not limited to,
loss of data, data being rendered inaccurate, or losses
sustained by anyone as a result of any failure of the Work
to operate with any other programs), even if the Copy-
right Holder or said author or said other party has been
advised of the possibility of such damages.

Maintenance of The Work

The Work has the status ‘author-maintained’ if the Copy-
right Holder explicitly and prominently states near the
primary copyright notice in the Work that the Work can
only be maintained by the Copyright Holder or simply
that it is ‘author-maintained’.

The Work has the status ‘maintained’ if there is a
Current Maintainer who has indicated in the Work that
they are willing to receive error reports for the Work (for
example, by supplying a valid e-mail address). It is not

Frank Mittelbach

TUGboat, Volume 32 (2011), No. 1 93

required for the Current Maintainer to acknowledge or
act upon these error reports.

The Work changes from status ‘maintained’ to ‘un-
maintained’ if there is no Current Maintainer, or the
person stated to be Current Maintainer of the work
cannot be reached through the indicated means of com-
munication for a period of six months, and there are no
other significant signs of active maintenance.

You can become the Current Maintainer of the Work
by agreement with any existing Current Maintainer to
take over this role. If the Work is unmaintained, you can
become the Current Maintainer of the Work through the
following steps:

1. Make a reasonable attempt to trace the Current
Maintainer (and the Copyright Holder, if the two
differ) through the means of an Internet or similar
search.

2. If this search is successful, then enquire whether the
Work is still maintained.

(a) If it is being maintained, then ask the Cur-
rent Maintainer to update their communica-
tion data within one month.

(b) If the search is unsuccessful or no action to
resume active maintenance is taken by the
Current Maintainer, then announce within the
pertinent community your intention to take
over maintenance. (If the Work is a LATEX
work, this could be done, for example, by post-
ing to comp.text.tex.)

3. (a) If the Current Maintainer is reachable and
agrees to pass maintenance of the Work to
you, then this takes effect immediately upon
announcement.

(b) If the Current Maintainer is not reachable and
the Copyright Holder agrees that maintenance
of the Work be passed to you, then this takes
effect immediately upon announcement.

4. If you make an ‘intention announcement’ as de-
scribed in 2b above and after three months your
intention is challenged neither by the Current Main-
tainer nor by the Copyright Holder nor by other
people, then you may arrange for the Work to be
changed so as to name you as the (new) Current
Maintainer.

5. If the previously unreachable Current Maintainer
becomes reachable once more within three months of
a change completed under the terms of 3b or 4, then
that Current Maintainer must become or remain
the Current Maintainer upon request provided they
then update their communication data within one
month.

A change in the Current Maintainer does not, of itself,
alter the fact that the Work is distributed under the lppl
license.

If you become the Current Maintainer of the Work,
you should immediately provide, within the Work, a

prominent and unambiguous statement of your status as
Current Maintainer. You should also announce your new
status to the same pertinent community as in 2b above.

Whether and How to Distribute Works under

This License

This section contains important instructions, examples,
and recommendations for authors who are considering
distributing their works under this license. These authors
are addressed as ‘you’ in this section.

Choosing This License or Another License

If for any part of your work you want or need to use
distribution conditions that differ significantly from those
in this license, then do not refer to this license anywhere
in your work but, instead, distribute your work under a
different license. You may use the text of this license as
a model for your own license, but your license should not
refer to the lppl or otherwise give the impression that
your work is distributed under the lppl.

The document ‘modguide.tex’ in the base LATEX dis-
tribution explains the motivation behind the conditions
of this license. It explains, for example, why distributing
LATEX under the gnu General Public License (gpl) was
considered inappropriate. Even if your work is unrelated
to LATEX, the discussion in ‘modguide.tex’ may still be
relevant, and authors intending to distribute their works
under any license are encouraged to read it.

A Recommendation on Modification

Without Distribution

It is wise never to modify a component of the Work,
even for your own personal use, without also meeting the
above conditions for distributing the modified component.
While you might intend that such modifications will never
be distributed, often this will happen by accident – you
may forget that you have modified that component; or
it may not occur to you when allowing others to access
the modified version that you are thus distributing it
and violating the conditions of this license in ways that
could have legal implications and, worse, cause problems
for the community. It is therefore usually in your best
interest to keep your copy of the Work identical with
the public one. Many works provide ways to control the
behavior of that work without altering any of its licensed
components.

How to Use This License

To use this license, place in each of the components of
your work both an explicit copyright notice including
your name and the year the work was authored and/or
last substantially modified. Include also a statement that
the distribution and/or modification of that component
is constrained by the conditions in this license.

Here is an example of such a notice and statement:

Reflections on the history of the LATEX Project Public License

94 TUGboat, Volume 32 (2011), No. 1

%% pig.dtx

%% Copyright 2005 M. Y. Name

%

% This work may be distributed and/or modified under the

% conditions of the LaTeX Project Public License, either version 1.3

% of this license or (at your option) any later version.

% The latest version of this license is in

% http://www.latex-project.org/lppl.txt

% and version 1.3 or later is part of all distributions of LaTeX

% version 2005/12/01 or later.

%

% This work has the LPPL maintenance status ‘maintained’.

%

% The Current Maintainer of this work is M. Y. Name.

%

% This work consists of the files pig.dtx and pig.ins

% and the derived file pig.sty.

Given such a notice and statement in a file, the
conditions given in this license document would apply,
with the ‘Work’ referring to the three files ‘pig.dtx’,
‘pig.ins’, and ‘pig.sty’ (the last being generated from
‘pig.dtx’ using ‘pig.ins’), the ‘Base Interpreter’ refer-
ring to any ‘LATEX-Format’, and both ‘Copyright Holder’
and ‘Current Maintainer’ referring to the person ‘M. Y.
Name’.

If you do not want the Maintenance section of lppl
to apply to your Work, change ‘maintained’ above into
‘author-maintained’. However, we recommend that you
use ‘maintained’ as the Maintenance section was added
in order to ensure that your Work remains useful to the
community even when you can no longer maintain and
support it yourself.

Derived Works That Are Not Replacements

Several clauses of the lppl specify means to provide
reliability and stability for the user community. They
therefore concern themselves with the case that a De-
rived Work is intended to be used as a (compatible or
incompatible) replacement of the original Work. If this
is not the case (e.g., if a few lines of code are reused for
a completely different task), then clauses 6b and 6d shall
not apply.

Important Recommendations

Defining What Constitutes the Work

The lppl requires that distributions of the Work contain
all the files of the Work. It is therefore important that
you provide a way for the licensee to determine which
files constitute the Work. This could, for example, be
achieved by explicitly listing all the files of the Work near
the copyright notice of each file or by using a line such
as:

% This work consists of all files listed in manifest.txt.

in that place. In the absence of an unequivocal list it
might be impossible for the licensee to determine what
is considered by you to comprise the Work and, in such
a case, the licensee would be entitled to make reasonable
conjectures as to which files comprise the Work.

Frank Mittelbach

TUGboat, Volume 32 (2011), No. 1 95

siunitx: A comprehensive (SI) units package

Joseph Wright

Abstract

The siunitx package provides a powerful toolkit for
typesetting numbers and units in LATEX. By incor-
porating detail about the agreed rules for presenting
scientific data, siunitx enables authors to concentrate
on the meaning of their input and leave the package
to deal with the formatting. Version 2 of siunitx

increases the scope of the package and is intended
to act as a solid base for further development.

1 Introduction

Physical quantities are important mathematical data,
which appear in print in many scientific publications.
These physical quantities are made up of a num-
ber and an associated unit: the two parts together
make up a single mathematical entity. A series of
international agreements have led to the Système In-
ternational d’Unités (SI units), administered by the
Bureau International des Poids et Mesures (Bureau
International des Poids et Mesures, 2010). This sys-
tem lays down units such as the kilogram, metre and
kelvin, and provides a self-consistent approach to
measuring all physical quantities. At the same time,
there are clearly defined standards which describe
how the data should be presented. The US National
Institute for Standards and Technology (NIST) have
described ‘best practices’ for presenting numbers
and units in scientific contexts (National Institute
for Standards and Technology, 2010).

LATEX’s approach of providing logical structure
is ideally suited to helping authors follow these rules
without needing to study them in detail. However,
this does not mean that it has been easy to write a
comprehensive package to deal with both numbers
and units. This article provides an overview of the
siunitx package (Wright, 2010), which aims to be A
comprehensive (SI) units package.

2 A little history

2.1 Before siunitx

siunitx is the latest in a series of different LATEX
packages for handling units, and it is therefore useful
to know a little about the earlier implementations.

The package units (Reichert, 1998) provides per-
haps the most basic units support: the macro \unit

to mark up input as a unit (with an optional value).

\unit[〈value〉]{〈unit〉}

Building on this, the unitsdef package (Happel,
2005) provides a number of pre-defined unit macros,
which expand to the appropriate symbol(s) for the

unit. Unfortunately, these definitions require addi-
tional macros so that the package can format them
correctly:

\newunit{\newtonmeter}

{\newton\unittimes\meter}

\newunit{\newtonmeterpersec}

{\per{\newton\unittimes\meter}{\second}}

As we will see, siunitx is able to define similar unit
macros but without needing support functions such
as \unittimes.

An alternative approach to defining unit mac-
ros was provided by SIunits (Heldoorn and Wright,
2007). SIunits provides a larger set of pre-defined
units than unitsdef, but again requires support func-
tions in these definitions. These support functions
define the appearance of units, so altering how a
unit is displayed requires a new definition. For ex-
ample, \amperepersquaremetre prints A/m2 while
\amperepersquaremetrenp is used for A m−2.

The SIstyle package (Els, 2008) tackles the need
for units and values to be typeset using the correct
fonts. As such, it focusses on the appearance of the
output, rather than logical markup of input. This
can have advantages, as input such as

\SI{10}{m/s}

is certainly easy to read.
Finally, while not focussed on units, the numprint

package (Harders, 2008) has provided the comple-
mentary ability to format numbers, for example sep-
arating large numbers so that the digits are grouped.

2.2 A new approach to units

Before the development of siunitx, the best approach
to typesetting units was to use the combination of
SIunits and SIstyle, to get logical input and controlled
output.

Development of siunitx began with a simple bug
report for SIunits on comp.text.tex. I naïvely vol-
unteered to take a look at it, and contacted Marcel
Heldoorn with a solution to the issue at hand. It
turned out that he no longer had time for supporting
SIunits, and said that I was free to take over. Having
fixed the bug at hand, I even more naïvely asked on
the newsgroup if there were any improvements to be
made. I soon had quite a list!

I took a step back, and looked at the combin-
ation of SIunits and SIstyle and the feature request
list I’d built up. It was clear that I needed to do
more than simply patch SIunits. I also took a careful
look at biblatex (Lehman, 2010), which shows how
a user interface should be done. My conclusion was
that I needed to write a package from the ground up,
combining the features of SIunits and SIstyle with

siunitx: A comprehensive (SI) units package

96 TUGboat, Volume 32 (2011), No. 1

a key–value interface rather than a complex mix of
different control macros.

This effort led to the first version of siunitx,
which inherited a great deal of code from its pre-
decessors. The feature requests kept coming, and
some of these were rather ‘bolted on’ to the first
version of siunitx. Partly as a result of this, and
partly as I’m now involved in the LATEX3 Project, I
decided to rewrite the package using the expl3 ap-
proach (LATEX3 Project, 2010). This has allowed
the internal code of the package to be made much
more structured, which will hopefully enable me to
continue to add new features without compromising
the existing features of the package.

3 Units

The core function of the siunitx package is typeset-
ting units in a flexible way and with a natural input
syntax. The macro which does this is \si (think ‘a
bit like “SI”’). The \si macro can typeset both lit-
eral input such as \si{m.s^{-1}} and the semantic
version \si{\metre\per\second} to give the same
output: m s−1. Allowing two forms of input means
that users get to make a choice on how semantic they
want their input to be.

There are lots of things going on when some-
thing like \si{m.s^{-1}} is typeset. The first thing
to notice is that the superscript will work equally-
happily in math and text mode (the same is true for
subscripts). What is also true is that you get exactly
the same output in both cases: the fonts and spa-
cing used are determined by siunitx. The standard
settings use the document text font for units, but
the document math font for numbers. Numbers as
handled by siunitx are essentially mathematical, and
so they should (probably) match any other mathem-
atics. Both numbers and units are typeset ignoring
any local font changes, such as bold or italics.

Now, some of those choices will not suit everyone:
a classic case is units in section headings, where
bold seems a more ‘natural’ choice than the usual
mid-weight font. To handle the need to be flexible,
siunitx provides the \sisetup macro, which takes a
list of key–value options (there are currently about
140!). Settings can also be given as an optional
argument to \si, which allows them to be applied
to individual cases: \sisetup applies to everything
that follows, subject to the usual TEX grouping. So
in a heading, rather than \si{m.s^{-1}} we might
have \si[detect-weight]{m.s^{-1}}.

What about the unit macros: are they flexible?
One of the key aims of siunitx is to use semantic
markup with units so that different output appear-
ances don’t need different input syntaxes. Sticking

with the example \si{\metre\per\second}, there
are a number of possible variations. As we’ve already
seen, the standard settings give ‘m s−1’, with the
\per macro converted into a superscripted power.
Another common choice is ‘m/s’, using a slash to
show the division. That’s done by setting the option
per-mode = symbol. Then again, you might want
to show things as a fraction, ‘m

s
’, achieved by setting

per-mode = fraction.
That is fine for a relatively simple unit, but what

about a more complex case such as

\si{\joule\per\mole\squared

\metre\per\cubic\candela}

(i.e. J mol−2 m cd−3)? When given as a fraction or
using a slash, there need to be some brackets or re-
arrangement of the order. The package knows about
this, and can automatically produce the appropriate
output, which might be ‘J m/(mol2 cd3)’ or ‘ J m

mol
2

cd
3 ’.

It can even produce mathematically-invalid output
like ‘J/mol2 m/cd3’ if you want.

As already indicated, there are a lot of options
available, and I don’t want to repeat the manual
here. However, I hope that the concept of ‘one clear
input, many forms of output’ comes through.

One last idea to highlight is that new units can
be defined using the two macros \DeclareSIUnit

and \DeclareSIUnitWithOptions. These are used
to set up new units, perhaps with a special appear-
ance. So if I want to give ‘m

s
’ with a slash but

everything else as powers, I might define

\DeclareSIUnitWithOptions{\mpers}

{\metre\per\second}{per-mode = fraction}

and then use \mpers as the unit. Name clashes are
not an issue: siunitx only defines the unit macros
within the argument of its own macros.

4 Numbers

Most of the time, units in scientific writing go with
numbers. So siunitx needs to be able to deal with
those as well. This is handled by the imaginatively-
named \num macro. This takes the number itself as
the one mandatory argument, with a first optional
argument for any settings that apply.

Probably the most common function this per-
forms is grouping digits. So \num{12345} will give
‘12 345’ rather than ‘12345’. The latter is of course
available as an option: group-digits = false.

There are two other common formatting changes.
First, it is useful to format \num{12e3} as ‘12 × 103’,
which is done automatically. Secondly, depending
on where in the world you are you might want
\num{123.45} to display as ‘123,45’. The package
uses settings such as input-exponent-markers and

Joseph Wright

TUGboat, Volume 32 (2011), No. 1 97

output-decimal-marker to decide on the format of
the input and how it should look as output for these
cases.

Another common requirement with numbers is
to round them, fixing either decimal places or signi-
ficant figures. Here, the two options round-mode and
round-precision are used. The standard settings
do not do any rounding at all, so \num{123.456}

gives ‘123.456’. This can easily be converted into
‘123.46’ by setting round-mode = places, or ‘120’
by setting round-mode = figures. As you might
work out, the standard setting is round-precision

= 2, and this applies to whatever rounding is being
done. As we’ll see, rounding is particularly useful in
tables.

5 Numbers with units

We’ve seen both numbers and units on their own, but
obviously the two need to be combined. For that, the
\SI macro is available, and takes one number and one
mandatory unit argument to print the combination
of the two. As with \num and \si, the first argument
is optional and applies local settings.

All of the options for units and numbers alone
apply to combinations too, but there are some special
options which only make sense for combinations. The
most obvious is a choice of the separator between
a number and the associated unit. The standard
setting is thin space: ‘10 m’. This is controlled by
the number-unit-separator option, which expects
an argument in math mode. So to use a full test-
mode space you’d set number-unit-separator =

\text{ }, with the result ‘10 m’.
Closely related to the size of the space between

number and unit is how it behaves at a line break.
The standard settings do not allow a break here,
but particularly in narrow columns (such as in this
document) it is more realistic to allow breaks to
occur. The option to do control is called allow-

number-unit-breaks, which will allow a break: ‘10
m’. (As you might guess, the text in this paragraph
is finely balanced to give a break in the right place!).

6 Tables

Placing numbers in tables so that the decimal mark-
ers are aligned is very important so that scientific
data are clear. To support this, siunitx defined the
S column type. At its most basic, all you do is use
this in place of a c column and let the package do
the work. So with the input

\begin{tabular}{S}

\toprule

{Some numbers} \\

\midrule

Table 1: Simple number alignment using the S

column

Some numbers

1.234 × 102

567.8
4.3543 × 101

Table 2: Exploiting the power of the S column

Some numbers/102

1.23
5.68
0.44

1.234e2 \\

567.8e0 \\

4.3543e1 \\

\bottomrule

\end{tabular}

you can get the output in Table 1. Notice that the
table heading is wrapped in braces: this tells siunitx

to treat this as text and not to look for a number.
Now, Table 1 is not a very good table, as the

data are not really comparable. It’s usually best
to avoid exponents in the body of a table, and to
put them into the header instead. It’s also common
to round tabular data to some sensible number of
significant figures. Table 2 is a better version of the
same table, with input that reads

\begin{tabular}{S[

table-auto-round,

table-omit-exponent,

table-format = 1.2,

fixed-exponent = 2

]}

\toprule

{Some numbers/\num{e2}} \\

\midrule

1.234e2 \\

567.8e0 \\

4.3543e1 \\

\bottomrule

\end{tabular}

This illustrates several table-related functions in
one go. First, the S column accepts an optional
argument, letting each column have its own beha-
viour. The option table-format is used to define
how much space siunitx will need for the output:
here there is one integer and two decimal digits, with
no signs or exponents. The table-auto-round and
table-omit-exponent options have self-explanatory

siunitx: A comprehensive (SI) units package

98 TUGboat, Volume 32 (2011), No. 1

names, while fixed-exponent = 2 is used to ‘shift’
the decimal place in the input. This combination of
options means that the input does not require any
manipulation: an advantage if it’s a long list copied
from some automated source!

7 Extras

We’ve seen the main macros that siunitx provides,
but there are a few more specialist ones which deal
with more unusual cases. These ‘extras’ all take the
usual optional first argument, and have their own
dedicated options.

The \ang macro takes angle input, either as a
decimal or in degrees, minutes and seconds. The
latter is necessary for things like ‘1◦2′3′′’, which is
given as \ang{1;2;3}. One particularly notable
option here is angle-symbol-over-decimal, which
can give output such as ‘1◦2′3 .′′4’ from the input

\ang[angle-symbol-over-decimal]{1;2;3.4}

I’m told that this is useful for astronomy: that is far
from my area of expertise, but as always the aim is
to give users what they want with the minimum of
fuss.

There are two specialist macros for cases where
the same unit applies to multiple numbers: \SIrange

and \SIlist. These let you type

\SIrange{10}{20}{\metre}

and get ‘10 m to 20 m’, or to type

\SIlist{1;2;3;4;5}{\metre}

and get ‘1 m, 2 m, 3 m, 4 m and 5 m’. You’ll notice
that the standard settings repeat the unit for each
number. Not everyone will like that, so you can use

\SIlist[list-units = brackets]

{1;2;3;4;5}{\metre}

and get ‘(1, 2, 3, 4 and 5) m’, or even

\SIlist[list-units = single]

{1;2;3;4;5}{\metre}

to give the (mathematically incorrect) ‘1, 2, 3, 4 and
5 m’.

8 Summary

The siunitx package aims to be ‘a comprehensive (SI)
units package’ while remaining accessible to users. It
supplies a small number of flexible macros along with
a large set of key–value options to control output
either globally or for individual cases.

Here, I’ve tried to highlight how siunitx works,
showing off some of the powerful features it supplies.
The manual contains examples for almost all of the
options, and if you can’t see how to do something
with siunitx you can always submit a feature request!

9 Acknowledgements

Thanks to Danie Els and Marcel Heldoorn for the
SIstyle and SIunits packages: siunitx would not exist
without them. Thanks to Stefan Pinnow for his
careful testing of siunitx: his contribution to the
package has been invaluable.

References

LATEX3 Project. “The expl3 package and LATEX3
programming”. Available from CTAN,
macros/latex/contrib/expl3, 2010.

Bureau International des Poids et Mesures.
“The International System of Units (SI)”.
http://www.bipm.org/en/si/, 2010.

Els, D. N. J. “The SIstyle package”. Available from
CTAN, macros/latex/contrib/SIstyle, 2008.

Happel, Patrick. “unitsdef – Typesetting units
with LATEX 2ε”. Available from CTAN,
macros/latex/contrib/unitsdef, 2005.

Harders, Harald. “The numprint package”.
Available from CTAN, macros/latex/contrib/

numprint, 2008.

Heldoorn, Marcel, and J. A. Wright. “The SIunits

package: Consistent application of SI units”.
Available from CTAN, macros/latex/contrib/

SIunits, 2007.

Lehman, Philipp. “The biblatex package:
Programmable Bibliographies and Citations”.
Available from CTAN, macros/latex/contrib/

biblatex, 2010.

National Institute for Standards and Technology.
“International System of Units from NIST”.
http://physics.nist.gov/cuu/Units/index.

html, 2010.

Reichert, Axel. “units.sty – nicefrac.sty”. Available
from CTAN, macros/latex/contrib/units,
1998.

Wright, Joseph A. “siunitx – A comprehensive
(SI) units package”. Available from CTAN,
macros/latex/contrib/siunitx, 2010.

⋄ Joseph Wright

Morning Star

2, Dowthorpe End

Earls Barton

Northampton NN6 0NH

United Kingdom

joseph dot wright (at)

morningstar2 dot co dot uk

Joseph Wright

TUGboat, Volume 32 (2011), No. 1 99

Glisterings

Peter Wilson

Fame is no plant that grows on mortal soil,
Nor in the glistering foil
Set off to the world, nor in broad rumour
lies:
But lives and spreads aloft by those pure
eyes
And perfect witness of all-judging Jove;
As he pronounces lastly on each deed,
Of so much fame in heaven expect thy
meed.

Lycidas, Elegy on a Friend drowned in

the Irish Channel, 1637, John Milton

The aim of this column is to provide odd hints or
small pieces of code that might help in solving a
problem or two while hopefully not making things
worse through any errors of mine.

Corrections, suggestions, and contributions will
always be welcome.

I wuz framed!

Traditional criminal defence

1 Framing

People ask on comp.text.tex about putting boxes
around some text, or putting a background colour
behind some text. An \fbox puts a frame round its
contents and a \colorbox, from the (x)color package,
makes a coloured background. However, these boxes
don’t continue across page breaks and on occasion
the text for framing will have a page break in the
middle. Donald Arseneau’s framed package [1] is
often the solution for this. The package provides
four environments as demonstrated below.

The framed environment from the framed
package puts a frame around its contents. Un-
like the usual box commands or environments,
framed continues over page breaks.

The shaded environment, also from the framed
package, puts a colour (or a shade of gray) behind
its contents which may continue across page breaks.
Before using this environment you have to define a
colour named shadecolor. In this case I have used
the xcolor package and
\definecolor{shadecolor}{gray}{0.8}

FRAMED ILLUSTRATION

Figure 1: Example framed figure

FRAMED ILLUSTRATION & CAPTION

Figure 2: Example framed figure and caption

The snugshade environment is similar to
shaded and puts a colour (or a shade of gray) behind
its contents which may continue across page breaks.
Unlike the shaded environment, though, the colour
does not bleed into the margins. This time I set
shadecolor as
\definecolor{shadecolor}{gray}{0.9}

to give a look not so arresting as with the setting for
the shaded example.

The leftbar environment, also from the
framed package, puts a vertical line at the left
side of its contents, which may continue across
page breaks.

The package can be useful even if you know that
there won’t be a page break. For instance a figure

is constrained to be on one page, but you may want
to set off some illustrations from the text.

Figure 1 is produced from the code below; only
the illustration is framed, not the caption.

\begin{figure}

\centering

\begin{framed}\centering

FRAMED ILLUSTRATION

\end{framed}

\vspace*{-0.5\baselineskip}

\caption{Example framed figure}

\label{fig:framef}

\end{figure}

Figure 2, where the entire figure environment
including the caption is framed, is produced from
the code below:

\begin{figure}

\begin{framed}\centering

FRAMED ILLUSTRATION \& CAPTION

\caption{Example framed figure and caption}

\label{fig:framefcap}

\end{framed}

\end{figure}

If a full frame seems a bit of an overkill then us-
ing rules might be appropriate. Figure 3 is produced
from the following code, and no package is needed.
For illustrative purposes I have used very thick rules

Glisterings

100 TUGboat, Volume 32 (2011), No. 1

RULED ILLUSTRATION & CAPTION

Figure 3: Ruled figure and caption (2)

SHADED ILLUSTRATION & CAPTION

Figure 4: Example shaded figure and caption

above and below the illustration; normally I would
not have them so bold.

\begin{figure}

\centering

\rule{\linewidth}{2pt}\\

\vspace*{0.5\baselineskip}

RULED ILLUSTRATION \& CAPTION

\vspace{0.5\baselineskip}

\hrule

\caption{Ruled figure and caption (2)}

\label{fig:ruledfcap}

\rule{\linewidth}{2pt}

\end{figure}

Depending on its contents, using shading to
delineate an illustration may be an option. Figure 4
is produced by the following code, which uses the
framed package’s shaded environment.

\begin{figure}

\begin{shaded}\centering

SHADED ILLUSTRATION \& CAPTION

\caption{Example shaded figure and caption}

\label{fig:shadefcap}

\end{shaded}

\end{figure}

The framed package does have some limitations
on what can be included within its environments.
floats, footnotes, marginpars and header entries will
be lost. Further, the package does not work with the
multicol package’s page breaking, or other code to
perform multicolumn balancing. Some restrictions
may be lifted in later versions of the package.

Using the package you can create your own new
cross-page environments, based on the MakeFramed
environment defined in the package and specifying a
\FrameCommand macro which should draw the frame.
The MakeFramed environment takes one argument
which should contain any adjustments to the text
width, applied to \hsize, and some form of a restore

command, such as the package’s \FrameRestore

macro or the LATEX internal \@parboxrestore, that
restores the text attributes to their normal state.
The length \width is the width of the frame itself.
Some examples are given later. But first. . .

The frame in the framed environment is imple-
mented as an \fbox via:

\providecommand{\FrameCommand}{%

\setlength{\fboxrule}{\FrameRule}%

\setlength{\fboxsep}{\FrameSep}%

\fbox}

where \FrameRule and \FrameSep are lengths de-
fined by the package. By changing these you can
change the rule thickness and spacing of the frame.
Here is the definition of the framed environment it-
self, which uses the default \FrameCommand defined
above.

\newenvironment{framed}{%

{\MakeFramed {\advance\hsize-\width

\FrameRestore}}%

{\endMakeFramed}

where \FrameRestore restores some text settings,
but not as many as have to be done at the end of a
minipage.

The other environments are defined similarly.
Both shaded and snugshade use a \colorbox as
the framing mechanism.

\newenvironment{shaded}{%

\def\FrameCommand{\fboxsep=\FrameSep

\colorbox{shadecolor}}%

\MakeFramed {\FrameRestore}}%

{\endMakeFramed}

\newenvironment{snugshade}{%

\def\FrameCommand{%

\colorbox{shadecolor}}%

\MakeFramed {\FrameRestore\@setminipage}}%

{\par\unskip\endMakeFramed}

The leftbar environment simply uses a vertical rule.

\newenvironment{leftbar}{%

\def\FrameCommand{\vrule width 3pt

\hspace{10pt}}%

{\MakeFramed {\advance\hsize-\width

\FrameRestore}}%

{\endMakeFramed}

Note that in the framed and leftbar environ-
ments the text is narrower than the normal measure,
while in the shade environments the text width is
unaltered and the shading extends into the margins.

Tyger, tyger, burning bright
In the forests of the night,
What immortal hand or eye
Could frame thy fearful symmetry?

Songs of Experience, William Blake

2 New frames

In some cases it is relatively easy to define your own
framing environment based on the framed package,

Peter Wilson

TUGboat, Volume 32 (2011), No. 1 101

but I have found that some experimentation is often
required.

Perhaps you would like to center and frame some
text. Here’s how.

\newenvironment{narrowframe}[1][0.8\hsize]%

{\MakeFramed{\setlength{\hsize}{#1}

\FrameRestore}}%

{\endMakeFramed}

This is the narrowframe environment
where you can adjust the width with the
environment’s optional length argument.
This example is set with the default width.

Or perhaps you would like something a little
smoother:✓

✒

✏

✑

This is the roundedframe environment. It
requires the fancybox package. Perhaps you could
use something other than the \ovalbox box from
that package to give a different frame.

This is the definition I have used for the envi-
ronment. You can, of course, change the lengths to
suit.

\newenvironment{roundedframe}{%

\def\FrameCommand{%

\cornersize*{20pt}%

\setlength{\fboxsep}{5pt}%

\ovalbox}%

\MakeFramed{\advance\hsize-\width

\FrameRestore}}

{\endMakeFramed}

Another request that pops up from time to time
on comp.text.tex is for an environment to show off
examples or questions. Robert Nyqvist [2] answered
one of these by providing code based on the framed
package, that was basically as follows. An example
of the ruledexample environment is shown below as
Ruled Example 1.

\makeatletter

\definecolor{rulecolor}{gray}{0.65}

\newcounter{ruledexample}

\newlength{\releftgap}

\setlength{\releftgap}{4pt}

\newlength{\rerightgap}

\setlength{\rerightgap}{1em}

\newlength{\rerule}

\setlength{\rerule}{1.25pt}

\newlength{\Eheight}

\newenvironment{ruledexample}[1][Example]{%

\settoheight{\Eheight}{\textbf{#1}}%

\addtolength{\Eheight}{-\rerule}%

\def\FrameCommand{\hspace{-\releftgap}%

{\color{rulecolor}%

\vrule width \rerule}%

\hspace{\releftgap}\hspace{-\rerule}}%

\MakeFramed{\advance\hsize-\width}%

\refstepcounter{ruledexample}%

\makebox[0pt][l]{%

\hspace{-\parindent}%

\hspace{\rerightgap}%

{\color{rulecolor}\rule{1.5em}{\rerule}}%

\quad

\raisebox{-0.5\Eheight}[0pt]{%

\textbf{#1\ \theruledexample}}%

}\\[.5\baselineskip]%

\noindent\ignorespaces}%

{\@afterheading\\

\makebox[0pt][l]{%

\hspace{-\releftgap}%

{{\color{rulecolor}

\rule{\columnwidth}{\rerule}%

\rule{\releftgap}{\rerule}}%

}}

\endMakeFramed}

\makeatother

Ruled Example 1

This is the ruledexample environment, which is
titled and numbered and can be \labelled, and
which will break across pages if need be. The code
basis was originally posted to comp.text.tex by
Robert Nyqvist in 2003 but I have added some extra
means of controlling the rules and spacing.

• rulecolor is the color of the rules

• \rerule is the thickness of the rules

• \releftgap is the distance the vertical rule is
moved into the margin

• \rerightgap is the indentation of the title rule

• You can use the optional argument to specify
the title, which by default is ‘Example’.

As you can see by this example, you can use code
like itemize within a framed environment.

Some users have found that the behaviour of
the framed environment within a list environment
such as quote, or adjustwidth from the changepage
package [4], is not quite what they expected. This is
described in a little more detail below

This is the start of a quotation environment.
You can use the framed environment within
this, and also any other list based environ-
ment.

We are now in the framed environ-
ment, and notice how the frame extends
across the original textwidth. This is not
always what you might want.

Glisterings

102 TUGboat, Volume 32 (2011), No. 1

Donald Arseneau and I had an exchange of
views, and code, on this and we each produced
code that created a closer frame. As usual
Donald’s code was much better than mine.

Now we are in the qframe environment
based on Donald Arseneau’s code and which
I included in my memoir class [3]. The class
also provides a ‘shaded’ version.

If you happen to use the adjustwidth en-
vironment, from the changepage package1 [4]
or the memoir class, then the qframe environ-
ment works better in it than does the framed
environment.

Here endeth the quotation environment.

This is the definition of the qframe environment:

\makeatletter

\newenvironment{qframe}{%

\def\FrameCommand##1{%

\setlength{\fboxrule}{\FrameRule}%

\setlength{\fboxsep}{\FrameSep}%

\hskip\@totalleftmargin\fbox{##1}%

\hskip-\linewidth

\hskip-\@totalleftmargin

\hskip\columnwidth}%

\MakeFramed{\advance\hsize-\width

\advance\hsize \FrameSep

\@totalleftmargin\z@

\linewidth=\hsize}}%

{\endMakeFramed}

\makeatother

If you put this code in a class (.cls) or package
(.sty) file then you do not need the \makeatletter
and \makeatother pairing, otherwise you do.

Another potentially useful sort of frame is where
there is a title—one that gets repeated after a page
break. The code for this is considerably more com-
plicated than earlier, and I had to do quite a lot of
experimentation to get it to work. First, though, an
example.

A ‘framewithtitle’

Using the framewithtitle environment,
which this is, you can put a title inside the
frame. If the contents extend past a pagebreak
then a ‘continued’ title is put at the start of the
frame on the succeeding pages. The code for
framewithtitle is given in this article.

The position of the title is set by the
\titleframe command which is initially defined

1 changepage is the successor to the chngpage package

which is being phased out.

A ‘framewithtitle’ (cont.)

as below. If you would prefer the title to be cen-
tered, then change it like:

\newcommand*{\frametitle}[1]{%

\strut#1}% at left

\renewcommand*{\frametitle}[1]{%

\centerline{\strut#1}}% centered

This example shows that you can include
verbatim text in a framed environment.

Here is the code for the framewithtitle envi-
ronment. It is based on hints from Donald Arseneau
that applied to an earlier version of framed. A lot of
the code is concerned with handling the title so that
the first can be used initially, then after a page break
a continuation title will be used instead. I have also
extracted a lot of code from my original version as
separate macros as I’m going to reuse much of it
later. My most difficult problem was that internally
the package keeps resetting the text to determine
where any page breaking will occur, and only after
that does it actually typeset; I couldn’t assume that
the initial title would be immediately set and had to
reserve its typesetting until after the all the internal
resetting had been completed; I used \ifcontframe

for this purpose. The macro \Fr@meSetup does most
of the work related to the titling while \FrameTitle
actually typesets the title(s). The required argument
to the framewithtitle environment is the initial
title, and you can use the optional argument to over-
ride the default continuation title.

\makeatletter

\newcommand*{\frametitle}[1]{\strut#1}

\newif\ifcontframe

\newcommand*{\Fr@meSetup}[2]{%

\fboxrule=\FrameRule \fboxsep=\FrameSep

\global\contframefalse

\def\Fr@meFirst{\textbf{#2}}%

\def\Fr@meCont{\textbf{#1}}%

\def\FrameCommand##1{%

\Title@Fr@me{\Fr@meCurrent}{##1}%

\global\let\Fr@meCurrent\Fr@meNext

\ifcontframe

\global\let\Fr@meNext\Fr@meCont

\fi

\global\contframetrue}%

\global\let\Fr@meCurrent\Fr@meFirst

\global\let\Fr@meNext\Fr@meFirst}

\newcommand*{\FrameTitle}[1]{%

\nobreak \vskip -0.7\FrameSep

\rlap{\frametitle{#1}}%

\nobreak\nointerlineskip

\vskip 0.7\FrameSep}

Peter Wilson

TUGboat, Volume 32 (2011), No. 1 103

\newenvironment{framewithtitle}[2]%

[\Fr@meFirst\ (cont.)]{%

\def\Title@Fr@me##1##2{%

\fbox{\vbox{\FrameTitle{##1}%

\hbox{##2}}}}%

\Fr@meSetup{#1}{#2}%

\MakeFramed{%

\advance\hsize-\width

\FrameRestore}}%

{\global\contframefalse

\endMakeFramed}

\makeatother

As an alternative to framewithtitle you can
use the titleframed environment where the title is
set outside the frame. The arguments to the two
environments are the same, as is setting the title’s
horizontal position.

A ‘titledframe’

With the titledframe environment, which
this is, you can put a title on top of the frame.
If the contents extend past a pagebreak then a
‘continued’ title is put at the start of the frame on
the succeeding pages. The code for titledframe
is given in this article.

The position of the title is set by the
\titleframe command which is initially defined
as below. If you would prefer the title to be cen-
tered, then change it like:

\newcommand*{\frametitle}[1]{%

\strut#1}% at left

\renewcommand*{\frametitle}[1]{%

\centerline{\strut#1}}% centered

which is what I have done for this example.

So, here is the code for titledframe which,
as you can see, shares most of the code with its
companion environment.

\makeatletter

\newenvironment{titledframe}[2]%

[\Fr@meFirst\ (cont.)]{%

\def\Title@Fr@me##1##2{%

\vbox{\FrameTitle{##1}%

\noindent\fbox{##2}}}

\Fr@meSetup{#1}{#2}%

\MakeFramed{%

\advance\hsize-\width

\advance\hsize -2\FrameRule

\advance\hsize -2\FrameSep

\FrameRestore}}%

{\global\contframefalse

\endMakeFramed}

\makeatother

I admit that I have given little explanation of
the code examples. The excuse that I would like you
to believe is that adding all the explanatory material
would make the article too long, but the real reason
is that I do not really understand how the framed

package performs its magic; hence the experiments
(i.e., many trials and even more errors) that I did to
create code that seemed workable.

References

[1] Donald Arseneau. The framed package v0.95,
2007. mirror.ctan.org/macros/latex/

contrib/framed.

[2] Robert Nyqvist. ‘example’ environment or
command. Post to comp.text.tex newsgroup,
11 January 2003.

[3] Peter Wilson. The memoir class for
configurable typesetting, 2008. mirror.

ctan.org/macros/latex/contrib/memoir or
mirror.ctan.org/install/macros/latex/

contrib/memoir.tds.zip.

[4] Peter Wilson. The changepage package, October
2009. mirror.ctan.org/macros/latex/

contrib/changepage.

⋄ Peter Wilson
20 Newfield Ave.
Kenilworth CV8 2AU, UK
herries dot press (at)

earthlink dot net

Glisterings

104 TUGboat, Volume 32 (2011), No. 1

Some misunderstood or unknown LATEX2ε
tricks (III)

Luca Merciadri

1 Introduction

After two other TUGboat articles, here is a third
installment with more tips. We shall see:

1. how to print, in an easy way, a monochrome
version of a document,

2. how to draw rightmost braces,
3. how to draw watermarks,
4. a plagiarism discussion and the related compu-

tational solutions.

2 Printing monochrome

When writing a ‘screen-version’ of some book, one
often uses colors. However, if this screen-version
needs to be printed in black and white, it is better
to give it as a monochrome document. This can
be achieved easily by simply adding monochrome to
color and xcolor’s options. For example, if you
called these packages without any options, it means
that you might put

\usepackage[monochrome]{color}

\usepackage[monochrome]{xcolor}

in your preamble. Thanks to Enrico Gregorio [3] for
this.

Herbert Voß gave me [3] a more technical Post-
Script version:

\AtBeginDocument{%

\special{ps:

/setcmykcolor {

exch 0.11 mul add

exch 0.59 mul add

exch 0.3 mul add

dup 1 gt { pop 1 } if neg 1 add setgray } def

/setrgbcolor {

0.11 mul

exch 0.59 mul add

exch 0.3 mul add setgray } def

/sethsbcolor {

/b exch def /s exch def 6 mul dup cvi dup

/i exch def sub /f exch def

/F [[0 1 f sub 1] [f 0 1] [1 0 1 f sub]

[1 f 0] [1 f sub 1 0] [0 1 f]

[0 1 1]] def

F i get { s mul neg 1 add b mul} forall

0.11 mul

exch 0.59 mul add

exch 0.3 mul add setgray } def

}}

Thanks to him too.

3 Drawing rightmost braces

It is common to synthesize some theorems’ ideas by
using a right brace, or simply to write such kinds of
systems to define e.g. a function:

−1 x ≤ 0

1 x > 0

}

def

= f(x). (1)

This can be achieved by using various tricks, such as
those which were proposed by Eduardo Kalinowski
and Dan Luecking [2]:

• \left.

\begin{array}

...\\

... \\

...

\end{array}

\right\}

• Use the aligned, gathered, or alignedat en-
vironments,

but one can also

• define a ‘revert cases’ environment, say sesac:

\usepackage{amsmath}

\makeatletter

\newenvironment{sesac}{%

\let\@ifnextchar\new@ifnextchar

\left.%

\def\arraystretch{1.2}%

% One might prefer aligns other than left,

% depending on the use to which it is put:

\array{@{}l@{\quad}l@{}}%

}{\endarray\right\}}

\makeatother

in the preamble, the amsmath package evidently
being mandatory. One can then use sesac the
way cases is used:

\begin{equation}

\begin{sesac}

-1 & x \leq 0\\

1 & x > 0

\end{sesac} = f(x)

\end{equation}

Thanks to Dan Luecking for this [2]. The advan-
tage of this definition is that its call is similar
to the one which is used for the cases envi-
ronment. Note that the rcases equivalent of
sesac will be available in the mathtools pack-
age (from June, 2010), together with variants.

4 Using watermarks

There is sometimes a need for watermarks, either for
security reasons, or simply for indicating important
information along with the document.

Luca Merciadri

TUGboat, Volume 32 (2011), No. 1 105

There are basically three different ways to put
watermarks in your LATEX2ε documents:

1. The xwatermark package,

2. The TikZ package,

3. The draftcopy package.

We shall discuss these different options separately
now. We assume that the user wants to watermark
all the pages. (Modifications to make only some
pages be watermarked are easy.)

4.1 The xwatermark option

To watermark the current tex document, you can
simply put [4]

\usepackage[printwatermark=true,

allpages=true,fontfamily=pag,

color=gray,grayness=0.9,

mark=Draft,angle=45,

fontsize=5cm,

markwidth=\paperwidth,

fontseries=b,scale=0.8,

xcoord=0,ycoord=0]{xwatermark}

in your preamble, where parameters are modified in
the obvious way.

4.2 The TikZ way

You can also use TikZ ([5]):

\begin{tikzpicture}[remember picture,overlay]

\node[rotate=0,scale=15,text opacity=0.1]

at (current page.center) {Draft};

\end{tikzpicture}

writes the ‘Draft’ message in the center of the page,
and

\begin{tikzpicture}[remember picture,overlay]

\node [xshift=1cm,yshift=1cm]

at (current page.south west)

[text width=7cm,fill=red!20,rounded corners,

above right]

{

This is a draft!

};

\end{tikzpicture}

puts ‘This is a draft!’ in a box, at the desired place.
Both might be put outside of the preamble. In both
cases, you evidently need to load the tikz package.
There are many other options (please check the pack-
age’s manual).

The advantage of this approach is that you can
call TikZ after or before some text to watermark the
relative page, without knowing its number.

4.3 The draftcopy package

A third approach is to use the draftcopy package.
You can then specify the intensity of the gray, the
range of pages for which the word ‘DRAFT’ is printed

and where it is printed (across the page or at the bot-
tom). The package’s feature are best described in its
manual [6], but, roughly,

\usepackage[english,all,

portrait,draft]{draftcopy}

should suit your needs.

5 LATEX2ε and plagiarism

Plagiarism is a well-known issue. It is defined as
(Random House Compact Unabridged Dictionary,
1995)

The use or close imitation of the language and
thoughts of another author and the represen-
tation of them as one’s own original work.

I will here take a very concrete case: my own. This
year, I had a group project to do, and the two other
students did not contribute at all. As I had to share
my work with them because there was an oral exam
and that the professor wanted it to be shared, I ac-
cepted to share it, but with a big watermark.

I had not realized that this choice would be crit-
ical. Some days later, I realized that one of the
two other students wanted to appropriate the work,
and thereby claim its honesty and investment in the
work. He tried to remove the watermark, but, de-
spite much research, never found out how. However,
he could have done it. I learnt many things thanks
to this situation, which I will explain here from a
TEX point of view.

My first reaction to ensure security was to se-

cure the PDF by using free tools. This was a good
dissuasion, as the two other students were stopped
by this measure. By ‘secure’, I mean that I theo-
retically prevented others from printing, selecting,
or extracting content from the PDF file. However,
such PDF ‘security’ is not widely accepted by PDF

readers. Here is what Jay Berkenbilt (qpdf’s author)
once told me [1]:

The PDF specification allows authors of PDF

files to place various restrictions on what you
can do with them. These include restricting
printing, extracting text and images, reorga-
nizing them, saving form data, or doing var-
ious other operations. These flags are noth-
ing more than just a checklist of allowed op-
erations. The PDF consuming application
(evince, Adobe Reader, etc.) is supposed to
honor those restrictions and prevent you from
doing operations that the author didn’t want
you to do.

The PDF specification also provides a mech-
anism for creating encrypted files. When a
PDF file is encrypted, all the strings and stream

Some misunderstood or unknown LATEX2ε tricks (III)

106 TUGboat, Volume 32 (2011), No. 1

data (such as page content) are encrypted
with a specific encryption key. This makes
it impossible to extract data from without
understanding the PDF encryption methods.
(You couldn’t open it in a text editor and dig
for recognizable strings, for example.) The
whole encryption method is documented in
the specifications and is basically just RC4
for PDF version 1.4 and earlier, which is not a
particularly strong encryption method. PDF

version 1.5 added 128-bit AESv2 with CBC,
which is somewhat stronger. Those details
aren’t really important though. The point is
that you must be able to recover the encryp-
tion key to decrypt the file.

Encrypted PDF files always have both a
user password and an owner password, either
or both of which may be the empty string.
The key used to encrypt the data in the PDF

is always based on the user password. The
owner password is not used at all. In fact, the
only thing the owner password can do is to re-
cover the user password. In other words, the
user password is stored in the file encrypted
by the owner password, and the encryption
key is stored in the file encrypted by the user
password. That means that it is possible to
entirely decrypt a PDF file, and therefore to
bypass any restrictions placed on that file, by
knowing only the user password. PDF read-
ers are supposed to only allow you to bypass
the restrictions if you can correctly supply
the owner password, but there’s nothing in-
herent [in] the way PDF files are structured
that makes this necessary.

If the user password is set to a non-empty
value, neither qpdf nor any other application
can do anything with the PDF file unless that
password is provided. This is because the
data in the PDF file is simply not recoverable
by any method short of using some kind of
brute force attack to discover the encryption
key.

The catch is that you can’t set restric-
tions on a PDF file without also encrypting
it. This is just because of how the restrictions
are stored in the PDF file. (The restrictions
are stored with the encryption parameters
and are used in the computation of the key
from the password.) So if an author wants
to place restrictions on a file but still allow
anyone to read the file, the author assigns an
empty user password and a non-empty owner
password. PDF applications are supposed to

try the empty string to see if it works as a
password, and if it does, not to prompt for
a password. In this case, however, it is up

to the application to voluntarily honor any of

the restrictions imposed on the file. [italics
mine —lm] This is pretty much unavoidable:
the application must be able to fully decrypt
the file in order to display it.

None of this is a secret. It’s all spelled
out in the PDF specification. So encrypting
a PDF file without a password is just like en-
crypting anything else without a password. It
may prevent a casual user from doing some-
thing with the data, but there’s no real se-
curity there. Encrypting a PDF file with a
password provides pretty good security, but
the best security would be provided by just
encrypting the file in some other way not re-
lated to PDF encryption.

Thus, one might not want to rely only on this
PDF feature, especially if the desire is to set at-
tributes without a password (see the slanted sen-
tence in the cited text).

My second idea was to put a watermark on

every page of the document. For this, I used the
xwatermark package, because I had no time to look
for another way to achieve it (I was near the work’s
due date).

I then compiled the tex document, secured it,
and sent it.

In this series of practices, I should have real-
ized that these two protections could totally be cir-
cumvented in an easy way. I knew it, partially, but
had not much time to think about it. One needs
to realize that such practices are not infallible: they
are only ways to discourage, not absolutely prevent,
your work from being plagiarized.

Let’s take, for example, the PDF security. One
could simply run pdf2ps, and then ps2pdf on the
resulting PostScript file, to recover exactly the same
PDF without the security attributes (or hyperlinks).
Thus, by using two commands, you can easily re-
move the PDF protection (assuming it was only con-
cerning attributes, not passwords).

Next, there is the watermark that was LATEX2ε-
inserted. There are different programs, especially for
Windows users, that can remove watermarks. I tried
them on my watermark, and none could remove it.
Good point, but that does not mean that there is no
program which is able to remove it. I might have for-
gotten one, or simply, a commercial program might
be capable of this. (I never test commercial pro-
grams.) But I had made an important mistake in
my LATEX2ε watermark. The watermark is written

Luca Merciadri

TUGboat, Volume 32 (2011), No. 1 107

on a different PDF ‘layer’ (one can conceive of a PDF

as being constructed from different layers which are
superimposed in some way) and is thereby not com-
pletely incorporated in the core document. Thus, if
you use a LATEX2ε package to write a watermark
in a document, do not forget to merge layers. This
can be achieved easily. For example, using lpr under
GNU/Linux, you can re-print the original PDF docu-
ment (with the different PDF layers) as another PDF

where the watermark and the text layers are merged
together, thus making differentiating between them
very complicated for a ‘normal’ user. This can be
achieved with a GUI too, evidently. For me, I can
directly choose this virtual printer, and to print to
a file, through GNOME’s printing interface.

But one needs to keep in mind that all these
measures are here only as a method for discourag-
ing. For example, whatever the protection, one can
still take screenshots of the PDF viewer’s window, to
make copies of the PDF content. This is tedious, but
if one wants to, it can be done. If even these screen-
shots were somehow made impossible, he could use
a camera to take pictures of his screen. All the mea-
sures you need to take against such behavior need
to be adapted, and correlated in regards to other’s
motivation to exploit your work. This is a very im-
portant point, as, once the work is sent, you cannot
modify what you gave.

Another point which could be exploited is the
use of a somewhat legal document, constraining the
group’s members to sign.

The best thing is presumably to avoid these
problems by talking together, as we humans are
equipped with an extraordinary ability to share their
feelings and to express themselves; however, commu-
nication problems sometimes arise, and, in this case,
you might think about the aforementioned tricks.
Here is thus what I suggest you to do, if such a
problem arises (the first arrow being to follow if com-
munication is somewhat broken):

Make an official
document, ask-
ing the group’s
members to sign

Watermark the PDF

Secure the PDF

If you notice pla-
giarism, directly
complain to the
relevant authority

⋄ Luca Merciadri

University of Liège

Luca.Merciadri (at) student dot ulg dot

ac dot be

http://www.student.montefiore.ulg.ac.be/

~merciadri/

References

[1] Berkenbilt, Jay. (PDF specification message),
2010. http://www.mail-archive.com/

debian-user@lists.debian.org/msg570956.

html.

[2] Merciadri, Luca, Kalinowski, Eduardo and
Luecking, Dan. ‘cases’ environment for a
brace in the other sense? (comp.text.tex
discussion), 2010.

[3] Merciadri, Luca, Voß, Herbert and Gregorio,
Enrico. dvi, ps, pdf in black and white: how
to do it if I have colors? (comp.text.tex
discussion), 2010.

[4] Musa, Ahmed. The xwatermark Package, 2010.
http://mirror.ctan.org/macros/latex/

contrib/xwatermark/xwatermark-guide.pdf.

[5] Tantau, Till. TikZ, PGF, 2008. http://

mirror.ctan.org/graphics/pgf/base/doc/

generic/pgf/pgfmanual.pdf.

[6] Vollmer, Jürgen. The draftcopy package, 2006.
http://www.ifi.uio.no/it/latex-links/

draftcopy.pdf.

Some misunderstood or unknown LATEX2ε tricks (III)

108 TUGboat, Volume 32 (2011), No. 1

LATEX3 News
Issue 5, January 2011

Happy new year

Seasons greetings for 2011! As the previous news issue
was released late, this season’s issue will be shorter than
usual.

The LPPL is now OSI-approved

We are happy to report that earlier this year the LATEX
Project Public License (LPPL) has been approved by
the OSI as an open source licence.1 Frank Mittelbach
has further details on this news in a retrospective of the
LPPL [in this TUGboat].

Reflections on 2010

We are pleased to see the continued development and
discussion in the TEX world. The LATEX ecosystem
continues to see new developments and a selection of
notable news from the second half of last year include:

June The TUG 2010 conference was held very
successfully in San Francisco; videos, slides, and
papers from LATEX3 Project members are available
from our website.2

Aug. The TEX Stack Exchange3 question&answer
website was created and has since grown quickly.
At time of writing, some 2800 people have asked
2600 questions with 5600 answers total, and 2200
users are currently visiting daily.

Sept. TEX Live 2010 was released: each year the shipping
date is earlier; the production process is becoming
more streamlined and we congratulate all involved
for their hard work. One of the most notable new
components of TEX Live 2010 includes the
‘restricted shell escape’ feature to allow, among
other things, automatic EPS figure conversion for
pdfLATEX documents.

Oct. TLContrib4 was opened by Taco Hoekwater as a
way to update a TEX Live installation with
material that is not distributable through tlmgr

itself. Such material includes executables (e.g., new
versions of LuaTEX), non-free code, or test versions
of packages.

1http://www.opensource.org/licenses/lppl
2http://www.latex-project.org/papers/
3http://tex.stackexchange.com
4http://tlcontrib.metatex.org/

Nov. Philipp Lehman released the first stable version of
biblatex. One of the most ambitious LATEX packages
in recent memory, biblatex is a highly flexible
package for managing citation cross-referencing and
bibliography typesetting. In ‘beta’ status for some
years now, reaching this point is a great milestone.

Dec. LuaTEX 0.65. We are happy to see LuaTEX
development steadily continuing. LATEX users may
use LuaTEX with the lualatex program. Like
xelatex, this allows LATEX documents to use
multilingual OpenType fonts and Unicode text
input.

Current progress

The expl3 programming modules continue to see
revision and expansion; we have added a LuaTEX
module, but expl3 continues to support all three of
pdfLATEX, X ELATEX, and LuaLATEX equally.

The l3fp module for performing floating-point
arithmetic has been extended and improved. Floating
point maths is important for some of the calculations
required for complex box typesetting performed in the
new ‘coffins’ code. The l3coffin module has been added
based on the original xcoffins package introduced at
TUG 2010 as reported in the last news issue; this code
is now available from CTAN for testing and feedback.

We have consolidated the l3int and l3intexpr modules
(which were separate for historical purposes); all
integer/count-related functions are now contained
within the ‘int’ code and have prefix \int_. Backwards
compatibility is provided for, but eventually we will
drop support for the older \intexpr_ function names.

Plans for 2011

In the following year, we plan to use the current LATEX3
infrastructure to continue work in building high-level
code for designing LATEX documents using the xtemplate

package. Our first priority is to look at section headings
and document divisions, as we see this area as one of
the most difficult, design-wise, of the areas to address.
From there we will broaden our scope to more
document elements.

We will also do some low-level work on the ‘galley’,
which is the code that LATEX3 uses to build material for
constructing pages, and we will continue to extend expl3

into a more complete system from which we can, one
day, create a pure LATEX3 format.

LATEX3 News, and the LATEX software, are brought to you by the LATEX3 Project Team; Copyright 2011, all rights reserved.

TUGboat, Volume 32 (2011), No. 1 109

Book review: Typesetting tables with LATEX

Boris Veytsman

Herbert Voß, Typesetting tables with LATEX. UIT

Cambridge, 2011. 231 pp. Paperback, US$29.95
More than fifteen years ago my friend defended a

doctoral thesis at Stanford. He wrote it in plain TEX;
everything went fine except tables. My friend spent
some time trying to align the numbers exactly like
he wanted them, but failing to do so, he eventually
just printed the table as plain text and pasted it into
the manuscript.

Proper typesetting of tables is one of the most
difficult and complex TEX tasks. LATEX facilities
for typesetting tabular material are arguably easier
to use than the ones of plain TEX. Still, when one
is not satisfied with the default look and feel of
LATEX tables (as many typographers are not), then
one may spend long hours making tables look right.
Fortunately, there are two scores of packages on
CTAN dealing with adjusting typesetting of tables,
so one can find code dealing with the specific task at
hand. Unfortunately, there are two scores of packages
on CTAN dealing with adjusting typesetting of tables,
so it is rather difficult to find the one needed. The
indispensable Companion describes some packages
and tricks, but the material is clearly much larger
than can be fitted in a chapter of the general book.
Therefore there is a clear need for a specialized review
of table-related packages.

The new book by Herbert Voß is intended to be
such a review. It covers both the standard LATEX fa-
cilities for dealing with tabular material, and 39 pack-
ages dealing with tables that are currently on CTAN.
Each package is discussed concisely but clearly. The
reader gets an impression of the main features of the
package and the basic usage, being referred to the
package documentation for the details of the usage
and the less popular features. This design of the
presentation is a very good idea: the information
in the book is enough to find the package for the
given need without swelling the book volume with
too much detail. Besides, the details of interface
and minor features tend to change from release to
release, so a printed book that includes too much
detail quickly becomes obsolete.

From this book the reader can find out how to
change the width and height of the table cells, how
to make the tables look more “professional” than the
default LATEX tables, how to get multirow and multi-
column cells, how to use footnotes with the tables,
how to get colored cells and lines, how to typeset the
numbers in tables right, how to get “spreadsheet-like”
arithmetic in tables, how to get rotated and multi-

page tables, how to read comma separated values
files into TEX—and much more.

The author spends considerable time discussing
interaction between packages—an important topic
often omitted in the documentation. Each package
is accompanied by carefully chosen examples of its
usage. There are also separate sections on Tips

and Tricks and Examples. The gallery of examples
is very impressive and may provide inspiration for
many beautiful tables.

The book is well written and clear. It should
be easy reading for a novice—and still it provides
many insights for an advanced TEXnician.

The book is very nicely typeset and designed.
UIT Cambridge is known for the good taste in its
production, and this book is no exception. (I was
surprised, however, that while the cover had “LATEX”,
the spine typesetting was “LATEX”.)

Of course any book, including this one, can be
made better. It seems to me that the largely al-
phabetical ordering of packages in this book can be
improved. Right now there are three major divi-
sions of packages: general, color-related packages
and multipage tables. Probably one can find some
logical subdivisions in the general category. Further,
while the book clearly explains how to change the
typesetting of tables, it lacks the discussion of why
to do this and even whether to do some of them
(like rotated table headers). The author does men-
tion some typographic rules with respect to tabular
material (like not using vertical lines, and spare use
of horizontal ones). Nevertheless a separate section
on Fundamentals of Typography of Tables would be
very useful. Finally, a discussion of typesetting table
captions would probably be a good addition to the
book. That standard LATEX puts the caption below

the table is an unfortunate violation of the traditions
of good typography. There are a number of packages
that correct this mistake and provide many options
of customization of captions.

However, it is probably impossible to write a
book that would satisfy everyone’s wishlist (and such
a book would be too heavy to carry around). Typeset-
ting tables with LATEX by Herbert Voß is a good ref-
erence on LATEX packages related to tabular material.
It should be a necessary addition to the bookshelf of
a LATEX user.

⋄ Boris Veytsman

Computational Materials Science

Center, MS 6A2, George Mason

University, Fairfax, VA 22030

borisv (at) lk dot net

http://borisv.lk.net

Book review: Typesetting tables with LATEX

110 TUGboat, Volume 32 (2011), No. 1

TheTreasure Chest

This is a list of selected new packages posted to
CTAN (http://www.ctan.org) from October 2010
through March 2011, with descriptions based on the
announcements and edited for brevity.

Entries are listed alphabetically within CTAN

directories. A few entries which the editors subjec-
tively believed to be of especially wide interest or
otherwise notable are starred; of course, this is not
intended to slight the other contributions.

We hope this column and its companions will
help to make CTAN a more accessible resource to the
TEX community. Comments are welcome, as always.

⋄ Karl Berry
http://tug.org/ctan.html

fonts

bbold-type1 in fonts

Type 1 versions of the bbold fonts.

comfortaa in fonts

Support for the Comfortaa sans serif family designed
by Johan Aakerlund.

* droid in fonts

Support for the Droid family made for Android.

lato in fonts

Support for the Lato sans serif family designed by
 Lukasz Dziedzic.

mathstone in fonts

Use Adobe Stone Sans and Stone Serif for math.

ocr-b-outline in fonts

OCR-B fonts in Type 1 and OpenType, compatible
with the existing Metafont metrics.

pcarl in fonts

Support for Adobe Caslon Open Face.

prodint in macros/latex/contrib

Product integral notation.

ptsans in fonts

Support for the ParaType PT Sans family.

ptserif in fonts

Support for the ParaType PT Serif family.

rsfso in fonts

Support for using rsfs as math calligraphic.

urwchancal in fonts

Support for using Zapf Chancery as a math alphabet.

verdana in fonts

Support for Verdana.

graphics

pgfgantt in graphics/pgf/contrib

TikZ package for drawing Gantt charts.

pst-graphicx in graphics/pstricks/contrib

Support using LATEX’s graphicx in plain TEX.

pst-tvz in graphics/pstricks/contrib

PSTricks package for drawing trees with more than
one root node.

threeddice in graphics/metapost/contrib/macros

MetaPost package for drawing dice.

info

LaTeX-Bib in info/examples

Examples from the book Bibliografien mit LATEX.

* lualatex-doc in info/luatex

Guide to the world of LuaLATEX, plus information
about Plain LuaTEX.

tabulars-e in info/examples

Examples from the book Typesetting tables with

LATEX.

language

spanglish in language/spanish/babel/contrib

Simplified and sloppy Spanish support (for when
Babel’s spanish.ldf fails).

macros/generic

fntproof in macros/generic

Font proofing as in testfont.tex.

navigator in macros/generic

PDF features across formats and engines.

systeme in macros/generic

Vertical alignment of systems of equations.

macros/latex/contrib

acroterm in macros/latex/contrib

Manage and index acronyms and terms.

adjmulticol in macros/latex/contrib

Adjusting margins for multi- and single-column
output.

aomart in macros/latex/contrib

Typesetting articles for The Annals of Mathematics.

apa6e in macros/latex/contrib

Formatting according to the American Psychological
Association 6th edition guidelines.

babeltools in macros/latex/contrib

Flexibility on top of babel.

bashful in macros/latex/contrib

Support execution of Bash scripts from within LATEX.

bibleref-french in macros/latex/contrib

French adaptation of bibleref.

fonts/bbold-type1

TUGboat, Volume 32 (2011), No. 1 111

bibleref-german in macros/latex/contrib

German adaptation of bibleref.

bibleref-parse in macros/latex/contrib

Parse Bible passages given in a wide variety of
human-readable formats.

bondgraph in macros/latex/contrib

Draw bond graphs using PGF/TikZ.

booktabs-de in macros/latex/contrib

German translation of the booktabs documentation.

canoniclayout in macros/latex/contrib

memoir extension for a page layout based on circles.

catchfilebetweentags in macros/latex/contrib

Extract a portion of a file between tags into a macro.

catoptions in macros/latex/contrib

Preserve and recall standard catcodes.

chemexec in macros/latex/contrib

Prepare exercise sheets with separate solutions.

collcell in macros/latex/contrib

Collect content of a tabular cell to pass to a macro.

colourchange in macros/latex/contrib

Change colors of structural elements in Beamer
during a presentation.

* cprotect in macros/latex/contrib

Allow any control sequence (\footnote, . . .) to take
verbatim text in its argument.

dfgproposal in macros/latex/contrib

Proposals for the German Research Council (DFG).

dirtytalk in macros/latex/contrib

Typeset (possibly nested) quoted text.

easy-todo in macros/latex/contrib

TODO notes in the document body and as an index.

enumitem-zref in macros/latex/contrib

General references for items in enumitem lists.

fileinfo in macros/latex/contrib

Standalone and expandable \GetFileInfo.

filemod in macros/latex/contrib

Read and compare file modification times.

finstrut in macros/latex/contrib

Fix \@finalstrut to not produce an empty line in
vertical mode.

fldigigal in macros/latex/contrib

Create an AcroTEX Flash Digital Gallery.

geometry-de in macros/latex/contrib

German translation of the geometry documentation.

gincltex in macros/latex/contrib

Support including external LATEX files as graphics.

gmp in macros/latex/contrib

Integrate MetaPost and LATEX.

gradientframe in macros/latex/contrib

Produce gradient frames around objects.

* hardwrap in macros/latex/contrib

Break lines by words to a specified width.

he-le-na in macros/latex/contrib

Explicit hyphenations and shortcuts for Serbian.

he-she in macros/latex/contrib

Alternate masculine and feminine pronouns.

* interfaces in macros/latex/contrib

Key–value interface for frequently-changed settings
provided by several packages.

iwhdp in macros/latex/contrib

Format discussion papers of the Halle Institute for
Economic Research.

koma-moderncvclassic in macros/latex/contrib

Make moderncv (classic style) available for koma
classes and thus compatible with biblatex.

libgreek in macros/latex/contrib

Libertine/Biolinum Greek in math mode.

lpic in macros/latex/contrib

Typeset LATEX material over included graphics.

mathastext in macros/latex/contrib

Propagate document text font to math mode.

morehype in macros/latex/contrib

Shorthands for TEX-related hyperlinks; improved
tables of contents with hyperref; generating HTML

with TEX macros.

mpgraphics in macros/latex/contrib

Write MetaPost diagrams inline; process with a
single run.

msuthesis in macros/latex/contrib

Typeset Michigan State University graduate theses.

musixguit in macros/latex/contrib

Simplify guitar notation with musixtex.

mychemistry in macros/latex/contrib

Typeset complex chemical reaction schemes.

parselines in macros/latex/contrib

Line-by-line for files or environment contents.

physymb in macros/latex/contrib

Shortcuts for physicists.

piano in macros/latex/contrib

Draw two-octave piano keyboard with up to seven
selected keys highlighted.

productbox in macros/latex/contrib

Typeset a three-dimensional product box.

pxgreeks in macros/latex/contrib

Select italic or upright shapes for the pxfonts Greek.

randomwalk in macros/latex/contrib

Draw random walks.

rec-thy in macros/latex/contrib

Typesetting recursion (computability) theory papers.

tabu in macros/latex/contrib

Flexible LATEX tabulars, enhancing tabular, array,
and tabularx.

textgreek in macros/latex/contrib

Upright greek letters as text, e.g., \textbeta.

tkz-base in macros/latex/contrib/tkz

Base package for easier programming with TikZ.

tkz-euclide in macros/latex/contrib/tkz

Euclidean geometry drawings with tkz-base.

tkz-fct in macros/latex/contrib/tkz

Graphs of functions with tkz-base and Gnuplot.

macros/latex/contrib/tkz/tkz-fct

112 TUGboat, Volume 32 (2011), No. 1

tucv in macros/latex/contrib

Typeset a resume or CV.

turnthepage in macros/latex/contrib

Indicate on two-sided documents to turn the page.

txgreeks in macros/latex/contrib

Select italic or upright shapes for the txfonts Greek.

uothesis in macros/latex/contrib

Typeset University of Oregon theses.

uri in macros/latex/contrib

Support for DOI, XMPP, and many other types of
URIs.

ytableau in macros/latex/contrib

Many-featured Young tableaux and Young diagrams.

macros/latex/contrib/beamer-contrib

beamer2thesis in m/l/c/beamer-contrib/themes

Beamer theme for thesis presentations.

nirma in m/l/c/beamer-contrib/themes

Beamer theme for academic presentations.

macros/latex/contrib/biblatex-contrib

biblatex-ieee in m/l/c/biblatex-contrib

biblatex support for the IEEE style.

macros/luatex

luasseq in macros/luatex/generic

Drawing spectral sequences in LuaLATEX.

luaindex in macros/luatex/latex

Index processor in Lua.

macros/xetex

fixlatvian in macros/xetex/latex

Extend polyglossia’s Latvian language support.

* ucharclasses in macros/xetex/latex

Code insertion between characters from different
Unicode blocks.

unisugar in macros/xetex/latex

Unicode characters used in common LATEX commands,
and support control sequence names with right-to-
left characters.

support

purifyeps in support

Convert EPS files to a form readable to pdfTEX,
using pstoedit.

sty2dtx in support

Initialize a .dtx file from a .sty.

texdef in support

Display definition of a given (LA)TEX control sequence.

TUGboat, Volume 32 (2011), No. 1 113

‘Magic’ comments in TEXworks 0.4

Joseph Wright

The editor TEXworks (http://tug.org/texworks)
is designed to ‘lower the entry barrier to the TEX
world’. TEXworks v0.4 has recently been released,
and this is a good opportunity to look at one very
useful feature: ‘magic’ comments. These are used
to give the editor information about the file being
edited. (The concept is not unique to TEXworks:
TeXShop and AUCTEX both include similar ideas.)

% !TeX program = LuaLaTeX

specifies the name of the typesetting engine to use for
the current file, which should be one of the engines
that is set up for use with TEXworks. This is useful if
you normally use one engine (for example pdfLaTeX),
but have a few files that need an alternative engine.
In the example, the file would automatically be pro-
cessed with LuaLaTeX as the engine.

% !TeX encoding = UTF-8

Sets the file encoding for the current file. The usual
default is UTF-8, but this setting is handy if you need
to collaborate with other people using non-UTF-8
editors.

% !TeX root = somefile.tex

Indicates that the current file is not the main file for
typesetting: when you choose to typeset, TEXworks
will save the current file then typeset the master file.
Using this setting, you need the full name of the
master file including the extension. This is clearly a
handy setting for larger projects, where you might
have a lot of files which are to be included in one
master document.

% !TeX spellcheck = de-DE

Specifies the spell check language for the current
file. The language of course needs to be one you
have installed: TEXworks currently uses the hunspell
dictionary format. OpenOffice.org also uses this
format, but has recently extended it. More inform-
ation is at http://code.google.com/p/texworks/

wiki/SpellingDictionaries.
One point to notice with the root setting is how

it interacts with program. Let’s imagine that the
master file needs to be typeset using LuaLaTeX, and
that your default engine is pdfLaTeX. You then need
to include the program in each subsidiary file to get
everything to work properly:

% !TeX root = master.tex

% !TeX program = LuaLaTeX

Without this, when you try to typeset from one of the
subfiles then TEXworks will use the currently-selected
engine (probably pdfLaTeX) and not LuaLaTeX for
the typesetting. Once you know, this is not so sur-
prising, but at first it is easy to get caught out!

TEXworks 0.4 includes plenty of other new fea-
tures and bug fixes. Perhaps the most notable is
scripting support for QtScript, Lua and Python, in-
cluding now-bundled scripts for some common tasks.
See the web page at http://tug.org/texworks for
more information and a full list of changes.

⋄ Joseph Wright

Morning Star

2, Dowthorpe End

Earls Barton

Northampton NN6 0NH

United Kingdom

joseph.wright (at) morningstar2.co.uk

114 TUGboat, Volume 32 (2011), No. 1

Eutypon 24–25, October 2010

Eutypon is the journal of the Greek TEX Friends
(http://www.eutypon.gr).

Kiki Dimoula, The audacious word thief; p. 1
(A poem.) (In Greek.)

John Plaice, On Omega (Ω) and beyond; pp. 3–9
(An interview, conducted by Apostolos Syropou-

los.) John Plaice is known for his pioneering work on
Ω (Omega), the first project to expand the multilin-
gual capabilities of TEX in the early and mid-1990s.
That project is now over, but as John explains in
this interview, its heritage is still alive in LuaTEX,
and also in XML. John also talks about Cartesian
Programming, his new project that one day may
bring to life the Cartesian document. (Article in

English.)

Apostolos Syropoulos, Uniform rendering
of XML encoded mathematical content with
OpenType fonts; pp. 11–22

The new OpenType MATH font table contains
important information that can be used to correctly
and uniformly render mathematical content (e.g.,
mathematical formulae, equations, etc.). Until now,
all systems rendering XML encoded mathematical
content employed some standard algorithms together
with some standard sets of TrueType and/or Type 1
fonts, which contained the necessary glyphs. Unfor-
tunately, this approach does not produce uniform
results because certain parameters (e.g., the thick-
ness of the fraction line, the scale factor of super-
scripts/subscripts, etc.) are system-dependent, that
is, their exact values will depend on the particu-
lar setup of a given system. Fortunately, the new
OpenType MATH table can be used to remedy this
situation. In particular, by extending renderers so
as to be able to render mathematical contents with
user-specified fonts, the result will be uniform across
systems and platforms. In other words, the proposed
technology would allow mathematical content to be
rendered the same way ordinary text is rendered
across platforms and systems. (Article in English.)

Ioannis A. Vamvakas, An improved version of
“Byzantine” music fonts; pp. 23–40

In this paper, we present a second, revised ver-
sion of our “Byzantine” music fonts. We also present
a new approach for a more efficient use of these fonts
with LATEX, and its ancestor TEX. (Article in Greek

with English abstract.)

Alexandros Droseltis, GNU LilyPond: a music
engraving program; pp. 41–57

In this article the music engraving program GNU

LilyPond is presented. At first, the basic commands
of the program are presented, which control pitch,
durations, dynamics, expression and articulation
signs, lyrics and various possibilities of typesetting
polyphony, and the use of variables for the sake of
code simplification. Further, the two most impor-
tant concepts of organizing the score are explained,
contexts and engravers, and an introduction is made
to the basic commands that change the defaults. At
the end, the most compatible mode of integrating
music scores in text files is mentioned, as well as
some auxiliary applications, the documentation of
the program and the support of the users. (Article
in Greek with English abstract.)

Triantafyllos E. Sklavenitis, The
typographer Christos G. Manousaridis, 1936–2008;
pp. 59–65

The Greek master typographer Christos G. Ma-
nousaridis passed away at the beginning of 2008. His
print shop, where some of the most difficult and mag-
nificent Greek documents were produced in the latter
half of the 20th century, had already ceased its oper-
ation since 2007. With the passing of Manousaridis,
the era of metal type typography seems to end forever
in Greece. Nonetheless, the products of his art will
remain as lessons of perfection and aestheticism for
the new generations of Greek typographers. (Article
in Greek with English abstract.)

[Received from Dimitrios Filippou
and Apostolos Syropoulos.]

TUGboat, Volume 32 (2011), No. 1 115

MAPS 41 (2010)

MAPS is the publication of NTG, the Dutch language
TEX user group (http://www.ntg.nl).

Taco Hoekwater, Redactioneel [From the
editor]; p. 1

Overview.

GUST, EuroBachoTEX announcement; p. 2
http://www.gust.org.pl/bachotex.

Taco Hoekwater, tlcontrib.metatex.org; pp. 3–8
[Reprinted in this issue of TUGboat.]

Piet van Oostrum, Nieuws van CTAN [News
from CTAN]; pp. 9–13

Recent CTAN contributions.

Hans Hagen, Up to ConTEXt MkVI; pp. 14–18
[Enhancements to groups for, e.g., background

colors and underlining, in ConTEXt MkIV.]

Taco Hoekwater and Hartmut Henkel,
LuaTEX 0.60; pp. 19–24

[Published in TUGboat 31:2.]

Pawe l Jackowski, Luna—my side of the moon;
pp. 25–30

[Reprinted in this issue of TUGboat.]

Luigi Scarso, PDF/A-1a in MkIV; pp. 31–36
I present some considerations on electronic docu-

ment archiving and how MkIV supports the ISO stan-
dard 19500-1 Level A Conformance (PDF/A-1a:2005),
a standard for long-term document archiving.

Paul Isambert, Three things you can do
with LuaTEX that would be extremely painful
otherwise; pp. 37–44

[Published in TUGboat 31:3.]

John Haltiwanger, Toward subtext; pp. 45–48
The demands of typesetting have shifted signifi-

cantly since the original inception of TEX. Donald
Knuth strove to develop a platform that would prove
stable enough to produce the same output for the
same input over time (assuming the absence of bugs).
Pure TEX is a purely formal language, with no practi-
cal notion of the semantic characteristics of the text
it is typesetting. The popularity of LATEX is largely
related to its attempt to solve this problem. The
flexibility of ConTEXt lends itself to a great diversity
of workflows. However, document creation is not
straight-forward enough to lend itself to widespread
adoption by a lay audience, nor is it particularly
flexible in relation to its translatability into other
important output formats such as HTML.

Subtext is a proposed system of generative type-
setting designed for providing an easy-to-use abstrac-

tion for interfacing with TEX, HTML, and other sig-
nificant markup languages and output formats. By
providing a mutable translation layer in which both
syntax and the actual effects of translation are de-
fined within simple configuration files, the infinitely
large set of typographic workflows can be accommo-
dated without being known in advance. At the same
time, once a workflow has been designed within the
Subtext system, it should enjoy the same long-term
stability found in the TEX system itself. This arti-
cle briefly explains the conditions, motivations, and
initial design of the emerging system.

Hans Hagen, Typesetting in Lua using LuaTEX;
pp. 49–67

I added commands to ConTEXt MkIV that per-
mit coding a document in Lua. In retrospect it has
been surprisingly easy to implement a feature like
this using metatables. As we rely on ConTEXt it is
unavoidable that some regular ConTEXt code shows
up. The fact that you can ignore backslashes does
not mean that you can do without knowledge of the
underlying system.

Jean-Michel Hufflen, Processing “computed”
texts; pp. 68–78

This article is a comparison of methods to derive
texts to be typeset by a word processor. By ‘derive’,
we mean that such texts are extracted from a larger
structure, which can be viewed as a database. The
present standard for such a structure uses an XML-
like format, and we give an overview of the available
tools for this derivation task.

Kees van der Laan, à la Mondrian; pp. 79–90
Mondrian worked most of his life as an ab-

stract painter, influenced by the magic realism of
Jan Toorop, and by Cubism and Pointillism. He
was a member of De Stijl and lived in Paris and in
New York. Some of his work seems to have been
composed randomly, though he was very precise, as
witnessed by the overpainting of various squares in
his Victory Boogie-Woogie. Mondrian’s ‘random’
work Composition in Line (1916), is emulated and
varied in MetaPost and PostScript, in color, with the
lines (position and size) randomly chosen. He was
the first painter to frame work by Lozenges. Division
of the sides of his Lozenge with Two Lines is near
to the golden ratio. Emulated Lozenges obeying the
golden ratio have been included. The variations look
nevertheless Mondrian-esque.

Frans Goddijn, NTG Najaarsbijeenkomst 2010;
pp. 91–92

NTG conference report.

[Received from Taco Hoekwater.]

116 TUGboat, Volume 32 (2011), No. 1

The PracTEX Journal 2010-2

The PracTEX Journal is an online publication of the
TEX Users Group. Its web site is http://tug.org/
pracjourn. All articles are available there.

Issue theme: LATEX for teachers.

Lance Carnes, In this issue
Editor’s introduction to the issue.

The Editors, News from Around
Knuth’s Earthshaking Announcement;

More Knuth humor; Type maps.

Cassiano S. Rosa and Og DeSouza, Sweave—
Interface entre R e LATEX [Using R and LATEX]

When using R for statistical analyses, it is com-
mon to keep the data analyses, the results of exper-
iments, and graphs in separate files. Fortunately,
for R users who also use LATEX, there is a tool for
organizing these files: Sweave! This paper presents a
very short account on how Sweave integrates R and
LATEX to keep both input and output of statistical
analyses in a single style file. (In Portuguese.)

Alain Schremmer, Configurable materials for
teaching mathematics

This article describes a system that uses LATEX
to generate math texts, homework, quizzes, and ex-
ams for developmental mathematics courses.

Marius Hofert and Markus Kohm, Scientific
presentations with LATEX

In this article, we show how scientific presen-
tations can be created based on the KOMA-Script
document class scrartcl. The main advantage of
the suggested approach is that the presentation slides
allow for easy copy-and-paste of content from other
LATEX documents such as research papers or hand-
outs. Using this approach, presentation slides are
quickly generated, without the author having to learn
how to use other LATEX presentation packages. Addi-
tionally, in contrast to the rather overused templates
of the more common presentation packages, the slides
can be individually created and thus tailored to the
topic of the presentation.

Paulo Rogério and Rian Gabriel, Design and
preparation of effective scientific posters using
LATEX

Posters are important presentation tools in sci-
entific conferences. LATEX offers several packages,
e.g. a0poster and sciposter, for designing several
kinds of high quality posters. However, many of
the posters we are used to seeing are visually split
into columns and conceptually organized in sections,
with amounts of text which are likely to disrupt the
viewing experience and understanding of the con-
tent. In this article we present an efficient method
for preparing visual scientific posters using the PGF

package and its syntax layer TikZ.

Cristina Blaga and Paul Blaga, Variation and
sign tables with tableau

We describe here a package, tableau.sty, cre-
ated by N. Kisselhoff, very useful especially for cal-
culus courses. It aids in the construction of variation
and sign tables for the study of functions. The pack-
age provides a new environment based on PSTricks.

Cristina Blaga and Paul Blaga, Preparing
exam and homework material with probsoln

We describe here some of the possibilities pro-
vided by the package probsoln, by Nicola Talbot.
The aim of the package is to help the user prepare
different kinds of problem lists and tests.

Bastiaan Jacques, Square, multiline cells using
tabular(x)

I describe a method for creating square cells,
containing multiple lines typeset in paragraph mode
using the array package. Both plain LATEX tabular

and tabularx packages are used.

The Editors, Ask Nelly
Footnotes appear above a figure?; Changing

margins and line spacing?.

The Editors, Distraction: KenKen puzzles

TUGboat, Volume 32 (2011), No. 1 117

Die TEXnische Komödie 2010/4–2011/1

Die TEXnische Komödie is the journal of DANTE

e.V., the German-language TEX user group (http:
//www.dante.de). [Editorial items are omitted.]

Die TEXnische Komödie 4/2010

Christine Römer, Gewichten Wichtiges und
Unwichtiges mit LATEX markieren [Emphasizing text—
Marking important and unimportant with LATEX;
Part 1: Footnotes]; pp. 22–35

Among other things typography provides means for
controlling the processing of information for the reader.
Part of this is the establishment of certain patterns to
indicate more important or less important facts in text.
Some of them are discussed in this article. In the first
part we cover functions and adjustment parameters of
footnotes. In the second part various ways of highlighting
text will be discussed.

Uwe Ziegenhagen, Datenanalyse mit Sweave, LATEX
und R [Data analysis with R/Sweave and LATEX];
pp. 35–45

[Translation of the article in TUGboat 31:2.]

Rolf Niepraschk, Mehrere Stichwortverzeichnisse
im LATEX-Dokument [Multiple indexes in a LATEX
document]; pp. 46–50

In extensive documents it may make sense to list
certain terms in the appendix. In this article we will
show how to create these lists, using registers for persons
and places as examples. It is not the aim of this article
to describe all aspects of this topic in detail but rather
to provide hints and ideas for dealing with it.

Herbert Voß, Das Paket cutwin [The cutwin

package]; pp. 51–55
The cutwin package with its macros and environ-

ments allows cutting out pieces of text as a “window”
in a paragraph if it contains only text. The macros are
based on code first published by Alan Hoenig; further
adjustments by Peter Wilson simplified the usage.

Die TEXnische Komödie 1/2011

Christine Römer, Gewichten Teil 2: Auszeichnungen
[Emphasizing text—Marking important and
unimportant with LATEX; Part 2: Emphases]; pp. 7–16

Emphases are mainly used to control the reading
fluency. The intensity, by which the different typographic
means of emphasizing text are used, depend not only on
the kind of text, the targeted audience and the purpose
but also on the “zeitgeist”. Therefore general rules, which
do not take the mentioned aspects into consideration, are
of little help.

LATEX allows the use of all kinds of emphasizing
text, however, there may be restrictions with some fonts
which do not have the full character set.

Günter Rau, SageTEX; pp. 17–21
The software introduced here is a mathematical

software system consisting of nearly 100 open source
components accessible via a common Python interface.

With Sage (http://www.sagemath.org) there is a
platform-independent LATEX package to include results
directly into LATEX. There is also an online version which
may be accessed via http://www.sagenb.org.

The examples in this article were created using
version 4.6 under Debian Lenny.

Patrick Oßmann, Kyrillische Schriftzeichen im
LATEX-Dokument [Cyrillic characters in LATEX
documents]; pp. 22–29

In the western European language area Latin char-
acters are used. Most of the time these characters are
sufficient to handle everyday requirements, but when
dealing with complex mathematical topics one may reach
the limits of Latin and Greek characters. In these situ-
ations it is necessary to include Cyrillic characters in a
LATEX document. At first glance this may seem trivial
with LATEX but actually it is not!

The article deals with this topic and aims to provide
a guideline on the use of Cyrillic characters in documents
which are encoded in T1.

Kurt Lidwin, Ein passendes Bewerbungsanschreiben
zum ModernCV-Lebenslauf [Suitable application
letters for the ModernCV package]; pp. 30–39

In the various LATEX discussion groups and forums a
question is raised from time to time: How can one create
a nice application letter for a CV that was created with
ModernCV?

This article provides a tutorial on how to create a
matching layout application letter written with scrlttr2

for a ModernCV curriculum vitae.

Herbert Voß, Einlesen und Ausführen von
Quellcode [Displaying and executing source code];
pp. 40–54

A common question on mailing lists and in forums is
if not only literal source code can be embedded in LATEX
documents but also the results created by this code.

Packages such as fancyvrb and listings support
external writing and partial reading of code. Further
packages such as showexpl also provide means to execute
the embedded code externally. In this article it is shown
how arbitrary code can be treated this way.

[Received from Herbert Voß.]

118 TUGboat, Volume 32 (2011), No. 1

ArsTEXnica #10 (October 2010)

ArsTEXnica is the journal of guIt, the Italian TEX
user group (http://www.guit.sssup.it/).

Gianluca Pignalberi and Massimiliano

Dominici, Editoriale [From the editor]; pp. 5–6
Overview of the present issue.

Enrico Gregorio, How to install TEX Live on
Ubuntu; pp. 7–13

[Printed in this issue of TUGboat.]

Claudio Beccari, Le graffe: queste sconosciute
[Braces: Those unknowns]; pp. 14–18

Braces, brackets and common (round) parenthe-
ses play an important rôle in LATEX syntax; braces in
particular are used more often than the other kinds.
Nevertheless, while brackets and round parentheses
play restricted rôles, braces have at least three differ-
ent interpretations and even some aliases are given
to them. Sometimes their rôles are misinterpreted by
the user and sometimes their rôles are not so evident.
This tutorial is intended to clarify the rôles of braces.

Matteo Centonza and Vito Piserchia,
illumino: An XML document production system
with a TEX core; pp. 19–24

[Published in TUGboat 30:3.]

Luigi Scarso, PDF/A-1a in ConTEXt-MkIV;
pp. 25–32

I present some considerations on electronic docu-
ment archiving and how MkIV supports the ISO stan-
dard 19500-1 Level A Conformance (PDF/A-1a:2005),
a standard for long-term document archiving.

Gianluca Pignalberi, Presentazioni animate
in LATEX [Animated presentations in LATEX];
pp. 33–40

LATEX presentations are not condemned to stay
completely static. A small set of tools and the PDF

format capabilities allow more than perfect results.

Jean-Michel Hufflen, Managing printed and
online versions of large educational documents;
pp. 41–46

[Published in a somewhat shorter version in
TUGboat 31:3.]

Eventi e novità, Events and news; pp. 47–48

[Received from Gianluca Pignalberi.]

The information here comes from the consultants
themselves. We do not include information we know
to be false, but we cannot check out any of the
information; we are transmitting it to you as it was
given to us and do not promise it is correct. Also, this
is not an official endorsement of the people listed here.
We provide this list to enable you to contact service
providers and decide for yourself whether to hire one.

TUG also provides an online list of consultants at
http://tug.org/consultants.html. If you’d like to
be listed, please see that web page.

Aicart Martinez, Mercè

Tarragona 102 4o 2a

08015 Barcelona, Spain
+34 932267827
Email: m.aicart (at) ono.com

Web: http://www.edilatex.com

We provide, at reasonable low cost, LATEX or TEX page
layout and typesetting services to authors or publishers
world-wide. We have been in business since the
beginning of 1990. For more information visit our web
site.

Dangerous Curve

PO Box 532281
Los Angeles, CA 90053
+1 213-617-8483
Email: typesetting (at) dangerouscurve.org

Web: http://dangerouscurve.org/tex.html

We are your macro specialists for TEX or LATEX fine
typography specs beyond those of the average LATEX
macro package. If you use X ETEX, we are your
microtypography specialists. We take special care to
typeset mathematics well.

Not that picky? We also handle most of your typical
TEX and LATEX typesetting needs.

We have been typesetting in the commercial and
academic worlds since 1979.

Our team includes Masters-level computer scientists,
journeyman typographers, graphic designers,
letterform/font designers, artists, and a co-author of a
TEX book.

Hendrickson, Amy

Brookline, MA, USA
Email: amyh (at) texnology.com

Web: http://www.texnology.com

LATEX macro writing our speciality for more than
25 years: macro packages for major publishing
companies, author support; journal macros for
American Geophysical Union, Proceedings of the
National Academy of Sciences, and many more.

TUGboat, Volume 32 (2011), No. 1 119

TEXConsultants

Hendrickson, Amy (cont’d)

Scientific journal design/production/hosting,
e-publishing in PDF or HTML.

LATEX training, at MIT, Harvard, many more
venues. Customized on site training available.

Please visit our site for samples, and get in touch.
We are particularly glad to take on adventurous
new uses for LATEX, for instance, web based report
generation including graphics, for bioinformatics or
other applications.

Latchman, David

4113 Planz Road Apt. C
Bakersfield, CA 93309-5935
+1 518-951-8786
Email: dlatchman (at) gmail.com

Web: http://www.elance.com/s/dlatchman

Proficient and experienced LATEX typesetter for books,
monographs, journals and papers allowing your
documents and books to look their possible best
especially with regards to technical documents.
Graphics/data rendered either using TikZ or Gnuplot.
Portfolio available on request.

Peter, Steve

295 N Bridge St.
Somerville, NJ 08876
+1 732 306-6309
Email: speter (at) mac.com

Specializing in foreign language, multilingual,
linguistic, and technical typesetting using most
flavors of TEX, I have typeset books for Pragmatic
Programmers, Oxford University Press, Routledge, and
Kluwer, among others, and have helped numerous
authors turn rough manuscripts, some with dozens of
languages, into beautiful camera-ready copy. In
addition, I’ve helped publishers write, maintain, and
streamline TEX-based publishing systems. I have an
MA in Linguistics from Harvard University and live in
the New York metro area.

Shanmugam, R.

No. 38/1 (New No. 65), Veerapandian Nagar, Ist St.
Choolaimedu, Chennai-600094, Tamilnadu, India
+91 9841061058
Email: rshanmugam92 (at) yahoo.com

As a Consultant, I provide consultation, training, and
full service support to individuals, authors, typesetters,
publishers, organizations, institutions, etc. I support
leading BPO/KPO/ITES/Publishing companies in
implementing latest technologies with high level
automation in the field of Typesetting/Prepress,
ePublishing, XML2PAGE, WEBTechnology,
DataConversion, Digitization, Cross-media publishing,
etc., with highly competitive prices. I provide
consultation in building business models &

Shanmugan, R. (cont’d)

technology to develop your customer base and
community, streamlining processes in getting ROI on
our workflow, New business opportunities through
improved workflow, Developing eMarketing/E-Business
Strategy, etc. I have been in the field BPO/KPO/ITES,
Typesetting, and ePublishing for 16 years, handled
various projects. I am a software consultant with
Master’s Degree. I have sound knowledge in TEX,
LATEX2ε, XMLTEX, Quark, InDesign, XML, MathML,
DTD, XSLT, XSL-FO, Schema, ebooks, OeB, etc.

Sievers, Martin

Im Treff 8, 54296 Trier, Germany
+49 651 4936567-0
Email: info (at) schoenerpublizieren.com

Web: http://www.schoenerpublizieren.com

As a mathematician with ten years of typesetting
experience I offer TEX and LATEX services and
consulting for the whole academic sector (individuals,
universities, publishers) and everybody looking for a
high-quality output of his documents.

From setting up entire book projects to last-minute
help, from creating individual templates, packages and
citation styles (BibTEX, biblatex) to typesetting your
math, tables or graphics— just contact me with
information on your project.

120 TUGboat, Volume 32 (2011), No. 1

Veytsman, Boris

46871 Antioch Pl.
Sterling, VA 20164
+1 703 915-2406
Email: borisv (at) lk.net

Web: http://www.borisv.lk.net

TEX and LATEX consulting, training and seminars.
Integration with databases, automated document
preparation, custom LATEX packages, conversions and
much more. I have about sixteen years of experience in
TEX and twenty-nine years of experience in teaching
& training. I have authored several packages on
CTAN, published papers in TEX related journals, and
conducted several workshops on TEX and related
subjects.

Young, Lee A.

127 Kingfisher Lane
Mills River, NC 28759
+1 828 435-0525
Email: leeayoung (at) live.com

Web: http://www.latexcopyeditor.net

http://www.editingscience.net

Copyediting your .tex manuscript for readability and
mathematical style by a Harvard Ph.D. Experience:
edited hundreds of ESL journal articles, economics and
physics textbooks, scholarly monographs, LATEX
manuscripts for the Physical Review; career as
professional, published physicist.

Letters

Is TEX obsolete?

Jonathan Fine

The conversion, in 2010–11, of the Summa paper
mill in Finland to a Google data center is a clear sign
of the growing importance of electronic media and in
particular web pages in human communication. In
this note we ask and provide a preliminary answer to
the questions: Globally, how much server CPU time
is spent running TEX or one of its descendants? And
for what purpose?

For Google’s data centers the answer might be
zero. I don’t know of any Google web application
that uses TEX or descendant for back-end typeset-
ting. The closest I know of is Google charts, which
provides typesetting of TEX notation mathematics.
But there is strong evidence that they are not using
TEX’s algorithms for this.

The major site that has back-end TEX typeset-
ting is, of course, arXiv.org. There are also some
publisher sites that use a similar service for author
submissions.

WordPress and PediaPress are two other major
sites using TEX or similar. WordPress allows blog-
gers to put LATEX notation mathematics into their

posts and comments. PediaPress provides a typeset-
ting service for Wikipedia pages, which uses LATEX
as the backend.

The only other significant TEX or typesetting as
a web service site I know of is MathTran (developed
by myself with JISC and Open University funding).
This provides, as does WordPress, translation of for-
mulae for images, but this time intended for use on
third-party web sites.

The more traditional reader might say: I agree
that TEX is not widely available as a web service,
but what does this have to do with it being obso-
lete? My view is that at present TEX and its descen-
dants are well-established only in a few paper and
PDF oriented niche areas, of which mathematics and
physics research is by far the most important.

If TEX does not establish itself as a ubiquitous
notation and typesetting system for mathematics on
web pages, and if it does not consolidate and extend
its use for server-side document typesetting, then
these failings may cause the system as a whole to
become obsolete. This would not be due to any in-
herent failings, but to a failure to provide an inter-
face that meets the needs of electronic media, par-
ticularly the web.

⋄ Jonathan Fine

Milton Keynes, United Kingdom

jfine (at) pytex dot org

http://jonathanfine.wordpress.com/

TUGboat, Volume 32 (2011), No. 1 121

TUG

Institutional

Members

American Mathematical Society,

Providence, Rhode Island

Aware Software, Inc.,

Midland Park, New Jersey

Banca d’Italia,

Roma, Italy

Center for Computing Sciences,

Bowie, Maryland

Certicom Corp.,

Mississauga, Ontario, Canada

CSTUG, Praha, Czech Republic

diacriTech, Chennai, India

Florida State University,

School of Computational Science

and Information Technology,

Tallahassee, Florida

IBM Corporation,

T J Watson Research Center,

Yorktown, New York

Institute for Defense Analyses,

Center for Communications

Research, Princeton, New Jersey

MacKichan Software, Inc.,

Washington/New Mexico, USA

Marquette University,

Department of Mathematics,

Statistics and Computer Science,

Milwaukee, Wisconsin

Masaryk University,

Faculty of Informatics,

Brno, Czech Republic

MOSEK ApS,

Copenhagen, Denmark

New York University,

Academic Computing Facility,

New York, New York

Springer-Verlag Heidelberg,

Heidelberg, Germany

Stanford University,

Computer Science Department,

Stanford, California

Stockholm University,

Department of Mathematics,

Stockholm, Sweden

University College, Cork,

Computer Centre,

Cork, Ireland

Université Laval,

Ste-Foy, Québec, Canada

University of Oslo,

Institute of Informatics,

Blindern, Oslo, Norway

TUG financial statements for 2010

David Walden

The financial statements for 2010 have been reviewed
by the TUG board but have not been audited. As a
US tax-exempt organization, TUG’s annual informa-
tion returns are publicly available on our web site:
http://www.tug.org/tax-exempt.

Revenue (income) highlights

Membership dues revenue was up from 2009 to 2010
although our membership was down (at the end of
December 2010 we had approximately 1,423 paid
members); all other income categories were down.

Cost of Goods Sold and Expenses highlights,
and the bottom line

Payroll, office expenses, and TUGboat and DVD pro-
duction and mailing continue to be the major ex-
pense items. Costs were down generally, in some
cases significantly.

Although overall income was down almost $5,000
year-to-year, Cost of Goods Sold and Expenses was
down by over three times as much resulting in a
profit for the year of almost $11,000.

Often we have a prior year adjustment that takes
place early in the year to compensate for something
that had to be estimated at the time the books
were closed at year end; in 2010 the total of such
adjustments was $1,969.

Balance sheet highlights

TUG’s end-of-year asset level is down a little under
$3,000 from 2009 to 2010. Although we generated
a profit of almost $11,000 in 2010, we also had a
cash outlay of about $11,000 in 2010 for a 2009
TUGboat expense (see Accounts Payable). Thus,
Total Checking/Savings are less than $1,000 apart
from 2009 to 2010.

The Deferred Expense of over $2,000 was cash
paid out in 2009 (when we committed to the confer-
ence hotel in San Francisco) for what was actually a
2010 conference expense.

The Committed Funds come to TUG specifically
for designated projects: the LATEX project, the TEX
development fund, CTAN, and so forth. They have
been allocated accordingly and are disbursed as the
projects progress. TUG charges no overhead for
administering these funds.

The Prepaid Member Income category is mem-
ber dues that were paid in 2010 or previous years for
2011 and beyond. Most of this liability (the 2011 por-
tion) was converted into regular Membership Dues
for 2011 in January 2011.

The payroll liabilities are for 2010 state and
federal taxes due January 15, 2011.

The change in Total Equity from 2009 to 2010
is explained as follows: Unrestricted Equity as we
entered 2010 was the Total Equity from 2009 (the
Unrestricted Equity from 2008 minus the 2009 loss);

122 TUGboat, Volume 32 (2011), No. 1

Total Equity at the end of 2010 is the Unrestricted
Equity with which we entered 2010 plus the Net
Income (profit) from 2010.

Summary

TUG remained financially solid as we entered 2010.
We did increase the fee rates (after holding them

steady for three years) to cover slowly inflating ex-
penses that we were budgeting. There was a decrease
in membership, and part of that may have been be-
cause of the fee increase.

TUG continues to work closely with the other
TEX user groups and ad hoc committees on many
activities to benefit the TEX community.

⋄ David Walden

TUG treasurer

http://tug.org/tax-exempt

TUG 12/31/2010 (vs. 2009) Balance Sheet

Dec 31, 10 Dec 31, 09

ASSETS

Current Assets

Total Checking/Savings 180,613 181,596

Accounts Receivable 285 55

Other Current Assets 2,029

Total Current Assets 180,898 183,680

Fixed Assets 808 1,068

TOTAL ASSETS 181,706 184,748

LIABILITIES & EQUITY

Liabilities

Accounts Payable 11,000

Committed Funds 41,405 43,417

Deferred conference income 830

Prepaid member income 3,160 3,305

Payroll Liabilities 1,087 1,079

Total Current Liabilities 45,652 59,631

TOTAL LIABILITIES 45,652 59,631

Equity

Unrestricted 125,117 128,945

Net Income 10,937 -3,828

Total Equity 136,054 125,117

TOTAL LIABILITIES & EQUITY 181,706 184,748

 TUG 12/31/2010 (vs. 2009) Revenue and Expenses

Jan - Dec 10 Jan - Dec 09

Ordinary Income/Expense

Income

Membership Dues 104,261 98,815

Product Sales 4,224 5,095

Contributions Income 6,515 9,253

Annual Conference 2,820 7,640

Interest Income 1,356 3,163

Advertising Income 265 315

Total Income 119,441 124,281

Cost of Goods Sold

TUGboat Prod/Mailing 24,001 31,045

Software Production/Mailing 3,055 4,112

Postage/Delivery - Members 2,149 2,331

Conf Expense, office + overhead 1,840

JMM supplies/shipping 370

Member Renewal 523 434

Copy/Printing for members 47 234

Total COGS 29,775 40,366

Gross Profit 89,666 83,915

Expense

Contributions made by TUG 2,000 5,000

Office Overhead 12,161 16,560

Payroll Exp 65,778 64,451

Professional Fees 230

Lucida OpenType Development 500

Depreciation Expense 260 1,328

Total Expense 80,699 87,569

Net Ordinary Income 8,967 -3,654

Other Income/Expense

Other Income

Prior year adjust 1,969 -175

Total Other Income 1,969 -175

Net Income 10,936 -3,829

TUGboat, Volume 32 (2011), No. 1 123

TUGBusiness

TUG 2011 election report

Nominations for TUG President and the Board of
Directors in 2011 have been received and validated.
Because there is a single nomination for the office
of President, and because there are not more nom-
inations for the Board of Directors than there are
open seats, there will be no requirement for a ballot
in this election.

For President, Steve Peter was nominated. As
there were no other nominees, he is duly elected and
will serve for two years.

For the Board of Directors, the following in-
dividuals were nominated: Barbara Beeton, Karl
Berry, Susan DeMeritt, Michael Doob, Taco Hoek-
water, Ross Moore, Cheryl Ponchin, Philip Taylor,
and Boris Veytsman. As there were not more nom-
inations than open positions, all the nominees are
duly elected for the usual four-year term. Thanks to
all for their willingness to serve.

Terms for both President and members of the
Board of Directors will begin with the Annual Meet-
ing at River Valley Technologies in India. Congratu-
lations to all.

Board member Jon Breitenbucher has decided
to step down at the end of his term. On behalf of
the Board, I wish to thank him for his service, and
for his continued participation through October.

Statements for all the candidates, both for Pres-
ident and for the Board, are appended (in alphabet-
ical order). They are also available online at the
url below, along with announcements and results of
previous elections.

⋄ Jim Hefferon
for the Elections Committee
http://tug.org/election

Barbara Beeton

Biography:
For TEX and the TEX Users Group:

• charter member of the TEX Users Group; charter
member of the TUG Board of Directors;

• TUGboat production staff since 1980, Editor
since 1983;

• Don Knuth’s “TEX entomologist”, i.e., bug col-
lector;

• TUG committees: publications, bylaws, elec-
tions;

• chair, Technical Working Group on Extended
Math Font Encoding;

• liaison from Board to Knuth Scholarship Com-
mittee 1991–1992.

Employed by American Mathematical Society:

• Staff Specialist for Composition Systems; in-
volved with typesetting of mathematical texts
since 1973; assisted in initial installation of TEX
at AMS in 1979; implemented the first AMS

document styles; created the map and ligature
structure for AMS cyrillic fonts.

• Standards organizations: active 1986–1997 in:
ANSI X3V1 (Text processing: Office & publish-
ing systems), ISO/IEC JTC1/SC18/WG8 (Doc-
ument description and processing languages);
developing the standard ISO/IEC 9541:1991 In-
formation technology—Font information inter-
change.

• AFII (Association for Font Information Inter-
change): Board of Directors, Secretary 1988–
1996.

• STIX representative to the Unicode Technical
Committee for adoption of additional math sym-
bols, 1998–present.

Personal statement:
Once again I’ve decided it’s not quite yet time

to retire. TEX continues to provide interesting prob-
lems to work on, and TUG still provides a focus for
dedicated TEX users.

I believe there’s still a place in the TUG ranks
for one of the “old guard”, to provide institutional
memory when it’s appropriate, and cheer on the
younger folks who are trying new things.

With support from the members of this won-
derful community, I’d like to continue for four more
years.

Karl Berry

Biography:
I served as TUG president since 2003 and was a

board member for two terms prior to that. I am now

TUG 2011 election report

124 TUGboat, Volume 32 (2011), No. 1

running for a position on the board, feeling that it
was time to step down as president. However, I don’t
expect to materially change my efforts on behalf of
TUG and TEX.

I have been on the TUG technical council for
many years. I co-sponsored the creation of the TEX
Development Fund in 2002, and am one of the pri-
mary system administrators and webmasters for the
TUG servers. I’m also one of the production staff for
the TUGboat journal.

On the development side, I’m currently editor
of TEX Live, the largest free software TEX distri-
bution, and thus coordinate with many other TEX
projects around the world, such as CTAN, LATEX,
and pdfTEX. I developed and still maintain Web2c
(Unix TEX) and its basic library Kpathsea, Eplain (a
macro package extending plain TEX), GNU Texinfo,
and other projects. I am also a co-author of TEX
for the Impatient, an early comprehensive book on
TEX, now freely available. I first encountered and
installed TEX in 1982, as a college undergraduate.

Personal statement:
I believe TUG can best serve its members and

the general TEX community by working in partner-
ship with the other TEX user groups worldwide, and
sponsoring projects and conferences that will increase
interest in and use of TEX. I’ve been fortunate to
be able to work essentially full time, pro bono, on
TUG and TEX activities the past several years, and
plan to continue doing so if re-elected as a board
member.

Susan Demeritt

My name is Susan DeMeritt, I live in Lakeside, Cali-
fornia, a suburb of San Diego.

I have been employed by the Center for Commu-
nications Research, La Jolla, in San Diego, California
for almost 22 years now as the only employee in the
Publications Department; I perform the technical
typing duties required as well as serving as a resource
for other employees with questions regarding the us-
age of LATEX. I started the position learning TEX
and am now working with LATEX2ε. I continue to
enjoy using LATEX2ε to typeset mathematical and
scientific papers; there is always something new to
learn and always another challenge to figure out.

I have been a member of the TEX Users Group
since 1989. I have been a member of the Board of Di-

rectors since March of 1998, and Secretary since 2001.
I really enjoy being part of the Board of Directors of
the TEX Users Group.

Michael Doob

I have been using TEX for more than a quarter-
century. In 1984 I wrote one of the first books in pure
mathematics to be printed using TEX and camera-
ready copy. In those pre-laser printer days, the out-
put used a dot-matrix printer (at a glorious 240dpi
using my home-written device driver). It was enti-
tled Recent Results in the Theory of Graph Spectra,
and the book, the printer, and the device driver have
all happily disappeared in the mists of bygone days.

TEX, on the other hand, has had an amazing
evolution. It has not only developed as an elegant
piece of software, but its syntax has become a lingua

franca for many scientific fields. The basic engine has
driven many applications that have revolutionized
mathematical publishing among other areas. Watch-
ing these changes has been exciting and exhilarating.
These applications continue to evolve and set new
standards in many unexpected ways. For example,
beamer has become the standard for many types of
mathematical presentations.

The TEX Users Group has done a wonderful job
of supporting the variations on the theme of TEX:
there are useful annual meetings with interesting
presentations, there are the publications TUGboat

and PracTEX which appeal to both novice and ex-
pert, and there is support on the web using CTAN

in general and TEX Live in particular. These efforts
are spearheaded by the Board of Directors. I believe
I can bring to this Board a background that will
facilitate its efforts. I have experience as a mathe-
matician, as the founder of the TEX publishing office
for the Canadian Mathematical Society, and as a for-
mer Board member. I would appreciate the support
of you, the members, and, if elected, will give my
best efforts to encourage the wider and more varied
uses of TEX.

TUG 2011 election report

TUGboat, Volume 32 (2011), No. 1 125

Taco Hoekwater

Biography:
Taco Hoekwater (born in 1969 in Netherlands) is

the main developer of LuaTEX, and MetaPost/MPlib.
He has been the first user of ConTEXt outside of
PRAGMA ADE and works in tight cooperation with
Hans Hagen to develop TEX engines and macros for
ConTEXt ever since. Around 2005 he took over de-
velopment of MetaPost, originally written by John
Hobby, to implement some features needed in Con-
TEXt and by Polish MetaType1 font developers. Dur-
ing the development of ConTEXt MkIV he turned it
into a library called MPlib to improve efficiency and
gain speed in ConTEXt which is known for heavy use
of MetaPost graphics. He has been the president of
the Dutch language-oriented TEX users group (NTG)
since 2009 and main editor of the user group’s mag-
azine MAPS. He was the first and main organizer of
ConTEXt User Meetings, the first one being hosted
in Epen, Netherlands in 2007, followed by the joint
EuroTEX & 3rd ConTEXt Meeting in The Hague in
2009.

Personal statement:
After three decades, there is still a lot of life

in TEX. New developments like X ETEX, LuaTEX,
TEXworks and also the continuously improving TEX
Live help bring new life in the community. As a
board member, I hope to be able to promote future
extensions and applications of Knuth’s amazing piece
of software.

Ross Moore

Biography:
My name is Ross Moore; I am an academic

mathematician, living in Sydney, Australia.
Since the mid-80s I have been a user of TEX

and LATEX, mostly for mathematical applications,
such as journal articles, books and proceedings vol-
umes. The need for special content layouts has led
to my involvement in the development of several
packages and other software, most notably XY-pic
and LATEX2HTML, both of which I have presented at
TUG annual meetings.

My first TUG meeting in 1997 saw me joining
the TUG Board of Directors, where I have served
ever since, and wish to continue to serve for at least
another term. For TUG I’ve worked on the Techni-
cal Council, the Publications Committee, assisted
with organising annual meetings, been the contact
person for the technical working groups TFAA and
MacTEX (though the most important work is done
by others), and administer email discussion groups
(LATEX2HTML, XY-pic, X ETEX). Frequently I answer
queries and give advice on the ‘TEX on MacOSX’
mailing list, for Macintosh users of TEX.

Currently I am working to develop TEX support
for “Tagged PDF” and “Universal Accessibility” and
archivability, through the PDF/A and PDF/UA for-
mats. This is especially intricate for mathematics,
which requires embedding a MathML description of
the content inside the PDF document, as well as
including the words for a spoken version that can
be read for the benefit of the visually impaired. If
TEX is to remain relevant as a publishing tool, in the
context of the rapidly advancing world of communi-
cation technologies, then these technologies must be
embraced and proper support developed.

Personal statement:
For the TUG board, I feel that my experience as

both a TEX programmer, as well as a mathematical
author and editor, provides a detailed understanding
of how TEX and LATEX have been used in the past,
as well as insight into new ways that the TEX family
of programs will be used in coming years.

TUG 2011 election report

126 TUGboat, Volume 32 (2011), No. 1

Steve Peter

Biography:
I am a linguist, publisher and designer originally

from Illinois, but now living in New Jersey. I first
encountered TEX as a technical writer document-
ing Mathematica. Now I use TEX and friends for
a majority of my publishing work and work with
several publishers customizing TEX-based publishing
systems. I am especially interested in multilingual
typography and finding a sane way to typeset all of
those crazy symbolisms linguists create. As if that
weren’t bad enough, I also design typefaces. (Do I
know lucrative markets, or what?)

I got involved in TUG via translations for TUG-

boat, where I also work on the production team. I’ve
been on the board of directors for the past half-dozen
years, and I pledge to do my best to build on the
excellent work of Karl Berry as TUG president.

Personal statement:
The future of TEX and TUG lies in communica-

tion and working together to promote and sustain
the amazing typographic quality associated with TEX
and friends. I am especially interested in having TUG

support various projects (technical and artistic) that
will serve to bolster TEX and TUG’s visibility in the
world at large.

Cheryl Ponchin

My name is Cheryl Ponchin, I am employed at the
Center for Communications Research in Princeton.
I have been typesetting mathematical papers using
(LA)TEX since 1987.

I have been a member of the TEX Users Group
since 1989 and a member of the TUG Board since
March of 1998. I have done many workshops for
TUG as well as at several universities. I really enjoy
being part of TUG.

Philip Taylor

Philip Taylor took early retirement from his
post as Webmaster of one of the larger University
of London colleges just over three years ago, and
has since then devoted much of his time to garden-
ing, cycling, and table-tennis. Although he retains
his former professional interest in web technology,
and continues to maintain and develop a number of
web sites, his real passion always was, and remains,
computer typesetting, for which he continues to be-
lieve that there is no better system than TEX and
its offspring : ε-TEX, PdfTEX, X ETEX, and LuaTEX.
Having served as a member of the TUG Board of
Directors for several years, he had intended to stand
down at the end of his current term of office, but the
recent announcement by Karl Berry that he (Karl)
now intends to stand down as President has caused
him (Phil) to re-consider, as he believes that the
Board could be weakened if too many members were
to leave at the same time.

If re-elected, Phil will continue to do his best to
ensure that the needs and wishes of the ordinary TUG

member are paramount when Board-level decisions
need to be made.

Boris Veytsman

Biography:
I have been using TEX since 1994 and have been

a TEX consultant for about six years.

Personal statement:
My goal is to make TUG a little bit more useful

for the members. I think that besides our traditional
benefits (TUGboat, software DVDs) we can do more.
For example, we can convince vendors to provide ex-
clusive discounts for our members on books, software
and other products. I have done some work along
these lines, and would like to continue it.

TUG 2011 election report

2011

Apr 29 –
May 3

EuroBachoTEX2011: 19th BachoTEX
Conference, “Aesthetics and
effectiveness of the message, cultural
contexts”, Bachotek, Poland.
www.gust.org.pl/bachotex/

bachotex2011-en

May 1 TUG election: nominations due.
tug.org/election

May 6 “Graphic Design: History in the
Making”, St Bride Library, London,
England. stbride.org/events

First in a two-part series; see Nov 24-25.

May 10 – 12 GUTenberg participation at “Solutions
Linux”, La Défense, Paris, France.
www.solutionslinux.fr

May 31 NTG 47th meeting, Breda, Netherlands.
www.ntg.nl/bijeen/bijeen47.html

Jun 6 –
Jul 29

Rare Book School, University of
Virginia, Charlottesville, Virginia.
Many one-week courses on type,
bookmaking, printing, and related topics.
www.rarebookschool.org/schedule

Jun 19 – 22 Digital Humanities 2011, Alliance of
Digital Humanities Organizations,
Stanford University, Palo Alto, California.
www.digitalhumanities.org

Jul 5 – 10 TypeCon 2011: “Surge”, New Orleans,
Louisiana. www.typecon.com

Jul 10 – 23 Wells College Book Arts Center,
Summer Institute, Aurora,
New York. www.wells.edu/pdfs/

Book_Arts_Summer_2011.pdf

Jul 14 – 17 SHARP 2011, “The Book in Art & Science”,
Society for the History of Authorship,
Reading & Publishing. Washington, DC.
www.sharpweb.org

Jul 20 – 21 “Towards a Digital Mathematics Library”
(DML2011), Bertorino, Italy.
www.fi.muni.cz/~sojka/dml-2011.html

TUGboat, Volume 32 (2011), No. 1 127

Calendar

Aug 7 – 11 SIGGRAPH 2011, Vancouver, Canada.
www.siggraph.org/s2011

Sep 14 – 18 Association Typographique Internationale
(ATypI) annual conference,
Reykjavik, Icelend. www.atypi.org

Sep 19 – 22 ACM Symposium on Document
Engineering, Mountain View, California.
www.documentengineering.org

Sep 19 – 24 The fifth ConTEXt user meeting,
Porquerolles, France.
meeting.contextgarden.net/2011

Sep 28 –
Oct 2

TEXperience 2011 (4th TEXperience
Conference, organized by CSTUG and the
Faculty of Management and Economics,
Tomas Bata University in Zĺın),
Železnà Ruda, The Czech Republic.
striz9.fame.utb.cz/texperience

Oct 14 – 15 American Printing History Association’s

36th annual conference, “Printing at
the Edge”, University of California,
San Diego, California,
www.printinghistory.org/about/

calendar.php

Oct 14 – 16 The Ninth International Conference
on the Book, University of Toronto,
Ontario, Canada.
booksandpublishing.com/conference-2011

TUG2011

Trivandrum, India.

Oct 19 – 21 The 32nd annual meeting
of the TEX Users Group.
TEX in the eBook era. tug.org/tug2011

Sep 30 –
Oct 2

DANTE Herbstagung and 45th meeting,
Garmisch-Partenkirchen, Germany.
www.dante.de/events/mv45.html

Nov 24 – 25 “Graphic Design: History in the

Making”, École des Beaux-Arts de
Rennes, France. stbride.org/events

Status as of 1 April 2011

For additional information on TUG-sponsored events listed here, contact the TUG office
(+1 503 223-9994, fax: +1 206 203-3960, e-mail: office@tug.org). For events sponsored
by other organizations, please use the contact address provided.

A combined calendar for all user groups is online at texcalendar.dante.de.
Other calendars of typographic interest are linked from tug.org/calendar.html.

TUG 2011: TEX in the eBook era

Presentations covering the TEX world

The 32nd Annual Meeting of the TEX Users Group

http://tug.org/tug2011 tug2011@tug.org

October 19–21, 2011

River Valley Technologies

Trivandrum, Kerala

India

July 15, 2011—presentation proposal deadline

August 1, 2011—early bird registration deadline

September 1, 2011—preprints deadline

October 19–21, 2011—conference and workshop

October 31, 2011—deadline for final papers

Sponsored by the TEX Users Group, DANTE e.V.,

and River Valley Technologies.

TUGBOAT Volume 32 (2011), No. 1

Introductory

4 Barbara Beeton / Editorial comments
• typography and TUGboat news

3 Karl Berry / From the President
• conferences; interviews; software

23 Karl Berry and David Walden / TUGboat online
• retrospective history and implementation of making TUGboat available online

6 Jackie Damrau / Mimi Burbank
• a remembrance

39 Pavel Farář / Introducing the PT Sans and PT Serif typefaces
• high-quality sans and serif typefaces supporting Latin and Cyrillic

120 Jonathan Fine / Is TEX obsolete?
• note on TEX’s (lack of) use as a web service

9 Hans Hagen / 16 years of ConTEXt
• ConTEXt’s evolution and milestones in its history

30 Jim Hefferon / Which way to the forum?
• review of the major online help forums

32 Andrew Hwang / LATEX at Distributed Proofreaders and the electronic preservation of mathematical literature
• processing flow and coding of mathematical books at Project Gutenberg

108 LATEX Project Team / LATEX3 news, issue 5
• LPPL now OSI-approved; reflections on 2010; current progress; plans for 2011

7 Christina Thiele / Missing Mimi
• In memoriam: Mimi Burbank

27 Boris Veytsman / TEX consulting for fun and profit
• technical, business, and personal experiences as a TEX consultant

109 Boris Veytsman / Book review: Typesetting tables with LATEX
• review of this new book by Herbert Voß

17 David Walden and Karl Berry / TUGboat’s 100 issues—Basic statistics and random gleanings
• sampled survey of issues throughout TUGboat’s run

Intermediate

110 Karl Berry / The treasure chest
• new CTAN packages from October 2010 through March 2011

56 Enrico Gregorio / Installing TEX Live 2010 on Ubuntu
• why and how to install the original TEX Live on GNU/Linux distributions

62 Taco Hoekwater / tlcontrib.metatex.org: A complement to TEX Live
• a distribution and associated web site hosting supplementary packages for TEX Live

104 Luca Merciadri / Some misunderstood or unknown LATEX2ε tricks III
• monochrome; rightmost braces; watermarks; plagiarism

83 Frank Mittelbach / Reflections on the history of the LATEX Project Public License (LPPL)
• creation and evolution of the LATEX world’s predominant license

47 Andrew West / The rules for long s
• rules for using long s in English, French, Italian, and Spanish

99 Peter Wilson / Glisterings
• framing; new frames

113 Joseph Wright / ‘Magic’ comments in TEXworks 0.4
• specify the encoding, spell checking language, engine and more

95 Joseph Wright / siunitx: A comprehensive (SI) units package
• overview of a powerful package for printing units, with or without numbers

Advanced

43 Hans Hagen / Handling math: A retrospective
• the influence of plain TEX math in ConTEXt, Unicode, and beyond

68 Paul Isambert / LuaTEX: What it takes to make a paragraph
• influencing ligatures, kerning, line breaking, etc., through callbacks

77 Paweł Jackowski / Luna—my side of the moon
• clean handling of graphics made possible by Lua(TEX)

Contents of other TEX journals

118 Eutypon: Issue 24–25 (October 2010); MAPS: Issue 41 (2010); The PracTEX Journal: Issue 2010-2;
Die TEXnische Komödie: Issues 4/2010–1/2011; ArsTEXnica: Issue 10 (October 2010)

Reports and notices

119 TEX consulting and production services
121 Institutional members
121 David Walden / TUG financial statements for 2010
123 Jim Hefferon / TEX Users Group 2011 election
127 Calendar
128 TUG 2011 announcement

