
LuaTEX: What it takes to make a paragraph

Paul Isambert

Introduction

The road that leads from an input to an output
document is rather eventful: bytes must be read,
interpreted, executed, glyphs must be created, lines
must be measured . . . With LuaTEX those events
can be monitored and their courses can be bent;
this happens in callbacks, points in TEX’s processing
where custom code can be inserted. This paper
will look at the callbacks involved from reading an
input line to releasing the product of the paragraph
builder to a vertical list. The callbacks that we will
be looking at are the following:

process_input_buffer

How TEX reads each input line.

token_filter

How TEX deals with tokens.

hyphenate

Where discretionaries are inserted.

ligaturing

Where ligatures happen.

kerning

Where font kerns are inserted.

pre_linebreak_filter

Before the paragraph is built.

linebreak_filter

Where the paragraph is built.

post_linebreak_filter

After the paragraph is built.

Actually, a few more callbacks are involved, but
these are most relevant to paragraph building.

Reading input lines

The process_input_buffer callback is executed
when TEX needs an input line; the argument passed
to the callback is the input line itself, and another
line, possibly the same, should be returned. By
default, nothing happens, and what TEX reads is
what you type in your document.

The code in this paper has been written and tested with
the latest build of LuaTEX. The reader probably uses
the version released with the latest TEX Live or MikTEX
distributions, and differences might occur. More recent
versions can be regularly downloaded from TLContrib, a
companion repository which hosts material that doesn’t
make it to TEX Live for whatever reason. Bleeding-edge
LuaTEX can also be built from the sources.

68 TUGboat, Volume 32 (2011), No. 1

A line in this context is actually a Lua string;
hence what the callback is supposed to do is string
manipulation. Besides, one should remember that
this line hasn’t been processed at all; for instance,
material after a comment sign hasn’t been removed,
and multiple spaces haven’t been reduced to one
space; of course, escape characters followed by
letters haven’t been lumped into control sequences.
In other words, the string is exactly the input line.

Can anything useful be done by manipulating
input lines? Yes, in fact the process_input_buffer
callback proves invaluable. Here I’ll address two
major uses: encoding and verbatim text.

Using any encoding. Unlike its elder brothers,
LuaTEX is quite intolerant when it comes to en-
codings: it accepts UTF-8 and nothing else. Any
sequence of bytes that does not denote a valid
UTF-8 character makes it complain. Fortunately,
ASCII is a subset of UTF-8, thus LuaTEX under-
stands most older documents. For other encodings,
however, input lines must be converted to UTF-8
before LuaTEX reads them. One main use of the
process_input_buffer callback is thus to perform
the conversion.

Converting a string involves the following steps
(I’ll restrict myself to 8-bit encodings here): map-
ping a byte to the character it denotes, more
precisely to its numerical representation in Unicode;
then turning that representation into the appropri-
ate sequence of bytes. If the source encoding is
Latin-1, the first part of this process is straightfor-
ward, because characters in Latin-1 have the same
numerical representations as in Unicode. As for the
second part, it is automatically done by the sl-

nunicode Lua library (included in LuaTEX). Hence,
here’s some simple code that allows processing of
documents encoded in Latin-1.

local function convert_char (ch)

return unicode.utf8.char(string.byte(ch))

end

local function convert (line)

return string.gsub(line, ".", convert_char)

end

callback.register("process_input_buffer", convert)

Each input line is passed to convert, which returns
a version of that line where each byte has been
replaced by one or more bytes to denote the same
character in UTF-8. The Lua functions work as
follows: string.gsub returns its first argument
with each occurrence of its second argument re-
placed with the return value of its third argument
(to which each match is passed). Since a dot
represents all characters (i.e. all bytes, as far as

Paul Isambert

Lua is concerned), the entire string is processed
piecewise; each character is turned into a numerical
value thanks to string.byte, and this numerical
value is turned back to one or more bytes denoting
the same character in UTF-8.

What if the encoding one wants to use isn’t
Latin-1 but, say, Latin-3 (used to typeset Turkish,
Maltese and Esperanto)? Then one has to map
the number returned by string.byte to the right
Unicode value. This is best done with a table in
Lua: each cell is indexed by a number m between
0 and 255 and contains a number n such that
character c is represented by m in Latin-3 and n
in Unicode. For instance (numbers are given in
hexadecimal form by prefixing them with 0x):

latin3_table = { [0] = 0x0000, 0x0001, 0x0002,

...

0x00FB, 0x00FC, 0x016D, 0x015D, 0x02D9}

This is the beginning and end of a table mapping
Latin-3 to Unicode. At the beginning, m and n
are equal, because all Latin-x encodings include
ASCII. In the end, however, m and n differ. For
instance, ‘ŭ’ is 253 in Latin-3 and 0x016D (365)
in Unicode. Note that only index 0 needs to be
explicitly specified (because Lua tables starts at 1
by default), all following entries are assigned to the
right indexes.

Now it suffices to modify the convert_char

function as follows to write in Latin-3:

local function convert_char (ch)

return unicode.utf8.char

(latin3_table[string.byte(ch)])

end

Verbatim text. One of the most arcane areas of
TEX is catcode management. This becomes most
important when one wants to print verbatim text,
i.e. code that TEX should read as characters to
be typeset only, with no special characters, and
things turn definitely dirty when one wants to
typeset a piece of code and execute it too (one
generally has to use an external file). With the
process_input_buffer callback, those limitations
vanish: the lines we would normally pass to TEX
can be stored and used in various ways afterward.
Here’s some basic code to do the trick; it involves
another LuaTEX feature, catcode tables.

The general plan is as follows: some starting
command, say \Verbatim, registers a function in
the process_input_buffer, which stores lines in
a table until it is told to unregister itself by
way of a special line, e.g. a line containing only
\Endverbatim. Then the table can be accessed
and the lines printed or executed. The Lua side

TUGboat, Volume 32 (2011), No. 1 69

follows. (About the \noexpand in store_lines:
we’re assuming this Lua code is read via \directlua

and not in a separate Lua file; if the latter is the
case, then remove the \noexpand. It is used here to
avoid having \directlua expand \\.)

local verb_table

local function store_lines (str)

if str == "\noexpand\\Endverbatim" then

callback.register("process_input_buffer",nil)

else

table.insert(verb_table, str)

end

return ""

end

function register_verbatim ()

verb_table = {}

callback.register("process_input_buffer",

store_lines)

end

function print_lines (catcode)

if catcode then

tex.print(catcode, verb_table)

else

tex.print(verb_table)

end

end

The store_lines function adds each line to a
table, unless the line contains only \Endverbatim (a
regular expression could also be used to allow more
sophisticated end-of-verbatims), in which case it
removes itself from the callback; most importantly,
it returns an empty string, because if it returned
nothing then LuaTEX would proceed as if the
callback had never happened and pass the original
line. The register_verbatim function only resets
the table and registers the previous function; it
is not local because we’ll use it in a TEX macro
presently. Finally, the print_lines uses tex.print
to make TEX read the lines; a catcode table number
can be used, in which case those lines (and only
those lines) will be read with the associated catcode
regime. Before discussing catcode tables, here are
the relevant TEX macros:

\def\Verbatim{%

\directlua{register_verbatim()}%

}

\def\useverbatim{%

\directlua{print_lines()}%

}

\def\printverbatim{%

\bgroup\parindent=0pt \tt

\directlua{print_lines(1)}

\egroup

}

They are reasonably straightforward: \Verbatim

launches the main Lua function, \useverbatim

LuaTEX: What it takes to make a paragraph

reads the lines, while \printverbatim also reads
them but with catcode table 1 and a typewriter
font, as is customary to print code. The latter
macro could also be launched automatically when
store_lines is finished.

What is a catcode table, then? As its name
indicates, it is a table that stores catcodes, more
precisely the catcodes in use when it was created. It
can then be called to switch to those catcodes. To
create and use catcode table 1 in the code above,
the following (or similar) should be performed:

\def\createcatcodes{\bgroup

\catcode‘\\=12 \catcode‘\{=12 \catcode‘\}=12

\catcode‘\$=12 \catcode‘\&=12 \catcode‘\^^M=13

\catcode‘\#=12 \catcode‘\^=12 \catcode‘_=12

\catcode‘\ =13 \catcode‘\~=12 \catcode‘\%=12

\savecatcodetable 1

\egroup}

\createcatcodes

The \savecatcodetable primitive saves the cur-
rent catcodes in the table denoted by the number; in
this case it stores the customary verbatim catcodes.
Note that a common difficulty of traditional verba-
tim is avoided here: suppose the user has defined
some character as active; then when printing code
s/he must make sure that the character is assigned
a default (printable) catcode, otherwise it might be
executed when it should be typeset. Here this can’t
happen: the character (supposedly) has a normal
catcode, so when table 1 is called it will be treated
with that catcode, and not as an active character.

Once defined, a catcode table can be switched
with \catcodetable followed by a number, or they
can be used in Lua with tex.print and similar
functions, as above.

As usual, we have set space and end-of-line to
active characters in our table 1; we should then
define them accordingly, although there’s nothing
new here:

\def\Space{ }

\bgroup

\catcode‘\^^M=13\gdef^^M{\quitvmode\par}%

\catcode‘\ = 13\gdef {\quitvmode\Space}%

\egroup

Now, after

\Verbatim

\def\luatex{%

Lua\kern-.01em\TeX

}%

\Endverbatim

one can use \printverbatim to typeset the code
and \useverbatim to define \luatex to LuaTEX.
The approach can be refined: for instance, here
each new verbatim text erases the preceding one,

70 TUGboat, Volume 32 (2011), No. 1

but one could assign the stored material to tables
accessible with a name, and \printverbatim and
\useverbatim could take an argument to refer
to a specific piece of code; other catcode tables
could also be used, with both macros (and not
only \printverbatim). Also, when typesetting, the
lines could be interspersed with macros obeying the
normal catcode regime (thanks to successive calls to
tex.print, or rather tex.sprint, which processes
its material as if it were in the middle of a line),
and the text could be acted on.

Reading tokens

Now our line has been processed, and TEX must
read its contents. What is read might actually be
quite different from what the previous callback has
returned, because some familiar operations have also
taken place: material after a comment sign has been
discarded, end-of-line characters have been turned
to space, blank lines to \par, escape characters and
letters have been lumped into control sequences,
multiple spaces have been reduced to one . . . What
TEX reads are tokens, and what tokens are read is
decided by the token_filter callback.

Nothing is passed to the callback: it must fetch
the next token and pass it (or not) to TEX. To do so,
the token.get_next function is available, which,
as its name indicates, gets the next token from the
input (either the source document or resulting from
macro expansion).

In LuaTEX, a token is represented as a table
with three entries containing numbers: entry 1 is
the command code, which roughly tells TEX what
to do. For instance, letters have command code 11
(not coincidentally equivalent to their catcode),
whereas a { has command code 1: TEX is supposed
to behave differently in each case. Most other
command codes (there are 138 of them for the
moment) denote primitives (the curious reader can
take a look at the first lines of the luatoken.w file
in the LuaTEX source). Entry 2 is the command
modifier: it distinguishes tokens with the same
entry 1: for letters and ‘others’, the command
modifier is the character code; if the token is a
command, it specifies its behavior: for instance,
all conditionals have the same entry 1 but differ in
entry 2. Finally, entry 3 points into the equivalence
table for commands, and is 0 otherwise.

To illustrate the token_filter callback, let’s
address an old issue in TEX: verbatim text as
argument to a command. It is, traditionally,
impossible, at least without higher-order wizardry
(less so with ε-TEX). It is also actually impossible

Paul Isambert

with LuaTEX, for the reasons mentioned in the
first paragraph of this section: commented material
has already been discarded, multiple spaces have
been reduced, etc. However, for short snippets, our
pseudo-verbatim will be quite useful and easy. Let’s
restate the problem. Suppose we want to be able to
write something like:

... some fascinating code%

\footnote*{That is \verb"\def\luatex{Lua\TeX}".}

i.e. we want verbatim code to appear in a footnote.
This can’t be done by traditional means, because
\footnote scans its argument, including the code,
and fixes catcodes; hence \def is a control sequence
and cannot be turned back to four characters. The
code below doesn’t change that state of affairs;
instead it examines and manipulates tokens in
the token_filter callback. Here’s the TEX side
(which uses "..." instead of the more verbose
\verb"..."); it simply opens a group, switches to
a typewriter font, and registers our Lua function in
the callback:

\catcode‘\"=13

\def"{\bgroup\tt

\directlua{callback.register("token_filter",

verbatim)}%

}

And now the Lua side:

function verbatim ()

local t = token.get_next()

if t[1] > 0 and t[1] < 13 then

if t[2] == 34 then

callback.register("token_filter", nil)

return token.create("egroup")

else

local cat = (t[2] == 32 and 10 or 12)

return {cat, t[2], t[3]}

end

else

return {token.create("string"), t}

end

end

It reads as follows: first we fetch the next token.
If it isn’t a command, i.e. if its command code
is between 1 and 12, then it may be the closing
double quote, with character code 34; in this case,
we unregister the function and pass to TEX a token
created on the fly with token.create, a function
that produces a token from (among others) a string:
here we simply generate \egroup. If the character
isn’t a double quote, we return it but change its
command code (i.e. its catcode) to 12 (or 10 if it is
a space), thus turning specials to simple characters
(letters also lose their original catcode, but that is
harmless). We return our token as a table with
the three entries mentioned above for the token

TUGboat, Volume 32 (2011), No. 1 71

representation. Finally, if the token is a command,
we return a table representing a list of tokens which
TEX will read one after the other: the first is
\string, the second is the original token.

If the reader experiments with the code, s/he
might discover that the double quote is actually seen
twice: first, when it is active (hence, a command),
and prefixed with \string; then as the result of
the latter operation. Only then does it shut off the
processing of tokens.

Inserting discretionaries

Now TEX has read and interpreted tokens. Among
the things which have happened, we will now be
interested in the following: the nodes that TEX has
created and concatenated into a horizontal list. This
is where typesetting proper begins. The hyphenate

callback receives the list of nodes that is the raw
material with which the paragraph will be built; it
is meant to insert hyphenation points, which it does
by default if no function is registered.

In this callback and others, it is instructive to
know what nodes are passed, so here’s a convenient
function that takes a list of nodes and prints their
id fields to the terminal and log (what number
denotes what type of node is explained in chapter 8
of the LuaTEX reference manual), unless the node
is a glyph node (id 37, but better to get the right
number with node.id), in which case it directly
prints the character:

local GLYF = node.id("glyph")

function show_nodes (head)

local nodes = ""

for item in node.traverse(head) do

local i = item.id

if i == GLYF then

i = unicode.utf8.char(item.char)

end

nodes = nodes .. i .. " "

end

texio.write_nl(nodes)

end

Let’s register it at once in the hyphenate callback:

callback.register("hyphenate", show_nodes)

No hyphenation point will be inserted for the
moment, we’ll take care of that later.

Now suppose we’re at the beginning of some
kind of postmodern minimalist novel. It starts with
a terse paragraph containing exactly two words:

Your office.
What list of nodes does the hyphenate callback
receive? Our show_nodes function tells us:

50 8 0 Y o u r 10 O f f i c e . 10

LuaTEX: What it takes to make a paragraph

First comes a temp node; it is there for technical
reasons and is of little interest. The node with id 8
is a whatsit, and if we asked we’d learn its subtype
is 6, so it is a local_par whatsit and contains,
among other things, the paragraph’s direction of
writing. The third node is a horizontal list, i.e.
an hbox; its subtype (3) indicates that it is the
indentation box, and if we queried its width we
would be returned the value of \parindent (when
the paragraph was started) in scaled points (to be
divided by 65, 536 to yield a value in TEX points).

The nodes representing characters have many
fields, among them char (a number), which our
show_nodes function uses to print something a little
more telling than an id number, width, height and
depth (numbers too, expressing dimensions in scaled
points), and font (yet another number: fonts are
internally represented by numbers). Their subtype

field will be of interest later.
Finally, the nodes with id 10 are glues, i.e.

the space between the two words and the space
that comes from the paragraph’s end of line (which
wouldn’t be there if the last character was immedi-
ately followed by \par or a comment sign). Their
specifications can be accessed via subfields to their
spec fields (because a glue’s specs constitute a node
by themselves).

Now, what can be done in this callback? Well,
first and foremost, insert hyphenation points into
our list of nodes as LuaTEX would have done
by itself, had we left the callback empty. The
lang.hyphenate function does this:

callback.register("hyphenate",

function (head, tail)

lang.hyphenate(head)

show_nodes(head)

end)

There is no need to return the list, because LuaTEX
takes care of it in this callback, as is also the case
with the ligaturing and kerning callbacks. Also,
those three callbacks take two arguments: head and
tail, respectively the first and last nodes of the list
to be processed. The tail can generally be ignored.

Now we we can see what hyphenation produces:

50 8 0 Y o u r 10 o f 7 f i c e . 10

As expected, a discretionary has been inserted with
id 7; it is a discretionary node, with pre, post and
replace fields, which are equivalent to the first,
second and third arguments of a \discretionary

command: the pre is the list of nodes to be inserted
before the line break, the post is the list of nodes
to be inserted after the line break, and the replace

is the list of nodes to be inserted if the hyphenation

72 TUGboat, Volume 32 (2011), No. 1

point isn’t chosen. In our case, the pre field contains
a list with only one node, a hyphen character, and
the other fields are empty.

A final word on hyphenation. The excep-
tions loaded in \hyphenation can now contain
the equivalent of \discretionary, by inserting
{pre}{post}{replace} sequences; German users
(and probably users of many other languages) will
be delighted to know that they no longer need to
take special care of backen in their document; a
declaration such as the following suffices:

\hyphenation{ba{k-}{}{c}ken}

Also, with a hyphen as the first and third arguments,
compound words can be hyphenated properly.

Ligatures

As its name indicates, the ligaturing callback
is supposed to insert ligatures (this happens by
itself if no function is registered). If we used the
show_nodes function here, we’d see no difference
from the latest output, because that callback im-
mediately follows hyphenate. But we can register
our function after ligatures have been inserted with
the node.ligaturing function (again, no return
value):

callback.register("ligaturing",

function (head, tail)

node.ligaturing(head)

show_nodes(head)

end)

And this returns:

50 8 0 Y o u r 10 o 7 c e . 10

Did something go wrong? Why is office thus
mangled? Simply because there is an interaction
between hyphenation and ligaturing. If the hyphen-
ation point is chosen, then the result is of-<fi>ce,
where <fi> represents a ligature; if the hyphenation
point isn’t chosen, then we end up with o<ffi>ce,
i.e. another ligature; in other words, what ligature
is chosen depends on hyphenation. Thus the discre-
tionary node has f- in its pre field, <fi> in post

and <ffi> in replace.
Ligature nodes are glyph nodes with subtype 2,

whereas normal glyphs have subtype 1; as such,
they have a special field, components, which points
to a node list made of the individual glyphs that
make up the ligature. For instance, the components
of an <ffi> ligature are <ff> and i, and the
components of <ff> are f and f. Ligatures can thus
be decomposed when necessary.

How does LuaTEX (either as the default be-
havior of the ligaturing callback or as the

Paul Isambert

node.ligaturing function) know what sequence
of glyph nodes should result in a ligature? The
information is encoded in the font: LuaTEX looks
up the ligatures table associated (if any) with
each character, and if the following character is
included in that table, then a ligature is created.
For instance, for f in Computer Modern Roman,
the ligatures table has a cell at index 105, that is
i, which points to character 12, which contains the
<fi> ligature. Thus, LuaTEX knows nothing about
ligatures involving more than two glyphs. Even the
<ffi> ligature is a ligature between <ff> and i.

However, fonts, especially of the OpenType
breed, sometimes define ligatures with more than
two glyphs; for instance, the input 3/4 is supposed
to produce something like 3/4 (a single glyph).
One can choose, when creating the font from the
OpenType file, to create a phantom ligature <3/>

and make 3/4 a ligature between <3/> and 4; then
LuaTEX can handle it automatically. It is more
elegant and less error-prone, though, to deal with
such ligatures by hand, so to speak: register a
function in the ligaturing callback which, given a
string of nodes, creates a ligature. It is also slower.

Also in this callback, such things as contextual
substitutions should take place. For instance, initial
and final forms of a glyph, be it in Arabic or in
some flourished Latin font, should be handled here.
In theory, that is quite easy: check the context of a
node, i.e. the surrounding nodes; if it matches the
context for a given substitution, then apply it. For
instance, if our example paragraph were typeset in
Minion (shipped gratis with Adobe Reader) with
the ss02 feature on, the r of Your and the e of office
would be replaced by their final variants, because
the contexts match: r is followed by a glue and e is
followed by a stop (technically, they’re not followed
by glyphs inhibiting the substitution, that is, glyphs
denoting a letter). In practice, however, things are
more complicated, if only because you have to read
such contextual substitutions from the font file.

However, we can perform a very simple type
of contextual substitution. Code used to load a
font in LuaTEX generally applies the trep feature
(inspired by X ETEX), so that the grave and single
quote characters are replaced with left and right
quotes; but one might want to be lazier still and
use " everywhere; then the proper quotation mark
should be substituted, depending on where the
double quote occur.

Here’s some simple code to implement this rule
for such substitutions: if " is found, replace it with ’
if the node immediately preceding (if any) is a glyph
and its character isn’t a left parenthesis; otherwise,

TUGboat, Volume 32 (2011), No. 1 73

replace it with ‘. (Here and elsewhere, I use not (x

== y) where x ~= y would be simpler, but ~ would
be expanded in \directlua, and x \noexpand~= y

isn’t so simple anymore.)

local GLYF = node.id("glyph")

callback.register("ligaturing",

function (head)

for glyph in node.traverse_id(GLYF, head) do

if glyph.char == 34 then

if glyph.prev and glyph.prev.id == GLYF

and not (glyph.prev.char == 40) then

glyph.char = 39

else

glyph.char = 96

end

end

end

node.ligaturing(head)

end)

Note that we still apply node.ligaturing. Now one
can use "word" to print ‘word’ and thus rediscover
the thrill of modern word processors.

Inserting kerns

Analogous to ligaturing, kerning is supposed to
insert font kerns, and again this happens by itself
if no function is registered. Furthermore, nothing
happens between the ligaturing and kerning

callbacks, so again, using show_nodes would be
uninformative. The equivalent function in this case
is node.kerning, so we can do:

callback.register("kerning",

function (head, tail)

node.kerning(head)

show_nodes(head)

end)

And the result is:

50 8 0 Y 11 o u r 10 o 7 c e . 10

What has changed is that a node of id 11, i.e. a
kern, has been inserted, because an o after a Y
looks better if it is moved closer to it. Compare
‘Yo’ and ‘Yo’. Such kerns are specified in the fonts,
like ligatures, which make sense, since kerns, like
ligatures, depends on the glyphs’ design.

Like contextual ligatures and substitutions,
there is contextual positioning. Kerns are encoded
in the font (as internalized by LuaTEX) like liga-
tures, i.e. glyphs have a kerns table indexed with
character numbers and dimensions (in scaled points)
as values; hence kerning is automatic with glyph
pairs only, and contextual positioning should be
made by hand. For instance, in ‘A.V.’, a (negative)
kern should be inserted between the first stop and

LuaTEX: What it takes to make a paragraph

the V ; however, this should happen only when the
stop is preceded by an A; if the first letter were T
(i.e. ‘T.V.’), the kern is much less desirable (or at
least a different amount of kerning should be used).

Finally, some hand-made kerning is to take
place here too. For instance, French typographic
rules require that a thin space be inserted before
some punctuation marks (not so thin, actually,
which sometimes verges on the ugly, but one is
free to adopt Robert Bringhurst’s ‘Channel Island
compromise’), but there are some exceptions: for
instance, although a question mark should be pre-
ceded by such a space, the rule obviously doesn’t
apply if the mark follows an opening parenthesis (?)
or another question mark. Technically, this could
be encoded in the font; in practice, it is much easier
to handle in the kerning callback. If one chooses to
do so, one should make sure all the newly inserted
kerns are of subtype 1, because kerns of subtype 0
are font kerns and might be reset if the paragraph
is built with font expansion.

One last callback before building
the paragraph

The previous callbacks apply no matter whether
we’re building a paragraph or creating an \hbox.
The ones we’ll see now are used only in the first
case, i.e. (TEXnically speaking) when a vertical
command is encountered in unrestricted horizontal
mode. The first of those is pre_linebreak_filter,
and if we use show_nodes on the list it is given, then
we notice that something has happened between the
kerning callback and now:

8 0 Y 11 o u r 10 o 7 c e . 12 10

First, the temporary node at the beginning of the
list has been removed; it is not needed anymore,
but from now on we should always return the
list. Hence, the show_nodes call would have been
embedded in:

callback.register("pre_linebreak_filter",

function (head)

show_nodes(head)

return head

end)

Second, a new node has been inserted, with id 12:
that is a penalty. If we queried its penalty field, it’d
return 10, 000. Where does the infinite penalty come
from? The reader might know that, when preparing
to build a paragraph, TEX removes a last space (i.e.
the last glue node) of the horizontal list and replaces
it with a glue whose value is \parfillskip, and
prefixes the latter with an infinite penalty so no line

74 TUGboat, Volume 32 (2011), No. 1

break can occur. That is what has happened here:
the last node is a glue (id 10), but not the same as
before, as its subtype (15) would indicate: it is the
\parfillskip glue.

Nothing in particular is supposed to happen
in the pre_linebreak_filter callback, and TEX
does nothing by default. The callback is used for
special effects before the list is broken into lines; its
arguments are the head of the list to be processed
and a string indicating in which circumstances the
paragraph is being built; relevant values for the
latter are an empty string (we’re in the main
vertical list), vbox, vtop and insert.

At last, building the paragraph!

Finally we must build the paragraph. To do so
we use the linebreak_filter callback; by default,
paragraph building is automatic (fortunately), but
if we register a function in the callback we should
break lines by ourselves. Well, more or less: as
usual, there is a function, tex.linebreak, which
does exactly that

The callback receives two arguments: a list of
nodes and a boolean; the latter is true if we’re
building the part of a larger paragraph before a
math display, otherwise it is false. Now, given
the list of nodes, one must return another list of
an entirely different nature: it should be made
of horizontal boxes (lines of text), glues (interline
glues), penalties (e.g. widow and club penalties),
perhaps inserts or \vadjust-ed material, etc. As
just mentioned, the tex.linebreak function does
all this; it can also take an optional argument, a
table with TEX parameters as keys (for instance
hsize, tolerance, widowpenalty), so paragraphs
can easily be built with special values.

As an example of paragraph building, let’s
address the issue of setting a paragraph’s first line
in small caps, as is often done for the first paragraph
of a chapter. We’re using LuaTEX, so we don’t want
any dirty trick, and we want TEX to build the best
paragraph (i.e. we don’t want to simply mess with
space in the first line), which includes the possibility
that the first line is hyphenated. The code below
is just a sketch, but it gives an overview of the
approach. First things first, we need a font, and we
need a macro to declare that the next paragraph
should be treated in a special way:

\font\firstlinefont=cmcsc10

\def\firstparagraph{\directlua{

callback.register("hyphenate", false)

callback.register("ligaturing", false)

callback.register("kerning", false)

Paul Isambert

callback.register("linebreak_filter",

function (head, is_display)

local par, prevdepth, prevgraf =

check_par(head)

tex.nest[tex.nest.ptr].prevdepth=prevdepth

tex.nest[tex.nest.ptr].prevgraf=prevgraf

callback.register("hyphenate", nil)

callback.register("ligaturing", nil)

callback.register("kerning", nil)

callback.register("linebreak_filter", nil)

return par

end)}}

First, we deactivate the first three node-processing
callbacks by registering false, because we want to
keep the original list of nodes with only the replace-
ments that occur before the pre_linebreak_filter
callback; we’ll do hyphenating, ligaturing and kern-
ing by hand. In practice, it would be preferable
to retrieve the functions (if any) that might be
registered in those callbacks and use those, because
there might be more than what is done by default.
We could do that with callback.find but won’t
bother here.

Next, we register linebreak_filter function
that calls check_par; the latter will return a
paragraph and the new value for prevdepth and
prevgraf, so we can set the values for the current
nesting level (the list we’re in) by hand (it isn’t done
automatically). Finally, we return the callbacks to
their default behavior by registering nil.

Before turning to the main check_par function,
here’s a subfunction that it uses to do the job we’ve
prevented LuaTEX from doing by itself: insert
hyphenation points, ligatures and kerns, and then
build the paragraph. There’s no need to set
head to the return value of lang.hyphenate, since
no new head can be produced (no hyphenation
point can be inserted at the beginning of the list),
and anyway lang.hyphenate returns a boolean
indicating success or failure. Besides the paragraph
itself, tex.linebreak also returns a table with
the values of prevdepth and prevgraf (and also
looseness and demerits). The last line of the
code retrieves the inner numerical representation of
the font we’ve chosen for the first line.

local function do_par (head)

lang.hyphenate(head)

head = node.ligaturing(head)

head = node.kerning(head)

local p, i = tex.linebreak(head)

return p, i.prevdepth, i.prevgraf

end

local firstlinefont = font.id("firstlinefont")

Now we can turn to the big one, called by
linebreak_filter. First, it builds a tentative

TUGboat, Volume 32 (2011), No. 1 75

paragraph; it works on a copy of the original list
because we don’t want to spoil it with hyphenation
points that might be removed later. Then it finds
the first line of the paragraph (the head of the
paragraph list might be a glue, or \vadjust-pre’d
material).

local HLIST = node.id("hlist")

local GLYF = node.id("glyph")

local KERN = node.id("kern")

function check_par (head)

local par = node.copy_list(head)

par, prevdepth, prevgraf = do_par(par)

local line = par

while not (line.id == HLIST) do

line = line.next

end

Next, in that first line, we check whether
all glyphs have the right font; as soon as we
find one which isn’t typeset in small caps (our
firstlinefont), we review all the glyphs in the
original list until we find the first one that isn’t
typeset in small caps, and we change its font as
we want it. The reader can perhaps see where this
is headed: we’ll rebuild the paragraph as often as
necessary, each time turning one more glyph of the
original horizontal list to a small capital, until all
the glyphs in the first line are small caps; that
is also why we must reinsert hyphenation points,
ligatures and kerns each time: fonts have changed,
so the typesetting process must be relaunched from
the start.*

local again

for item in node.traverse_id(GLYF, line.head)

do if not (item.font == firstlinefont) then

again = true

for glyph in node.traverse_id(GLYF, head)

do if not (glyph.font == firstlinefont) then

glyph.font = firstlinefont

break

end; end

break

end; end

If we must typeset again, free the paragraph
from TEX’s memory and start again with the
modified head:

if again then

node.flush_list(par)

return check_par(head)

* The user might wonder what line.head stands for in
the second line; that is the same thing as line.list, i.e. it
gets the contents of a list (its first node). Since LuaTEX
v.0.65, list has been replaced with head for reasons not so
clearly explained in my previous paper (see TUGboat 31:3);
list should remain (deprecated) until around v.0.8.

LuaTEX: What it takes to make a paragraph

Otherwise (our first line is good, all glyphs are small
caps), there’s one more thing to check; suppose the
last character we turned to small capital was x. By
definition, x is at the end of the first line before
its font is changed; but is it still the case after
the change? Not necessarily: TEX may very well
have decided that, given x’s new dimensions, it
should be better to break before — and perhaps not
immediately before x but a couple glyphs before.
So perhaps we ended up with small capitals in the
second line. They must be removed, but how? Turn
them back to lowercase and build the paragraph
again? No, definitely not, we’d be stuck in a loop
(lowercase in the first line, small caps in the second
line, and again . . .). The solution adopted here is to
turn those glyphs to the original font (say \tenrm)
and keep them where they are:

else

local secondline = line.next

while secondline

and not (secondline.id == HLIST) do

secondline = secondline.next

end

if secondline then

local list = secondline.head

for item in node.traverse_id(GLYF,list)

do if item.font == firstlinefont then

item.font = font.id("tenrm")

else

break

end; end

Now, what if those first glyphs in the second line
were f and i ; in small caps they presumably did
not form a ligature, but now? We should reapply
ligatures. And what about kerning? We should
remove all font kerns (they have subtype 0) and
also reapply kerning. Finally we should repack the
line to its original width, so that glues are stretched
or shrunken to the appropriate values. That is not
optimal, but such cases where small caps end up in
the second line are very rare.

The last lines delete the original list and return
the paragraph with the associated parameters.

list = node.ligaturing(list)

for kern in node.traverse_id(KERN, list)

do if kern.subtype == 0 then

node.remove(list, kern)

end; end

list = node.kerning(list)

secondline.head = node.hpack(

list, secondline.width, "exactly")

end

node.flush_list(head)

return par, prevdepth, prevgraf

end

end

76 TUGboat, Volume 32 (2011), No. 1

The reader may have spotted more than one
flaw in this code. A full solution would have greatly
exceeded the limits of this already quite long article.
So it is left as an exercise: work out a solution that
doesn’t rely on the assumption that no functions are
registered in the other callbacks, for instance. Or
give an alternative way to cope with small capitals
in the second line (rebuild the paragraph from that
line on?).

Handling the paragraph

The post_linebreak_filter callback is very calm
after all we’ve just been through: nothing happens
by default. It is passed what linebreak_filter

returns as its first argument, i.e. a list of horizontal
lists, penalties, glues, and perhaps interline material
(e.g. inserts). It also receives a second argument, a
string as with the pre_linebreak_filter callback.
In my previous paper, I gave examples of what
can be done here, for instance underlining. I
won’t give another example, but the reader looking
for practise could try to adapt to LuaTEX Victor
Eijkhout’s code in section 5.9.6 of TEX by Topic.

The callback should return a paragraph, pos-
sibly the same as the one it was passed. That
paragraph is then appended to the surrounded ver-
tical list, and what follows is the job of the page
builder. Our exploration ends here.

Conclusion

Most of the operations we have reviewed aren’t new
in TEX: LuaTEX simply gives access to them. Since
the very beginning, TEX has read lines and tokens
and built lists of nodes (although the hyphenating/
ligaturing pass has changed a lot in LuaTEX); that
is its job. Control over the typesetting process
is what makes TEX so good, perhaps better than
any other typography software; LuaTEX brings that
control one step further and allows manipulating
of the very atoms that make digital typography:
characters and glyphs, and a few other technical
bells and whistles. In view of the freedom that has
been gained, I sometimes tend to find TEX82 and
its offspring a bit dictatorial, in retrospect.

� Paul Isambert
Université de la Sorbonne Nouvelle
France
zappathustra (at) free dot fr

Paul Isambert

