
TUGBOAT

Volume 32, Number 2 / 2011

General Delivery 131 From the president / Karl Berry

131 Editorial comments / Barbara Beeton

Boris = books; EuroBachoTEX 2011;
150 years at the US Government Printing Office;
The raster tragedy

Software & Tools 132 TEX Collection 2011 DVD / TEX Collection editors

133 TEXworks—As you like it / Stefan Löffler

136 MetaPost 1.750: Numerical engines / Taco Hoekwater

139 Reading and executing source code / Herbert Voß

Education 145 Teaching LATEX to the students of mathematics—the experience from
The Jan Kochanowski University / Krzysztof Pszczoła

Graphics 146 Drawing tables: Graphic fun with LuaTEX / Paul Isambert

Electronic

Documents

152 E-books: Old wine in new bottles / Hans Hagen

158 iTEX—Document formatting in an ereader world / William Cheswick

Fonts 164 Math alphabets and the mathalfa package / Michael Sharpe

169 Another incarnation of Lucida: Towards Lucida OpenType /

Ulrik Vieth and Mojca Miklavec

177 MFLua / Luigi Scarso

Macros 185 Macro interfaces and the getoptk package / Michael Le Barbier Grünewald

LATEX 193 The cals package: Multipage tables with decorations / Oleg Parashchenko

202 Glisterings: Ornaments / Peter Wilson

206 Merciadri packages: An overview / Luca Merciadri

ConTEXt 211 ConTEXt basics for users: Paper setup / Aditya Mahajan

Bibliographies 213 Experiences with notes, references, and bibliographies / David Walden

Typography 217 Sixty years of book design at St. Gallen, Switzerland / Paul Shaw

TUG Business 224 TUG institutional members

Book Reviews 225 Book review: A Specimen Portfolio of Wood Type in the Cary Collection /

William Adams

226 Book review: The Art of the Book in the Twentieth Century / Boris Veytsman

228 Book review: LATEX Beginner’s Guide / Boris Veytsman

230 An appreciation: The Art of Computer Programming, Volume 4A / David Walden

Hints & Tricks 233 The treasure chest / Karl Berry

Abstracts 235 Les Cahiers GUTenberg : Contents of issue 54–55 (2010)

235 Die TEXnische Komödie: Contents of issues 4/2010–1/2011

236 Zpravodaj : Contents of issue 20(4) (2010)

Advertisements 237 TEX consulting and production services

Letters 238 Status of the American core CTAN node / Jim Hefferon

News 239 Calendar

240 TUG2011 announcement

TEX Users Group

TUGboat (ISSN 0896-3207) is published by the TEX
Users Group.

Memberships and Subscriptions

2011 dues for individual members are as follows:
Ordinary members: $95.
Students/Seniors: $55.

The discounted rate of $55 is also available to citi-
zens of countries with modest economies, as detailed
on our web site.

Membership in the TEX Users Group is for the
calendar year, and includes all issues of TUGboat for
the year in which membership begins or is renewed,
as well as software distributions and other benefits.
Individual membership is open only to named indi-
viduals, and carries with it such rights and responsi-
bilities as voting in TUG elections. For membership
information, visit the TUG web site.

Also, (non-voting) TUGboat subscriptions are
available to organizations and others wishing to re-
ceive TUGboat in a name other than that of an
individual. The subscription rate is $100 per year,
including air mail delivery.

Institutional Membership

Institutional membership is a means of showing con-
tinuing interest in and support for both TEX and the
TEX Users Group, as well as providing a discounted
group rate and other benefits. For further informa-
tion, see http://tug.org/instmem.html or contact
the TUG office.

TEX is a trademark of the American Mathematical
Society.

Copyright c© 2011 TEX Users Group.

Copyright to individual articles within this publication

remains with their authors, so the articles may not be repro-

duced, distributed or translated without the authors’ permis-

sion.

For the editorial and other material not ascribed to a

particular author, permission is granted to make and dis-

tribute verbatim copies without royalty, in any medium, pro-

vided the copyright notice and this permission notice are pre-

served.

Permission is also granted to make, copy and distribute

translations of such editorial material into another language,

except that the TEX Users Group must approve translations

of this permission notice itself. Lacking such approval, the

original English permission notice must be included.

Board of Directors

Donald Knuth, Grand Wizard of TEX-arcana
†

Karl Berry, President∗

Kaja Christiansen∗, Vice President

David Walden∗, Treasurer
Susan DeMeritt∗, Secretary
Barbara Beeton
Jon Breitenbucher
Jonathan Fine
Steve Grathwohl
Jim Hefferon
Klaus Höppner
Ross Moore
Steve Peter
Cheryl Ponchin
Philip Taylor
Boris Veytsman
Raymond Goucher, Founding Executive Director †

Hermann Zapf, Wizard of Fonts†

∗member of executive committee
†honorary

See http://tug.org/board.html for a roster of all
past and present board members, and other official
positions.

Addresses

TEX Users Group
P.O. Box 2311
Portland, OR 97208-2311
U.S.A.

Telephone

+1 503 223-9994

Fax

+1 206 203-3960

Web

http://tug.org/

http://tug.org/TUGboat/

Electronic Mail

(Internet)

General correspondence,
membership, subscriptions:
office@tug.org

Submissions to TUGboat,
letters to the Editor:
TUGboat@tug.org

Technical support for
TEX users:
support@tug.org

Contact the Board
of Directors:
board@tug.org

Have a suggestion? Problems not resolved?

The TUG Board wants to hear from you:
Please email board@tug.org.

[printing date: August 2011]

Printed in U.S.A.

Speer’s 1st Law of Proofreading: The visibility of an error

is inversely proportional to the number of times you have

looked at it.

Found on the World Wide Web

COMMUNICATIONS OF THE TEX USERS GROUP

EDITOR BARBARA BEETON

VOLUME 32, NUMBER 2 • 2011

PORTLAND • OREGON • U.S.A.

TUGboat

This regular issue (Vol. 32, No. 2) is the second issue
of the 2011 volume year. No. 3 will contain papers
from the TUG 2011 conference in Trivandrum, India.

TUGboat is distributed as a benefit of member-
ship to all current TUG members. It is also available
to non-members in printed form through the TUG

store (http://tug.org/store), and online at the
TUGboat web site, http://tug.org/TUGboat. On-
line publication to non-members is delayed up to
one year after an issue’s print publication, to give
members the benefit of early access.

Submissions to TUGboat are reviewed by vol-
unteers and checked by the Editor before publica-
tion. However, the authors are still assumed to be
the experts. Questions regarding content or accu-
racy should therefore be directed to the authors,
with an information copy to the Editor.

Submitting items for publication

The deadline for receipt of final papers for the pro-
ceedings issue is October 31.

As always, suggestions and proposals for TUG-

boat articles are gratefully accepted and processed
as received. Please submit contributions by elec-
tronic mail to TUGboat@tug.org.

The TUGboat style files, for use with plain

TEX and LATEX, are available from CTAN and the
TUGboat web site. We also accept submissions us-
ing ConTEXt. More details and tips for authors are
at http://tug.org/TUGboat/location.html.

Effective with the 2005 volume year, submission
of a new manuscript implies permission to publish
the article, if accepted, on the TUGboat web site, as
well as in print. Thus, the physical address you pro-
vide in the manuscript will also be available online.
If you have any reservations about posting online,
please notify the editors at the time of submission
and we will be happy to make special arrangements.

130 TUGboat, Volume 32 (2011), No. 2

TUGboat editorial board

Barbara Beeton, Editor-in-Chief
Karl Berry, Production Manager

Boris Veytsman, Associate Editor, Book Reviews

Production team

William Adams, Barbara Beeton, Karl Berry,
Kaja Christiansen, Robin Fairbairns,
Robin Laakso, Steve Peter, Michael Sofka,
Christina Thiele

Other TUG publications

TUG is interested in considering additional manu-
scripts for publication, such as manuals, instruc-
tional materials, documentation, or works on any
other topic that might be useful to the TEX commu-
nity in general.

If you have such items or know of any that you
would like considered for publication, send the in-
formation to the attention of the Publications Com-
mittee at tug-pub@tug.org.

TUGboat advertising

For information about advertising rates and options,
including consultant listings, write or call the TUG

office, or see our web pages:
http://tug.org/TUGboat/advertising.html

http://tug.org/consultants.html

Trademarks

Many trademarked names appear in the pages of
TUGboat. If there is any question about whether
a name is or is not a trademark, prudence dictates
that it should be treated as if it is. The following list
of trademarks which commonly appear in TUGboat

should not be considered complete.

METAFONT is a trademark of Addison-Wesley Inc.
PostScript is a trademark of Adobe Systems, Inc.
TEX and AMS-TEX are trademarks of the American

Mathematical Society.

TUGboat, Volume 32 (2011), No. 2 131

From the President

Karl Berry

Software

The 2011 releases of TEX Live, MacTEX, and proTEXt
are now available online. The TEX Collection DVD is
going to manufacturing around the same time as this
TUGboat issue, and should be mailed during August.
The http://tug.org/texcollection web page has
links to all the pieces and general information.

Conferences

The TUG 2011 conference will take place in Trivan-
drum, Kerala, India, October 19–21, hosted by River
Valley Technologies: http://tug.org/tug2011. We
will continue to accept presentation proposals while
space is available. Online registration for all atten-
dees is also open.

Other upcoming conferences: the fifth ConTEXt
user meeting in Charneux, Belgium, Sept. 19–24
(http://meeting.contextgarden.net/2011); and
TEXperience 2011 in Zelezna Ruda, Czech Repub-
lic, Sept. 28–Oct. 2 (http://striz9.fame.utb.cz/
texperience).

Interviews

Since my last column, Dave Walden has completed
an interview with Richard Palais, the first president
(then called chairman) of TUG, for the Interview
Corner (http://tug.org/interviews).

⋄ Karl Berry

http://tug.org/TUGboat/Pres/

Editorial comments

Barbara Beeton

Boris = books

Welcome, Boris Veytsman, to the TUGboat produc-
tion team. Boris has volunteered to obtain book
reviews, and, even more importantly, to arrange
with publishers of books on typography and related
subjects for TUG members to receive discounts on
their publications. The first fruits of his efforts
can be found in the reviews that appear later in
this issue and in the listings of member discounts

in the members’ area of the TUG web site: http:

//tug.org/members. Remember—your password
is needed to access the members’ area; if you’ve lost
or forgotten it, request it from Robin at the TUG

office: memberaccess@tug.org.
To further publicize this benefit, and as usual

for non-technical items, book reviews are open im-
mediately to all readers on the TUG web site; they
will not be subject to the one-year quarantine to
members only.

EuroBachoTEX 2011

The main theme of this year’s EuroTEX, held in
Bachotek, Poland, was “Aesthetics and effectiveness
of the message, cultural contexts”. Several papers
from the EuroTEX proceedings have been republished
in this issue of TUGboat; the complete proceedings
will be published by GUST, the host of the conference.

150 years at the US Government

Printing Office

This year, the Government Printing Office (GPO)
celebrates its 150th anniversary. An exhibit showing
highlights of this span, from hand-set type for the
Emancipation Proclamation to the new e-world of
hand-held digital devices, is on display in Washing-
ton, DC.

A brief introduction, with a five-minute video,
is available at http://paperspecs.com/mainblog/
gpos-150th-birthday-exhibit.

For those of us whose closest exposure to the
GPO is the annual income tax forms, it’s nice to know
that their work includes many more welcome prod-
ucts. The exhibition, “Keeping America Informed”,
should be worth a visit if you’re in the DC area.

The raster tragedy

The web site http://www.rastertragedy.com pre-
sents a comprehensive overview of current knowledge
about how to render outline fonts competently on
low-resolution screens. (The term “raster tragedy”
was coined by Peter Karow in the late 1980s, when
the typical monitor screen rarely had a resolution of
more than a pixel or two per point.)

Although this information (and the web site)
has been around for quite a while, it has recently
been updated, and a periodic review of the principles
of good hinting is beneficial— it will keep one on
one’s toes in being able to determine whether a font
is good or bad, and why, and how.

⋄ Barbara Beeton

http://tug.org/TUGboat

tugboat (at) tug dot org

132 TUGboat, Volume 32 (2011), No. 2

TEX Collection 2011 DVD

TEX Collection editors

The TEX Collection is the name for the overall collec-
tion of software distributed by the TEX user groups
each year. Please consider joining TUG or the user
group best for you (http://tug.org/usergroups.
html), or making a donation (https://www.tug.
org/donate.html), to support the effort.

All of these projects are done entirely by volun-
teers. If you’d like to help with development, testing,
documentation, etc., please visit the project pages
for more information on how to contribute.

Thanks to everyone involved, from all parts of
the TEX world.

1 proTEXt (http://tug.org/protext)

proTEXt is a TEX system for Windows, based on
MiKTEX (http://www.miktex.org), with a detailed
document to guide your installation and additional
Windows-specific tools.

For 2011, proTEXt now has a standard applica-
tion program (Setup.exe) for installation, instead
of using an interactive PDF document. Continual
changes in Adobe Reader’s security policies broke
installation from the document, and free (libre) PDF

readers didn’t implement the necessary features.
Also, TEXnicCenter has been replaced as the

standard editor by TEXStudio, formerly TEXMakerX
(http://texstudio.sf.net).

proTEXt currently has English and German as
possible installation languages. Volunteers to make
translations to other languages are most welcome.

2 MacTEX (http://tug.org/mactex)

MacTEX is a TEX system for MacOSX, based on
TEX Live, with a native Mac installer and additional
Mac-specific tools. MacTEX 2011 requires at least
MacOSX 10.5 (Leopard), and runs on Leopard, Snow
Leopard (10.6), and Lion (10.7), both Intel and
PowerPC machines. The package installs the full
TEX Live 2011, Ghostscript 9.02, the convert utility
from ImageMagick 6.6.9-3, and the current versions
of BibDesk, LATEXiT, TEX Live Utility, TeXShop,
and TEXworks, as well as the TEX Dist Preference
Pane, which allows users to switch easily between
different TEX distributions.

Last year, users saw what appeared as two dis-
tributions in the Preference Pane, one with 32 bit
universal binaries and one with 64 bit binaries. This
year the panel shows only one 2011 entry, with a drop
down menu to choose between 32 and 64 bit. The
64 bit binaries require Snow Leopard or higher (this
year all binaries except xetex and xdv2pdf have 64

bit versions). Distributions from past years look as
they did before in the Preference Pane.

The Collection also includes MacTEXtras (http:
//tug.org/mactex/mactextras.html), which con-
tains many additional items that can be separately
installed. This year, software that runs exclusively
on Tiger (MacOSX 10.4) has been removed. The
main categories are: bibliography programs; alter-
native editors, typesetters, and previewers; equation
editors; DVI and PDF previewers; and spell checkers.

3 TEX Live (http://tug.org/texlive)

TEX Live is a comprehensive cross-platform TEX sys-
tem. It includes support for most Unix-like systems,
including GNU/Linux and MacOSX, and for Win-
dows. Major user-visible changes in 2011 are few:

The biber (http://ctan.org/pkg/biber) pro-
gram for bibliography processing is included on com-
mon platforms. Its development is coupled with
biblatex (http://ctan.org/pkg/biblatex), a full
reimplementation of the bibliographical facilities pro-
vided by LATEX.

The MetaPost (mpost) program no longer cre-
ates or uses .mem files. (The needed files, such as
plain.mp, are simply read on every run.) This is
related to supporting MetaPost as a library, which
is another significant though not user-visible change.

The updmap implementation in Perl, previously
used only on Windows, has been revamped and is
now used on all platforms. No user-visible changes
are intended, except that it runs much faster.

The biggest change is simply the package and
program updates and additions that have accumu-
lated over the past year: TEX Live 2011 is some
250MB larger.

4 CTAN (http://www.ctan.org)

CTAN is the Comprehensive TeX Archive Network,
a set of servers worldwide making TEX software pub-
licly available.

The CTAN snapshot is about 3.8GB this year.
As usual, it was made from the German node (http:
//dante.ctan.org) and does not include the other
components of the Collection. It is available to TUG

members (and joint members) from the TUG mem-
bers area, https://www.tug.org/members.

⋄ TEX Collection editors
Thomas Feuerstack (proTEXt),
Dick Koch (MacTEX),
Herb Schulz (MacTEXtras),
Karl Berry (TEX Live),
Manfred Lotz (CTAN)
http://tug.org/texcollection

TUGboat, Volume 32 (2011), No. 2 133

TEXworks—As you like it

Stefan Löffler

Abstract

TEXworks is an ongoing project to create a simple
yet flexible editor that “lowers the entry barrier to
the TEX world”. This article introduces the new
TEXworks 0.4 series and discusses several key ad-
vancements, in particular the new scripting support.

1 Introduction

The TEX world is complex. “Beautifully complex”,
the expert will say. “Dreadfully complex”, would be
a newcomer’s more likely choice of words. This is
where TEXworks comes in. Its motto: “to lower the

entry barrier to the TEX world”.
The TEXworks project was launched in 2007, out

of discussions between Jonathan Kew, Karl Berry,
Dick Koch, and others at several TUG meetings.
The plan was to create a new editor, modeled along
the lines of the award-winning TEXShop application
for MacOSX, but as an open-source, cross-platform
program. TUG sponsored some of the initial devel-
opment.

After two years of development, the first stable
release of TEXworks, 0.2.0, was published in 2009.
From that point on, odd minor version numbers (0.1,
0.3, . . .) indicated unstable development code, while
even numbers (0.2, 0.4, . . .) indicated stable releases
for general use.

The hope from there was to speed up develop-
ment and produce stable releases more often. Due
to other responsibilities, Jonathan had less and less
time for coding, however, and the next stable release
had to be postponed. In 2010, Jonathan handed over
a large part of the development responsibilities to
me, a fairly regular contributor of patches for quite
a while. After wrapping up the dangling threads,
the first of the stable 0.4 releases was published in
the first half of 2011. Apart from many bug fixes
and enhancements, one theme dominated this series:
scripting.

2 Scripting TEXworks

All the world’s a stage
And all the men and women merely players;
They have their exits and their entrances,
And one man in his time plays many parts.

—William Shakespeare, As You Like It

For this project, this can be interpreted as: TEXworks
is only the core program, the basis upon which every
user can personalize the TEX editor to their liking
and tailor it to meet individual needs.

With the growing popularity of TEXworks and
the wide nature of the TEX user base, more and

more requests for specific features started coming
in. Either for a generally useful addition, to meet
an expert’s specific needs, to use TEXworks in some
completely unforeseen way, or sometimes for things
relevant only to very few, limited, special situations.

In short, with the growing user base, so came an
increasing number of divergent ideas for the project’s
growth, and it was clear that not everybody’s wishes
could be accommodated. We realized that if we
adopted ideas that were too specialized, or intro-
duced too great a complexity into the user interface,
we would fail in the primary purpose of providing a
straightforward editor—one which would not scare
off new users. Thus, we faced a dilemma concern-
ing extending the usefulness and versatility of the
project, while somehow keeping the standard inter-
face “clean”.

The only flexible solution seemed to be to allow
the actual users to change TEXworks to their own
liking and needs. Since not everyone is proficient
in C++ programming, and a large amount of forked
code would be impossible to maintain, letting users
script new features that were not part of the core
application was identified as the best answer, and a
lot of effort has gone into that. Scripts can be added
any time as they do not need to be compiled. They
are simple text files outside the main code, can be
deployed as needed, and work on all platforms.

Early attempts at a scripting engine were rudi-
mentary at best. As a proof of concept, it was pos-
sible to insert and modify some text from a script,
but the C++ internals were very clumsy and hard to
maintain.

The real breakthrough came through the discov-
ery that Qt—the Nokia programming framework
on which TEXworks is based—allows dynamic ac-
cess to almost all parts of the core program. There
were some coding tricks involved, but exploiting this
existing mechanism saved us the work of creating
wrappers for each function and variable that script
writers may access.

The Qt framework even allows script writers to
create forms and dialog windows to interact with the
user directly. Nokia provides a free tool, Qt Creator,
an IDE with widgets and components, to create these
additional user interfaces.

The second major advance was the restructur-
ing of the scripting code to accommodate plugins
for additional scripting languages. Presently, apart
from the built-in, JavaScript-like QtScript, Lua and
Python are available via plugins (on operating sys-
tems that support this mechanism). This approach
also enables programmers to easily add additional
scripting languages to TEXworks.

TEXworks—As you like it

134 TUGboat, Volume 32 (2011), No. 2

3 How scripts work

The easiest way to use scripts to adapt TEXworks
to your liking is to get a ready-made script and
simply drop it into the TEXworks ‘scripts’ folder.
This can easily be found using the “Show Scripts
Folder” menu item. After dropping your script files
in, click “Reload Script List” and you’re ready to go.

TEXworks scripts come in two varieties: “stand-
alone” scripts and “hook” scripts. “Standalone”
scripts appear as menu items in the “Scripts” menu
(or one of its submenus). Running such a script is
done by clicking on the menu item, or by using a
shortcut key (sequence), if one is assigned.

“Hook” scripts, on the other hand, are not di-
rectly invoked by the user. Instead, TEXworks runs
them automatically in certain situations. For exam-
ple, a hook script could run automatically after a
typeset process completes, parse the log output, and
present errors or warnings in a user-friendly way.

Scripts can also access files on your hard disk
and even execute system commands. To help spare
you any severe security problems should an untrusted
script be inadvertently run, these features are dis-
abled by default. This can prevent some (advanced)
scripts from working properly, however. To enable
these advanced features, a one-time authorization
must be made in the TEXworks preferences dialog.

Other, existing script libraries can be modified
and used (e.g., phpjs [4]). Among many other things,
script system commands can be (and have been)
fashioned to: retrieve information from databases
or bibliography citations, interact with utilities like
ImageMagick, and provide additional visual help
for LATEX and others. Combined with script-writer-
designed dialogs and forms, the possibilities are very
wide, and no C++ knowledge is required!

If you’re interested in writing scripts of your
own to make your or your colleague’s life that little
bit easier—whether to insert the same text over and
over again by a simple key sequence, or write com-
plex scripts for providing input-driven templates—
there are a number of resources out there to learn
scripting. Of course, knowing your way around one of
the supported languages (JavaScript, Lua, Python)
in general helps. Other than that, have a look at the
TEXworks manual [5] for a general, more in-depth dis-
cussion of how to use scripts, and Paul A. Norman’s
excellent overview of how to manipulate TEXworks
from within a script [6].

4 Other news about TEXworks

The 0.4 stable series has brought in many other im-
provements as well. Those who have used previous
releases may notice that quite a lot of effort has been

put into further enhancing usability. For one, the
presentation of spell checking languages has been im-
proved significantly. Now, human readable names are
shown instead of ISO language codes, and languages
no longer show up multiple times. In addition, a
“follow focus” option has been implemented that can
keep the cursor position in the editor and the preview
windows synchronized. Syntax highlighting has also
been enhanced— it is now possible to set some font
modifiers (bold, italic, etc.) and background colors.

TEXworks’s core has also seen some improve-
ments. Most notably, a new command line parser
and an automatic updating mechanism for TEXworks
resource files have been added. The command line
parser enables better integration with other tools
that call TEXworks (e.g., other editors, previewers,
or the operating system).

The automatic updating mechanism will allow
future versions of TEXworks to upgrade resources
like auto-completion files, or syntax highlighting def-
initions (provided the user does not intervene, of
course). Previously, it was necessary to find and
delete files manually to cause their update.

This summary of some of the features that stand
out to me is expanded in a more complete overview
on TEXworks’s home page [2]. The screenshot in
figure 1 shows TEXworks in typical usage.

5 Outlook

Far from this being the end of the development of
TEXworks itself, or of its scripting support, a number
of ideas are being canvassed, such as script bundles
that can perform a multitude of (typically related)
tasks, or scripts that can run in the background—
e.g., to perform or monitor a lengthy task—while the
rest of TEXworks can be used normally. In addition,
there are plans to allow scripts to modify the user
interface—e.g., by supplying toolbar icons or context
menu entries— instead of just showing up in a long
list of items in the scripts menu.

Beyond the 0.4 series scripting development,
other great ideas have been piling up as well: preview
window improvements, tabbed editing, code folding,
and project management support, to name only a
few. Development for the near future will happen
in the 0.5 series (which will become the 0.6 stable
release eventually), and will likely focus on areas that
have been put on hold in the attempt to get the best
out of scripting for TEXworks 0.4.

Hopefully, this has got you interested in the
TEXworks project (or, if you have already been us-
ing it, has been a helpful update). If you want to
try TEXworks out for yourself or upgrade from an
earlier version, head over to the home page [2] and

Stefan Löffler

TUGboat, Volume 32 (2011), No. 2 135

Figure 1: TEXworks source and preview windows on Ubuntu, with area magnified.

grab a copy for your operating system— it’s usually
quite simple. And if you want to learn more about
TEXworks, or perhaps would like to help in its im-
provement—by giving feedback, translating, writing
manuals, contributing code, or any other way—be
sure to check out the pointers given in the References
section below.

6 Acknowledgements

I want to say a big “thank you” to Paul Norman,
who helped in the preparation of this article; to
Joseph Wright for providing the screenshot; and
to the immensely supportive TEXworks community
without which this project wouldn’t be where it is
today. And of course to Jonathan Kew for initiating
the program, maintaining it, and mentoring me.

⋄ Stefan Löffler

Döblinger Hauptstraße 13

1190 Wien

Austria

st.loeffler (at) gmail.com

References

[1] TEXworks development home page.
http://code.google.com/p/texworks/.

[2] TEXworks home page.
http://www.tug.org/texworks/.

[3] TEXworks mailing list.
http://lists.tug.org/texworks.

[4] Use PHP functions in JavaScript.
http://phpjs.org/.

[5] Alain Delmotte and Stefan Löffler. A short
manual for TEXworks. Bundled with TEXworks.

[6] Paul A. Norman. TEXworks scripting.
http://twscript.paulanorman.com/docs/

index.html.

TEXworks—As you like it

136 TUGboat, Volume 32 (2011), No. 2

MetaPost 1.750: Numerical engines

Taco Hoekwater

Abstract

After two years of talks about future plans for Meta-
Post 2.0, finally real progress is being made. This
paper introduces a pre-release of MetaPost 2 that
can optionally use IEEE floating point for its internal
calculations instead of the traditional 32-bit integers.

1 Introduction

I am sure some readers are curious to know why
it is taking so long before MetaPost 2 comes out,
considering that I have been giving talks on the
subject for years now. To get started, a recap from
the initial project proposal dating back to May 2009:

In the original MetaPost library proposal we
wrote in May 2007, one of the big user-side
problem points that was mentioned was this:

• All number handling is based on frac-
tions of a 32-bit integer. User input often
hits one of the many boundaries that are
a result of that. For instance, all num-
bers must be smaller than 16384, and
there is a noticeable lack of precision in
the intersection point calculations.

The current proposal aims to resolve that
issue once and for all. The goal is to replace
the MetaPost internal 32-bit numeric values
with something more useful, and to achieve
that goal the plan is to incorporate one of
these libraries:

GNU MPFR http://www.mpfr.org

IBM decNumber http://www.alphaworks.

ibm.com/tech/decnumber

We have not decided yet which one. MPFR

will likely be faster and has a larger develop-
ment base, but decNumber is more interesting
from a user interface point of view because
decimal calculus is generally more intuitive.
For both libraries the same internal steps need
to be taken, so that decision can be safely post-
poned until a little later in the project. The
final decision will be based on a discussion to
be held on the MetaPost mailing list.

Since then, there has been a small change to that
statement; MetaPost 2 will in fact contain four dif-
ferent calculation engines at the same time:

• scaled 32-bit (a.k.a. compatibility mode)
• IEEE floating point (a.k.a. double)
• MPFR (arbitrary precision, binary)
• decNumber (arbitrary precision, decimal)

The internal structure of the program will also
allow further engines to be added in the future.

The traditional scaled 32-bit engine is the de-
fault, thus retaining backward compatibility with
older versions of MetaPost. The other engines will
be selected using a command line switch.

Working backwards from that final goal, some
sub-projects could be formulated.

• Because values in any numerical calculation li-
brary are always expressed as C pointers, it
is necessary to move away from the current
array-based memory structure with overloaded
members to a system using dynamic allocation
(using malloc()) and named structure compo-
nents everywhere, so that all internal MetaPost
values can be expressed as C pointers internally.

As a bonus, this removes the last bits of static
allocation code from MetaPost so that it will
finally be able to use all of the available RAM.

This first sub-project was a major undertaking
in itself, and was finally completed when MetaPost
1.5 was released in July 2010.

The current 1.750 release of MetaPost imple-
ments most of two other sub-project goals (in fact so
far only the PostScript backend has been updated):

• An internal application programming interface
layer will need to be added for all the internal
calculation functions and the numeric parsing
and serialization routines. All such functions
will have to be stored in an array of function
pointers, thus allowing a start-up switch be-
tween 32-bit backward-compatible calculation
and the arbitrary precision library.

As a bonus, this will make it possible to add
more numerical engines in the future.

• The SVG and PostScript back-ends need to be
updated to use double precision float values for
exported points instead of the current 32-bit
scaled integers.

In the picture export API, doubles are con-
sidered to be the best common denominator
because there is an acceptable range and preci-
sion and they are simple to manipulate in all C
code. This way, the actual SVG and PostScript
backend implementations and the Lua bindings
can remain small and simple.

So, not accounting for hunting for bugs and
fixing documentation, there is only one large step
that remains to be taken before MetaPost 2 can be
released, namely the actual integration of the two
arbitrary precision libraries. That is why the version
is set at 1.750 at the moment.

Taco Hoekwater

TUGboat, Volume 32 (2011), No. 2 137

2 Some internal stuff

One thing that is not immediately obvious from the
project goals as written above is that moving all
the core arithmetic operations into functions that
must be swappable instead of resolved at executable
compilation time meant a whole lot of editing work,
almost none of which could be automated. This is
the main reason why everything took so long. Let
me illustrate that with an example.

2.1 An example: a simple procedure

Let’s look at the trans procedure, that applies a
transform to a pair of coordinates. It calculates the
following formula:

(

x′

y′

)

=

(

txx tyx
txy tyy

)

·

(

x
y

)

+

(

tx
ty

)

First, here is the original Pascal implementation
of that function:

procedure trans(p,q:pointer);

var v:scaled; {the new |x| value}

begin

v := take_scaled(mem[p].sc,txx)

+ take_scaled(mem[q].sc,txy) + tx;

mem[q].sc := take_scaled(mem[p].sc,tyx)

+ take_scaled(mem[q].sc,tyy) + ty;

mem[p].sc := v;

end;

The meaning of all those variables:
p,q The variables for the x and y coordi-

nates that have to be transformed

txx,txy,tyx

tyy,tx,ty

The six components of the transfor-
mation matrix, in global variables

v An intermediate value that is needed
because p cannot be updated imme-
diately: its old value is used in the
calculation of the new q

mem[] The statically allocated memory table
where Pascal MetaPost stored all its
variables

mem[].sc The structure object that holds the
scaled value of a variable

take_

scaled(a,b)

This function calculates
p = ⌊(a · b)/216 + 1

2
⌋

In the conversion of MetaPost from Pascal web
to C web (in version 1.2), not that much has changed:
static void mp_trans (MP mp,pointer p, pointer q) {

scaled v; /* the new x value */

v = mp_take_scaled(mp, mp->mem[p].sc,mp->txx)

+mp_take_scaled(mp, mp->mem[q].sc,mp->txy)

+mp->tx;

mp->mem[q].sc

= mp_take_scaled(mp,mp->mem[p].sc,mp->tyx)

+mp_take_scaled(mp,mp->mem[q].sc,mp->tyy)

+mp->ty;

mp->mem[p].sc = v; }

The only big difference here is the use of a global
mp object instead of global variables. MetaPost 1.5
uses dynamic allocation instead of the mem array, and
that makes the function a lot easier to understand:

static void

mp_trans (MP mp, scaled * p, scaled * q) {

scaled v; /* the new |x| value */

v = mp_take_scaled (mp, *p, mp->txx)

+ mp_take_scaled (mp, *q, mp->txy)

+ mp->tx;

*q = mp_take_scaled (mp, *p, mp->tyx)

+ mp_take_scaled (mp, *q, mp->tyy)

+ mp->ty;

*p = v;

}

It would be great if that could stay, but unfortu-
nately, when numerical variables become objects, it
is no longer allowed to use the simple C + operator
for addition. In turn, that means that more local
variables are needed to store intermediate results. To
make matters even worse, these local variables have
to be allocated and released.

The end result is that the same function looks
like this in MetaPost 1.750:

static void

mp_number_trans (MP mp, mp_number p,

mp_number q) {

mp_number pp, qq;

mp_number r1, r2;

new_number (pp);

new_number (qq);

new_number (r1);

new_number (r2);

take_scaled (r1, p, mp->txx);

take_scaled (r2, q, mp->txy);

number_add (r1, r2);

set_number_from_addition(pp, r1, mp->tx);

take_scaled (r1, p, mp->tyx);

take_scaled (r2, q, mp->tyy);

number_add (r1, r2);

set_number_from_addition(qq, r1, mp->ty);

number_clone(p,pp);

number_clone(q,qq);

free_number (pp);

free_number (qq);

free_number (r1);

free_number (r2);

}

The variables r1, r1, pp and qq exist only for
storing intermediate results. To be honest, qq is not
really needed, but it adds a nice bit of symmetry and
the overhead is negligible.

The new arithmetic functions do not return a
value since that would force the introduction of even
more new_number and free_number calls. Instead,

MetaPost 1.750: Numerical engines

138 TUGboat, Volume 32 (2011), No. 2

they adjust their first argument. Stripped down to
only the actual actions, the function looks like this:

r1 = p * mp->txx;

r2 = q * mp->txy;

r1 = r1 + r2;

pp = r1 + mp->tx;

r1 = p * mp->tyx;

r2 = q * mp->tyy;

r1 = r1 + r2;

qq = r1 + mp->ty;

p = pp;

q = qq;

Where the first four lines match the first state-
ment in the previous versions of the function, the
next four lines the second statement, and the last
two lines do the final assignments.

In the listing above, all those identifiers like
new_number and take_scaled are not really func-
tions. Instead, they are C preprocessor macros with
definitions like this:

#define take_scaled(R,A,B) \

(mp->math->take_scaled)(mp,R,A,B)

Here the right-hand side take_scaled is one of
the function fields in the structure mp->math. Each
of the arithmetic engines defines a few dozen such
functions for its own type of mp_number. With this
new internal structure in place adding a new arith-
metic engine is not much more work than defining a
few dozen—mostly very simple— functions.

3 Using 1.750

As said, there are currently only two engines: scaled
32-bit and IEEE double. Switching to IEEE double
is done on the command-line by using

mpost --math=double mpman

3.1 Warning checks

In MetaPost 1, the parameter warningcheck can be
set to a positive value. This will downgrade the limit
on numerical ranges from 16384 to 4096, but it has
the advantage that it guards against various internal
cases of overflow.

With the double numerical engine, numerical
values can range up to 1.0E+307. The warning check
could be set at something like 2.5E+306, but that is
actually not the most important point for a warning
to take place.

Because of the way double values are stored
internally in the hardware, it is possible to store a

certain range of integers exactly . However, when
an integer value gets above a threshold (it has to
fit in 52 bits), precision is lost. For this reason,
warningcheck now kicks in a little below this limit,
and thus is set at 4.5E+15.

3.2 An example

beginfig(1);

warningcheck:=0;

path p;

p = fullcircle scaled 23.45678888E-200;

p := p scaled 1E201;

draw p;

currentpicture := currentpicture scaled .5;

endfig;

end.

3.3 Before you try . . .

• The current version is of alpha ‘quality’, so lots
of bugs are expected.

• Some internals, like intersectiontimes, do
not take advantage of the extra precision yet.

• The SVG backend is not up to speed yet: it
outputs unusable SVG files.

4 Planning

A beta release with all four engines is planned for the
Summer, then a gamma release with memory leaks
fixed (Autumn/Winter), and finally, MetaPost 2.0
(for TEX Live 2012).

⋄ Taco Hoekwater

http://metapost.org

Taco Hoekwater

TUGboat, Volume 32 (2011), No. 2 139

Reading and executing source code

Herbert Voß

Abstract

A frequent question that arises in the various forums
is whether specific regions of source code can be
displayed both verbatim and with the output of
its execution. The packages fancyvrb and listings

support writing to external files and partial reading
of source code of arbitrary type. Further packages,
such as showexpl, allow executing parts of a LATEX
source. This article shows how to apply this to
arbitrary types of code.

1 Introduction

When creating a manuscript for an article or book,
the text is, depending on the subject, augmented
by examples that often refer to the output created
by a particular programme. It can be beneficial to
control the source code for these programmes from
within the document to make sure that any changes
are reflected in both the source code and the output
in the final document. This can avoid mistakes,
especially in longer documents.

2 Simple LATEX sequences

2.1 Areas of source code

For LATEX examples, only the source code between
\begin{document} and \end{document} is relevant.
The packages fancyvrb and listings both support
specifying an area by line numbers. Such numbers
need to be changed, however, when lines are added to
or removed from the source code. It therefore makes
more sense to specify a string of characters for start
and end of the area. The package listings provides
the option linerange; the specification of the interval
is in principle the same as specifying line numbers.
Only special characters have to be escaped by pre-
fixing them with a backslash: \\begin\{document\}.
The option includerangemarker=false omits the out-
put of the string marking the area; otherwise, the
\begin{document} and \end{document} would appear
in the output.

\lstinputlisting[

linerange=\\begin\{document\}-\\end\{document\},

includerangemarker=false]{demo.tex}

The command above yields the following source
code of a LATEX document, which will be used as an
example throughout this article.

\begin{tabular}{@{}

m{0.5\linewidth}@{}

>{\lstinputlisting[

includerangemarker=false,

rangeprefix=\%,

linerange=START-STOP]{\jobname.tmp}}

m{0.5\linewidth} @{}}

\begin{Example}

\pspicture(3,2)

%START

\psframe*[linecolor=blue!30](3,2)

%STOP

\endpspicture

\end{Example}

& \tabularnewline

\begin{Example}

\pspicture(3,2)

%START

\psframe*[linecolor=red!30](3,2)

\endpspicture

%STOP

\end{Example}

& \tabularnewline

\end{tabular}

The same can be achieved with the package
fancyvrb. The area can be specified through the
options firstline and lastline. The following ex-
ample outputs its own text body.

\documentclass{article}

\usepackage{fancyvrb}

\begin{document}

\VerbatimInput[frame=single,

fontsize=\footnotesize,

firstline=\string\begin{document},

lastline=\string\end{document},

]{\jobname.tex}

\end{document}

The firstline and lastline options define macros
\FancyVerbStartString and \FancyVerbStopString.
In special cases, these can be manipulated directly.
The macro definition must contain leading white-
space if it is present in the source code. The macros
do not exist and therefore need to be defined through
\newcommand or \edef if TEX-specific special charac-
ters are used, as in this case. The following example
outputs the preamble of our sample document. The
source document contains two spaces in front of
\begin{document}, which have to be taken care of
through \space.

\edef\FancyVerbStartString{%

\string\documentclass{article}}

\edef\FancyVerbStopString{%

\space\space\string\begin{document}}% 2 spaces

\VerbatimInput[frame=single,fontsize=\footnotesize]

{demo.tex}

\makeatletter

\let\pc\@percentchar

\makeatother

\usepackage{pstricks,fancyvrb,array,listings}

\lstset{basicstyle=\ttfamily\small}

\def\endExample{\end{VerbatimOut}

Reading and executing source code

140 TUGboat, Volume 32 (2011), No. 2

\def\START{}\def\STOP{}\input{\jobname.tmp}}

\newcommand\Example{%

\VerbatimEnvironment

\begin{VerbatimOut}{\jobname.tmp}}

2.2 Source code and output

Another frequent use case is the display of source
code and the result of its compilation with LATEX, as
in the following example.

foo
④

bar

foo\newline\mbox{%

\put(7,2){%

\circle*{\strip@pt\normalbaselineskip}}}%

\newline

bar

The entire source code is not always of interest,
as in the example above, which actually contains two
additional lines.

\makeatletter

%START

foo\newline\mbox{%

\put(7,2){%

\circle*{\strip@pt\normalbaselineskip}}}%

\newline

bar

%STOP

\makeatother

To restrict the output to the result of compiling the
actual lines, the so-called markers %START and %STOP

were added to define the relevant area. They do
not affect the result of the compilation as they are
prefixed with the LATEX comment character %. Of
course the comment character should be changed
according to the language being used.

Here, to typeset the source code and the output
side by side a table was used. The right-hand column
is explicitly left blank. The respective command
was added to the column definition and only the
column separator & must be specified, even if no
other material appears in the table.

\begin{tabular}{@{}

m{0.2\linewidth}@{}

>{\lstinputlisting[includerangemarker=false,

rangeprefix=\%,

linerange=START-STOP]{\jobname.tmp}}

m{0.8\linewidth} @{}}

\begin{Example}

\makeatletter

%START

foo \put(12,0){\circle*{\strip@pt\normalbaselineskip}}

\hspace{2\normalbaselineskip}bar

%STOP

\makeatother

\end{Example}

& \tabularnewline

\end{tabular}

The environment Example uses fancyvrb to write
everything to a temporary file which is read immedi-
ately afterwards through \input and thus executed.

\newcommand\Example{%

\VerbatimEnvironment

\begin{VerbatimOut}{\jobname.tmp}}

\def\endExample{%

\end{VerbatimOut}

\input{\jobname.tmp}}

Instead of a table, a minipage could have been
used to achieve the arrangement as well. In neither
case, however, can page breaks occur within exam-
ples. If the output should appear below the source,
a different definition must be used. In the follow-
ing example, a table with normal table header and
partial source code is output.

A table without using tabularx which is as wide
as the line. This is created with this source below,
which contains several line breaks.

Table 1: Example for calculated table width

foo bar baz
and now
a some-
what
longer
text to
show line
breaks

and now a
somewhat
longer text
to show line

breaks

and now a somewhat
longer text to show

line breaks

\begin{tabular}{@{}

>{\RaggedRight}p{1.5cm}|

>{\Centering}p{2cm} |

>{\RaggedLeft}p{\linewidth-3.5cm-4\tabcolsep-0.8pt}

@{}}\hline

foo & bar & baz\\\hline

and now a somewhat longer text to show line breaks &

and now a somewhat longer text to show line breaks &

and now a somewhat longer text to show line breaks\\

\hline

\end{tabular}

The source code can now be arbitrarily long
as page breaks are possible. The package fancyvrb

does not support UTF-8 characters; they remain ac-
tive and would be output in their expanded form.
The inputenx package provides a workaround, but
by default non-ASCII characters have to be specified
in their TEX-notation, for example \"u. The cor-
responding example environment ExampleB for the
above example looks like the following:

\newcommand\ExampleB{%

\VerbatimEnvironment

\begin{VerbatimOut}{\jobname.tmp}}

\def\endExampleB{%

Herbert Voß

TUGboat, Volume 32 (2011), No. 2 141

\end{VerbatimOut}

{\centering \input{\jobname.tmp}}

\lstinputlisting[

includerangemarker=false,

rangeprefix=\%,

linerange=START-STOP]{\jobname.tmp}}

\begin{ExampleB}

\begin{table}[!htb]

\hrulefill\par

A table without using \texttt{tabularx} which is as wide

as the line. This is shown by this text, which contains

several line breaks.

\caption{Example for calculated table width}

%START

\begin{tabular}{@{}

>{\RaggedRight}p{1.5cm}|

>{\Centering}p{2cm} |

>{\RaggedLeft}p{\linewidth-3.5cm-4\tabcolsep-.8pt}

@{}}\hline

foo & bar & baz\\\hline

and now a somewhat longer text to show line breaks &

and now a somewhat longer text to show line breaks &

and now a somewhat longer text to show line breaks\\

\hline

\end{tabular}

%STOP

\end{table}

\end{ExampleB}

The reverse order of the output can be achieved
by swapping the \input and \lstinputlisting. For
outputting source code, the corresponding command
\VerbatimInput from the package fancyvrb can also
be used. Not using it here was an arbitrary decision.

2.3 Entire documents

To show the source code and result of entire LATEX
document or non-LATEX code, a different approach
must be taken — a simple \input does not work any
more. A general solution would be to include the
result of the execution of the source code as a figure
through \includegraphics. If the same font is used
as in the document, there will be no difference com-
pared to using \input, even for pure text. To identify
the externally created figures, a custom counter is
defined: \newcounter{FigureCounter}. The files are
created as \jobname-\theFigureCounter.tex and can
easily be assigned to source code.

A Makefile can be used to simplify the en-
tire procedure of creating the figures independently.
After a first pdfLATEX run, which can use the op-
tion -draftmode for improved speed, all files with
names \jobname-* can be run with the respective
programme through the Makefile. In the example
below, PSTricks code is processed with X ELATEX to
be able to get PDF output. To remove any white
margin from the figure, it is processed with pdfcrop

after the X ELATEX run. The extension of the written
files can be used to identify the programme to process

them with, for example, .cpp for a C++ example. Af-
ter all the external files have been created, pdfLATEX
is run again to read the created PDF figures.

The PDF files do not exist at the time of the first
pdfLATEX run. To avoid error messages because of
this, their presence is checked through \IfFileExists.
We now have the following:

\newcounter{FigureCounter}

\newcommand\ExampleC{%

\refstepcounter{FigureCounter}%

\VerbatimEnvironment

\begin{VerbatimOut}{\jobname-\theFigureCounter.tex}}

\def\endExampleC{%

\end{VerbatimOut}

\IfFileExists{%

\jobname-\theFigureCounter.pdf}% PDF exists?

{\includegraphics{\jobname-\theFigureCounter.pdf}}%

{\fbox{PDF missing!}}% no, output message

\lstinputlisting[

linerange=\\begin\{document\}-\\end\{document\},

includerangemarker=false]%

{\jobname-\theFigureCounter.tex}}

This is only suitable for LATEX or X ELATEX doc-
uments. The preamble and postamble typical for
LATEX are defined as the macros \FVB@VerbatimOut

and \FVE@VerbatimOut from the package fancyvrb to
avoid the user having to specify them every time.

\renewcommand\FVB@VerbatimOut[1]{%

\@bsphack%

\begingroup

\FV@UseKeyValues%

\FV@DefineWhiteSpace%

\def\FV@Space{\space}%

\FV@DefineTabOut%

\def\FV@ProcessLine##1{%

\toks@{##1}\immediate\write\FV@OutFile{\the\toks@}}%

\immediate\openout\FV@OutFile #1\relax%

\WritePSTricksPreamble%<<=== write preamble

\let\FV@FontScanPrep\relax

\let\@noligs\relax%

\FV@Scan}

\renewcommand\FVE@VerbatimOut{%<<=== write postamble

\WriteLine{\string\end{document}}% <<

\immediate\closeout\FV@OutFile\endgroup\@esphack}

The macro \WriteLine allows us to use a spe-
cific preamble every time; in the following example,
for PSTricks code. For a C++ example, a different
preamble would be defined.

\newcommand\WriteLine[1]{%

\begingroup%

\let\protect\@unexpandable@protect%

\edef\reserved@a{\immediate\write\FV@OutFile{#1}}%

\reserved@a%

\endgroup}

\newcommand\WritePSTricksPreamble{%

\WriteLine{\string\documentclass{article}}%

\WriteLine{\string\usepackage{pstricks-add}}%

\WriteLine{\string\pagestyle{empty}}%

\WriteLine{\string\begin{document}}%

}

Reading and executing source code

142 TUGboat, Volume 32 (2011), No. 2

These definitions provide the preliminaries for
using the new environment ExampleC. The example
shown here is a so-called surface plot.

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

r r r r r r r r r rr r r r r r r r r rr r r r r r r r r rr r r r r r r r r rr r r r r r r r r rr r r r r r r r r rr r r r r r r r r rr r r r r r r r r rr r r r r r r r r rr r r r r r r r r r

\psscalebox{0.5}{%

\begin{pspicture}(-0.5,-0.75)(11,11)

\psaxes[ticksize=-5pt 0]{->}(11,11)

\psMatrixPlot[colorType=5,dotsize=1.1cm,

xStep=1,yStep=1,

dotstyle=square*]{10}{10}{matrix1.data}

\end{pspicture}}

To make the preamble more flexible and be able
to output parts of it as code, two additional macros
can be used to specify the invisible and the visible
part of the preamble. Here, the invisible part is out-
put into the external file first, but this is arbitrary.
The macro \FVB@VerbatimOut, which was modified
above already, is changed again to omit a preamble
for a special case (\WritePSTricksPreamble), instead
now including a template preamble (\WritePreamble).
The template preamble does not load additional pack-
ages; they have to be loaded by the user. This allows
for more flexibility. The package listings allows not
only specifying a region, but also a sorted, comma-
separated list in curly braces.

\lstinputlisting[

linerange={\%PSTART-\%PSTOP,%

\\begin\{document\}-\\end\{document\}},

includerangemarker=false]{%

\jobname-\theFigureCounter.tex}%

In this case, everything in the source docu-
ment between %START and %STOP and also between
\begin{document} and \end{document} is output. To
distinguish between preamble and text body, they
are output with different background colours and a
small additional space between them. The part to
insert the code is now

\IfFileExists{\jobname-\theFigureCounter.pdf}%

{\begin{center}\expandafter\includegraphics%

\expandafter[\GraphicxOptions]%

{\jobname-\theFigureCounter.pdf}

\end{center}}%

{\fbox{PDF missing!}}%

\def\GraphicxOptions{}%

\lstinputlisting[backgroundcolor=\color{black!10},

linerange=\%PSTART-\%PSTOP,

includerangemarker=false,]%

{\jobname-\theFigureCounter.tex}

\lstinputlisting[backgroundcolor={},

linerange=\\begin\{document\}-\\end\{document\},

includerangemarker=false]%

{\jobname-\theFigureCounter.tex}%

\gdef\Invisible@Part{}%

\gdef\Visible@Part{}%

The macro \GraphicxOptions saves the optional
parameter of the ExampleD environment, which may
contain key/value pairs for \includegraphics. The
invisible part of the preamble is passed as an ar-
gument to the macro \PreambleInvisible and the
visible part to \PreambleVisible. The external LATEX
document now has the following preamble.

\newcommand\WritePreamble{%

\WriteLine{\string\documentclass{article}}%

\WriteLine{\string\pagestyle{empty}}%

\WriteLine{\Invisible@Part}

\WriteLine{\@percentchar PSTART}

\WriteLine{\Visible@Part}%

\WriteLine{\@percentchar PSTOP}

\WriteLine{\string\begin{document}}%

}

A page break is now possible after the figure and
within the code output, as shown by the following
example.
The binding energy in the liquid drop model is composed of the following parts.

• the surface part,

• the volume part,

E = av A + − a f A2/3 + − ac
Z(Z−1)

A1/3 + − as
(A−2Z)2

A + Ep (1)

• the Coulomb part,

• the asymmetry part,

• and a pairing part.

\usepackage{tgpagella}

\usepackage{pst-node}

\psset{nodesep=3pt}

The binding energy in the liquid drop model is composed

of the following parts.

\begin{itemize}

\item the \rnode{b}{surface part},

\item the \rnode{a}{volume part},\\[1cm]

\def\xstrut{\vphantom{\frac{(A)^1}{(B)^1}}}

\begin{equation}

E =

\rnode[t]{ae}{\psframebox*[fillcolor=black!8,

Herbert Voß

TUGboat, Volume 32 (2011), No. 2 143

linestyle=none]{\xstrut a_vA}} +

\rnode[t]{be}{\psframebox*[fillcolor=black!16,

linestyle=none]{\xstrut -a_fA^{2/3}}} +

\rnode[t]{ce}{\psframebox*[fillcolor=black!24,

linestyle=none]{\xstrut -a_c\frac{Z(Z-1)}{A^{1/3}}}} +

\rnode[t]{de}{\psframebox*[fillcolor=black!32,

linestyle=none]{\xstrut -a_s\frac{(A-2Z)^2}{A}}} +

\rnode[t]{ee}{\psframebox*[fillcolor=black!40,

linestyle=none]{\xstrut E_p}}

\end{equation}\\[0.25cm]

\item the \rnode{c}{Coulomb part},

\item the \rnode{d}{asymmetry part},

\item and a \rnode{e}{pairing part}.

\end{itemize}

\nccurve[angleA=-90,angleB=90]{->}{a}{ae}

\nccurve[angleB=45]{->}{b}{be}

\nccurve[angleB=-90]{->}{c}{ce}

\nccurve[angleB=-90]{->}{d}{de}

\nccurve[angleB=-90]{->}{e}{ee}

The macro \Preamble, which saves the invisible
and the visible part of the preamble, is somewhat
more complex because the special characters like
\, $, &, # ^, _, % and ~ and line endings must be
handled separately. If an arbitrary optional argument
is specified, it is assumed that it is the invisible part
of the preamble.

\def\MakeVerbatimNewLine{^^J}

\begingroup

\catcode‘\^^M=\active %

\gdef\obeylines@Preamble{\catcode‘\^^M\active

\let^^M\MakeVerbatimNewLine}%

\endgroup

\newcommand\Preamble{%

\par

\begingroup

\makeatother

\let\do\@makeother

\do\ \do\\\do\$\do\&\do\#\do\^\do_\do\~\do\%

\obeylines@Preamble

\@ifnextchar[\PreambleInvisible@{\PreambleVisible@[]}}

\long\def\PreambleInvisible@[#1]#2{%

\long\xdef\@gtempa{#2}%

\endgroup\let\Invisible@Part\@gtempa}

\long\def\PreambleVisible@[#1]#2{\long\xdef\@gtempa{#2}%

\endgroup\let\Visible@Part\@gtempa}

This can be used to control the output of the
preamble in the example code. Only the parts which
are of interest to the reader can be output while
other things can be defined as well and written into
the exported TEX file, but do not appear as source
code in the final document. For the example above:

\Preamble[Invisible]{\usepackage[T1]{fontenc}

\usepackage{mathpazo}

\usepackage{pstricks}

}

\Preamble{\usepackage{tgpagella}

\usepackage{pst-node}}

3 Arbitrary source code type

It has already been mentioned that in principle any
language can be used in the exported file. The
Makefile can do the appropriate processing based on
the extension of the file. Only the example environ-
ment must know the type of file to be exported. Our
final example shows an external Perl programme,
which is written from this document and executed.
The output of the programme is saved with the same
base name and the extension .out. Finally, the out-
put is inserted back into this document as pure text.

A standardised Perl code could have the follow-
ing header (preamble).

\newcommand\SchreibePerlPraeambel{%

\WriteLine{\numbersign !/usr/bin/perl}%

\WriteLine{\numbersign }%

\WriteLine{\numbersign Herbert Voss 20110201}%

\WriteLine{use strict;}%

\WriteLine{\Invisible@Part}

\WriteLine{\numbersign PSTART}

\WriteLine{\Visible@Part}%

\WriteLine{\numbersign PSTOP}

\WriteLine{\numbersign }%

\WriteLine{\numbersign bodystart!!}%

}

The definition of the example environment is
in principle the same as the LATEX version shown
above. Instead of including a generated PDF file, the
text output created by the external Perl programme
is input with \lstinputlisting. The optional ar-
gument of the environment ExampleE can be used
to specify the formatting; it is passed through to
\lstinputlisting.

\newcommand\ExampleE[1][]{%

\def\lstOptions{#1}%

\refstepcounter{FigureCounter}%

\VerbatimEnvironment

\begin{VerbatimOut}{\jobname-\theFigureCounter.pl}}

\def\endExampleE{%

\end{VerbatimOut}

\IfFileExists{\jobname-\theFigureCounter.out}%

{\expandafter\lstinputlisting\expandafter[\lstOptions]%

{\jobname-\theFigureCounter.out}}%

{\fbox{Output missing!}}%

\medskip

\def\lstOptions{}%

\lstinputlisting[backgroundcolor=\color{black!10},

linerange=\#PSTART-\#PSTOP,

includerangemarker=false,]%

{\jobname-\theFigureCounter.pl}

\lstinputlisting[

backgroundcolor={},

linerange=\#bodystart!!-\#bodyend!!,

includerangemarker=false]%

{\jobname-\theFigureCounter.pl}%

\gdef\Invisible@Part{}%

\gdef\Visible@Part{}%

}

Reading and executing source code

144 TUGboat, Volume 32 (2011), No. 2

The following example determines so-called Kap-
rekar constants (see http://en.wikipedia.org/wiki/

Kaprekar_constant). These are natural numbers
with the following properties: If the digits are sorted
ascending and descending, the result is a largest and
a smallest number whose difference is the same as
the original number. The algorithm here uses a brute
force approach to keep the code simple; all numbers
are generated and tested.

Determining Kaprekar constants

1 digits:

2 digits:

3 digits: 495,

4 digits: 6174,

5 digits:

Determining Kaprekar constants

my $number = 1;

my $start = 1;

my $end = 10;

print("Determining Kaprekar constants\n");

while ($number < 6) {

print "$number digits: ";

foreach ($start...$end) { # for each line $_

my @chars = split(//,$_);

my $Min = join("",sort(@chars));

my $Max = reverse($Min);

my $Dif=$Max-$Min;

if($_ eq $Dif) { print $_,","; }

}

$number = $number+1;

$start = $start*10;

$end = $end*10;

print "\n"; }

The output of the entire Perl programme is the
same as for a LATEX example as well.

\Preamble[Invisible]{# Example for a Kaprekar constant}

\Preamble{### Determining Kaprekar constants ###

my $number = 1;

my $start = 1;

my $end = 10;}

\begin{ExampleE}[basicstyle=\ttfamily\footnotesize,

frame=LR]

print("Determining Kaprekar constants\n");

while ($number < 6) {

print "$number digits: ";

foreach ($start...$end) { # for each line $_

my @chars = split(//,$_);

my $Min = join("",sort(@chars));

my $Max = reverse($Min);

my $Dif=$Max-$Min;

if($_ eq $Dif) { print $_,","; }

}

$number = $number+1;

$start = $start*10;

$end = $end*10;

print "\n"; }

\end{ExampleE}

4 Creating this document

This document creates several external example files
which are then run by X ELATEX and Perl. The created
PDFs from X ELATEX are cropped to eliminate the
whitespace and then inserted as PDF graphics, while
the output from the Perl program is inserted as a
text file. All this is done for Linux with the following
simple shell script:

#!/bin/sh

pdflatex voss2011 # main doc

xelatex voss2011-1.tex # 1st created external file

pdfcrop voss2011-1 # cut whitespace

mv voss2011-1-crop.pdf voss2011-1.pdf # rename

xelatex voss2011-2.tex # 2nd created external file

pdfcrop voss2011-2 # cut whitespace

mv voss2011-2-crop.pdf voss2011-2.pdf # rename

perl voss2011-3.pl > voss2011-3.out # 3rd external file

pdflatex voss2011 # main doc

5 Summary

This article has shown how to create external source
files of arbitrary types and execute them through a
Makefile after a first LATEX run. The file extension
of the created file should designate the type of pro-
gramme used for its execution. The output of the
programmes can be included in subsequent LATEX
runs as figures or text. The author retains the full
control over example programmes. If there is a large
number of examples, the created file can be written
into a temporary directory and compared with an ex-
isting file through the Unix diff command to avoid
executing the programme again if the source code
has not changed.

There are more optional parameters possible
for inserting the output into the document to, for
example, specify left/right alignment. Figures could
be processed with pdfcrop to remove white margins.

References

[1] Carsten Heinz: The listings package,
Version 1.4, Feb. 2007; mirror.ctan.org/
macros/latex/contrib/listings/

[2] Rolf Niepraschk: The showexpl package,
Version 0.3h, Feb. 2007; mirror.ctan.org/
macros/latex/contrib/showexpl/

[3] Timothy Van Zandt: The fancyvrb package—

Fancy verbatims in LATEX, Version 2.8, May
2010; mirror.ctan.org/macros/latex/contrib/
fancyvrb/

⋄ Herbert Voß

Wasgenstraße 21

14129 Berlin, Germany

herbert (at) dante dot de

http://tug.org/PSTricks

Herbert Voß

TUGboat, Volume 32 (2011), No. 2 145

Teaching LATEX to the students of

mathematics—The experience from

the Jan Kochanowski University

Krzysztof Pszczo la

Abstract

Two years of teaching LATEX to the students of the
mathematical institute and checking almost 200 stu-
dents’ papers gave me some fresh thoughts. The
main observation concerning the aesthetics and ef-
fectiveness of the message may be formulated as fol-
lows: the issues concerning the microtypography are
usually missed, but — after pointing the students’
attention to them — are appreciated.

In my talk I discuss, besides the ideas concern-
ing the perception of microtypography by students,
other aspects of the university course preparing the
students of mathematics to typeset their theses in
LATEX. It might be interested especially for those
who teach similar courses (but not only to them).

1 Introduction

Currently in many universities in Poland, theses in
mathematics must be written in LATEX. There are
special courses to help students learn LATEX. I have
been teaching such a course in the Institute of Math-
ematics, Jan Kochanowski University in Kielce, for
two years and I’d like to share some experiences.

In my LATEX course I speak not only about
LATEX, but also about typography and mathemat-
ical editing in general. In many cases I start with a
description of the effect we want to obtain before in-
troduction of LATEX commands. Sometimes we also
talk about more general issues, such as “what is the
real size of the 11pt font” or “why A4 paper is just
210x297mm”.

2 Missed microtypography

Let’s look at the following example: find the differ-
ence between these two lines:

Some text italic text and some more text
Some text italic text and some more text

(Obtained with \textit{italic text}

and {\it italic text}.)
Usually in the class of approx. 15 students, it

takes 2–3 minutes to get the first answer, which
sounds something like “the second one is shorter”.
Sometimes I ask: “Which of these lines is more com-
fortable to read?”. Usually the first answers are “the
same”, but after a while, someone hits the point:
“the first one is more comfortable to read, because
all the spaces there have equal width”. And this is

This article is reprinted from the EuroTEX 2011 proceedings.

how we’ve reached the concept of italic correction,
and even more: microtypography.

For students it is a very new concept that de-
tails which are so hard to notice are important for
the reading comfort. But they accept the expla-
nation of this fact. The human eye (or, speaking
more precisely, the eye+brain system) gets accus-
tomed to the font shape, word-spacing and so on.
And if we change something — we need to get accus-
tomed again. So we can conclude: issues concern-
ing microtypography are usually missed, but — after
drawing the students’ attention to them — they are
appreciated.

3 Some details

The course is held for the students of the first year
of mathematics. The whole course takes 15 hours
and at the end students have to present something
written in LATEX. The students’ works are carefully
checked and the author gets a detailed report, with
editorial, typographical and LATEX-specific mistakes
pointed out.

The main goal of this course is obvious: to teach
students LATEX to an extent such that they could
write their theses using this system. Surely, when
one is able to write a thesis in LATEX, he is also
able to write an article and other materials. Addi-
tionally, I talk about creating presentations (beamer
class) and posters (a0poster class). Also issues con-
cerning the installation of TEX are discussed.

The second goal is to develop some basic edito-
rial and typographic skills.

The next goal is to introduce a basis of editing
mathematical texts.

Finally, I hope that some of my students will
like LATEX after attending this course.

At the beginning I try to “familiarize” students
with basic concepts related to TEX, LATEX, and the
TEXnicCenter editor we use in computer labs. My
experience is that a less formal introduction makes
the whole course more effective. Then I talk about
the most basic LATEX concepts like sectioning, cross-
references, creation of the bibliography, tabular ma-
terial, graphics, floats, writing mathematical equa-
tions and theorem-like environments. At the end I
discuss a few less basic concepts, like the beamer

class, creating posters with the a0poster class, and
a few words about MetaPost.

⋄ Krzysztof Pszczo la

Instytut Matematyki Uniwersytetu

Humanistyczno-Przyrodniczego

Jana Kochanowskiego w Kielcach

pszczola (at) fr dot pl

Drawing tables: Graphic fun with LuaTEX

Paul Isambert

Introduction

I was deeply interested by Pawe l Jackowski’s pa-
per in TUGboat 32:1. Pawe l explained how graphic
manipulations could be made clean and simple and
powerful in LuaTEX. He also mentioned a partial
PostScript interpreter, so he can draw in PostScript
directly. The idea appealed to me — until I remem-
bered I don’t know PostScript; so I thought: why
use PostScript at all? Why not Lua as a language
for graphics?

I set to work and discovered a wonderful world.
Not being a mathematician (and computer graphics
require a good deal of math, if not especially ad-
vanced), and doing little graphics anyway, the code
I’ve written might never become a public package,
and I’d hate to see the ideas wasted. So I’ll describe
some of them here; meanwhile, it will also let us
learn a lot about tables, Lua’s principal basic data
structure, among other Lua and LuaTEX features.

State of the art

Drawing requires an input language (for the user to
describe what s/he wants) and an output language
(for the viewer to render); in an ideal world, both
coincide, as is the case with PostScript.

On the other hand, the PDF format is quite
lame (on purpose) when it comes to drawing. The
PDF format doesn’t know anything about variables,
functions, or flow control. You want to draw the
same line three times in different places? Well, you
have to describe it in its entirety three times; you
can’t say such things as “let l be a length, draw
a line of length l here and there”, not to mention
something like “if this is the first line, draw it in
red, otherwise draw it in blue”. What does PDF

understand, then? Not much more than “go here”,
“draw a line or a Bézier curve from here to there”
(with here and there as full coordinates, not vari-
ables), “fill this shape”, “use a line of width w”. To
put it simply, PDF is unusable as an input language.

On the other hand, more than thirty years after
its conception, TEX still can’t draw at all (also on
purpose). It’s not even good at basic mathematical
operations required by drawing, e.g. computing a
cosine. That’s why graphic extensions have been
developed to provide a comfortable environment to
users. The three best-known are (I can’t do them

146 TUGboat, Volume 32 (2011), No. 2

justice in these brief descriptions — please read their
manuals for a better view):

—MetaPost is a language and an interpreter, in-
spired by METAFONT, which produces PostScript
graphics (and SVG since v.1.2); the figures are then
added to the DVI file with \special, to be inserted
directly in the PostScript file (with dvips), and the
latter is converted to PDF with ps2pdf. The Meta-
Post compiler is embedded in LuaTEX, and thus it
no longer requires an external program (or external
files), but its output still requires conversion to PDF.

—PSTricks is a TEX interface for the PostScript lan-
guage; the same road as with MetaPost must be used
to produce PDF. PSTricks also provides such basic
structures as loops, missing in TEX.

—PGF/TikZ directly produces either PostScript or
PDF code, depending on the driver with which it is
used. Hence no conversion is needed. Like PSTricks,
PGF offers a proper input language.

The strengths of these three approaches are well-
known, and they are justly popular. What then
would be their weaknesses (with a little bad faith),
or rather, what would be the advantages of a Lua-
driven approach?

—No need for a new language. There is Lua, let’s
use Lua; variables or flow control are readily avail-
able. Well, of course, you have to learn Lua, but
using LuaTEX without knowing anything about Lua
would be a shame. Also, Lua is known for its sim-
plicity and is intended to be easy to learn.

—Benefit from a real programming language. Lua
has the usual mathematical functions which are (of
course) very useful when drawing (like computing
a cosine). But there is more. Suppose you want
to plot data, and those data are in an external file
in whatever format. It is easy to make Lua parse
the file and extract the information. In other words,
when you need programming that is not directly re-
lated to drawing, no need to consider dirty tricks
or to pray that a package exists: just use the same
language you’re already using.

—Access to TEX’s internals. Of course LuaTEX pro-
vides a Lua interface to TEX; the contents of a box,
the current font or the position on the page can be
queried at once. There is no disconnection between
drawing and typesetting.

—Transparency. That is, to me, the most impor-
tant feature. As we will see in what follows, you can
keep the implementation quite transparent, in the
sense that what is constructed can be manipulated
directly (i.e. without especially-tailored functions),

Paul Isambert

because objects (points, paths, . . .) are simple ta-
bles. That means that the user can be given maxi-
mum control; actually, we don’t give anything, but
simply avoid taking it away.

From Lua to PDF

Now, we need to define some basic functions to pro-
duce PDF output. We’ll focus on a few PDF opera-
tors (there aren’t many more anyway):

x y m Move to point (x, y), which becomes the
current point.

x y l Append a straight line from the current
point to (x, y). In this operation and the next, the
ending point becomes the current point.

x1 y1 x2 y2 x3 y3 c Append a cubic Bézier
curve from the current point to (x3, y3) with control
points (x1, y1) and (x2, y2).

h Close the current path.
l w Sets the line width to l (to be used by the

next S statement).
S Stroke the current path.

PDF’s default unit is the PostScript point (the
big point, bp, in TEX), and that’s what we’ll use
here, even though it would be quite simple (and ac-
tually quite necessary) to define a whatever-unit-to-
bp function.

As an example, let’s draw a simple triangle:

0 0 m 20 0 l 10 15 l h S

Let’s now define a Lua interface to these operators:

function pdf_print (...)

for _, str in ipairs({...}) do

pdf.print(str .. " ")

end

pdf.print("\string\n")

end

function move (p)

pdf_print (p[1], p[2], "m")

end

function line (p)

pdf_print(p[1], p[2], "l")

end

function curve(p1, p2, p3)

pdf_print(p1[1], p1[2],

p2[1], p2[2],

p3[1], p3[2], "c")

end

function close ()

pdf_print("h")

end

function linewidth (w)

pdf_print(w, "w")

end

TUGboat, Volume 32 (2011), No. 2 147

function stroke ()

pdf_print("S")

end

The syntax, which uses tables, will be explained
in the next section. We use the pdf.print() func-
tion, which makes sense only in a \latelua call. So
let’s define our macro to tell TEX we’re switching to
Lua drawing (it is \long to allow blank lines in the
code; the resulting \par’s are filtered in \latelua):

\long\def\luadraw#1 #2{%

\vbox to #1bp{%

\vfil

\latelua{pdf_print("q") #2 pdf_print("Q")}%

}%

}

(The q and Q operator ensures the graphic state re-
mains local; this is PDF’s grouping mechanism, so
to speak.) And now the triangle can be drawn more
simply as follows. The Lua syntax foo{...} is a
function call, equivalent to foo({...}) when the
function takes a single table as its argument.

\luadraw 17 {

move{0, 0}

line{20, 0} line{10, 15}

close() stroke()

}

Well, simple? Maybe not. But at least we can use
loops. Here are three triangles growing in height
(from now on I won’t show the enclosing \luadraw):

for i = 1, 3 do

local x, y = i * 30, 15 + 5 * i

move{x, 0}

line{x + 20, 0} line{x + 10, y}

close() stroke()

end

The reader might think that explicitly specifying
the height (and width, if things were to be done
properly) for each picture is annoying; can’t it be
computed automatically? Well, yes and no. Yes,
because you can analyse the points in the picture
and retrieve the bounding box; no, because with
\latelua this would be done at shipout time, long
after the box has been constructed (so the informa-
tion comes too late).

To do things properly, one should compile the
code with \directlua and store all drawing state-
ments in a \latelua node created on the fly; so rel-
evant information could be retrieved (in both direc-
tions) when needed, whereas the PDF code is written
at shipout time, as it should be. I won’t investigate
that tricky issue here.

Drawing tables: Graphic fun with LuaTEX

More to the point

The functions above assume that points are denoted
as tables with (at least) two entries: the entry at
index 1 is the x-coordinate, the one at index 2 is the
y-coordinate. This is already much more powerful
than it seems; for starters, you can define and reuse
variables. Here’s a Bézier curve with the end points
attached to the control points:

local a, b, c, d = {0,0}, {10,20},

{35,25}, {45,5}

move(a) curve(b, c, d) stroke()

move(a) line(b)

move(d) line(c)

linewidth(.2) stroke()

But the real power comes from the ease of use
of such structures. Suppose you want to scale a pic-
ture by x in the x-direction and y in the y-direction.
The function to do that (working here on points) is
utterly simple:

function scale (p, x, y)

p[1], p[2] = p[1] * x, p[2] * y

end

Then if we add scale(a, 2, 1), scale(b, 2, 1),
scale(c, 2, 1) and scale(d, 2, 1) to our pre-
vious code, we get:

Other transformations, like rotation or translation,
can be as easily defined, as can any operations in-
volving tables. This means that any drawing system
in Lua is highly extensible, and most importantly
that it can be mastered deeply by the users with-
out much effort. That is what I meant above by
transparency.

Instructive playtime: let’s illustrate Pythago-
ras’ theorem with a hasty quill.

local function rand ()

return math.random(-100, 100) / 60

end

local function randomline(p1, p2)

local c1 = {p1[1] + rand(), p1[2] + rand()}

local c2 = {p2[1] + rand(), p2[2] + rand()}

p1[1], p1[2] = p1[1] + rand(), p1[2] + rand()

p2[1], p2[2] = p2[1] + rand(), p2[2] + rand()

linewidth(math.max(.5, rand()/1.5))

move(p1) curve(c1, c2, p2) stroke()

end

local a, b, c = {20,50}, {60,70}, {70,50}

local ab1, ab2 = {0,90}, {40,110}

local bc1, bc2 = {80,80}, {90,60}

local ca1, ca2 = {70,0}, {20,0}

148 TUGboat, Volume 32 (2011), No. 2

randomline(a,b) randomline(b,c) randomline(c,a)

randomline(a,ab1) randomline(ab1,ab2)

randomline(ab2,b)

randomline(b,bc1) randomline(bc1,bc2)

randomline(bc2,c)

randomline(c,ca1) randomline(ca1,ca2)

randomline(ca2,a)

randomline(b, {b[1], ca1[2]})

The randomline() function turns a line from p1

to p2 into a Bézier curve with the same endpoints,
albeit slightly displaced, and control points close to
those endpoints, so the curve approximates a line.
The line width is randomized too. All in all, it boils
down to manipulating table entries.

Here I have set the points so a right triangle is
drawn with a square on each side. It is not diffi-
cult to find those points automatically, once a and
b are given, and such functions are of course vital
(e.g. “find a point that is on a line perpendicular
to another line”); again that is table manipulation
with a bit of math. That’s what I have done for the
endpoint of the vertical line from the right angle: it
depends on other points.

Let’s get back to tables. The reader might have
remarked that the scale() function above didn’t
return anything, so one could not assign its result
to a variable. What, then, if one wants to have a
point P which is p scaled, but leaving p untouched?
The reader might think of something like this:

local P = p; scale(P, 2, 1)

That is a very bad idea: variables only point to ta-
bles, so in this case p and P point to the same table,
and changing P also changes p. If one wants a table
similar to another one, one should copy it:

function copy_table (t)

local T = {}

for k, v in pairs(t) do

if type(v) == "table" then

v = copy_table(v)

end

T[k] = v

end

setmetatable(T, getmetatable(t))

return T

end

Paul Isambert

This function creates a new table and sets all its
entries to the values in the original table; if a value
is a table, the function calls itself, so all subtables
are properly copied too. The set/getmetatable()

functions will be explained presently.
The function also illustrates the pairs() iter-

ator: given a table, it loops over all entries, in no
particular order, returning the key and the value for
each. There also exists the ipairs() iterator, which
browses only entries with an integer key, from 1 to
the first missing integer (for instance, a table with
entries at indices 1, 2 and 4 will be scanned with
ipairs() for the first two entries only).

Having to declare P = copy_table(p) is a bit
of an overkill (although it can’t be avoided some-
times); instead, all functions manipulating tables
should copy them beforehand, and return the new
table if necessary. So we could rewrite scale() as:

function scale (p, x, y)

local P = copy_table(p)

P[1], P[2] = P[1] * x, P[2] * y

return P

end

Now one can say local P = scale(p,2,1) and p

will be left unmodified; and if one wants to keep
the same variable, then: p = scale(p,2,0). If the
original table denoted by p isn’t referred to by an-
other variable, it will eventually be deleted to save
memory.

Metatables: The fast lane to paths

Up to now, we have drawn lines and curves one by
one, and that is not very convenient; it would be
simpler if one could define a sequence of points to
describe several lines and curves. Moreover, it would
be better still if one could assign paths to variables
instead of drawing them at once; then one would be
able to manipulate and reuse them.

What should be the structure of such a path?
For Lua, a table with subtables representing points
is a natural choice. However, not all points are
equal: some are endpoints to lines, some do not de-
fine a line but a movement, some are control points.
So they should have an entry, say type, to identify
themselves.

As an example, let’s make a table to represent
moving to (10, 10), then drawing a line to (20, 10),
then a curve to (0, 0) with control points (20, 5) and
(5, 0). This also illustrates how entries in tables are
declared: either with an explicit key, like type, or
implicitly at index n if the entry is the nth implicit
one.

TUGboat, Volume 32 (2011), No. 2 149

local path = {

type = "path",

{10, 10, type = "move"},

{20, 10},

{20, 5, type = "control"},

{5, 0, type = "control"},

{0, 0}

}

Note that endpoints have no type entry, so they
are considered the default points; on the other hand,
the path itself has a type, to be used below. Before
implementing such a construction, we need a new
function to draw the path. It will work as follows: if
a point is of the move type, use move() with it; if it is
of the control type, store it; finally, if it has no type,
use line() with it, or curve() if control points have
been stored. Also, the first point necessarily triggers
a move() command, whatever its type — it wouldn’t
make sense otherwise. We could also add dummy
point of type close to call the close() function,
but let’s stick to the essentials. Here we go:

function draw (path)

local controls

for n, p in ipairs(path) do

if n == 1 then

move(p)

elseif p.type == "move" then

move(p)

elseif p.type == "control" then

controls = controls or {}

table.insert(controls, p)

else

if controls then

curve(controls[1],

controls[2] or controls[1],

p)

else

line(p)

end

controls = nil

end

end

stroke()

end

The controls[2] or controls[1] construct means:
use the second control point if it exists, the first one
otherwise; i.e. draw a curve with overlapping control
points. (A better alternative would be for a single
control point to signal a quadratic Bézier curve; then
with a little bit of math we could render it with a
cubic.)

Now, how shall we define paths? We can use
explicit tables, as above, but it’s obviously inconve-
nient. We could use a path() function which, given
any number of points with an associated type, would

Drawing tables: Graphic fun with LuaTEX

return a path. But the top-notch solution would be
to be able to use a natural syntax, such as:

local path = a .. b - c - d .. e + f .. g

meaning: move to a, append a line to b, then a curve
from b to e with control points c and d, then move
to f and append a line to g.

Alas, the Lua .. operator is meant to concate-
nate strings, whereas the arithmetic operators ob-
viously require numbers . . . and we have defined
points as tables. Shall we find another way?

No, definitely not: we’ll make tables behave as
we want. To do so, we need metatables. What is
that? A metatable mt is a table with some special
entries (along with ordinary entries) which deter-
mine how a table t with mt as its metatable should
behave under some circumstances. The best-known
of those entries is __index, a function (or table)
called when one queries an nonexistent entry in t

(an obvious application is inheritance).
Here we should define points as tables with a

metatable with __concat, __add and __sub entries,
which determine the behavior when the tables are
passed as operands to those operators. The syntax
should be as follows: if two points are connected by
one of those operators, they should produce a path;
if two paths, or a point and a path, are the operands,
the same result should occur. In the example above,
a .. b should produce a path, to which then c is
added, etc.* Here are the functions:

local metapoint = {}

local function addtopath (t1, t2, type)

t1 = t1.type == "path" and t1 or {t1}

t2 = t2.type == "path" and t2 or {t2}

local path = {type = "path"}

setmetatable(path, metapoint)

for _, p in ipairs(t1) do

table.insert(path, copy_table(p))

end

local p = copy_table(table.remove(t2, 1))

p.type = type

table.insert(path, copy_table(p))

* Things are a bit more complicated: the minus
sign has precedence over the concatenation opera-
tor, so that given a .. b - c, first the path with b

and c is constructed, then a is added. Also, .. is
right associative, so that a .. b .. c also creates
the b-to-c path first. There is nothing wrong with
that, except that we can’t make do with a naive im-
plementation where paths are expected only as the
left operand. We wouldn’t do that anyway since we
want to be able to merge two already constructed
paths into one.

150 TUGboat, Volume 32 (2011), No. 2

for n, p in ipairs(t2) do

table.insert(path, copy_table(p))

end

return path

end

function metapoint.__concat (t1, t2)

return addtopath(t1, t2)

end

function metapoint.__sub (t1, t2)

return addtopath(t1, t2, "control")

end

function metapoint.__add (t1, t2)

return addtopath(t1, t2, "move")

end

The main function is addtopath: it creates a table
with type path, and adds all the points in the two
tables it connects by simply looping over all the en-
tries (if one of the tables is a point, it is put into a
table so we can use ipairs() on it). Special care is
taken for the first point of the second path, which
is the one concerned with the operator at hand; its
type is set to the third argument. With .., which
calls __concat, there is no third argument, hence
the point is a type-less default point (more precisely,
nil is assigned to type, which is equivalent to doing
nothing). On the other hand, __sub and __add call
__concat with the associated types. We systemat-
ically copy tables (representing points), so a path
doesn’t depend on the points it is defined with; if
the latter are modified, the path isn’t.

We can no longer declare points as simple two-
element tables, because we must set metapoint as
their metatable. So we’ll use a function:

function point(x, y)

local t = {x, y}

setmetatable(t, metapoint)

return t

end

Here we go: let’s redraw Pythagoras’ theorem,
properly this time!

local a, b, c = point(20, 50), point(60, 70),

point(70, 50)

local ab1, ab2 = point(0, 90), point(40, 110)

local bc1, bc2 = point(80, 80), point(90, 60)

local ca1, ca2 = point(70, 0), point(20, 0)

local triangle = a .. b .. c .. a

local ab_sq = a .. ab1 .. ab2 .. b

local bc_sq = b .. bc1 .. bc2 .. c

local ca_sq = c .. ca1 .. ca2 .. a

draw(triangle + ab_sq + bc_sq + ca_sq

+ b .. point(b[1], ca1[2]))

And the output follows:

Paul Isambert

We could easily rewrite our scale() function
to work on paths instead of points. But wouldn’t
it be nice if we could write path * 2 or path *

{2,3} to mean, respectively, scale(path, 2, 2)

and scale(path, 2, 3)? The reader probably can
guess the answer: of course we can! But wait a
minute; path is assumed to be a table with a proper
metatable to behave correctly with an operator like
multiplication. But that is obviously not the case for
{2, 3}, an anonymous table without a metatable,
let alone the number 2, which isn’t even a table!
As for the last interrogation (well, exclamation), all
types can have metatables in Lua, although only ta-
bles can be assigned metatables outside the C API.*
But that is no trouble: given two operands around
an operator, it suffices that one has the right meta-
table for the operation to occur; so if paths have a
metatable with the __mul entry, the shorthand to
scaling will work. I leave it as an exercise to the
reader. (Hint: Don’t forget to check the type of the
second argument.)

Another thing I’ll mention only briefly here. I
use a syntax like this:

local path = a .. b^{linewidth = 1}

.. c^{color = {1, 0, 0}}

Meaning: draw a line from a to b with a line width
of 1, then a line from b to c in red (the color model,
RGB here, being automatically detected by the num-
ber of values in the color table). The metatable

* One can also use the debug library, but as its
name indicates, it is not designed for ordinary pro-
gramming and shouldn’t be used for that, at least
not in code meant to be public.

TUGboat, Volume 32 (2011), No. 2 151

magic involved here should be clear to the reader
(using the __pow entry), although one must rewrite
the draw() function to take into account the infor-
mation thus attached to points. But there is a diffi-
culty, not related to Lua but to PDF: such parame-
ters as line width, color, etc., attach to the stroking
statement, not to the elements of a path. In other
words, if some lines and curves are stroked together,
then they will share the same parameters. We could
of course stroke them one by one, hence allowing dif-
ferent parameters for each, but then PDF wouldn’t
automatically join lines; this is illustrated below by
a one-stroke drawing next to a two-stroke drawing.

So we have to mimic PDF styles of joining lines,
and/or invent our own. That is doable (I have im-
plemented it), but explaining it here would double
the size of this paper.

Conclusion

I hope to have convinced the reader, if not to switch
at once to a Lua-based graphic interface, at least
that the simple addition of Lua to TEX (besides
all the wonderful opening up that takes place in
LuaTEX) is by itself a formidable move. Lua is
easy and powerful at once; here it is put to use with
graphics, but tables could also be used for index or
bibliography generation, and more generally to store
organized information. The key–value interface that
is so often (re)implemented in the TEX world is avail-
able almost immediately with tables, not to mention
metatables for default values. And of course, most
of the TEX interface in Lua is organized in tables.

Finally, although that might not be obvious in
this paper, LuaTEX brings yet another fundamental
change to TEX: it has become good at math!

⋄ Paul Isambert

zappathustra (at) free dot fr

Drawing tables: Graphic fun with LuaTEX

152 TUGboat, Volume 32 (2011), No. 2

E-books: Old wine in new bottles

Hans Hagen

1 Introduction

When Dave Walden asked me if TEX (or ConTEXt)
can generate ebooks we exchanged a bit of mail on
the topic. Although I had promised myself never to
fall into the trap of making examples for the sake of
proving something I decided to pick up an experiment
that I had been doing with a manual in progress and
look into the HTML side of that story. After all,
occasionally on the ConTEXt list similar questions
are asked, like “Can ConTEXt produce HTML?”.

2 Nothing new

When you look at what nowadays is presented as an
ebook document, there is not much new going on.
Of course there are very advanced and interactive
documents, using techniques only possible with re-
cent hardware and programs, but the average ebook
is pretty basic. This is no surprise. When you take
a novel, apart from maybe a cover or an occasional
special formatting of section titles, the typesetting
of the content is pretty straightforward. In fact,
given that formatters like TEX have been around
that can do such jobs without much intervention, it
takes quite some effort to get that job done badly.
It was a bit shocking to notice that on one of the
first e-ink devices that became available the view-
ing was quite good, but the help document was just
some word processor output turned into bad-looking
PDF. The availability of proper hardware does not
automatically trigger proper usage.

I can come up with several reasons why a novel
published as an ebook does not look much more
interesting and in many cases looks worse. First
of all it has to be produced cheaply, because there
is also a printed version and because the vendor of
some devices also want to make money on it (or even
lock you into their technology or shop). Then, it
has to be rendered on various devices so the least
sophisticated one sets the standard. As soon as it
gets rendered, the resolution is much worse than
what can be achieved in print, although nowadays
I’ve seen publishers go for quick and dirty printing,
especially for reprints.

Over a decade ago, we did some experiments
with touch screen computers. They had a miserable
battery life, a slow processor and not much memory,
but the resolution was the same as on the now fash-
ionable devices. They were quite suitable for reading
but even in environments where that made sense (for

This article is reprinted from the EuroTEX 2011 proceedings.

Figure 1: A page from the Metafun manual.

instance to replace carrying around huge manuals),
such devices never took off. Nowadays we have wire-
less access and USB sticks and memory cards to move
files around, which helps a lot. And getting a quality
comparable to what can be done today was no big
deal, at least from the formatting point of view.

If you look in the ConTEXt distribution you
will find several presentation styles that can serve as
bases for an ebook style. Also some of the ConTEXt
manuals come with two versions: one for printing
and one for viewing on the screen. A nice example is
the Metafun manual (see figure 1) where each page
has a different look.

It must be said that the (currently only black
and white) devices that use electronic ink have a
perceived resolution that is higher than their specifi-
cations, due to the semi-analog way the ‘ink’ behaves.
In a similar fashion clever anti-aliasing can do won-
ders on LCD screens. On the other hand they are
somewhat slow and a display refresh is not that con-
venient. Their liquid crystal counterparts are much
faster but they can be tiresome to look at for a long
time and reading a book on it sitting in the sun is a
no-go. Eventually we will get there and I’m really
looking forward to seeing the first device that will use
a high resolution electrowetting CMYK display.1 But
no matter what device is used, formatting something
for it is not the most complex task at hand.

3 Impact

Just as with phones and portable audio devices, the
market for tablets and ebook-only devices is evolving
rapidly. While writing this, at work I have one ebook
device and one tablet. The ebook device is sort of
obsolete because the e-ink screen has deteriorated

1 http://www.liquavista.com/files/LQV0905291LL5-15.pdf

Hans Hagen

TUGboat, Volume 32 (2011), No. 2 153

even without using it and it’s just too slow to be
used for reference manuals. The tablet is nice, but
not that suitable for all circumstances: in the sun
it is unreadable and at night the backlight is rather
harsh. But, as I mentioned in the previous section, I
expect this to change.

If we look at the investment, one needs good
arguments to buy hardware that is seldom used and
after a few years is obsolete. Imagine that a family
of four has to buy an ebook device for each member.
Add to that the cost of the books and you quickly
can end up with a larger budget than for books. Now,
imagine that you want to share a book with a friend:
will you give him or her the device? It might be that
you need a few more devices then. Of course there
is also some data management needed: how many
copies of a file are allowed to be made and do we
need special programs for that? And if no copy can
be made, do we end up swapping devices? It is hard
to predict how the situation will be in a few years
from now, but I’m sure that not everyone can afford
this rapid upgrading and redundant device approach.

A friend of mine bought ebook devices for his
children but they are back to paper books now be-
cause the devices were not kid-proof enough: you
can sit on a book but not on an ebook reader.

The more general devices (pads) have similar
problems. I was surprised to see that an iPad is a
single user device. One can hide some options behind
passwords but I’m not sure if parents want children
to read their mail, change preferences, install any
application they like, etc. This makes pads not that
family friendly and suggests that such a personal
device has to be bought for each member. In which
case it suddenly becomes a real expensive adventure.
So, unless the prices drop drastically, pads are not a
valid large scale alternative for books yet.

It might sound like I’m not that willing to
progress, but that’s not true. For instance, I’m
already an enthusiastic user of a media player in-
frastructure.2 The software is public, pretty usable,
and has no vendor lock-in. Now, it would make sense
to get rid of traditional audio media then, but this is
not true. I still buy CDs if only because I then can rip
them to a proper lossless audio format (FLAC). The
few FLACs that I bought via the Internet were from
self-publishing performers. After the download I still
got the CDs which was nice because the booklets are
among the nicest that I’ve ever seen.

Of course it makes no sense to scan books for
ebook devices so for that we depend on a publishing

2 The software and hardware was developed by Slim-

Devices and currently is available as Logitech Squeezeserver.

Incidentally I can use the iPad as an advanced remote control.

network. I expect that at some point there will be
proper tools for managing your own electronic books
and in most cases a simple file server will do. And
the most open device with a proper screen will be-
come my favourite. Also, I would not be surprised
if ten years from now, many authors will publish
themselves in open formats and hopefully users will
be honest enough to pay for it. I’m not too opti-
mistic about the latter, if only because I observe that
younger family members fetch everything possible
from the Internet and don’t bother about rights, so
we definitely need to educate them. To some extent
publishers of content deserve this behaviour because
more than I like I find myself in situations where I’ve
paid some 20 euro for a CD only to see that half a
year later you can get it for half the price (sometimes
it also happens with books).

Given that eventually the abovementioned prob-
lems and disadvantages will be dealt with, we can
assume that ebooks are here and will stay forever.
So let’s move on to the next section and discuss their
look and feel.

4 Interactivity

The nice thing about a paper book is that it is content
and interface at the same time. It is clear where it
starts and ends and going from one page to another is
well standardized. Putting a bookmark in it is easy as
you can fall back on any scrap of paper lying around.
While reading you know how far you came and how
much there is to come. Just as a desktop on a desktop
computer does not resemble the average desktop, an
ebook is not a book. It is a device that can render
content in either a given or more free-form way.

However, an electronic book needs an interface
and this is also where at the moment it gets less
interesting. Of course the Internet is a great place
to wander around and a natural place to look for
electronic content. But there are some arguments for
buying them at a bookshop, one being that you see
a lot of (potentially) new books, often organized in
topics in one glance. It’s a different way of selecting.
I’m not arguing that the Internet is a worse place,
but there is definitely a difference: more aggressive
advertisements, unwanted profiling that can narrow
what is presented to a few choices.

Would I enter a bookshop if on the display tables
there were stacks of (current) ebook devices showing
the latest greatest books? I can imagine that at some
point we will have ebook devices that have screens
that run from edge to edge and then we get back
some of the appeal of book designs. It is that kind of
future devices that we need to keep in mind when we
design electronic documents, especially when after

E-books: Old wine in new bottles

154 TUGboat, Volume 32 (2011), No. 2

some decades we want them to be as interesting as
old books can be. Of course this is only true for
documents that carry the look and feel of a certain
time and place and many documents are thrown away.
Most books have a short lifespan due to the quality of
the paper and binding so we should not become too
sentimental about the transition to another medium.

Once you’re in the process of reading a book
not much interfacing is needed. Simple gestures or
touching indicated areas on the page are best. For
more complex documents the navigation could be
part of the design and no screen real estate has to
be wasted by the device itself. Recently I visited a
school-related exhibition and I was puzzled by the
fact that on an electronic schoolboard so much space
was wasted on colorful nonsense. Taking some 20%
off each side of such a device brings down the effective
resolution to 600 pixels so we end up with 10 pixels or
less per character (shown at about 1 cm width). At
the same exhibition there were a lot of compensation
programs for dyslexia advertised, and there might
be a relationship.

5 Formatting

So how important is the formatting? Do we prefer
reflow on demand or is a more frozen design that
suits the content and expresses the wish of the author
more appropriate? In the first case HTML is a logical
choice, and in the second one PDF makes sense. You
design a nice HTML document but at some point the
reflow gets in the way. And yes, you can reflow a
PDF file but it’s mostly a joke. Alternatively one
can provide both which is rather trivial when the
source code is encoded in a systematic way so that
multiple output is a valid option. Again, this is not
new and mostly a matter of a publisher’s policy. It
won’t cost more to store in neutral formats and it
has already been done cheaply for a long time.

Somewhat interfering in this matter is digital
rights management. While it is rather customary to
buy a book and let friends or family read the same
book, it can get complicated when content is bound
to one (or a few) devices. Not much sharing there,
and in the worst case, no way to move your books
to a better device. Each year in the Netherlands we
have a book fair and bookshops give away a book
specially written for the occasion. This year the
book was also available as an ebook, but only via
a special code that came with the book. I decided
to give it a try and ended up installing a broken
application, i.e. I could not get it to load the book
from the Internet, and believe me, I have a decent
machine and the professional PDF viewer software
that was a prerequisite.

6 Using TEX

So, back to Dave’s question: if ConTEXt can generate
ebooks in the ePub format. Equally interesting is the
question if TEX can format an ePub file into a (say)
PDF file. As with much office software, an ePub file
is nothing more than a zip file with a special suffix
in which several resources are combined. The layout
of the archive is prescribed. However, by demanding
that the content itself is in HTML and by providing
a stylesheet to control the renderer, we don’t auto-
matically get properly tagged and organized content.
When I first looked into ePub, I naively assumed
that there was some well-defined structure in the
content; turns out this is not the case.

Let’s start by answering the second question.
Yes, ConTEXt can be used to convert an ePub file
into a PDF file. The natural followup question is if
it can be done automatically, and then some more
nuance is needed: it depends. If you download the
ePub for A tale of two cities from Charles Dickens
from the Gutenberg Project website and look into a
chapter you will see this:

<h1 id="pgepubid00000">A TALE OF TWO CITIES</h1>

<h2 id="pgepubid00001">A STORY OF THE FRENCH

REVOLUTION</h2>

<p>
</p>

<h2>By Charles Dickens</h2>

<p>

</p>

<hr/>

<p>

</p>

<h2 id="pgepubid00002">Contents</h2>

What follows is a table of contents formatted
using HTML tables and after that

<h2 id="pgepubid00004">I. The Period</h2>

So, a level two header is used for the subtitle of
the book as well as a regular chapter. I must admit
that I had to go on the Internet to find this snippet
as I wanted to check its location. On my disk I had
a similar file from a year ago when I first looked into
ePub. There I have:

<html xmlns="http://www.w3.org/1999/xhtml"

xml:lang="en">

<head>

<title>I | A Tale of Two Cities</title>

....

</head>

<body>

<div class="body">

<div class="chapter">

<h3 class="chapter-title">I</h3>

<h4 class="chapter-subtitle">The Period</h4>

Hans Hagen

TUGboat, Volume 32 (2011), No. 2 155

I also wanted to make sure if the interesting
combination of third and fourth level head usage
was still there but it seems that there are several
variants available. It is not my intention to criticize
the coding, after all it is valid HTML and can be
rendered as intended. Nevertheless, the first snippet
definitely looks worse, as it uses breaks instead of CSS
spacing directives and the second wins on obscurity
due to the abuse of the head element.

These examples answer the question about for-
matting an arbitrary ePub file: “no”. We can of
course map the tagging to ConTEXt and get pretty
good results but we do need to look at the coding.

As such books are rather predictable it makes
sense to code them in a more generic way. That way
generic stylesheets can be used to render the book
directly in a viewer and generic ConTEXt styles can
be used to format it differently, e.g. as PDF.

Of course, if I were asked to set up a workflow
for formatting ebooks, that would be relatively easy.
For instance the Gutenberg books are available as
raw text and that can be parsed to some intermediate
format or (with MkIV) interpreted directly.

Making a style for a specific instance, like the
Dickens book, is not that complex either. After all,
the amount of encoding is rather minimal and special
bits and pieces like a title page need special design
anyway. The zipped file can be processed directly by
ConTEXt, but this is mostly just a convenience.

As ePub is just a wrapper, the next question is
if ConTEXt can produce some kind of HTML and the
answer to that question is positive. Of course this
only makes sense when the input is a TEX source, and
we have argued before that when multiple output is
needed the user might consider a different starting
point. After all, ConTEXt can deal with XML directly.

The main advantage of coding in TEX is that the
source remains readable and for some documents it’s
certainly more convenient, like manuals about TEX.
In the reference manual ‘ConTEXt Lua Documents’
(CLD) there are the following commands:

\setupbackend

[export=yes]

\setupinteraction

[title=Context Lua Documents,

subtitle=preliminary version,

author=Hans Hagen]

At the cost of at most 10% extra runtime an
XML export is generated in addition to the regular
PDF file. Given that you have a structured TEX
source the exported file will have a decent structure
as well and you can therefore transform the file into
something else, for instance HTML. But, as we al-
ready have a good-looking PDF file, the only reason

Figure 2: A page from the CLD manual in PDF.

to have HTML as well is for reflowing. Of course
wrapping up the HTML into an ePub structure is
not that hard. We can probably even get away from
wrapping because we have a single self-contained file.

The \setupbackend command used in the CLD

manual has a few more options:

\setupbackend

[export=cld-mkiv-export.xml,

xhtml=cld-mkiv-export.xhtml,

css={cld-mkiv-export.css,mathml.css}]

We explicitly name the export file and in addi-
tion specify a stylesheet and an alternative XHTML

file. If you can live without hyperlinks the XML file
combined with the cascading style sheet will do a
decent job of controlling the formatting.

In the CLD manual chapters are coded like this:

\startchapter[title=A bit of Lua]

\startsection[title=The language]

The XML output of this

<division detail=’bodypart’>

<section detail=’chapter’ location=’aut:3’>

<sectionnumber>1</sectionnumber>

<sectiontitle>A bit of Lua</sectiontitle>

<sectioncontent>

<section detail=’section’>

<sectionnumber>1.1</sectionnumber>

<sectiontitle>The language</sectiontitle>

<sectioncontent>

The HTML version has some extra elements:

<xhtml:a name="aut_3">

<section location="aut:3" detail="chapter">

The table of contents and cross references have
xhtml:a elements too but with the href attribute.
It’s interesting to search the web for ways to avoid
this, but so far no standardized solution for map-
ping XML elements onto hyperlinks has been agreed
upon. In fact, getting the CSS mapping done was
not that much work but arriving at the conclusion
that (in 2011) these links could only be done in a

E-books: Old wine in new bottles

156 TUGboat, Volume 32 (2011), No. 2

robust way using HTML tags took more time. (In
this example we see the reference aut:3 turned into
aut_1. This is done because some browsers like to
interpret this colon as a url.) Apart from this the
CSS has enough on board to map the export onto
something presentable. For instance:

sectioncontent {

display: block ;

margin-top: 1em ;

margin-bottom: 1em ; }

section[detail=chapter], section[detail=title] {

margin-top: 3em ;

margin-bottom: 2em ; }

section[detail=chapter]>sectionnumber {

display: inline-block ;

margin-right: 1em ;

font-size: 3em ;

font-weight: bold ; }

As always, dealing with verbatim is somewhat
special. The following code does the trick:

verbatimblock {

background-color: #9999FF ;

display: block ;

padding: 1em ;

margin-bottom: 1em ;

margin-top: 1em ;

font-family: "Lucida Console",

"DejaVu Sans Mono", monospace ; }

verbatimline {

display: block ;

white-space: pre-wrap ; }

verbatim {

white-space: pre-wrap ;

color: #666600 ;

font-family: "Lucida Console",

"DejaVu Sans Mono", monospace ; }

The spacing before the first and after the last
one differs from the spacing between lines, so we
need some extra directives:

verbatimlines+verbatimlines {

display: block ;

margin-top: 1em ; }

This will format code like the following with a bluish
background and inline verbatim with its complement:

<verbatimblock detail=’typing’>

<verbatimlines>

<verbatimline>function sum(a,b)</verbatimline>

<verbatimline> print(a, b, a+b)</verbatimline>

<verbatimline>end</verbatimline>

</verbatimlines>

</verbatimblock>

The hyperlinks need some attention. We need
to make sure that only the links and not the anchors
get special formatting. After some experimenting I
arrived at this:

Figure 3: A page from the CLD manual in HTML.

a[href] {

text-decoration: none ;

color: inherit ; }

a[href]:hover {

color: #770000 ;

text-decoration: underline ; }

Tables are relatively easy to control. We have
tabulate (nicer for text) and natural tables (similar
to the HTML model). Both get mapped into HTML

tables with CSS directives. There is some detail
available so we see things like this:

tablecell[align=flushleft] {

display: table-cell ;

text-align: left ;

padding: .1em ; }

It is not hard to support more variants or detail
in the export but that will probably only happen
when I find a good reason (a project), have some
personal need, or when a user asks for it. For instance
images will need some special attention (conversion,
etc.). Also, because we use MetaPost all over the
place that needs special care as well, but a regular
(novel-like) ebook will not have such resources.

As an extra, a template file is generated that
mentions all elements used, like this:

section[detail=summary] {

display: block ; }

with the inline and display properties already filled
in. That way I could see that I still had to add a cou-
ple of directives to the final CSS file. It also became
clear that in the CLD manual some math is used that
gets tagged as MathML, so that needs to be covered

Hans Hagen

TUGboat, Volume 32 (2011), No. 2 157

as well.3 Here we need to make some decisions as
we export Unicode and need to consider support for
less sophisticated fonts. On the other hand, the W3C

consortium has published CSS for this purpose so
we can use these as a starting point. It might be
that eventually more tuning will be delegated to the
XHTML variant. This is not much extra work as
we have the (then intermediate) XML tree available.
Thinking of it, we could eventually end up with some
kind of CSS support in ConTEXt itself.

It will take some experimenting and feedback
from users to get the export right, especially to pro-
vide a convenient way to produce so-called ePub files
directly. There is already some support for this con-
tainer format. If you have enabled XHTML export,
you can produce an ePub archive afterwards with:

mtxrun --script epub yourfile

For testing the results, open source programs
like calibre are quite useful. It will probably take a
while to figure out to what extent we need to support
formats like ePub, if only because such formats are
adapted on a regular basis.

7 The future

It is hard to predict the future. I can imagine that
given the user interface that has evolved over ages
paper books will not disappear soon. Probably there
will be a distinction between read-once and throw-
away books and those that you carry with you your
whole life as visible proof of that life. I can also imag-
ine that (if only for environmental reasons) ebooks
(hopefully with stable devices) will dominate. In that
case traditional bookshops will disappear and with
them the need for publishers that supply them. Self-
publishing will then be most interesting for authors
and maybe some of them (or their helpful friends)
will be charmed by TEX and tinkering with the lay-
out using the macro language. I can also imagine
that at some point new media (and I don’t consider
an ebook a new medium) will dominate. And how
about science fiction becoming true: downloading
stories and information directly into our brains.

It reminds me of something I need to do some
day soon: get rid of old journals that I planned
to read but never will. I would love to keep them
electronically but it is quite unlikely that they are
available and if so, it’s unlikely that I want to pay for
them again. This is typically an area where I’d con-
sider using an ebook device, even if it’s suboptimal.
On the other hand, I don’t consider dropping my

3 Some more advanced MathML output will be available

when the matrix-related core commands have been upgraded

to MkIV and extended to suit today’s needs.

newspaper subscription yet as I don’t see a replace-
ment for the regular coffeestop at the table where it
sits and where we discuss the latest news.

The nice thing about an analogue camera is that
the image carrier has been standardized and you can
buy batteries everywhere. Compare this with their
digital cousins: all have different batteries, there are
all kinds of memory cards, and only recently has
some standardization in lenses shown up. There is a
wide range of resolutions and aspect ratios. Other
examples of standardization are nuts and bolts used
in cars, although it took some time for the metric sys-
tem to catch on. Books have different dimensions but
it’s not hard to deal with that property. Where desk-
top hardware is rather uniform everything portable
is different. For some brands you need a special
toolkit with every new device. Batteries cannot be
exchanged and there are quite some data carriers.
On the other hand, we’re dealing with software and
if we want we can support data formats forever. The
Microsoft operating systems have demonstrated that
programs written years ago can still run on updates.
In addition Linux demonstrates that users can take
and keep control and create an independence from
vendors. So, given that we can still read document
sources and given that they are well structured, we
can create history-proof solutions. I don’t expect
that the traditional publishers will play a big role
in this if only because of their short term agendas
and because changing ownerships works against long
term views. And programs like TEX have already
demonstrated having a long life span, although it
must be said that in today’s rapid upgrade cycles it
takes some courage to stay with it and its descen-
dants. But downward compatibility is high on the
agenda of its users and user groups which is good in
the perspective of discussing stable ebooks.

Let’s finish with an observation. Books often
make a nice (birthday) present and finding one that
suits is part of the gift. Currently a visible book
has some advantages: when unwrapped it can be
looked at and passed around. It also can be a topic
of discussion and it has a visible personal touch.
I’m not so sure if vouchers for an ebook have the
same properties. It probably feels a bit like giving
synthetic flowers. I don’t know what percentage of
books is given as presents but this aspect cannot be
neglected. Anyway, I wonder when I will buy my
first ebook and for who. Before that happens I’ll
probably have generated lots of them.

⋄ Hans Hagen

http://pragma-ade.com

E-books: Old wine in new bottles

158 TUGboat, Volume 32 (2011), No. 2

iTEX—Document formatting in an

ereader world

William Cheswick

Abstract

TEX and other traditional text layout markup lan-
guages are predicated on the assumption that the
final output format would be known to the nanome-
ter. Extensive computation and clever algorithms
let us optimize the presentation for a high standard
of quality, designed by artists who are experts at
document layout.

But ebooks are here, and the iPad sold millions
of units in the first few months after its introduc-
tion. Book readers offer a new way to store and
read documents, but they are a challenge to high
quality text layout. Ebook users are accustomed to
selecting reader orientation, typeface, and font size.
We probably cannot run TEX over a document every
time a reader shifts position in his chair.

iTEX is an experimental document bundle for-
mat and a free iPad application that present docu-
ments exactly as they were rendered by TEX. The
bundle (a tar of a standardized directory structure)
contains precomputed page images for portrait and
landscape layouts, in standard and large type ver-
sions. I hope this may be a suitable standard to
encourage similar applications on devices like the
Nook or the many versions of the Kindle, included
in the same bundle.

1 Introduction

In these days of author self-publishing, we
must not forget the value of professionals.
Don Knuth [6]

In March 2010 I served on three program com-
mittees, reading and grading dozens of papers. March
is also when my iPad arrived, and it would have been
a handy device for the job.

But the papers were all in PDF, formatted for
either US or European standard page sizes. Devices
like the iPad and Kindle are not large enough to
show an entire traditional page, unless the image is
shrunk to uselessness or the user scans the text using
the device as a sort of large magnifying glass. And
the PDF layout comes in a single version, with no
thought of portrait vs. landscape viewing.

Just-in-time (JIT) page layouts are common now,
including HTML, EPUB, and other “reflowable” dis-
play engines. These page layouts are fine for most
web pages and novels, but the authors of technical
works usually need fine control, or at least final edito-
rial veto, over the final appearance of the document.

This is certainly not possible if the user is selecting
his favorite typeface and font size while reading the
document. And JIT readers do not render mathe-
matics well, often serving up images of formulae in
non-matching typefaces.

There are efforts to bring higher-quality layouts
to JIT formats. For example, the EPUB 2.1 Working
Group Charter seeks native support for mathemat-
ics [3]. They are far behind TEX, which is now over
thirty years old and has a large corpus and user
community.

Good text layout is hard, a job for professionals,
and users shouldn’t be making these decisions. The
designer knows the size and resolution of the device,
and which fonts are appropriate. The designer’s
decision is likely to be different for portrait and
landscape viewing modes. And the authors should
be able to see the document in its final form, before
it is published.

It is reasonable for a user to require larger type
sizes to remedy vision impairment and suboptimal
reading milieu. Book designers are familiar with
large type versions of books and newspapers, and
with iTEX can provide that option.

The iTEX iPad application and bundle format
presented here are an attempt to bring these ideas
together into a reader and a simple document bun-
dle format. The bundle is a standard tar file of a
directory containing several files with specific names
and formats. (See Appendix A for layout details.)
The application can display portrait and landscape
orientations of normal and large type versions of a
document, formatted specifically for the iPad. It can
display .itex documents retrieved from the web, or
copied into the iPad from iTunes. There is no iPhone
version envisioned: that form factor is simply too
small for most technical documents. (The additions
to the application would be minor, and I am willing
to be persuaded that such support would be useful.)
I hope the bundle format will be adopted and used
for reading software on other devices.

The rest of the paper is laid out as follows: §2
discusses related work. The details of the iTEX im-
plementation are covered in §3. A general discussion
appears in §4 and future work (of which there is a
lot) is in §5. Finally, §6 concludes, and some useful
details are found in the Appendices.

2 Related work

There are a growing number of reader applications
for the iPad. Most support reflowable text from
EPUB sources, and display PDF files. Unlike iTEX,
they have large, expert development groups and are
quite full-featured.

William Cheswick

TUGboat, Volume 32 (2011), No. 2 159

Apple’s iBooks and the Kindle application are
two major readers. iBooks will display purchases
from the iTunes store (some are free), as well as PDF

and EPUB texts. The latter are now available from
their Pages program, as well. PDFs are displayed as
a shrunken page and one can use a two-finger gesture
to zoom in. PDFs formatted for the iPad portrait
size are displayed correctly. Double-taps zoom in
a bit. Landscape display shows the portrait image,
letterboxed, i.e. it is much smaller. iBooks uses page
numbers, with different document lengths for the
two orientations, which is also what iTEX does. It is
not entirely clear to me how the page correspondence
between portrait and landscape is accomplished, but
it comes out about right.

The Kindle normally displays books purchased
from Amazon’s store. There is also a conversion
service for downloading PDF documents for a small
charge. PDFs can be loaded into the Kindle through
a USB device without charge. Page position on the
Kindle is shown as a percentage of progress through
the document. Rotation of the iPad preserves the
first word on the page.

The Stanza application offers access to a number
of booksellers as well as open sources like Project
Gutenberg. The portrait/landscape positions corre-
late well. Page numbers are confusing, and progress
percentage is also shown.

arXiver offers access to the arXiV of scientific
preprints [4]. It displays PDF versions of the docu-
ments, computed for page-size display and reduced
on the iPad.

Kaveh Bazargan anticipated this iTEX work by
a year [1]. At River Valley Technologies they process
the original “author” TEX into XML, and then have
an engine that automatically processes the XML into
“slave” TEX and then PDF. These latter steps are
amenable to implementation in an iPhone, and they
demonstrate a nice result. The images are rapidly
recomputed on-the-fly for orientation changes. This
is quite a tour de force, but it seems like a lot of
extra work, and the translation to a simpler TEX
may induce errors. This seems a bit unwieldy to me,
but perhaps they are on the right track.

The present work should not be confused with
Don Knuth’s vaporware, i(whistle)TEX [7].

3 Implementation

3.1 Where to process the TEX?

iTEX’s goals raise some interesting design decisions.
In particular, where and when should TEX be run,
and what exactly should the reader application do?

One possibility is to feed the document to the
iPad and implement (LA)TEX in its full glory there.

That certainly makes all the information available
to the reader, and the document is compact. But
the TEX system is large, and the iPad is meant to be
a simple device, mostly dealing with user interface
issues. The CPU is fast, but not that fast, and there
are battery life concerns when using a lot of CPU

power.
Also, the author doesn’t get to see the final

result without an iPad. And document generation
often involves a number of other utilities. In our
firewalls book [2] we use gv, bibtex, grap, pic, sed,
grep, awk, convert, and about a dozen scripts for
fixing the glossary, acronyms, generating the index,
etc. These would not be available on the iPad: it is
not a software development machine.

A second approach is to download the DVI files
to the reader, and perform the rendering step there.
This seems more promising: the layout work has
been done, the DVI file is easily compressed, and
all that is left is the font generation and placement.
One could even use the resident Apple fonts, which
would add a consistent feel to the application with
Apple’s efforts towards a uniform user experience.

It does mean that special fonts will have to be
computed and loaded. In normal TEX processing,
this may involve Metafont calls and libraries of pre-
computed font information. This seems like a lot to
have to load into the iPad, and a source of reader
disappointment if the proper fonts are missing.

It also means that files needed by DVI \special

commands have to be downloaded somehow as well,
and the iPad/DVI processor has to keep up with new
specials.

For these reasons I chose to generate the images
at the source, where the user is already accustomed
to formatting his documents. The interface is much
cleaner, which simplifies the application considerably.
(It also would make redaction foolproof, since there
is no hidden text.) But this approach does discard
information that a good reader could use, so it will
have to be augmented in the future (see §5).

3.2 Page image production

The production of quality page images from DVI

would seem easy, but I ran into problems. When
open source’s thousand flowers bloom, which one do
you pick?

I started with dvi2bitmap, but that turned out to
be fairly rudimentary, creating output reminiscent of
DECwriter printers. Greyscale and anti-aliasing were
not available, nor was processing of most important
\special commands.

Dvips post-processed with gv to generate PNG

files worked fairly well, and could have been made

iTEX—Document formatting in an ereader world

160 TUGboat, Volume 32 (2011), No. 2

Figure 1: Portrait view of a document page, with navigation bar and page selection slider.

to work. But there was a lot of mechanism there,
and it was slow and fairly unwieldy. It does support
all the PostScript-related \special commands, and
may ultimately be the process of choice.

Finally I found dvipng, and it works well, creat-
ing the anti-aliased characters that rival Apple’s own
on the iPad. (The dvi2bitmap man page should have
a pointer to dvipng.) Dvipng does have some bugs—
one of my PostScript images causes it to crash, for
example—but it will be the basis for a dviitex (see
below). The program genitex is a crude prototype
script that generates an iTEX bundle from many
LATEX files. See http://www.cheswick.com/itex

for details.

3.3 The iPad application

The iPad application is a pretty standard reader.
It has a library screen (currently unsortable) and
traditional navigation bars to change screens. Pages
are turned with a flick of the finger, and a tap on
the document display shows or hides the page slider
at the bottom and navigation bar at the top. A
navigation bar entry selects different versions, such as

large type or others that may be supplied. Figures 1
and 2 display portrait and landscape displays of a
version of this paper.

The app displays bundles downloaded into the
app or by a web browser. Any file with an extension
of .itex or .iTeX will be scanned and installed in
the iTEX library on the iPad. Malformed bundles
are skipped, with an error message.

The iTEX library is displayed when the app is
started. Bundles may be downloaded, replaced, or
deleted with the usual iPad gestures. iTEX docu-
ments are keyed with the title and author: identical
title/author pairs are deemed to be the same docu-
ment, and only one is stored in the library.

4 Discussion

iTEX requires the generation of a fair number of
final documents. In the simplest case, a technical
document is likely to be generated for 8.5x11 inch
format (or A4), plus two versions for the iPad. If
a large type version is generated, that is two more
LATEX runs. As more devices are supported, perhaps

William Cheswick

TUGboat, Volume 32 (2011), No. 2 161

Figure 2: Landscape view of a document page, with large text size selected.

including a “retina” version of the iPad someday, the
iTEX bundle will grow to considerable size.

I don’t consider this size to be a real problem.
Download times will increase, though probably not
significantly for WiFi and hardwired downloads. The
iPad app uses only the relevant versions and discards
the rest after download. If size becomes a problem,
separate iTEX bundles could be offered for differing
devices.

More important is the problem of generating
multiple documents of varying format from the same
source. There is trouble enough chasing down all the
TEX nits (like overfull hboxes) when the final version
of a document is ready to go. iTEX offers many more
opportunities for these, since one is now generating a
page-size version of the document, plus four versions
just for the iPad. For really serious typographers,
this requires human judgement for each version, and
it is possible that the problem is over-constrained,
that there is no single LATEX source file that will
look good in all versions. The page designer may
have to cut TEX a little extra slack in the layout
settings of some of the versions for author usability
and automation schemes. It remains to be seen if
the automated results work well enough.

Page numbers present a problem. In the current
iTEX implementation, a document can have four
different page lengths. When one changes orientation
or type size, what is the appropriate page number to

switch to? At present iTEX estimates based on the
percentage distance through the document, which
seems to work well enough for the reader.

But how do we convey document position to
someone else? “There is a typo at the bottom of
page 4” doesn’t work unless we refer to the device,
device version, orientation, and text size version as
well.

It would be nice to have a url format that gives
word- or at least paragraph-position. TEX could
collect this information by marking each word and
passing the information on in the DVI file for pro-
cessing.

iTEX has been available in the Apple app store
since February 2011. There have been quite a number
of downloads from non-English speaking countries.
This raises the point that iTEX documents and the
app have almost no linkage to the English language.
Other than file names (UTF-8 is processed) and error
messages, and the order in which pages are presented,
iTEX has no need to know what language is presented,
since they are just a series of images. It might be use-
ful to supply an option in the iTEX bundle indicating
that the document creator wishes the document to
be displayed starting at the “right” end.

Apple does provide an easy means for interna-
tionalizing text in the error messages, and I should
implement that.

iTEX—Document formatting in an ereader world

162 TUGboat, Volume 32 (2011), No. 2

5 Future work

5.1 Improving the application

The iTEX iPad application is an implementation of
a simple reader, the product of my first Objective C
project. While it has the basic features of a reader
and is quite usable as such, it could use a fair amount
of polish.

At present, the iTEX bundle stores a version
of the document as a sequence of PNG images in a
directory. These files could be replaced by a single
PDF for each version and orientation. The next
version will support this. More importantly, there is a
lot of semantic data available during TEX processing
that is or could be captured in the DVI file and
provided to the application in a separate file, one per
page, regardless of PDF/PNG choice.

For example, one cannot zoom into the pre-
computed text in iTEX. If the designer did his job
correctly, it shouldn’t be necessary, and large type
versions should help those with vision impairments.
But images and graphs certainly should be selectable,
and viewed at arbitrary zoom levels. I expect to in-
clude EPS versions of these, and let the reader access
them.

Other features are needed: words, footnotes,
bibliographic references, glossary entries, and urls
should be active and tap-able. Selected text should
be paste-able elsewhere on the iPad. No search
function is available at this time. And it would be
nice to have a note-taking and commentary feature,
something that would have been very handy while I
was reviewing papers.

The page images that iPad handles contain none
of this information— it will have to be supplied sep-
arately. It will contain a list of rectangles for each
word on the page and properties for each rectangle,
and should be easily processed by the application
each time the screen is touched. The precise format
and contents of this information needs to be deter-
mined. I plan to modify dvipng into a new program,
dviitex, to provide this data.

It might be useful to compute even more versions
of a document, perhaps with extra-large font. This
adds to the bundle length and generation time, but
might be worthwhile for some reason. iTEX places no
specific limit on the number and names of versions
available, although the navigation bar software will
eventually have too much to handle nicely.

5.2 New devices

Since the iPhone 4 doubled its screen resolution over
previous versions (the “retina” version), the same is
likely to happen on some future version of the iPad.

Document designers will care— the current iPad has
only 132 DPI and hence needs low-resolution fonts
like Lucida Bright. The iPad application will need
modifications to deal with this.

If the iTEX idea is successful, there ought to
be applications for the Kindle, and other reading
devices. These devices have other challenges for the
document style designers, such as monochrome-only
displays with limited greyscale support.

5.3 TEX library access

Adrian Petrescu has been thinking along similar lines,
for the Kindle [8]. But he has suggested making a
browser for arXiV, with a server that translates the
arXiV text and downloads it into the device. This is
a terrific idea, and I am planning to implement an
arXiV browser window in the iTEX application and
put up such a translator (with appropriate security,
of course). I hope our two efforts can merge. The
automated translator genitex mentioned in §3 could
use some help from people with good LATEX hacking
skills.

I understand that Project Gutenberg may also
be converting to LATEX. If so, a similar browser would
be appropriate for their library as well.

6 Conclusion

iTEX was a useful project to help get me up to speed
on programming iPhones and the iPad. After several
months of intensive programming, I have a fair grasp
of the Objective C language and many of the Apple
libraries and UI design ideas. It was the first radically
different language I have learned in twenty-five years.

But I think iTEX may fill a need, and perhaps
will form the basis for a useful documentation pub-
lication format. I am prepared to work hard on
supporting that effort, if there is sufficient interest.
If not, I have other applications in mind, and this
project was fun.

Acknowledgements

Without Dave Kormann’s help, I never would have
made a dent in Objective C: the documentation just
isn’t that clear.

Adrian Petrescu mentioned ideas about the Kin-
dle and especially the arXiV access. I hope we can
work together on this.

My thanks also to Barbara Beeton, Boris Veyts-
man, Will Robertson, Alexis Shaw, and to several
other helpful folks who offered suggestions and com-
ments at the TEX Users Group Meeting in San Fran-
cisco in June 2010. Barbara Beeton and Brian Clap-
per provided editing help as well.

William Cheswick

TUGboat, Volume 32 (2011), No. 2 163

7 Availability

The iTEX app is available for free in the iTunes store.
Additional information, sample iTEX bundles, and
source code are available at http://www.cheswick.
com/itex.

References

[1] Kaveh Bazargan. TEX as an eBook reader.
TUGboat 30(2): 272–273, 2009.

[2] William Cheswick, Steve Bellovin, and Avi
Rubin. Firewalls and Internet Security;

Repelling the Wily Hacker, second edition.
Addison Wesley Longman, 2003.

[3] EPUB 2.1 Working Group Charter-DRAFT

0.11, (7 May 2010), item 9.

[4] Paul Ginsparg. First steps towards electronic
research communication. Computers in Physics,
8(4): 390–396, 1994.

[5] Brian Kernighan and Rob Pike. The Unix

Programming Environment, Addison Wesley,
1984.

[6] Donald E. Knuth, Tracy L. Larrabee, and
Paul M. Roberts. Mathematical Writing,
p. 14. Mathematical Association of America,
Washington, D.C., 1989.

[7] Donald E. Knuth. An Earthshaking
Announcement. TUGboat 31(2): 121–124, 2010.

[8] Adrian Petrescu. Personal communication.

⋄ William Cheswick

AT&T Shannon Lab

Florham Park, NJ, USA

ches (at) research dot att dot com

A iTEX bundle format

An iTeX bundle is a file with the extension .itex that
is actually an uncompressed POSIX tar file. (These
are quite easy to unpack on the iPad.)

The root directory contains:

Title A file whose first line contains the
document title, in UTF-8. The
rest of the file is ignored.

Author Similarly the authors on the first
line, UTF-8.

Options An optional one-line file contain-
ing the string rl if the document
is to be presented starting from
the right-most page.

dir One or more directories contain-
ing device-dependent versions of
the document.

Each directory dir is named for the document
type it contains. The names may be one of:

iPad original iPad
iPad3 “retina” version of iPad
iPhone original iPhone
iPhone4 “retina” version of the iPhone
Kindle original Kindle
Kindle2 newer Kindle
xoom Motorola android Xoom

At this time, the iTEX app only installs and uses the
iPad directory. Non-Apple names are tentative, to
be chosen based on display details for the various
devices.

Each of these device directories contains a sub-
directory for each version of the document. The
version names are displayed on the top of the doc-
ument display, and may have any short name. By
convention:

normal the default document version
large the large-type version.

Neither the names nor the number of versions is
enforced, but the app may have trouble displaying
them usefully if there are too many, or they are too
long. All these names honor UTF-8 format.

Each version contains two directories, p and l

for the portrait and landscape orientations of the
version of the document. At present, each of these
directories contains a series of page images as PNG

files of the form %04d.png, starting with 0001.png

as generated by dvipng. In future versions of the
iTEX app there will also be page-related data in files
named 0001.dat, 0002.dat, etc. in these directories.
The multiple PNG files will be replaceable by a single
PDF file. There will also be EPS files for images in
the document, and perhaps other related files.

iTEX—Document formatting in an ereader world

164 TUGboat, Volume 32 (2011), No. 2

Math alphabets and the mathalfa package

Michael Sharpe

Abstract

This is both a survey of existing math alphabets
and a brief description of a unified method of calling
them via the package mathalfa.

1 Introduction

For the purposes of this article, a math alphabet is
one normally selected in math mode using the LATEX
macros \mathcal, \mathscr, \mathbb, \mathfrak,
or their bold counterparts \mathbcal, \mathbscr,
\mathbbb and \mathbfrak.

Regular and bold weights of a math calligraphic
font are built into Computer Modern, occupying the
upper case letter slots in the cm[b]sy family. The frak-
tur and blackboard bold alphabets were (I believe)
introduced with the AMS fonts, and the mathrsfs
package introduced the term \mathscr in order to
provide a script font with more elaborate shapes, as is
customary in a number of areas in math and physics,
in addition to an ordinary calligraphic alphabet. The
Unicode specification lists the fonts under Mathemati-
cal Alphanumeric Symbols (U1D400–U1D7FF), though
a number of special, commonly used glyphs fall under
the heading Letterlike Symbols (U2100–U214F). The
Unicode names for the alphabets are:

MATHEMATICAL SCRIPT:

a.k.a. script, swash, calligraphic.

MATHEMATICAL DOUBLE-STRUCK:

a.k.a. double-struck, blackboard bold, openface.

MATHEMATICAL FRAKTUR:

a.k.a. fraktur, blackletter, gothic.

2 Mathalfa

The mathalfa package in most cases bypasses the
usual font-loading mechanisms for these math al-
phabets and substitutes its own, allowing it to use
common terminology and, in all cases, allow arbitrary
scaling. (Many LATEX packages that load fonts have
not been modified since the days when Metafont was
the predominant font format, and it was desirable to
restrict the set of sizes at which the bitmaps were gen-
erated, thus limiting the possibility of fine scaling.)
In a number of cases, the original math alphabet
fonts were never set up with the metrics appropriate
for math mode, leading to awkward placement of
accents and subscripts, and inappropriate spacing.
This package corrects such deficiencies by supplying
virtual fonts with my preferences for those metrics
following, by and large, the appearance of mtpro2
(MathTime Pro II).

The line

\usepackage[showoptions]{mathalfa}

throws an error and shows all alphabet names un-
derstood by the package. As an example, to load
Zapf Chancery scaled up by 15% as the output of
\mathcal and Fourier Double-Struck scaled down
by 4% as the output of \mathbb, you enter

\usepackage[cal=zapfc,calscaled=1.15,

bb=fourier,bbscaled=.96]

{mathalfa}

after loading other math packages. You may also set
as options

frak=...[,frakscaled=...],

scr=...[,scrscaled=...],

to enable the macros

\mathfrak

\mathbfrak % if there is a bold fraktur

\mathscr

\mathbscr % if there is a bold script

The names available for the alphabets are listed
separately below by type. Any Mathematical Script
name may serve as a target for both cal and scr.
In all cases, if a bold version is available, then the
corresponding bold variant is also defined.

The mathalfa package does not provide the Post-
Script fonts required for activating all its options.
The metrics and virtual fonts are publicly available,
but are useless without the .pfb files which you must
acquire. See the mathalfa documentation for detailed
descriptions of sources.

2.1 BOONDOX

The boondox package is a reworking of the STIX cal-
ligraphic, fraktur and double-struck alphabets with
virtual fonts and metrics suitable for math mode. (In
the USA, the boondocks and the sticks are essentially
synonymous.) When the LATEX support files for the
STIX fonts are made public, the boondox package
will most likely become obsolete except to those who
may prefer its metrics.

2.2 ESSTIX

The other relatively unknown font package here is
esstix, an unfinished math font collection produced
by Elsevier, never officially released and subsequently
donated to the STIX consortium, serving as a precur-
sor to their STIX font family. The ESSTIX collection
is now under the same license as the STIX collec-
tion— the liberal SIL Open Font License, version 1.1.
Though STIX regards the ESSTIX collection as dep-
recated, the math alphabets it contains have some
unique elements which, in my opinion, should not be

Michael Sharpe

TUGboat, Volume 32 (2011), No. 2 165

allowed to become extinct. The ESSTIX fonts and
support files are now available from CTAN and have
become part of TEX Live.

The ESSTIX fonts in their original forms may be
loaded via mathalfa using the option esstix, but there
is now an updated version of the ESSTIX calligraphic
font. The metrics are identical to the original fonts,
but the font has been modified in several respects
(using FontForge) so that it now validates properly
following modifications to repair font outline points
and the font BlueScale parameter.

In addition, a bold version has been created,
following modifications to a small number of glyphs
to prevent outline self-intersections. (The original
was quite light, rather of book weight, and the bold
is more correctly a demi-bold.) ESSTIX calligraphic
and its update, dubbed DutchCal, are visually almost
identical at regular weight, though the latter is hinted
better and is the only one shown in the samples
below.

3 Mathematical script

The following choices are available for cal and scr,
listed according to general appearance.

UPRIGHT:

euler % euscript

mtc % MathTime Curly (commercial)

RESTRAINED:

cm % Computer Modern Math Italic (cmmi)

lucida % From Lucida New Math (commercial)

zapfc % Adobe Zapf Chancery (or URW clone)

mma % Mathematica fonts

EMBELLISHED:

mt % MathTime (commercial)

rsfso % based on rsfs, much less sloped

mathpi % Adobe Mathematical Pi (commercial)

esstix % ESSTIX-thirteen

dutchcal % modification of ESSTIX13

boondoxo % based on boondox, less sloped

HEAVILY SLOPED:

rsfs % Ralph Smith Formal Script

boondox % SCRIPT alphabet from stix fonts

Script font samples follow in the above order.

3.1 Upright

euler (Euler script):

A B C D E F G H I J K L M

N O P Q R S T U V W X Y Z

euler (Euler script-bold):

A B C D E F G H I J K L M

N O P Q R S T U V W X Y Z

mtc (MathTime Pro 2 Curly script):

A B C D E F G H I J K L M

N O P Q R S T U V W X Y Z

3.2 Restrained

cm (CM calligraphic, cmsy):
A B C D E F G H I J K L M

N O P Q R S T U V W X Y Z

cm (CM calligraphic-bold, cmbsy):
A B C D E F G H I J K L M
N O P Q R S T U V W X Y Z

zapfc (Zapf Chancery):

A B C D E F G H I J K L M

N O P Q R S T U V W X Y Z

lucida (Lucida calligraphic):

A B C D E F G H I J K L M
N O P Q R S T U V W X Y Z

lucida (Lucida calligraphic-bold):

A B C D E F G H I J K L M
N O P Q R S T U V W X Y Z

mma (Mathematica script):

A B C D E F G H I J K L M

N O P Q R S T U V W X Y Z

mma (Mathematica script-bold):

A B C D E F G H I J K L M

N O P Q R S T U V W X Y Z

3.3 Embellished

mt (MathTime Pro 2 script):
A B C D E F G H I J K L M

N O P Q R S T U V W X Y Z

mt (MathTime Pro 2 script-bold):

A B C D E F G H I J K L M

N O P Q R S T U V W X Y Z

mathpi (Mathpi script):

A B C D E F G H I J K L M

N O P Q R S T U V W X Y Z

dutchcal (DutchCal):

A B C D E F G H I J K L M

N O P Q R S T U V W X Y Z

dutchcal (DutchCal-bold):

A B C D E F G H I J K L M

N O P Q R S T U V W X Y Z

rsfso (RSFS oblique):

A B C D E F G H I J K L M
N O P Q R S T U V W X Y Z

boondoxo (BOONDOX calligraphic oblique):
A B C D E F G H I J K L M

N O P Q R S T U V W X Y Z

boondoxo (BOONDOX calligraphic oblique-bold):

A B C D E F G H I J K L M
N O P Q R S T U V W X Y Z

Math alphabets and the mathalfa package

166 TUGboat, Volume 32 (2011), No. 2

3.4 Heavily sloped

boondox (BOONDOX calligraphic):
A B C D E F G H I J K L M

N O P Q R S T U V W X Y Z

boondox (BOONDOX calligraphic-bold):

A B C D E F G H I J K L M

N O P Q R S T U V W X Y Z

rsfs (RSFS standard):

A B C D E F G H I J K L M
N O P Q R S T U V W X Y Z

3.5 Notes

• Lucida fonts generally need to be reduced in
scale to match other math and text fonts.

• Zapf Chancery needs to be scaled up by 15% or
so. This font is not ideally suited for use as a
math alphabet due to the disparate heights and
depths and the long tails on some glyphs. Use
with care.

• The calligraphic fonts break down into four nat-
ural groups:

(i) the upright styled Euler and Curly;

(ii) the rather restrained CM, Lucida, Zapf
Chancery, ESSTIX and mma;

(iii) the moderately sloped but more embel-
lished Mathpi, MathTime (borderline case),
rsfso and boondoxo;

(iv) the heavily sloped rsfs and the slightly less
sloped boondox.

My preference, if not using euler or lucida for
math, would be to set \mathcal to one from
group (ii) and \mathscr to one from group (iii).

4 Mathematical double-struck

Double-struck font samples follow.

4.1 Normal weight

Blackboard bold (with serifs):

ams (AMS bb):
A B C D E F G H I J K L M

N O P Q R S T U V W X Y Z

mth (MathTime Pro 2 Holey Roman):
A B C D E F G H I J K L M

N O P Q R S T U V W X Y Z

pazo (Mathpazo bb):

A B C D E F G H I J K L M

N O P Q R S T U V W X Y Z

Blackboard bold (sans serif):

lucida (Lucida bb):

A B C D E F G H I J K L M

N O P Q R S T U V W X Y Z

mathpi (Mathpi bb):

A B C D E F G H I J K L M

N O P Q R S T U V W X Y Z

mt (MathTime Pro 2 bb):
A B C D E F G H I J K L M

N O P Q R S T U V W X Y Z

mma (Mathematica bb):
A B C D E F G H I J K L M

N O P Q R S T U V W X Y Z

fourier (Fourier bb):

A B C D E F G H I J K L M

N O P Q R S T U V W X Y Z

esstix (ESSTIX bb):
A B C D E F G H I J K L M

N O P Q R S T U V W X Y Z

boondox (BOONDOX bb):
A B C D E F G H I J K L M

N O P Q R S T U V W X Y Z

4.2 Bold weight

Blackboard bold (with serifs):

mth (MathTime Pro 2 Holey Roman-bold):
A B C D E F G H I J K L M

N O P Q R S T U V W X Y Z

Blackboard bold (sans serif):

mt (MathTime Pro 2-bold):
A B C D E F G H I J K L M

N O P Q R S T U V W X Y Z

mma (Mathematica bb-bold):
A B C D E F G H I J K L M

N O P Q R S T U V W X Y Z

boondox (BOONDOX bb-bold):
C D H N P Q R Z (few glyphs available)

4.3 Notes

• Blackboard bold can look poor on the screen
in many cases. Perhaps the thin parallel lines
in the figures are a challenge to anti-aliasing
mechanisms, at some resolutions. For example,
here is the result of a screenshot from my 94 dpi
LCD screen of a fragment containing ams double-
struck E at 153%, magnified by a factor of 4.

The glyph displays unevenly, and appears to be
of a weight different to its neighbors. In my expe-
rience, blackboard bold is the most problematic
alphabet for screen rendering, and AMS bb and
Holey Roman bb are the most likely to show
up as a bit ghostly (gray and indistinct) on the
screen compared to other math glyphs. Both

Michael Sharpe

TUGboat, Volume 32 (2011), No. 2 167

seem to be formed by removing the interiors
of glyphs from a bold serifed font. MathTime
Pro 2 Holey Roman-bold is a much better fit to
most math fonts of weight heavier than Com-
puter Modern. Other such hollowed-out fonts
which are occasionally used as a double-struck
font, such as Caslon OpenFace and Goudy Hand-
Tooled, have to my eye either a similar problem,
or have insufficient hollowing-out to distinguish
them from an ordinary bold font.

• Fourier, Mathpi, esstix and boondox bb appear
to be very close in style, with Mathpi bb a bit
less sharp. These are geometric shapes, and
because of screen-rendering issues, you may find
that the font rendered there appears asymmetric
even though there is no problem on paper, at
least for resolutions over 300 dpi.

• Mathpazo bb and Mathematica bb have a heav-
ier appearance and should work well with fonts
other than Computer Modern, but the uneven
weights of their strokes can lead to unsightly
screen artifacts.

• In my opinion, for best appearance on screen
and on paper, the best-looking blackboard bold
glyphs (matching the weights of fonts heavier
than Computer Modern) are (i) BOONDOX bb-
bold; (ii) MathTime Pro 2 Holey Roman-bold.
In both cases, there is no ghostly appearance,
but in case (i), the glyph selection is limited.

5 Mathematical fraktur

Fraktur font samples follow, arranged in order of
blackness.

esstix (ESSTIX fraktur):

A B C D E F G H I J K L M

N O P Q R S T U V W X Y Z

mathpi (Mathpi fraktur):

A B C D E F G H I J K L M
N O P Q R S T U V W X Y Z

mt (MathTime Pro 2 fraktur):

A B C D E F G H I J K L M
N O P Q R S T U V W X Y Z

euler (Euler fraktur):
A B C D E F G H I J K L M

N O P Q R S T U V W X Y Z

lucida (Lucida fraktur):

A B C D E F G H I J K L M
N O P Q R S T U V W X Y Z

mma (Mathematica fraktur):

A B C D E F G H I J K L M

N O P Q R S T U V W X Y Z

boondox (BOONDOX fraktur):

A B C D E F G H I J K L M

N O P Q R S T U V W X Y Z

euler (Euler fraktur-bold):
A B C D E F G H I J K L M

N O P Q R S T U V W X Y Z

mma (Mathematica fraktur-bold):

A B C D E F G H I J K L M

N O P Q R S T U V W X Y Z

mt (Mathtime Pro 2 fraktur-bold):

A B C D E F G H I J K L M
N O P Q R S T U V W X Y Z

boondox (BOONDOX fraktur-bold):
A B C D E F G H I J K L M

N O P Q R S T U V W X Y Z

5.1 Notes

• While mma is easy to read, I find it less attrac-
tive than other fraktur faces as it seems to have
random variations in heights and depths, and
seems overly dark. Some of these comments
might also apply to lucida.

• lucida fraktur is one of the most idiosyncratic
of the fraktur fonts, seeming to be considerably
more influenced by Duc de Berry than by tradi-
tional fraktur sources.

• boondox fraktur is very attractive, but a bit
heavy for all but the blackest text fonts (Times,
Arno Pro, Lucida), while esstix is a bit too light
for all but fonts like Computer Modern and
Goudy Old Style.

6 A tool for making virtual fonts

TEX does not make it easy to take a text font (e.g.,
a script font) and construct from it a virtual font
suitable for use in math mode, with accents properly
positioned, width adjusted to match other math
glyphs, and subscripts properly placed. The tool
I used to do this in several cases is TeXFontUtility,
available for MacOSX as TeXFontUtility.dmg from
http://math.ucsd.edu/~msharpe. The program is
specific to MacOSX, but the output may be used in
any LATEX installation.

With this tool, the math metrics can be adjusted
visually. For example, adjusting the left and right
side-bearings, subscript position and accent position
for the glyph A of boondox script is simply a matter
of selecting and dragging the line segments (the hat
for the accent) to your personal tastes. See figure 1.

This tool has many other uses, most importantly,
serving as a graphical interface to fontinst for pur-
poses such as substituting an italic alphabet for the
math italic glyphs in a virtual font based on mtpro2

Math alphabets and the mathalfa package

168 TUGboat, Volume 32 (2011), No. 2

Figure 1: Adjusting a glyph in TeXFontUtility.

(and making the appropriate visual adjustments to
the metrics for math mode), and diagnosing com-
mon errors made in adding packages to TEX Live.
All the “frankenfonts” in the file mathsamples.pdf
mentioned below were created using this program.

7 In conclusion

• Several of the packages described above are ad-
vertised as suitable companions for Times, a
rather heavy font that is not generally consid-
ered the best choice for book text. (It was
designed for newspaper use, where it would re-
main legible even after the ink soaked unevenly
into cheap newsprint paper, and was compact
enough for the narrow columns.) Nonetheless,
there is a high variance in the weights of those
companions. For example, both boondox frak-
tur and mt fraktur were designed for Times,
and there is a great difference between their
weights. In my opinion, this means that the
issue of matching math alphabet weight to text
font weight is not critical, and there are many
examples of successful use of the mtpro2 fonts
with text fonts having a multiplicity of weights.
For examples, see the file mathsamples.pdf at
http://math.ucsd.edu/~msharpe/.

• If your interest in math fonts goes beyond the
basic level (e.g., you are writing a book or lecture
notes with mathematical content), you should
look into the commercial products Lucida from

http://www.tug.org/lucida and MathTime
Pro 2 from http://pctex.com. Both are high
quality products, and are excellent values for
the prices. Even if you only use small pieces of
the collections, these are much better buys than
most commercial text fonts.

• The Mathematica fonts are not of very high
quality as a collection (i.e., not suitable for pro-
fessional use as they stand), but they have some
excellent components. In particular, the calli-
graphic font may be turned into a good target
for \mathcal after its metrics have been fine-
tuned. You are missing out on some good stuff
if you don’t install this free collection. Sadly,
Jens-Peer Kuska, the theoretical physicist who
devised the LATEX support files for these fonts,
died before his time in 2009, and it seems un-
likely that they will be revised in the near future.

• The rsfs package is not well-suited to \mathcal,
being much too slanted. The best options for
\mathcal are, in my opinion, rsfso, dutchcal,
boondoxo and mt, the latter requiring the (non-
free) mtpro2 collection.

• If you own the mtpro2 collection, look into the
‘curly’ script font, which seems useful, though a
bit heavy.

• It is questionable whether there is value in the
Mathpi fonts given that each of its constituents
may be approximated closely by free alterna-
tives, and the fonts can be tricky to install.

• The boondox calligraphic font is quite handsome.
I prefer it to be less sloped, along the lines of
rsfso. This is provided by the option boondoxo,
which uses virtual fonts sloped much like rsfso.

• It is possible to produce a candidate for a math
script font starting from any script text font,
but it is very difficult to locate suitable text
script fonts. The most frequent problem is long
tails on some glyphs. Another is that the glyphs
can be over-elaborate, more suited to a wedding
invitation than a scientific publication.

⋄ Michael Sharpe

Math Dept, UCSD

La Jolla, CA 92093-0112

USA

msharpe (at) ucsd dot edu

http://math.ucsd.edu/~msharpe/

Michael Sharpe

TUGboat, Volume 32 (2011), No. 2 169

Another incarnation of Lucida:

Towards Lucida OpenType

Ulrik Vieth and Mojca Miklavec

Abstract

TEX has been in existence for more than 30 years.
During this time, TEX engines and device drivers
have gone through multiple generations of font tech-
nology: METAFONT, PostScript Type 1, and Open-
Type. While choices for text fonts have greatly in-
creased, there have always been few choices for math
fonts and even fewer for complete font families.

The Lucida family of typefaces by Bigelow &
Holmes is a notable exception, as it provides not
only a math font, but also a complete font family,
consisting of a large repertoire of serif, sans-serif,
monospace, and fancy variants. Unfortunately, the
current distribution of Lucida fonts dates back to
1993 and is limited by the use of PostScript Type 1
fonts, which support only 8-bit character sets.

In this article, we report the current status of an
ongoing joint project of Bigelow & Holmes and TUG

to develop a new distribution of Lucida OpenType
with better Unicode language and math support.

1 Historical perspective of font technology

TEX has been in existence for more than 30 years.
During this time, TEX engines and device drivers
have evolved through multiple generations of font
technology (METAFONT, Type 1, OpenType) and
multiple generations of output formats (DVI, Post-
Script, PDF).

The era of METAFONT fonts When TEX was
first developed in the late 1970s and early 1980s,
there were no established standards of font technol-
ogy which could be used, so METAFONT was devel-
oped as a companion to TEX, and all related file
formats for font metrics (TFM) and bitmap fonts
(PK) were invented as well.

As it turned out, METAFONT never caught on
with font designers, so there were very few choices
for fonts available for use with TEX in this era, both
for text and math typesetting. Besides the earliest
instances of METAFONT fonts, Computer Modern
and AMS Euler, there were only a few more, most
of them variants of the above, such as Concrete and
CM Bright.

The era of PostScript Type 1 fonts When Post-
Script printers came into use in the early 1990s,
TEX entered another era of font technology, as scal-
able Type 1 fonts became the preferred format. It
became possible to use the commercial offerings of
Type 1 fonts from many font vendors, which could

now be set up for use with TEX using fontinst or
afm2tfm.

This development continued when PDFTEX was
developed and on-screen viewing of PDF files came
into common use in the late 1990s.

While the use of METAFONT-generated bitmap
fonts packaged into Type 3 fonts was still acceptable
for printing, such bitmap fonts turned out to be in-
adequate for screen rendering in PDF viewers. As a
result, the use of METAFONT fonts became unpop-
ular, and efforts were undertaken to provide Type 1
replacements for METAFONT fonts.

In this era, choices of text fonts were increased
significantly, but choices of math fonts remained lim-
ited. Besides CM and AMS Euler, converted from
METAFONT, there were only the commercial offer-
ings of MathTime and Lucida New Math at first.

It was only much later in this era that more
choices of math fonts eventually became available,
such as txfonts, pxfonts, mathpazo, fourier, and
mathdesign, providing companion math fonts for
use with popular text typefaces, such as Times, Pala-
tino, Utopia, Charter, and Garamond.

Nevertheless, as we are nearing the end of this
era, these choices of math fonts are still very few
compared to the vast number of available text fonts,
and it took more than a decade to get there.

The era of OpenType fonts In recent years,
TEX has entered yet another era of font technology,
as OpenType fonts are now becoming the preferred
font format to support the needs of Unicode.

Many font vendors have switched their commer-
cial offerings from Type 1 to OpenType format, and
Type 1 fonts are becoming obsolete due to their lim-
itations to 8-bit character sets.

With the development of X ETEX and LuaTEX in
recent years, new TEX engines have become available
which support Unicode input and OpenType output
directly, without the need for a complicated setup of
TFM font metrics or font map files.

At the same time, support for virtual fonts is
being phased out in packages such as ConTEXt MkIV,
making it difficult to continue to use Type 1 fonts
with virtual fonts in those packages.

As we are entering this era of font technology,
there is once again a need to develop replacements
for existing fonts, this time providing OpenType re-
placements for Type 1 fonts.

With the development of the Latin Modern and
TEX Gyre fonts in recent years, replacements for the
Computer Modern text fonts and several common
PostScript fonts already exist, but the correspond-
ing math fonts are still under development.

Another incarnation of Lucida: Towards Lucida OpenType

170 TUGboat, Volume 32 (2011), No. 2

At the time of writing, choices of full-featured
OpenType math fonts remain limited to Cambria
Math (developed by Microsoft), Asana Math (de-
rived from pxfonts) and XITS Math (derived from
STIX fonts). Additional choices of OpenType math
fonts are still unfinished, such as Neo Euler (derived
from AMS Euler) and Latin Modern Math (derived
from Computer Modern Math).

With the addition of Lucida Math as another
choice of OpenType math fonts under development,
we are about to reach the same level of font support
in the OpenType era that was available in the early
years of the PostScript era in the mid-1990s.

Nevertheless, the general trend continues also
in the OpenType era in that there are few choices for
math fonts and even fewer for complete font families.

2 History of Lucida font distributions

The Lucida family of fonts was developed by the
Bigelow & Holmes foundry of Charles Bigelow and
Kris Holmes in the mid-1980s [1]. At this time,
Chuck Bigelow was on the faculty at Stanford, so
he was well aware of the development of TEX and
the Computer Modern fonts by Don Knuth. A pri-
mary goal of Lucida was to create a typeface design
which would digitize well, even at relatively low res-
olutions.

Another goal of Lucida was to provide a com-
plete font family of matching designs for serif, sans-
serif, and monospace fonts, which were later aug-
mented by a number of fancy variants [2].

Yet another goal of Lucida was to provide an ex-
tensive character set, including Latin, Greek, sym-
bols, and even dingbats, so that the fonts could be
used for math typesetting as well. (The dingbats
fonts were later distributed independently [3].)

The original versions of Lucida fonts from the
mid-1980s are still being sold by some font vendors
under the names of Lucida Serif and Lucida Math,
but these versions were never really supported with
a setup for use with TEX.

The current versions of Lucida fonts were ex-
tended and revised for use with TEX in the early
1990s in cooperation with Y&Y Inc., in particular
its principal Berthold Horn for TEX-specific adjust-
ments. Y&Y sold the fonts under the names of Lu-
cida Bright and Lucida New Math for many years,
until the company was dissolved. The same font
packages are now being supported and sold directly
by TUG [4] and by PCTEX Inc. [5].

Finally, other versions of Lucida fonts that exist
are widely distributed as system fonts with operat-
ing systems or software development kits. These in-
clude the Lucida Console and Lucida Sans Unicode

fonts on MS Windows [6, 7], the Lucida Grande fonts
on Apple Mac OS X [8], and a set of Lucida fonts dis-
tributed with Sun’s Java Development Kits (JDK).

All of these fonts are in TrueType format and
provide some level of Unicode coverage, some of
them even including support for non-Latin scripts
such as Greek, Cyrillic, Arabic, Hebrew, etc.

Unfortunately, most of these Lucida Unicode
system fonts provide only single font instances or
incomplete font families, so they are not really well
suited for sophisticated typesetting.

As a result, users who want to use Lucida for
typesetting with TEX are essentially stuck with the
Type 1 distribution of the early 1990s, providing
only a limited 8-bit character set and requiring the
use of virtual fonts to support accented languages,
which is no longer up to the requirements of mod-
ern TEX engines geared toward Unicode typesetting
with OpenType font technology.

3 Scope of the Lucida Type 1 distribution

The current distribution of Lucida Type 1 fonts for
use with TEX was originally developed in the early
1990s by Bigelow & Holmes and Y&Y Inc. It is
now being supported and sold directly by TUG. The
TUG distribution consists of two font packages: Lu-
cida Basic and Lucida Complete [9, 10].

The basic distribution provides three complete
font families: Lucida Bright, Lucida Sans Type-
writer, and Lucida New Math (Fig. 1).

The complete distribution adds the following
font families: Lucida Sans, Lucida (Serif) Type-
writer, Lucida Fax, Lucida Casual, as well as several
fancy variants: Lucida Blackletter, Lucida Calligra-
phy, and Lucida Handwriting (Fig. 2).

Given the limitations of Type 1 technology, the
fonts are based on an 8-bit character set.

The recommended setup suggested by Y&Y Inc.
was to use the so-called TeXnANSI encoding (LY1),
which combines parts of the 7-bit old TEX encoding
(OT1) in the lower half with the Windows ANSI 1252
encoding in the upper half [11, 12].

An alternative setup suggested by the (LA)TEX
community was to use the so-called TeXBase1 (8r)
encoding as a base font encoding for virtual fonts,
implementing the 8-bit Cork text and text compan-
ion encodings (T1 and TS1).

Since the Cork encoding extends considerably
beyond the scope of Windows ANSI 1252 (Latin 1),
some of the accented letters could not be provided
by glyphs from the fonts, but had to be substituted
by constructions in the virtual fonts.

The quality of these constructed glyphs varies
considerably, but it rarely matches the quality of

Ulrik Vieth and Mojca Miklavec

TUGboat, Volume 32 (2011), No. 2 171

• Lucida Bright

– LucidaBright + SmallCaps

– LucidaBright-Italic

– LucidaBright-Demi + SmallCaps

– LucidaBright-DemiItalic

• Lucida Sans Typewriter

– LucidaSansTypewriter

– LucidaSansTypewriter-Oblique

– LucidaSansTypewriter-Bold

– LucidaSansTypewriter-BoldOblique

• Lucida New Math

– LucidaNewMathRoman

– LucidaNewMath Italic

– LucidaNewMathAltItalic

– LucidaNewMathSymbol (ABC)

– LucidaNewMathArrows (ABC)

– LucidaNewMathDemi

– LucidaNewMathDemiItalic

– LucidaNewMathAltDemiItalic

– LucidaNewMathSymbolDemi (ABC)

– LucidaNewMathArrowsDemi (ABC)

– LucidaNewMathExtension

⊙⊙⊕⊕⊗O∑∑∏∏∫∫∮∮

Figure 1: Scope of the Lucida basic distribution.

designed glyphs from the base fonts, so users of cer-
tain languages (such as Slovenian) were never really
satisfied with those virtual fonts.

In the era of PostScript fonts used by tradi-
tional (pdf)TEX engines limited to 8-bit character
sets, this was a common occurrence, which simply
had to be accepted for lack of better alternatives.

In the recent era of OpenType fonts used by
modern TEX engines with Unicode character sets,
such deficiencies are no longer acceptable.

4 Problems of the Lucida Type 1 fonts

The current distribution of Lucida Type 1 fonts from
TUG suffers from several problems and limitations,
making it hard to set up and use the fonts with
traditional TEX engines, and maybe even impossible
to use them with new TEX engines.

The first problem arises from the limitations of
Type 1 font technology in itself, and the associated
mess of 8-bit font encodings.

When users got the original Y&Y distribution
of Lucida fonts, they were confronted with making

• Lucida Sans

– LucidaSans

– LucidaSans-Italic

– LucidaSans-Demi

– LucidaSans-DemiItalic

– LucidaSans-Bold

– LucidaSans-BoldItalic

• Lucida (Serif) Typewriter

– LucidaTypewriter

– LucidaTypewriter-Oblique

– LucidaTypewriter-Bold

– LucidaTypewriter-BoldOblique

• Lucida Fax

– LucidaFax

– LucidaFax-Italic

– LucidaFax-Demi

– LucidaFax-DemiItalic

• Lucida Casual

– LucidaCasual

– LucidaCasual-Italic

• Lucida fancy variants

– LucidaBlackletter (ABC)

– LucidaCalligraphy-Italic (ABC)

– LucidaHandwriting-Italic

Figure 2: Scope of the Lucida complete distribution.

a choice how to set up the fonts. The distribution
shipped with multiple sets of TFM files (using identi-
cal names for different versions) and multiple sets of
font map files, that could be set up as alternatives,
supporting only one choice of base font encoding,
either TeXnANSI or TeXBase1.

When users installed the (LA)TEX support files
for virtual fonts on top of that [13, 14], they were
confronted with yet another set of TFM and VF

files and another font map file (using rather cryp-
tic, but unique font names), providing support for
multiple choices of virtual font encodings (OT1, T1,
TS1, or LY1) on top of multiple choices of base font
encodings (TeXBase1 or TeXnANSI).

Modern font distributions such as Latin Mod-
ern and TEX Gyre have solved this problem in a bet-
ter way by using clearly identifiable and less cryp-
tic font names (such as texnansi-lmr10, ec-lmr10,
etc.) and providing several sets of TFM files for vari-
ous encodings that can be installed in parallel, with-
out requiring users to make a choice of one preferred
encoding or using virtual fonts.

Another incarnation of Lucida: Towards Lucida OpenType

172 TUGboat, Volume 32 (2011), No. 2

(a)

Č
(b)

Č
(c)

Š
Figure 3: Comparison of the placement of accents:
(a) constructed letter c-caron, using virtual fonts,
(b) designed letter c-caron, (c) designed letter s-caron.

Moreover, these modern font distributions also
support a much wider range of 8-bit font encodings,
such as QX for Polish, CS for Czech and Slovak, L7X

for Lithuanian, or even T5 for Vietnamese, besides
EC for Cork and TeXnANSI.

The second problem arises from the use of vir-
tual fonts to supply missing accented glyphs, and
the associated problems of design quality.

An example of such a problem is illustrated in
Fig. 3, comparing a constructed letter c-caron from
a virtual font (as it used to be) with a designed letter
c-caron from an OpenType font (as it should be).

In the constructed letter, the placement of the
accent is done automatically, based on the glyph
metrics (bounding box), so the accent is placed too
high and it is centered on the geometric center of
the glyph rather than the visual center.

If you compare the constructed letter c-caron
with the designed letter s-caron (which happens to
be available in the TeXnANSI encoding, despite not
being part of ISO Latin 1), the difference in quality
becomes very obvious. It’s unquestionably desirable
to have a more comprehensive set of properly de-
signed accented letters for better language support.

Finally, a third problem consists in the require-
ment for virtual font support in TEX engines and
device drivers to be able to provide substitutions
for missing glyphs in the first place.

While the mainstream TEX distributions (such
as TEX Live) have supported virtual fonts in pro-
grams such as dvips or pdftex for many years, sup-
port for virtual fonts was never universal, and it was
notably absent in the device drivers of the commer-
cial TEX distribution of Y&Y Inc.

Finally, in recent developments we are facing a
situation that support for traditional virtual fonts
(based on VF and TFM files) is being phased out
in modern macro packages such as ConTEXt MkIV.
While the LuaTEX engine still supports traditional
virtual fonts, the font loader in ConTEXt MkIV now
uses a completely different mechanism.

Karl Berry (TUG) project coordination

Chuck Bigelow (B&H) glyph design, coordination

Khaled Hosny glyph assembly

Mojca Miklavec testing of text fonts

Ulrik Vieth testing of math fonts

Hans Hagen technical advisory

Taco Hoekwater technical advisory

Table 1: Team members of the Lucida OpenType
project team and responsibilities.

5 Inception of the Lucida OpenType project

The idea of a project to create a Lucida OpenType
font distribution was first conceived at last year’s
ConTEXt meeting in September 2010.

When a user asked how to set up Lucida for
use with ConTEXt MkIV, Hans Hagen’s answer was
simply: ǳDon’t use Lucida. It doesn’t work!Ǵ

After a brief discussions, it was eventually con-
cluded that something needed to be done about it,
or else Lucida would soon become an obsolete and
unsupported font family.

It was then suggested to hire Khaled Hosny as a
developer to repackage and extend the existing Lu-
cida Type 1 fonts into OpenType fonts and to seek
support from TUG to fund and coordinate the de-
velopment.

By October 2010, just a few weeks after the con-
ference, Karl Berry had entered discussions between
TUG and Bigelow & Holmes about the project, and
by November 2010, the necessary legal agreement
had been drafted and a project team was assembled,
consisting of the team members listed in Table 1.

The agreed scope of the project was to develop
OpenType versions of the Lucida basic distribution
at first, which includes Lucida Bright, Lucida Math,
and Lucida Sans Typewriter. Other family mem-
bers, such as Lucida Sans or others may be added
in a second phase of the project.

The goal for Lucida text font families was to
develop OpenType fonts with good Unicode sup-
port for Latin languages, so these fonts will feature
a significant number of accented Latin letters, but
hardly any non-Latin scripts. In most cases, no new
glyph designs will be required, just the assembly and
placement of combining accents.

The goal for Lucida Math was to develop an
OpenType math font with good Unicode support
of math symbols and math alphabets. Besides the
assembly of existing symbols from Lucida Type 1
fonts, a number of additional symbols may need to
be designed, while most of the math alphabets can
be taken from existing Lucida fonts.

Ulrik Vieth and Mojca Miklavec

TUGboat, Volume 32 (2011), No. 2 173

LucidaBright 692 (955)

LucidaBright-Italic 395

LucidaBright-Demi 395 (527)

LucidaBright-DemiItalic 395

LucidaSansTypewriter 358

LucidaSansTypewriter-Oblique 358

LucidaSansTypewriter-Bold 358

LucidaSansTypewriter-BoldOblique 358

Table 2: Number of glyphs per font for the Lucida
OpenType text fonts. (Numbers in brackets are the
totals including small caps and oldstyle figures.)

6 Progress of the Lucida OpenType project

By November 2010, the project team was ready to
start working, and by December 2010, the project
was already well under way.

Bigelow & Holmes had supplied the designs of
a number of additional glyphs for several Unicode
blocks (mostly additional math symbols), and the
first preliminary versions of OpenType fonts had
been assembled for testing.

By January 2011, testing of the text fonts had
started, while work on assembling combining ac-
cents for accented letters continued.

For the text fonts, testing mostly focused on
checking the placement of combining accents and
tracking the number of languages covered or the
number of glyphs missing for each language.

Some statistics for the number of glyphs per
font (as of May 2011) are given in Table 2 for each
of the Lucida text fonts. Unsurprisingly, the regular
version of Lucida Bright is the most complete one,
followed by other Lucida Bright fonts.

Besides the basic ASCII and ISO Latin 1 blocks,
which were already available in 8-bit Type 1 fonts,
all of the Lucida Bright fonts include the complete
Latin Extended-A block (U+0100 to U+017F), while
only the regular Lucida Bright also includes some
parts of Latin Extended-B (U+0180 to U+024F) and
Latin Extended Additional (U+1E00 to U+1EFF).

Besides the more extensive glyph coverage, the
regular version of Lucida Bright is also the most ad-
vanced with regard to feature support for combining
marks, providing some support for multiple marks,
as well as marks above and below.

For the Lucida Sans Typewriter fonts, the glyph
coverage is somewhat smaller than for the Lucida
Bright fonts. Most of the Latin Extended-A block
is also available, but a few gaps remain, awaiting
new designs from Bigelow & Holmes. Apart from
that, the typewriter fonts also have fewer ligatures,

but those are unlikely to be used anyway.
Compared to the old Lucida Type 1 fonts, which

typically had 252 glyphs, the number of 395 glyphs
in the new Lucida OpenType fonts already presents
a significant advantage, especially for users of Latin
languages beyond Latin 1.

Compared to other versions of Lucida fonts with
Unicode support, such as Lucida Sans Unicode (1779
glyphs) or even Lucida Grande (2826 glyphs), how-
ever, the scope of the new Lucida OpenType fonts
is still pretty small, as it only includes support for
Latin, but not for other scripts, such as Greek, Cyril-
lic, Arabic, Hebrew, etc.

By March 2011, testing of the math fonts had
also started, while ongoing work on extending and
improving the text fonts continued.

For the math fonts, testing mostly focused on
typesetting a variety of sample math documents to
check for missing symbols or alphabets.

In total the new Lucida Math OpenType font
includes 2148 glyphs, of which 948 glyphs are from
math alphabets (U+1D400 to U+1D7FF).

An overview of the available math alphabets
in Lucida Math is shown in Fig. 4. As it turned
out, most of the math alphabets in Unicode could
be supplied from existing Lucida Type 1 fonts (in-
cluding some fancy variants such as Lucida Calligra-
phy and Blackletter). Only a few alphabets remain
missing, such as lowercase bold Script, upper- and
lowercase bold Fraktur, and lowercase Blackboard
Bold letters. In addition, some individual symbols
are missing in just a few alphabets.

As a unique feature, Lucida Math provides two
alternate versions of the math italic alphabet, but
only one version can be assigned to Unicode slots,
so the other one has to be relegated to slots in the
private use area and accessed via font substitutions,
if the +ss01 feature is selected.

As for the coverage of math symbols, all of
the existing symbols from Lucida Type 1 math fonts
have been integrated into Lucida Math OpenType.
In addition, Bigelow & Holmes have supplied new
designs for some additional Unicode blocks of math
symbols.

While there are still a few gaps left to be filled,
most of the gaps are in lesser used alphabets, so they
will not affect most documents. In our tests, we have
successfully typeset a number of sample math and
physics documents without encountering any miss-
ing symbols.

A very small sample of math typesetting with
Lucida Math is shown in Figs. 5–6 (inspired by [15]).

We are confident that Lucida Math is about as
good as other existing OpenType math fonts, such

Another incarnation of Lucida: Towards Lucida OpenType

174 TUGboat, Volume 32 (2011), No. 2

LucidaNewMath-Roman \mathup A��X�� abc��� ���Ξ�� ���ξ�� 0���
LucidaNewMath-AltItalic \mathit(-) ЌЍЎУФХ ЦЧШмно ِّ�ؼػغ ْٓٔ�٩٪
LucidaNewMath-Demi \mathbfup ϘϙϚϯϰϱ ϲϳϴЉЊЋ ؁؂؃�ؘؗ زر�؜؛ؚ ܠܟܞܝ
LucidaNewMath-AltDemiItalic \mathbfit(-) прсіїј љњћѰѱѲ ډڈ�ٴٳٲ ڢڡ�ڌڋڊ
LucidaNewMath-Roman \mathup A��X�� abcxyz ΑΒΓΞΨΩ αβγξψω 0123
LucidaNewMath-Italic \mathit(+) ЌЍЎУФХ ݬݫݪݕݔݓ ِّ�ؼػغ ْٓٔ�٩٪
LucidaNewMath-Demi \mathbfup ϘϙϚϯϰϱ ϲϳϴЉЊЋ ؁؂؃�ؘؗ زر�؜؛ؚ ܠܟܞܝ
LucidaNewMath-DemiItalic \mathbfit(+) прсіїј ޿޾޽ިާަ ډڈ�ٴٳٲ ڢڡ�ڌڋڊ
LucidaSans \mathsfup ӻӼӽԒԓԔ ԕԖԗԬԭԮ (not assigned) ܪܩܨܧ
LucidaSans-Italic \mathsfit գդեպջռ սվտ֖֔֕ (not assigned)

LucidaSans-Demi \mathbfsfup ԯ԰ԱՆՇՈ ՉՊՋՠաբ ہۀ�ڬګڪ ۛۚ�ۅۄۃ ܱܴܲܳ
LucidaSans-DemiItalic \mathbfsfit ְ֮֗֘֙֯ ׊׉׈ֱֲֳ ۺ۹�ۥۣۤ ܔܓ�۾۽ۼ
LucidaNewMathSymbol \mathcal ѳČ�҂҃҄
LucidaNewMathSymbol-Demi \mathbfcal ҜҝҞҳҴҵ
LucidaCalligraphy \mathscr ѳČ�҂҃҄ ҅҆҇ҙҚқ
— \mathbfscr ҜҝҞҳҴҵ (missing)

LucidaBlackletter \mathfrak ҶҷčӉӊℨ ӋӌӍӢӣӤ
— \mathbffrak (missing) (missing)

LucidaNewMathArrows \mathbb ӥӦℂӶӷℤ (missing)

Figure 4: Overview of math alphabets in Lucida Math OpenType and where they
were taken from. Note that switching between italic and alternate italic requires
leaving math mode and reloading the font with different OpenType feature settings:
(+) = fonts loaded with option +ss01, (-) = fonts loaded with option -ss01.

as Cambria Math or XITS Math. While Cambria
Math is often used for comparison, as it was the very
first OpenType math font, it also has some gaps in
the math alphabets, and it may depend on the usage
which ones are relevant.

7 Status of the Lucida OpenType project

As of April 2011, shortly before the presentation of
the project at the EuroBachoTEX 2011 conference,
a set of preliminary versions of Lucida OpenType
fonts has been completed. However, the project now
faces an uncertain future.

For one reason, Khaled Hosny, our main devel-
oper, will be unavailable for some time due to being
drafted for military service in Egypt.

For another reason, Bigelow & Holmes did not
have enough time during the academic year to sup-
ply designs for missing glyphs, so even a number
of trivial issues affecting only a few glyphs have re-
mained unfinished so far.

As for the current status, the Lucida Open-
Type text and math fonts clearly represent a work
in progress, but not yet a finished product.

For the text fonts, it would be desirable to reach
a consistent level of glyph coverage in all fonts, in-
cluding all of Latin Extended-A, and possibly Latin
Extended-B or Latin Extended Additional.

Of course, supporting a certain number of Latin

Unicode blocks directly implies supporting a certain
number of languages with Latin scripts.

In the case of Latin Extended-A and -B, this
primarily implies support for European languages.
In the case of Latin Extended Additional, this might
even imply support for Vietnamese, although it is
questionable if this will ever happen.

Besides a consistent level of glyph coverage, it
would also be desirable to reach a consistent level
of feature support for combining marks, including
marks above, marks below, and multiple marks.

So far, only the regular version of Lucida Bright
comes near this level (with some remaining gaps),
while the other fonts include only Latin Extended-A
(also with some remaining gaps).

For the math font, the existing coverage of math
symbols and alphabets is already quite good, but
it would also be desirable to close the remaining
gaps in the alphabets, requiring some new designs
for bold Script and bold Blackletter fonts.

Finally, once the basic set of Lucida OpenType
fonts (Lucida Bright, Lucida Math, and Lucida Sans
Typewriter) have been completed, there are other
members of the Lucida complete set which remain
to be done in a second phase, such as Lucida Sans
and possibly some of the fancy variants.

Most likely, it will not be worth the effort to
create a full set of accented letters for each of the

Ulrik Vieth and Mojca Miklavec

TUGboat, Volume 32 (2011), No. 2 175

Theorem 1 (Residue Theorem). Let � be analytic in the region � except for

the isolated singularities Ц1, Ц2,… ,Ц�. If ٔ is a closed rectifiable curve in �
which does not pass through any of the points Ц� and if ٔ ≈ 0 in � then

�
��� ∫�

� =
�

∑
�=1

��ٔ;Ц��Res��; Ц��.

Theorem 2 (Maximum Modulus). Let � be a bounded open set in ℂ and

suppose that � is a continuous function on �− which is analytic in �. Then

ma�{|��о�| ∶ о ∈ �−} = ma�{|��о�| ∶ о ∈ ٫�}.
Figure 5: Sample math document typeset with Lucida Bright and Lucida Math
OpenType using the default set of math italic (OpenType feature -ss01).

Theorem 1 (Residue Theorem). Let � be analytic in the region � except for

the isolated singularities ,1ݓ …,2ݓ , .�ݓ If ٔ is a closed rectifiable curve in �
which does not pass through any of the points �ݓ and if ٔ ≈ 0 in � then

1
2�� ∫�

� =
�

∑
�=1

��ٔ; ��Res��ݓ ; .��ݓ

Theorem 2 (Maximum Modulus). Let � be a bounded open set in ℂ and

suppose that � is a continuous function on �− which is analytic in �. Then

max{|��ݬ�| ∶ ݬ ∈ �−} = max{|��ݬ�| ∶ ݬ ∈ ٫�}.
Figure 6: Sample math document typeset with Lucida Bright and Lucida Math
OpenType using the alternate set of math italic (OpenType feature +ss01).

fancy variants, but it would certainly be useful to
do so for the major variants such as Lucida Sans,
and to provide a basic conversion of Type 1 fonts to
OpenType for some of the other variants.

As for availability, the Lucida fonts will remain
non-free commercial fonts with all rights held by
Bigelow & Holmes, and licenses being sold by TUG.
The members of the project team will be rewarded
with a free license for the fonts, but will not get any
proceeds from the sales.

8 Post-conference updates

The bulk of this article was written in May 2011 and
represents the status as of EuroBachoTEX 2011.

As of June 2011 the project has been regaining
momentum, as Khaled Hosny is now temporarily
back to work on the project during his spare time.

As one of the first steps, the glyph coverage
of the Lucida Sans Typewriter fonts has been ex-
tended to the same level as the Lucida Bright fonts,
now featuring 395 glyphs representing the complete
Latin Extended-A Unicode block.

As another step, a very basic conversion of the
Lucida Sans fonts from Type 1 to OpenType format
has been done, so that a complete set of serif, sans-
serif, and monospace fonts is now available.

While the glyph coverage of the converted fonts
is limited to the same 250 glyphs, having the fonts
available in OpenType format should make it easier
to start extending these fonts as well.

Further steps are under discussion and could
be directed either towards converting more fonts or
towards extending the glyph and feature coverage of
existing fonts (or a bit of both).

Finally, a preliminary version of a bold math
font has also been assembled, which might be used
in an all-bold context such as headings or theorems.
For a start, only the available glyphs from demibold
Lucida Math Type 1 fonts have been assembled, but
ideally, such a bold math font should eventually
cover a complete set of bold symbols and alphabets,
including heavy versions of bold alphabets.

In any case, work on Lucida OpenType is now
continuing and has been showing great progress in
just a few days, so we are confident that something
useful will eventually come out of this project.

References

[1] Charles Bigelow: Notes on Lucida designs,
November 2005.
http://tug.org/store/lucida/

designnotes.html

Another incarnation of Lucida: Towards Lucida OpenType

176 TUGboat, Volume 32 (2011), No. 2

[2] Wikipedia article: Lucida
http://en.wikipedia.org/wiki/Lucida

[3] Wikipedia article: Wingdings
http://en.wikipedia.org/wiki/Wingdings

[4] TEX Users Group: Lucida and TEX
http://tug.org/store/lucida/

[5] PCTEX Inc.: Lucida Fonts
http://www.pctex.com/Lucida_Fonts.html

[6] Charles Bigelow and Kris Holmes:
The design of a Unicode font, Electronic

Publishing, 6(3), 289–305, September 1993.
http://cajun.cs.nott.ac.uk/wiley/

journals/epobetan/pdf/volume6/issue3/

bigelow.pdf

[7] Wikipedia article: Lucida Sans Unicode
http://en.wikipedia.org/wiki/Lucida_

Sans_Unicode

[8] Wikipedia article: Lucida Grande
http://en.wikipedia.org/wiki/Lucida_

Grande

[9] TEX Users Group: Lucida basic font set
http://tug.org/store/lucida/basic.html

[10] TEX Users Group: Lucida complete font set
http://tug.org/store/lucida/complete.

html

[11] Y&Y Inc.: TEX’n ANSI (LY1) font encoding
http://tug.org/yandy/ly1.htm

[12] Wikipedia article: Windows 1252 encoding
http://en.wikipedia.org/wiki/

Windows-1252

[13] CTAN: Lucida Font metrics
http://ctan.org/pkg/lucida/

[14] Sebastian Rahtz and David Carlisle:
The lucidabr package, November 2005.
http://ctan.org/pkg/psnfssx-luc/

[15] Stephen G. Hartke: A survey of Free Math
Fonts for TEX and LATEX, May 2006.
http://ctan.org/tex-archive/info/Free_

Math_Font_Survey/en/survey.pdf

⋄ Ulrik Vieth
Stuttgart, Germany
ulrik dot vieth (at) arcor dot de

⋄ Mojca Miklavec
Sežana, Slovenia
mojca dot miklavec dot lists (at)

gmail dot com

Ulrik Vieth and Mojca Miklavec

TUGboat, Volume 32 (2011), No. 2 177

MFLua

Luigi Scarso

Abstract

We present a new implementation of METAFONT

which embeds a Lua interpreter. It is fully com-
patible with canonical METAFONT but it has some
internal “sensors”— read-only callbacks— to collect
data for use in possible post-processing. An example
of post-processing that extracts the outlines of some
glyphs is discussed.

1 Introduction

MFLua is an extension of METAFONT that embeds
a Lua [3] interpreter. It doesn’t introduce any new
primitives, so a METAFONT file can be used with
MFLua without any modification to produce exactly
the same result. The Lua interpreter inside MFLua
doesn’t change the internal state of METAFONT in
any way and it’s not reachable from inside META-
FONT. This is a strict requirement: MFLua must be
fully compatible at least with the current release of
METAFONT (which is currently 2.718281).

The Lua interpreter is used to register the data
coming from new “Lua sensors” which are, practi-
cally speaking, read-only callbacks, i.e. functions in-
serted into the Pascal WEB code that call external Lua
scripts, which eventually do nothing. Some sensors
store the same information available with the various
tracing instructions, but others are placed where
there are no tracing instructions; also, not all proce-
dures with tracing instructions have a sensor. The
goal is to collect as much data as possible about the
outlines of a METAFONT picture— typically a glyph.

Important note: Although MFLua is able to
process a full set of characters, it’s still alpha-quality
code: just a bit more than proof-of-concept.

2 The Lua sensors

It’s well-known that LuaTEX embeds a Lua inter-
preter, and it’s relatively simple to read its source
code to find where and how the interpreter is ini-
tialised; this is, moreover, a particular case of a call of
a C function from a Pascal WEB function, which is pos-
sible thanks to the automatic translation from Pascal
WEB to C (the Web2C translator) and it’s widely used
in pdfTEX and in METAFONT too (LuaTEX is now
implemented in CWEB).

2.1 Initialization

The first step is to initialise the Lua interpreter.
This is done by inserting in mf.web the procedure

This article is reprinted from the EuroTEX 2011 proceedings.

mflua_begin_program (without parameters) just af-
ter the begin of the main program; Web2C translates
it to mfluabeginprogram (without “_”) and then the
compiler looks for the symbol among the available
sources. By convention all sensors start with mflua

prefix and they are declared in the header mflua.h
and implemented in the file mflua.c; both the files
are inside the mfluadir folder which also contains
the source of a canonical Lua distribution. Hence, in
mflua.h we have:

extern int mfluabeginprogram();

and mflua.c contains its implementation:

lua_State *Luas[];

int mfluabeginprogram()

{

lua_State *L = luaL_newstate();

luaL_openlibs(L);

Luas[0] = L;

/* execute Lua external "begin_program.lua" */

const char* file = "begin_program.lua";

int res = luaL_loadfile(L, file);

if (res==0) {

res = lua_pcall(L, 0, 0, 0);

}

priv_lua_reporterrors(L, res);

return 0;

}

As we can see, the C function creates a new Lua state
L, saves it in a global variable, loads the standard
libraries (i.e. math, string, etc.) and evaluates the
external file begin_program.lua. This is a common
pattern: the mflua* sensor calls an external script
and evaluates it or its function; the return value is
never used because it can potentially modify the state
of the METAFONT process. In this way we can man-
age the sensor data without recompiling the program.

The script begin_program.lua is quite simple,
just the “greetings” message:

print("mflua_begin_program says ’Hello world!’")

but other scripts are more complex; for example, the
sensor mfluaPRE_fill_envelope_rhs(rhs) has one
input rhs (of type halfword) and its implementation
calls the script do_add_to.lua that contains the
function PRE_fill_envelope_rhs(rhs):

int mfluaPREfillenveloperhs P1C (halfword, rhs)

{ lua_State *L = Luas[0];

const char* file = "do_add_to.lua";

int res = luaL_loadfile(L, file);

if (res==0){

res = lua_pcall(L, 0, 0, 0);

if (res==0){

/* function to be called */

lua_getglobal(L,"PRE_fill_envelope_rhs");

/* push 1st argument */

lua_pushnumber(L, rhs);

MFLua

178 TUGboat, Volume 32 (2011), No. 2

/*do the call (1 arguments, 1 result)*/

res = lua_pcall(L, 1, 1, 0) ;

if (res==0){ /* retrieve result */

int z = 0;

if (!lua_isnumber(L, -1)){

fprintf(stderr,

"\n! Error:function ‘PRE_fill_envelope_rhs’

must return a number\n",lua_tostring(L, -1));

lua_pop(L, 1);/*pop returned value*/

return z;

}else{

z = lua_tonumber(L, -1);

lua_pop(L, 1);/*pop returned value*/

return z;

}

}

}

}

priv_lua_reporterrors(L, res);

return 0; }

Here is the related Lua function PRE_fill_envelope

_rhs(rhs). It’s not important to understand the
details now—suffice it to say that it stores the knots
of an envelope:

function PRE_fill_envelope_rhs(rhs)

print("PRE_fill_envelope_rhs")

local knots, knots_list

local index, char

local chartable = mflua.chartable

knots = _print_spec(rhs)

index = (0+print_int(LUAGLOBALGET_char_code()))

+(0+print_int(LUAGLOBALGET_char_ext()))*256

char = chartable[index] or {}

knots_list = char[’knots’] or {}

knots_list[#knots_list+1] = knots

char[’knots’] = knots_list

chartable[index] = char

return 0; end

As a general rule, every sensor has exactly one
Lua function; the script is loaded and the function is
evaluated each time the sensor is activated (therefore
the script doesn’t maintain state between two calls).
Furthermore, a sensor that has at least one input
must be registered in texmf.defines, so we have
for example
@define procedure mfluaPREfillenveloperhs();

but not
@define procedure mfluabeginprogram(); .

2.2 Exporting WEB procedures via Web2C

The files mflua.h and mflua.c fully define the imple-
mentation of the sensors and also functions needed
to read some of METAFONT’s global data. For ex-
ample, character numbers are stored in the global
METAFONT variables char_code and char_ext, and
Web2C translates them in C as components of the

global array internal with index char_code and
char_ext, so that it’s easy to read them in mflua.c:

static int

priv_mfweb_LUAGLOBALGET_char_code(lua_State *L)

{ integer char_code=18;

integer p=

roundunscaled(internal[char_code])%256;

lua_pushnumber(L,p);

return 1;

}

static int

priv_mfweb_LUAGLOBALGET_char_ext(lua_State *L)

{ integer char_ext=19;

integer p=

roundunscaled(internal [char_ext]);

lua_pushnumber(L,p);

return 1; }

Next, we register both functions in the file mfluaini.
lua as, respectively, LUAGLOBALGET_char_code and
LUAGLOBALGET_char_ext for the Lua interpreter, so
every Lua function can use them:

int mfluainitialize()

{ lua_State *L = Luas[0];

/* register lua functions */

...

lua_pushcfunction(L,

priv_mfweb_LUAGLOBALGET_char_code);

lua_setglobal(L, "LUAGLOBALGET_char_code");

lua_pushcfunction(L,

priv_mfweb_LUAGLOBALGET_char_ext);

lua_setglobal(L, "LUAGLOBALGET_char_ext");

...

return 0; }

In this way we can make available any Pascal
WEB macro, procedure, function, variable, etc.; for
example, the info field of a memory word

/* @d info(#) == mem[#].hh.lh */

/* {the |info| field of a memory word} */

static int priv_mfweb_info(lua_State *L)

{ halfword p,q;

p = (halfword) lua_tonumber(L,1);

q = mem [p].hhfield.v.LH ;

lua_pushnumber(L,q);

return 1; }

which becomes available for Lua as info:

int mfluainitialize()

{ lua_State *L = Luas[0];

/* register lua functions */

...

lua_pushcfunction(L, priv_mfweb_info);

lua_setglobal(L, "info");

...

return 0; }

Of course it’s best to use a minimum set of sensors.

Luigi Scarso

TUGboat, Volume 32 (2011), No. 2 179

2.3 Direct translation of a WEB procedure

Pascal WEB and Lua are not so different and we can
easily translate from one to another. For example,
the WEB procedure print_scaled

@<Basic printing...@>=

procedure print_scaled(@!s:scaled);

{prints scaled real, rounded to five digits}

var @!delta:scaled;

{amount of allowable inaccuracy}

begin if s<0 then

begin print_char("-"); negate(s);

{print the sign, if negative}

end;

print_int(s div unity);

{print the integer part}

s:=10*(s mod unity)+5;

if s<>5 then

begin delta:=10; print_char(".");

repeat if delta>unity then

s:=s+@’100000-(delta div 2);

{round the final digit}

print_char("0"+(s div unity));

s:=10*(s mod unity);

delta:=delta*10;

until s<=delta;

end;

end;

can be translated to Lua as

function print_scaled(s)

local delta

local res = ’’; local done

if s== nil then

print("\nWarning from print_scale

in mfluaini: s is nil");

return res; end

if s<0 then

res = ’-’; s = -s

end

res = res .. print_int(math.floor(s/unity))

-- {print the integer part}

s=10*(math.mod(s,unity))+5

if s ~= 5 then

delta=10; res = res .. ’.’

done = false

while not done do

if delta>unity then

s=s+half_unit-(math.floor(delta/2))

-- {round the final digit}

end

res = res .. math.floor(s/unity);

s=10*math.mod(s,unity);

delta=delta*10;

if s<=delta then done = true end

end;

end

return res

end

3 Collecting data

To properly draw the outline of a glyph we need the
following information:

1. the edge structures, i.e. the pixels of the picture;

2. the paths from the filling of a contour;

3. the paths from the drawing of an envelope with
a pen;

4. the pen used in drawing an envelope.

In fig. 1 we can see these components for the lower
case ‘e’ of Concrete Roman at 5 point.

Figure 1: The components of a glyph.

edges

envelopes
contour

pen

To store the edge structures we put one sensor
into the procedure ship_out(c:eight_bits) that
outputs a character into gf_file:

procedure ship_out(@!c:eight_bits);

...

mflua_printedges(" (just shipped out)",

true,x_off,y_off);

if internal[tracing_output]>0 then

print_edges(" (just shipped out)",

true,x_off,y_off);

end;

The Lua implementation is the function print_edges
(s,nuline,x_off,y_off) in print_edges.lua and
it is the direct translation of the WEB print_edges:

function print_edges(s,nuline,x_off,y_off)

print("\n... Hello from print_edges! ...")

local p,q,r -- for list traversal

local n=0 -- row number

local cur_edges = LUAGLOBALGET_cur_edges()

local y = {}; local xr = {}; local xq = {}

local f, start_row,

end_row ,start_row_1, end_row_1

local edge

MFLua

180 TUGboat, Volume 32 (2011), No. 2

local w,w_integer,row_weight,xoff

local chartable = mflua.chartable

local index; local char

p = knil(cur_edges)

n = n_max(cur_edges)-zero_field

while p ~= cur_edges do

xq = {}; xr = {}

q=unsorted(p); r=sorted(p)

if(q>void)or(r~=sentinel) then

while (q>void) do

w, w_integer,xoff = print_weight(q,x_off)

xq[#xq+1] = {xoff,w_integer}

end

while r ~= sentinel do

w,w_integer,xoff = print_weight(r,x_off)

xr[#xr+1]= {xoff,w_integer}

end

y[#y+1] = {print_int(n+y_off),xq,xr}

end

p=knil(p); n=decr(n);

end

-- local management of y, xq, xr

--f = mflua.print_specification.outfile1

index=(0+print_int(LUAGLOBALGET_char_code()))

+(0+print_int(LUAGLOBALGET_char_ext()))*256

char = chartable[index] or {}

print("#xq=".. #xq)

for i,v in ipairs(y) do

xq,xr = v[2],v[3]

-- for j=1, #xq, 2 do end ??

row_weight=0

for j=1, #xr, 1 do

local xb = xr[j][1]; local xwb = xr[j][2]

row_weight=row_weight+xwb

xr[j][3]=row_weight

end

end

char[’edges’] = char[’edges’] or {}

char[’edges’][#char[’edges’]+1]=

{y,x_off,y_off}

...

return 0

end

As we already said, a Lua script is stateless
during its lifetime, but this doesn’t mean that we
can’t store global variables: it suffices to set up
the global data by means of a sensor that is placed
in the main program just before the sensors that
need the global data. By convention, the global
data are placed in the file mfluaini.lua: they have
the namespace mflua (as in mflua.chartable which
collects the pixels) or the prefix LUAGLOBAL (as in
LUAGLOBALGET_char_code() that we have seen pre-
viously). Also mfluaini.lua hosts some functions
like print_int(n) (print an integer in decimal form,
directly translated from WEB to Lua) and aliases
like knil=info.

The sensors for the contours and the envelope
are more complicated. It’s not easy to find the opti-
mal point where to insert a sensor, and it’s compul-
sory to have the book The METAFONTbook [2] at
hand (and of course also [1]). In this case the starting
point is the procedure do_add_to where METAFONT

decides, based on the current pen, to fill a contour
(fill_spec) or an envelope (fill_envelope); we
can hence insert a couple of sensors before and after
these two points:

procedure do_add_to:

if max_offset(cur_pen)=0 then

begin mfluaPRE_fill_spec_rhs(rhs);

fill_spec(rhs);

mfluaPOST_fill_spec_rhs(rhs);

end

else

begin mfluaPRE_fill_envelope_rhs(rhs);

fill_envelope(rhs);

mfluaPOST_fill_envelope_rhs(rhs);

end;

if lhs<>null then

begin rev_turns:=true;

lhs:=make_spec(lhs,max_offset(cur_pen),

internal[tracing_specs]);

rev_turns:=false;

if max_offset(cur_pen)=0 then

begin mfluaPRE_fill_spec_lhs(lhs);

fill_spec(lhs);

mfluaPOST_fill_spec_lhs(lhs);

end

else

begin mfluaPRE_fill_envelope_lhs(lhs);

fill_envelope(lhs);

mfluaPOST_fill_envelope_lhs(lhs);

end;

end;

...

end;

Both fill_spec and fill_envelope have in turn
another couple of sensors:

procedure fill_spec(h:pointer);

...

mflua_PRE_move_to_edges(p);

move_to_edges(m0,n0,m1,n1);

mflua_POST_move_to_edges(p);

...

end

procedure fill_envelope(spec_head:pointer);

...

mfluaPRE_offset_prep(p,h);

{this may clobber node |q|, if it

becomes ‘‘dead’’}

offset_prep(p,h);

mfluaPOST_offset_prep(p,h);

...

end

Luigi Scarso

TUGboat, Volume 32 (2011), No. 2 181

We will not show the Lua code here; we have
followed the same strategy of the edge structures and
stored the data in the global table mflua.chartable.
The data are Bézier curves {p, c1, c2, q, offset}
which corresponds to the METAFONT path p ..

controls c1 and c2 .. q shifted by offset.
For each character char = mflua.chartable[j]

we have available char[’edges’], char[’contour’]
and char[’envelope’] (the latter with its pen) for
the post-processing.

4 The outlines of the glyphs

Up to this point, things have been relatively easy be-
cause, after all, we have been following the completely
commented Pascal WEB code. The post-processing
phase is easy to explain but more heuristic.

Briefly, for each curve we check (using the table
char[’edges’]) if it is on the frontier of the picture
and cut the pieces that are inside or outside. The
problems stem from the fact that, by cutting a path,
we are left with pending (pendent, drooping) paths
that possibly should be removed; also we must have a
robust algorithm to compute the intersection between
two Bézier curves.

If we put the sensor mflua_end_program just
before the end of the program, we can process the
data collected so far. The script end_program.lua
executes the function end_program() that aims to
extract the contour and append it as a MetaPost
path to the file envelope.tex. We can describe the
strategy as a sequence of three phases: preparation,
compute the intersections, remove unwanted paths.

4.1 Preparation

If we remove the pixels in fig. 1 we can see the
contours, the envelopes and the pens (see fig. 2).
Currently for a pen we will consider the polygonal
closed path that joins the points.

The goal of this phase is to decide when a point
of a path is inside the picture and then split the
path to remove its subpaths that are inside the
picture. The main tool is the de Casteljau algo-
rithm (see, for example [4]): given a Bézier curve
C =

{

(p, c1, c2,q), t ∈ [0, 1]
}

, place b0 = p,b1 =
c1,b2 = c2,b3 = q, the de Casteljau algorithm is
expressed by the recursive formula

{

b0
i = bi

b
j

i = (1− t)bj−i

i + tb
j−1
i+1 ,

for j = 1, 2, 3 and i = 0, . . . , 3− j. For a fixed t = t1
we have

Figure 2: The components of a glyph, without pixels.

Figure 3: Points (very tiny) on the frontier and pixels.

pixels

points

b0
0 b0

1 b0
2 b0

3

b1
0 b1

1 b1
2

b2
0 b2

1

b3
0

where b3
0 is the point on C at the time t1,

Cleft =
{

(b0
0,b

1
0,b

2
0,b

3
0), t ∈ [0, t1]

}

,

and

Cright =
{

(b3
0,b

2
1,b

1
2,b

0
3), t ∈ [t1, 1]

}

.

The Lua function bez(p,c1,c2,q,t) in end_

program.lua is the immediate translation of the
de Casteljau algorithm and returns b30[1],b30[2],
b00,b10,b20,b30,b21,b12,b03 where x = b30[1]
and y = b30[2] are the coordinates of the point at
time t.

The critical issue is to decide when a point is
black and it’s not on the frontier; as we can see in
fig. 3, some points on the frontier are white and some
points are black, so for each one we need to compute
its weight and the weight of its closest neighbors and,
if all of them are black, then the point is black and

MFLua

182 TUGboat, Volume 32 (2011), No. 2

Figure 4: The components of a glyph, after the first
phase.

inside the picture (otherwise it is on the frontier or
outside).

Another problem is that we want a given path
to have “good” intersections with other paths: if we
are too strict we can erroneously mark a point as not
internal—and hence we can lose an intersection—
and if we are too tolerant we can have useless inter-
sections (i.e. intersections that are internal) and the
next phase is unnecessarily loaded.

These are the steps followed in this phase:

1. associate with each path a set of time intervals
that describes when the subpath is not internal;

2. adjust each interval to ensure proper intersec-
tions;

3. split each path in Cleft and Cright that is not
completely internal.

In fig. 4 we can see the result: there are some small
isolated paths that are internal, but we can easily
remove them in the subsequent phases. Also note
the effect of the non-linearity of a Bézier curve: we
adjust the intervals with the same algorithm for both
straight lines and semicircular lines—but the result
cannot be the same.

4.2 Compute the intersections

Given that METAFONT can calculate the intersec-
tions between two paths, it’s natural to use its al-
gorithm, but its translation in Lua or via Web2C is
not cheap. It’s better to write, for each pathi and
pathj , a simple METAFONT program like this one
for i = 2 and j = 1:

batchmode;

message "BEGIN i=2,j=1";

path p[];

p1:=(133.22758,62) ..

controls (133.22758,62.6250003125)

and (133.22758,63.250000800781)

.. (133.22758,63.875001431885);

p2:=(28.40971260273,62) ..

controls (63.349007932129,62)

and (98.28829,62)

.. (133.22758,62);

numeric t,u; (t,u) = p1 intersectiontimes p2;

show t,u;

message "" ;

After running MFLua on this, the log

This is METAFONT, Version 2.718281 [...]

**intersec.mf

(intersec.mf

BEGIN i=2,j=1

>> 0

>> 1

can be easily parsed with Lua.
The number of intersections can be quite large

even if pathi∩pathj = pathj∩pathi and, if we have

n paths, we compute only
n(n− 1)

2
intersections.

For example, the lower case letter ‘s’ of the Concrete
Roman at 5 point has 207 paths, and on an Intel
Core Duo CPU T7250 2GHz with 2GByte, computing
all the 21321 intersections took around 2 seconds—
which was low enough to avoid re-implementing
an intersection algorithm. There is an important
point to understand here: we run MFLua inside an-
other instance of MFLua by means of the Lua func-
tion os.execute(command), hence we must carefully
manage shared resources (i.e. intermediate files for
output such as envelope.tex) by means of synchro-
nization on the filesystem.

4.3 Remove unwanted paths

The last phase is the more heuristic one. The strategy
is to gradually clean up the outlines by identifying a
rule for the paths to be removed and implementing
it with a Lua function. The common data structures
are the set of paths valid_curves, the set of inter-
sections for each path matrix_inters and the set
of pen paths valid_curves_p_set. Every time a
curve is deleted these sets must be updated.

Here is a small example of the rules:

-- remove isolated paths

valid_curves, matrix_inters =

_remove_isolate_path(valid_curves,matrix_inters)

-- remove duplicate paths

valid_curves, matrix_inters =

_remove_duplicate_path_I(valid_curves,

matrix_inters)

Luigi Scarso

TUGboat, Volume 32 (2011), No. 2 183

Figure 5: The components of a glyph, after the last
phase.

-- try to remove pen paths outside

-- the edge structure

valid_curves,matrix_inters =

_open_pen_loop_0(valid_curves,

matrix_inters,

valid_curves_p_set,char)

-- try to remove duplicate pen paths

valid_curves,matrix_inters =

_remove_duplicate_pen_path(valid_curves,

matrix_inters,

valid_curves_p_set)

Some rules are very specific, such as the following
one, which takes care of a missing intersection for
the letter ‘y’ (probably due to an erroneous set of
time intervals):

-- a fix for an error found on ccr5 y

valid_curves,matrix_inters =

_fix_intersection_bug(valid_curves,

matrix_inters)

and hence they are potentially useless for other
glyphs. There are about twenty rules; after their
incorporation the results are the outlines of fig. 5.

Figures 6, 7, 8 and 9 on the following page are
a little gallery of results with these sets of rules.

5 Conclusions

MFLua shows that it’s possible to get the original out-
lines of a METAFONT glyph without advanced mathe-
matical techniques and tracing algorithms. However,
in attempting an automatic conversion of a META-
FONT source into an OpenType font there are so
many details to fix that it’s not opportune to fo-
cus on this for a next release. Here are some more
immediate goals:

1. The sensors must go in a change file mflua.ch
and not in mf.web.

2. MFLua should be buildable for Windows.

3. The function end_program()must be simplified;
we need to test other METAFONT sources.

4. Some features remain to be implemented; for
example, a better approximation for an elliptical
pen (see fig. 8) and errors to fix as in fig. 9.

5. Perhaps the Lua scripts should use kpathsea.

The Lua code needs to be made more consistent for
both variable names and the use of tables as arrays
or hashes (some bugs resulting from the misunder-
standing of indexes as integers rather than strings).

The source code will be available for the next
(XIXth) BachoTEX meeting in Bachotek, Poland.

References

[1] Donald E. Knuth, Computers & Typesetting,
Volume C: The METAFONTbook. Reading,
Massachusetts: Addison-Wesley, 1986.
xii+361pp. ISBN 0-201-13445-4

[2] Donald E. Knuth, Computers & Typesetting,
Volume D: METAFONT: The Program.
Reading, Massachusetts: Addison-Wesley, 1986.
xviii+566pp. ISBN 0-201-13438-1

[3] R. Ierusalimschy, Programming in Lua,
2nd ed. Lua.org, March 2006. Paperback,
328pp. ISBN 13 9788590379829 http:

//www.inf.puc-rio.br/~roberto/pil2.

[4] D. Marsh, Applied Geometry for Computer

Graphics and CAD, 2nd ed. Springer
Undergraduate Mathematics Series, 2005.
xvi+352pp. ISBN 978-1-85233-801-5

⋄ Luigi Scarso
luigi dot scarso (at) gmail dot com

MFLua

184 TUGboat, Volume 32 (2011), No. 2

Figure 6: The ‘g’ of Concrete Roman at 5 point.

Figure 7: The ‘i’ of Concrete Roman at 5 point.

Figure 8: The ‘s’ of Concrete Roman at 5 point.
Note the approximations of the polygonal pen of upper
and lower barb.

Figure 9: The ‘Double leftward arrow’ of Computer
Modern Math Symbols 10 point. An error of the time
intervals breaks the contours.

Luigi Scarso

TUGboat, Volume 32 (2011), No. 2 185

Macro interfaces and the getoptk package

Michael Le Barbier Grünewald

1 Introduction

We present the getoptk macro package for the plain

format. It eases the definition of macros whose inter-
face is similar to the one used by TEX primitives such
as \vrule or \hbox. We discuss some characteristics
of interface styles and a short classification of these
before describing our package. The implementation
of the \readblanks macro, a variant of the primi-
tive \ignorespaces triggering a callback, seems to
us especially interesting.

The getoptk macro package is similar to xkeyval,
in that it allows optional arguments to be specified
as a dictionary. However, it avoids the introduction
of a new syntactic construction for the concrete form
of the dictionary. Instead, it tries to imitate the con-
vention used by \vrule and similar TEX primitives.

2 Literate programming

We use Norman Ramsey’s NOWEB [5] literate pro-
gramming tool to present our code. A file is split up
in chunks, each of which is given an identifier that we
will always write in italics; for example, Definition

of getoptk. In this text, chunk names that are not
also file names are capitalised; although this is not
conventional English syntax, it helps recognising a
chunk name as such in the text.

3 Characteristics of interfaces

The main characteristics of macro interfaces are or-
ganised around the three ideas of concision, robust-

ness and soundness, which in turn are the three
vertices of the following tension triangle:

concision

soundness

robustness

The idea of concision expresses itself in interfaces
encouraging a terse and short way to type in a man-
uscript. Robustness is the ability of an interface to
perform well in a wide range of contexts, especially
nested calls. Sound interfaces mix well in the manu-
script and do not break its homogeneity. They are
easy to memorise and help in having a nice looking
manuscript.

These three ideas are distinct: The \proclaim

macro in plain TEX and the modal behaviour of the
letter example format described in The TEXbook [3]
both put an emphasis on concision but break ro-

bustness and soundness. The verbatim environment
in LATEX is sound and concise but not robust. If ro-
bustness is needed in a verbatim typesetting job, we
may rely on the usual markup and named characters
to input our data: we get a sound and robust answer
to our problem, but this lacks concision.

Remarks:

1. Lexical analysis techniques can be used to build
concise macro interfaces, often at the price of
robustness. This loss is easily circumvented by
cleanly separating the lexical analysis part and
the processing part of the macro job.

2. Concise interfaces help in producing a text that
is easy to maintain. The maintainability burden
caused by the lack of concision of an interface
can sometimes be ameliorated by a third party
tool — e.g., the code pretty-printer included in
the literate programming tool WEAVE [4] — used
to automatically generate parts of the text using
a non-concise macro set.

3. Sound interfaces make life easier for third party
software processing TEX manuscripts.

4 Bestiary

Let us quickly review different styles of familiar in-
terfaces and means to define macros using them.
Note that many macros do not use purely one of
the styles of interface described below, but rather a
combination of them.

4.1 Simple

In the simple interface style, the control sequence is
followed by its arguments, each one being either a
token or a group. Macros using the simple interface
style are defined by the \def primitive:

\def\example#1#2{%

This replacement text uses #1 and #2.

}

4.2 Delimited

Macros using the delimited interface style take ad-
vantage of the ability of \def to be given somewhat
arbitrary argument delimiters. This feature lets the
macro usage blend smoothly in the surrounding text.
A popular example is the \proclaim macro defined
in plain:

\proclaim Theorem 1. {\TeX} has a powerful

macro capability.\par

This macro has two delimited arguments, one start-
ing right after the \proclaim control sequence and
running to the first dot on the line, the second start-
ing after the point and ending with the current para-
graph, signalled by a double carriage return or an

Macro interfaces and the getoptk package

186 TUGboat, Volume 32 (2011), No. 2

explicit \par as in the example above. If \proclaim

were designed to use the simple interface style, the
previous usage example would have look like this:

\proclaim{Theorem 1}{{\TeX} has a powerful

macro capability.}

4.3 Register

The register interface style relies on registers and
control sequences instead of formal arguments to
pass informations to the macro. With a hypothetical
implementation of \proclaim using this interface
style, the previous example could be:

\def\proclaimlabel{Theorem 1}

\def\proclaimtext{{\TeX} has a powerful

macro capability.}

\proclaim

This use of global variables, as it is often referred to
in classical programming languages, usually breaks
the ability of a macro to support nested calls. This
is not always a problem in TEX, where modifications
of registers can be made local to a group. There is
a realm where this use of global variables is often
the rule: machine level programming. Indeed, many
BIOS or OS functions on PCs are serviced through
software interruptions. In the typical case, the regis-
ters of the machine are assigned values corresponding
to the parameters of the call, and the interruption is
then triggered.

Some interactions with the typesetting engine
TEX are achieved through the use of dedicated reg-
isters. Using a register style for the interface of
a macro may give the user a feeling he is interacting
with TEX as a machine. This style may be appro-
priate for font selection schemes and other “system
services”. The main macro of our package partially
uses this interface style.

There is no special provision needed to define
a macro using such an interface, though some pack-
ages, including getoptk, provide the user with spe-
cialised macros used to set the values of the registers.

4.4 Keyword

The TEX primitives \hrule, \vrule, \hbox, \vbox

and \vtop use a special interface style that we call
the keyword interface style. A typical call to the
\hrule primitive is:

\hrule width 12pt depth 2pt height 10pt

Each parameter to the call is introduced by a key-
word, then comes the actual parameter associated to
the keyword. Keywords have no fixed order and it is
possible to repeat the same keyword more than once
or to omit some or all of them. It is a very flexible

way to pass arguments to macros, similar to labels in
the OCaml programming language. Unluckily, there
is no facility in TEX itself or in plain to define macros
using this interface style. The second part of this
paper presents such a facility. A close variant of
this style is the keyval style discussed hereafter and
whose popularity among LATEX hackers is increasing.

4.5 Starred

Macros having a starred variant are well known to
LATEX users. Structure domain related macros, such
as \chapter or \section, usually have a starred
variant whose behaviour is similar to the original
version but does not produce an entry in the table of
contents of the document or receive a section number.
The use of a macro using this interface style and the
simple interface style is illustrated by the following
line of code:

\section*{Introduction}

Starred variants of macros are supported by the pre-
ferred LATEX methods for creating new macros. Any
macro defined by \newcommand can use the pseudo-
predicate \@ifstar to check for itself being called
with a star or not.

4.6 Bracket

A common feature found in interfaces to macros
defined in LATEX is the use of a bracketed optional
argument. We call this the bracket style interface.
The \cite macro defined by LATEX uses this interface
style and the simple one, as illustrated by:

\cite[Theorem~1]{TEXBOOK}

The definition of macros using this style of interface
is supported in LATEX by \newcommand, where the
\cite command used above could have been (but
was not) defined by

\newcommand{\cite}[][1]{...}

4.7 Keyval

The keyval interface style is named after a popular
LATEX package keyval by David Carlisle [2] and its
successor xkeyval by Hendri Adriaens [1].

Macros using this interface style allow options
of the form key=value; a sample use is:

\mybox[text=red,left=5pt]{some text}

It is easy to define macros using this interface style
with the xkeyval package, which is available to plain

and LATEX users. This interface is probably unsound
in a plain TEX document but may fit well in a LATEX
document, since the notation it uses is reminiscent
of the one used for package arguments.

Michael Le Barbier Grünewald

TUGboat, Volume 32 (2011), No. 2 187

5 Presentation of the package

We now describe the interface and the implementa-
tion of the getoptk package. Our goal is to provide
users of getoptk with an easy way to define macros
using the keyword interface style described above.
This style is a very flexible way to pass arguments
to macros and already used by TEX primitives. The
use of this style therefore favours soundness of the
interface.

Rather than presenting a formal specification
of our macros, let us take a look at an example of
utilisation and use that as a basis to discuss the
features and the operation of the package.

5.1 Usage example

We show how to use getoptk to define \example, a
macro having a mandatory argument and accepting
optional arguments in the keyword interface style.

〈example.tex〉 ≡
\input getoptk

\catcode‘\@=11

〈Dictionary definition〉
〈Main definition〉
〈Usage〉
〈Usage equivalence〉
\bye

We need first to read the getoptk package. In the code
chunk Dictionary definition we require the creation
of a new optional argument dictionary that we fill
with bindings between keywords and behaviours. In
the following, we refer to a dictionary of this kind as
a behaviour dictionary. We then define the \example

command itself where the magic happens in Main

definition and add a few examples in Usage and their
replacement text after the call to \getoptk in Usage

equivalence.
Note that we use private names containing @

in this example, thus the example starts with the
familiar \catcode mantra.

We require the creation of a fresh behaviour dic-
tionary — a data structure represented by a control
sequence — with \newgetoptkdictionary to bind
keywords to behaviours. In this example, the bind-
ing operations are performed by the commands

\defgetoptkflag,
\defgetoptkbracket and
\defgetoptkcount.

The bindings are written in the dictionary associ-
ated with example because it is the last one cre-
ated. (It is possible to choose another dictionary
with \setgetoptkdictionary.) The binding mac-
ros mix the register interface style and the simple
one. This is convenient because this avoids repeating

the argument example each time a binding macro
is called and there is no plausible usage scenario
involving nasty nested calls.

〈Dictionary definition〉 ≡
\newgetoptkdictionary{example}

\defgetoptkflag{alpha}{(alpha)}

\defgetoptkflag{beta}{(beta)}

\defgetoptkcount{gamma}{(gamma #1)}

\defgetoptkbracket{delta}{%

\ifgetoptkbracket

(delta "#1")%

\else

(delta)%

\fi}

Each binding macro has two arguments: a key-

word, that consists of a sequence of catcode 11 to-
kens, and a behaviour, a valid replacement text for
a macro. The binding macro arranges things so that
each occurrence of the keyword seen in the call to
\example triggers the evaluation of the correspond-
ing behaviour. Before we give more details on this
triggering mechanism and the semantics of the bind-
ing, let us look at the definition of \example:

〈Main definition〉 ≡
\def\example{%

\setgetoptkdictionary{example}%

\getoptk\example@M}

\def\example@M#1#2{%

\par\noindent[{\tt #1}][#2]}

We see that the definition of \example is basically
a call to \example@M, supervised by \getoptk. The
task of \getoptk is to look for keywords on the
input stream and aggregate the corresponding be-
haviours and arguments. The resulting aggregate
is then given as the first argument to \example@M.
Before we pass control to \getoptk, we first use
\setgetoptkdictionary to activate the behaviour
dictionary defined above.

Returning to the above Dictionary definition,
the two calls to \defgetoptkflag bind the key-
words alpha and beta with the behaviours (alpha)

and (beta). These are saved as the replacement
texts of \getoptk@behaviour@example@alpha and
\getoptk@behaviour@example@beta. Given this,
\getoptk arranges things so that the sequence:

〈Usage〉 ≡
\example beta alpha {omega}

expands to:

〈Usage equivalence〉 ≡
\example@M{%

\getoptk@behaviour@example@beta

\getoptk@behaviour@example@alpha

}{omega}

Macro interfaces and the getoptk package

188 TUGboat, Volume 32 (2011), No. 2

The call to \defgetoptkcount binds gamma to the
behaviour (gamma #1) but also notes that the gamma

keyword must be followed by an integer — a valid
right-hand-side for count registers. This integer will
replace the formal paragraph #1 when behaviours
are triggered.

The last binding of our example is performed by
\defgetoptkbracket, that defines a keyword admit-
ting an optional bracketed argument. As illustrated
by our example, the behaviour uses the predicate
\ifgetoptkbracket to test for the presence of an
optional argument. This is a true predicate created
by the \newif command. The sequence

〈Usage〉+≡
\example gamma 2 delta [10] {omega}

then expands to

〈Usage equivalence〉+≡
\example@M{%

\getoptk@behaviour@example@gamma{2}%

\getoptkbrackettrue

\getoptk@behaviour@example@delta{10}%

}{omega}

The \getoptk command is generous in accepting
white space. In the following example, both calls to
\example are expanded the same way.

\example delta[2]gamma10beta{omega}

\example delta [2] gamma

10 beta {omega}

The getoptk package provides more binding macros,
reading dimensions or tokens, and it is also possible
to create new ones (6.6).

5.2 Criticism of the interface

We criticise the interface of a macro using \getoptk

to get its optional arguments, in view of the three
characteristics we isolated in the introduction:

soundness holds, because the interface mimics the
behaviour of some TEX primitives;

concision is as respected as it can, but the interface
to a macro admitting a large number of optional
arguments cannot be that concise;

robustness seems to hold, and it is also possible
to circumvent the direct use of \getoptk and
directly construct the resulting call, as demon-
strated by the Usage equivalence chunks above.

6 Implementation

We dive here into the deepest part of the job.

6.1 Overview

There are three important parts in the implementa-
tion. The Definition of getoptk and the elaboration

of dedicated Lexical analysis procedures will almost
entirely capture our attention. It is also useful to
define macros manipulating Behaviour dictionaries:
the techniques used there are very similar to those
used in list processing [3, p. 378] and we will not
give many details. In these three parts, there are a
few short macro definitions that may have a general
usefulness, we gather them in Ancillary definitions.

〈getoptk.tex〉 ≡
\catcode‘\@=11

〈Ancillary definitions〉
〈Lexical analysis procedures〉
〈Definition of getoptk〉
〈Behaviour dictionaries〉
\catcode‘\@=12

The very special nature of TEX programs forbids the
use of literate programming techniques to describe
the flow of the procedure. We use instead an imper-
ative pseudo-code notation, where d stands for the
active behaviour dictionary and c is the argument
given to \getoptk, the callback taking control of the
execution flow after \getoptk completes its task.

Algorithm 1 Workflow of getoptk

x← ∅ {accumulator}
f ← true {loop flag}
while f do

k ←〈incoming tokens〉
5: if k is bound in d then

b← behaviour of k

a← argument of k

stack b and a on x

else

10: f ← false

apply c to x

process tokens in k

end if

end while

The work needed to implement this simple procedure
falls in three categories. First, we have to manipulate
data structures. The easiest way to do this is to use
registers to store arguments and output of procedures
manipulating the data structure. There is no special
difficulty in this lengthy task. Second, structured
programming in TEX is always an involved task,
since the decision parts of the code have to put the
bits whose processing they require on the stream
of incoming tokens. We end up with many short
macros mutually calling themselves. Again, there is
no real difficulty here but rather a code organisation
problem. Third, there are a few tricks in the lexical
analysis techniques used (6.7).

Michael Le Barbier Grünewald

TUGboat, Volume 32 (2011), No. 2 189

6.2 Ancillary definitions

We use many short macros whose definition can be
found in The TEXbook, such as \gobble:

〈Ancillary definitions〉 ≡
\def\gobble#1{}

〈More ancillary definitions〉

We also need \cslet, \elet and \csdef but omit
the definition of these classical macros here. Instead
we proceed to the definition of \tokscat used later
in the text to concatenate two token registers into a
third, as in

\tokscat\toks0 &\toks2\to{\toks0}

Note the space after the first occurrence of the char-
acter 0, it is mandatory to put a space there if you
do not use a named token register.

〈Ancillary definitions〉+≡
\def\toksloadcsexpansion#1\to#2{%

#2=\expandafter{#1}}

\def\tokscat#1\to#3{%

\beginnext

\edef\tokscat@a{\the#1\the#2}%

\toks2={#3}%

\toksloadcsexpansion\tokscat@a

\to{\toks4}%

\edef\next{\the\toks2={\the\toks4}}%

\endnext}

This control sequence is similar to \concatenate [3,
p. 378] concatenating two lists.

6.3 Description of behaviour dictionaries

A behaviour dictionary is a list of triples represented
like this:

\\{{〈keyword〉}{〈parser〉}{〈behaviour〉}}

We already discussed the keyword and behaviour

fields (5.1) but there is a new feature. The parser

field contains a control sequence whose job is to read
the argument associated with keyword, removing its
tokens from the input stream and storing them in a
dedicated token register:

〈Definition of getoptk〉 ≡
\newtoks\getoptkargument

Once the parser has completed its task, it gives con-
trol back to getoptk by calling \getoptkcallback.

The \getoptk macro requires that a valid be-
haviour dictionary be stored in \getoptkdictionary

before it is called. The \setgetoptkdictionary

macro can be used for this; it is defined in Behaviour

dictionaries, together with macros used in Dictionary

definition from the usage example (5.1).

6.4 Definition of entry and exit blocks

The main piece of code is divided into many small
macros, whose names consist of a common prefix
getoptk followed by the private namespace character @

and a capital letter. This notation is inspired by
assembly languages providing local labels (usually
denoted by a single digit). Using this notation puts
the emphasis on all these macros being private pieces
of a larger entity. The letter is sometimes chosen
according to the function of the code (continue, end
or exit, loop, main, predicate) but most of the time,
letters are simply used in sequence, from A to Z.
Small letters are used for private variables. Here is
the, somewhat deceiving, definition of \getoptk:

〈Definition of getoptk〉+≡
\def\getoptk#1{%

\beginnext

\toks0={#1}%

\toks2={}%

\toks4={}%

\toks6={}%

\getoptkargument={}%

\getoptk@L}

The argument of \getoptk is a callback, it is saved
in \toks0, that corresponds to c in Algorithm 1. The
content of \getoptkargument and some scratch reg-
isters are erased. The register \toks2 plays the role
of the accumulator x. The first token of the replace-
ment text is \beginnext, which has not yet been
defined. As its name suggests, it has a companion
macro \endnext:

〈Ancillary definitions〉+≡
\def\beginnext{%

\begingroup

\let\next\undefined}

\def\endnext{%

\expandafter\endgroup\next}

This kind of construction is familiar to TEX pro-
grammers using \edef constructs: it allows the easy
opening of a group inside which we are allowed to
play all kinds of register-based games and finally use
\edef to compute an appropriate replacement text
for \next. The exit block of our procedure is:

〈Definition of getoptk〉+≡
\def\getoptk@E{%

\edef\next{%

\the\toks0{\the\toks2}%

\the\toks4}%

\endnext}

We already know that \toks0 holds the callback reg-
istered by the user who called \getoptk, and \toks2

the material gathered so far by the whole procedure.

Macro interfaces and the getoptk package

190 TUGboat, Volume 32 (2011), No. 2

Register \toks4 corresponds to k in Algorithm 1 and
contains tokens that were removed from the input
stream but failed to compare with a keyword bound
in the active behaviour dictionary. Please take a
look again at the first example of usage discussed
above (5.1):

\example beta alpha {omega}

When the \getoptk procedure completes it ulti-
mately calls \getoptk@E. Right after the evaluation
of \edef the replacement text of \next is

\example@M{%

\getoptk@behaviour@example@beta

\getoptk@behaviour@example@alpha}

which \expandafter puts again in the stream of
incoming tokens, therefore replacing the original se-
quence \example beta alpha.

6.5 Definition of the main loop

We read the incoming tokens that may stand for a
keyword. For this, we use two custom lexical analysis
procedures (6.7): \readblanks that discards blanks
on the input stream and \readletters that gathers
tokens with catcode = 11 in a register.

〈Definition of getoptk〉+≡
\def\getoptk@L{%

\readblanks\then\getoptk@A\done}

\def\getoptk@A{%

\readletters\to\toks4\then

\getoptk@B

\done}

We now look for the keyword stored in \toks4 in the
dictionary \getoptkdictionary, using the classical
list scanning technique described in The TEXbook [3,
p. 378].

〈Definition of getoptk〉+≡
\def\getoptk@B{%

\let\getoptk@N\getoptk@E

\let\\\getoptk@S

\getoptkdictionary

\getoptk@N}

The scanning macro \getopk@S first unpacks its ar-
gument into a triple

\\{{〈keyword〉}{〈parser〉}{〈behaviour〉}}

The real work happens in \getoptk@T, which sets the
value of the \getoptk@N callback to a value requiring
the lecture of an argument to keyword with parser.
Two values for the parser field have a special meaning:
an empty value means no argument, while [] means
a bracketed optional argument.

〈Definition of getoptk〉+≡
\def\getoptk@S#1{\getoptk@T#1}

\def\getoptk@T#1#2#3{%

\edef\getoptk@a{\the\toks4}%

\def\getoptk@b{#1}%

\def\getoptk@p{#2}%

\ifx\getoptk@a\getoptk@b

\let\\\gobble

\toks6={}%

\toks8={#3}%

\def\getoptk@N{#2}%

\def\getoptk@a{}%

\ifx\getoptk@p\getoptk@a

\let\getoptk@N\getoptkcallback

\fi

\def\getoptk@a{[]}%

\ifx\getoptk@p\getoptk@a

\let\getoptk@N\getoptk@O

\fi

\fi}

Each parser must end with a call to the callback
\getoptkcallback that is in charge of aggregating
behaviours and their arguments in the accumula-
tor \toks2. It relies on \tokscat to concatenate
two token registers. The \getopk@O parser uses
the register \toks6 to communicate the position
of \ifgetoptkbracket to \getoptkcallback. The
old value of \getoptk@p defined in \getoptk@T is
used to recognise the case when we did not have to
gather an argument. Ultimately, we branch to the
main loop \getoptk@L again.

〈Definition of getoptk〉+≡
\def\getoptkcallback{%

\tokscat\toks2 &\toks6\to{\toks2}%

\tokscat\toks2 &\toks8\to{\toks2}%

\def\getoptk@a{}%

\ifx\getoptk@p\getoptk@a

\toks6={}%

\else

\edef\getoptk@N{%

\toks6={%

{\the\getoptkargument}%

}%

}%

\getoptk@N

\fi

\tokscat\toks2 &\toks6\to{\toks2}%

\getoptk@L}

6.6 Definition of parsers

The final step is the definition of parsers. Here is the
one associated with keywords admitting an optional
bracketed argument.

〈Definition of getoptk〉+≡
\newif\ifgetoptkbracket

Michael Le Barbier Grünewald

TUGboat, Volume 32 (2011), No. 2 191

\def\getoptk@O{%

\readblanks\then

\futurelet\getoptk@t\getoptk@P

\done}

\def\getoptk@P{%

\ifx\getoptk@t[%]

\toks6={\getoptkbrackettrue}%

\let\getoptk@N\getoptk@Q

\else

\toks6={\getoptkbracketfalse}%

\let\getoptk@N\getoptkcallback

\fi

\getoptk@N}

\def\getoptk@Q[#1]{%

\getoptkargument={#1}%

\getoptkcallback}

We next define a meta-parser and use it to define
a parser for integers. This meta-parser gives access
to internal TEX parsers associated with the various
types of registers: to parse a value that is a valid right-
hand-side for a dimen register, it must be provided a
scratch dimen register, and so on. The value of this
register is modified within a group, so any register
is suitable as an argument for the meta-parser.

〈Definition of getoptk〉+≡
\def\getoptkmetaparser#1{%

\def\getoptkmetaparser@r{#1}%

\afterassignment\getoptkmetaparser@A

#1}

\def\getoptkmetaparser@A{%

\beginnext

\toks2=\expandafter{%

\getoptkmetaparser@r

}%

\edef\next{%

\noexpand

\getoptkmetaparser@B{\the\toks2}%

}%

\endnext}

\def\getoptkmetaparser@B#1{%

\edef\getoptk@N{%

\getoptkargument={\the#1}%

}%

\getoptk@N

\getoptkcallback}

\def\getoptkcountparser{%

\getoptkmetaparser{\count0 }}

〈Definition of getoptk〉+≡
〈More parsers〉

We similarly define

\getoptkdimenparser,
\getoptkskipparser and
\getoptktoksparser

in More parsers, but omit these details.
It is possible to define new parsers by following

the pattern of \getoptcallback: use a \beginnext/
\endnext pair to read the argument and then arrange
for \next to expand to

\getoptkargument={argument}\getoptkcallback.

6.7 Lexical analysis procedures

We define two macros performing a simple task re-
lated to lexical analysis. The first one, \readblanks,
has the seemingly simple task of discarding blank
tokens on the input stream and triggering a callback
when it finds the first non-blank token. The second
one, \readletters, gathers in a register the largest
prefix of catcode 11 tokens found in the input stream,
and triggers a callback.

The TEX primitive \ignorespaces does not sup-
port any callback. Thus we have to implement a
macro of our own achieving this effect. It is not as
easy as it seems, though at a high level, the task
looks straightforward. We denote our callback by c:

Algorithm 2 Reading white space

f ← true

while f = true do

t← incoming token
if t is a space or a newline token then

discard t

else

f ← false

end if

end while

trigger c

We use \futurelet to scan incoming tokens and
therefore need to bind a space token and a newline
token to some control sequences. We can then ap-
ply \ifx to compare the incoming token and these
control sequences. Binding these tokens to control
sequences cannot be done with a simple \let as they
would then be overlooked by TEX. But a clever use
of \futurelet will do:

〈Lexical analysis procedures〉 ≡
\begingroup

\catcode‘*=13

\def*#1{}

\global\futurelet\spacetoken*^^20\relax

\global\futurelet\newlinetoken*^^0a\relax

\endgroup

The main loop uses \futurelet to get an incom-
ing token and test it in turn against \spacetoken,
\newlinetoken, \par and \input to make the deci-
sion of exiting the loop with \readblanks@E, discard-
ing a blank with \readblanks@S or a paragraph with

Macro interfaces and the getoptk package

192 TUGboat, Volume 32 (2011), No. 2

\readblanks@I, or expanding an \input command
with \readblanks@X.

〈Lexical analysis procedures〉+≡
\def\readblanks\then#1\done{%

\beginnext

\def\next{#1}%

\readblanks@L}

\def\readblanks@L{%

\futurelet\readblanks@t\readblanks@A}

\def\readblanks@A{%

\let\readblanks@N\readblanks@E

\ifx\readblanks@t\spacetoken

\let\readblanks@N\readblanks@S

\fi

\ifx\readblanks@t\newlinetoken

\let\readblanks@N\readblanks@S

\fi

\ifx\readblanks@t\par

\let\readblanks@N\readblanks@I

\fi

\ifx\readblanks@t\input

\let\readblanks@N\readblanks@X

\fi

\readblanks@N}

\def\readblanks@E{\endnext}

The actual discard of a space token requires a small
trick. An easy way to discard a general token is to
use a macro ignoring its argument: this will not work
here, because space tokens are ignored by TEX as
it searches the input stream for a macro argument.
An assignment to a counter register will consume a
space token following it: the space we want to get
rid of then marks the end of a numeric constant and
is discarded. We use \afterassignment to regain
control after this.

〈Lexical analysis procedures〉+≡
\long\def\readblanks@S{%

\afterassignment\readblanks@L

\count0=0}

The two last choices, ignore and expand, are readily
implemented:

〈Lexical analysis procedures〉+≡
\def\readblanks@I#1{%

\readblanks@L}

\def\readblanks@X{%

\expandafter\readblanks@L}

〈Lexical analysis procedures〉+≡
〈Definition of readletters〉

Our second analysis procedure \readletters gath-
ers tokens with catcode 11 in a register and trig-
gers a callback. It is much like \readblanks, a
\futurelet-based loop. We will not reproduce it
here.

7 Conclusion

We’ve surveyed macro interface styles and imple-
mented the interface used by \vrule, etc., for plain
TEX. We hope this will be of use to other macro
writers.

⋄ Michael Le Barbier Grünewald

Hausdorff Center for Mathematics

Villa Maria Endenicher Allee 62

D 53 115 Bonn

Germany

michi (at) mpim-bonn dot mpg dot de

References

[1] Hendri Adriaens, The xkeyval package. 2008.
http://mirror.ctan.org/macros/latex/

contrib/xkeyval

[2] David Carlisle, The keyval package. 1999.
http://mirror.ctan.org/macros/latex/

required/graphics

[3] Donald E. Knuth, The TEXbook. Addison
Wesley, Massachusetts. Corrected edition, 1996.

[4] Donald E. Knuth, The Web System of

Structured Documentation. 1983.

[5] Norman Ramsey, Noweb: A Simple, Extensible

Tool for Literate Programming. http:

//www.cs.tufts.edu/~nr/noweb

Michael Le Barbier Grünewald

TUGboat, Volume 32 (2011), No. 2 193

The cals package: Multipage tables

with decorations

Oleg Parashchenko

Abstract

Tables are one of the most complicated parts of any
typesetting or publishing system, and LATEX is no
exception. There are a number of packages related
to tables, but so far the following goal has been
unreachable: to automatically typeset huge, complex
and attractive tables.

The new package cals makes this possible.

1 Introduction

I use TEX as an alternative to XSL-FO [2] for pub-
lishing XML as PDF. The customers do not care
about LATEX restrictions and guidelines (for example,
“never use vertical rules” from booktabs [4]); they
demand their specified layout. I failed to implement
their complex requirements for tables using existing
LATEX packages and decided to write my own. The
name “cals” comes from “CALS Table Model” [1], a
standard for table markup in XML.

The key features are:

• huge tables
• spanned cells
• decorations
• automatic typesetting

Different table packages implement different ap-
proaches to break a table across pages; see the TEX
FAQ [8], “Tables longer then a single page”. The
cals package typesets the current row in memory,
checks if the rest of the page is enough for the row,
forces a page break if required, and finally flushes
the row. This way, only a bit of memory is required,
and therefore tables can be long. As a downside, the
widths of columns need to be provided by the user.

The TEX code for tables is supposed to be gen-
erated automatically, therefore the syntax is not
traditional and maybe not convenient for manual
coding. Instead of dividing a row into cells using &,
each cell is introduced by a named command.

The implementation of decorations is unique
throughout TEX, to my knowledge. Table rules are:

• style-driven and
• context-sensitive.

A stylesheet defines how a typical table looks.
The user need only give cells; the decorations do or
do not appear automatically. The width of a border
depends on its location; it is different for the table
frame and for the header separator line.

The cals package has many features, but some
unusual requirements might not be supported. If

you want to make changes or just look at the im-
plementation, the source code and support files are
available at http://github.com/olpa/tex/ in the
directory cals.

2 User’s guide

This section

• provides a summary of the cals commands,
• shows how to use the commands, and
• suggests compatibility strategies.

A complete document demo.tex (demo.pdf [6],
also on CTAN) from the package documentation con-
tains examples of:

• a simple table,
• decoration control,
• cell spanning, and
• a multipage table inside a multicols

environment inside a table.

2.1 Summary

First, an overview of cals commands. Details and
examples follow.

Table elements:

\thead, \tfoot

\tbreak{\penalty-10000}

\lastrule

Alignment:

\alignL, \alignC, \alignR

\vfill

Padding (lengths):

\cals@setpadding{Ag}

\cals@paddingL, \cals@paddingT

\cals@paddingR, \cals@paddingB

\cals@setcellprevdepth{Al}

\cals@paddingD

Color:

\cals@bgcolor

Rules (macros as lengths):

\cals@cs@width, \cals@rs@width

\cals@framecs@width, \cals@framers@width

\cals@bodyrs@width

\cals@borderL, \cals@borderT

\cals@borderR, \cals@borderB

Hooks:

\cals@AtBeginCell, \cals@AtEndCell

Spanning:

\nullcell

\spancontent

The cals package: Multipage tables with decorations

194 TUGboat, Volume 32 (2011), No. 2

2.2 Simple tables

Sample code:

\par

\begin{calstable}

\colwidths{{50pt}{100pt}}

\brow \cell{a} \cell{b} \erow

\brow \cell{c} \cell{d} \erow

\end{calstable}

a b

c d

Basics:

• Tables are created with the environment
calstable.

• Column widths must be specified explicitly.

• Each row is marked by the \brow...\erow pair.

• Individual cells are specified by the command
\cell.

And more specifics:

• Tables must start in vertical mode.

• Cells are vboxes, i.e., TEX uses restricted vertical
mode to typeset the content.

• Changes inside \cell{...} are local.

• The macros \cals@AtBeginCell and
\cals@AtEndCell are called at the boundaries
of a cell group.

• The pair \brow...\erow does not make an
implicit group. All changes are active till the
end of the table.

2.3 Multipage tables

Cals tables are split over pages automatically. Such
tables benefit from repeatable headers and footers,
specified by the commands \thead and \tfoot.

\begin{calstable}

\colwidths{{50pt}{100pt}}

%

\thead{\bfseries\selectfont

\brow \cell{col1} \cell{col2} \erow

\mdseries\selectfont}

\tfoot{\lastrule\nointerlineskip

\textit{\strut Some table caption

(not implemented: PartKofN)}\par}

%

\brow \cell{r1,col1} \cell{r1,col2} \erow

\brow \cell{r2,col1} \cell{r2,col2} \erow

\brow \cell{r3,col1} \cell{r3,col2} \erow

\tbreak{Manual table break!\strut\par}

\brow \cell{r4,col1} \cell{r4,col2} \erow

\brow \cell{r5,col1} \cell{r5,col2} \erow

...1000 rows...

\end{calstable}

col1 col2

r1,col1 r1,col2

r2,col1 r2,col2

r3,col1 r3,col2

Some table caption (not implemented: PartKofN)
Manual table break!

col1 col2

r4,col1 r4,col2

r5,col1 r5,col2

. . . 1000 rows . . .
Some table caption (not implemented: PartKofN)

Comments:

• \thead and \tfoot must be given before the
table body.

• Small distraction: text is bold in the header and
is reset before the body starts.

• \thead and \tfoot can contain any vertical
material. In such a case, \tfoot should use the
command \lastrule where the table ends, so
the code decorates the table correctly.

• I’d like to implement “Part K of N ” functionality,
but can’t say when it will happen.

As long as the current row plus the footer fits
on the rest of the page, there is no page break. Oth-
erwise, cals emits the footer, page break, the header,
and only then the current row.

A manual table break can be made using the
command \tbreak{〈smth〉}, where 〈smth〉 is what
to emit between the footer and the next header. Most
likely, it is \vfill\break.

2.4 Alignment

To left, center, or right-align the content of a cell,
use \alignL, \alignC or \alignR, respectively. The
default is left-alignment. To vertically align a cell to
the middle or bottom, add \vfil or \vfill before
the cell content.

\begin{calstable}

\colwidths{{60pt}{60pt}{60pt}}

\def\cals@framers@width{0.4pt}

\def\cals@framecs@width{0.4pt}

%

\brow

\alignR \cell{\vfill right, bottom}

\alignC \cell{\vfil center, middle}

\alignL \cell{left, top}

\ht\cals@current@row=50pt

\erow

\end{calstable}

Oleg Parashchenko

TUGboat, Volume 32 (2011), No. 2 195

right,
bottom

center,
middle

left, top

For demonstration purposes, the example sets the
height of rows. This is an undocumented and un-
planned feature. You should not rely on it.

2.5 Padding

Padding depends on the current font and is calculated
when a table starts. If you change a font inside a
table, it is a good idea to update the padding:

\cals@setpadding{Ag}

\cals@setcellprevdepth{Al}

The first command sets the left, top, right and bot-
tom padding: \cals@paddingL, \cals@paddingT,
\cals@paddingR, and \cals@paddingB, respectively.
The value is half of the height of the argument. The
second command sets the length \cals@paddingD,
which helps to align baselines in a row. More details
on the ‘Ag’ and ‘Al’ are discussed later.

\fontsize{20pt}{22pt}\selectfont

...

\begin{calstable}

\colwidths{{70pt}{70pt}{70pt}}

%

\fontsize{10pt}{12pt}\selectfont

\brow

\cell{Padding} \cell{is too} \cell{big}

\erow

%

\cals@setpadding{Ag}

\cals@setcellprevdepth{Al}

\brow

\cell{This} \cell{padding}

\cell{is better}

\erow

%

\setlength{\cals@paddingT}{0pt}

\setlength{\cals@paddingB}{0pt}

\brow

\cell{Zero padding} \cell{aaaaaa}

\setlength{\cals@paddingD}{-10000pt}

\cell{aaaaaa}

\erow

\end{calstable}

Padding is too big

This padding is better

Zero padding aaaaaa aaaaaa

In this example, we make the table font smaller then
the document font. In the first row, the padding
is too big. Then the padding is updated, and the
second row looks better. In the third row, the top
and bottom padding are set to zero. However, the
second cell has additional space at top to align the
baseline. To omit this, the length \cals@paddingD

is disabled in the third cell.

2.6 Colors and rules

Specifying a color is straightforward: if the macro
\cals@bgcolor is non-empty, its value is the name
of the cell color.

The width of a cell border (rule) depends on the
context:

• The usual borders get widths from the macros
\cals@cs@width and \cals@rs@width.

• The table frame uses \cals@framecs@width and
\cals@framers@width.

• The separation between the table body and its
header or footer is \cals@bodyrs@width.

The default settings are correspondingly 0.4pt

(the usual line for usual cells), 0pt (table frame is
absent) and 1.2pt (header and footer are delimited
by a thick line). All the borders are “phantoms” and
do not affect layout.

Border types are further divided into subtypes:
cs means “column separation” (left and right bor-
ders), and rs means “row separation” (top and bot-
tom borders).

Finally, there are overrides. If any of the macros
\cals@borderL, \cals@borderT, \cals@borderR, or
\cals@borderB are defined, they specify the width
of the left, top, right or bottom border, ignoring the
cell’s context. By default, these macros are assigned
\relax and are thus inactive.

\begin{calstable}

\colwidths{{60pt}{60pt}{60pt}}

\def\cals@cs@width{1pt}

\def\cals@rs@width{0pt}

\def\cals@framers@width{2pt}

\def\cals@framecs@width{1pt}

% background swap

\def\c{\ifx\cals@bgcolor\empty

\def\cals@bgcolor{lightgray}

\else \def\cals@bgcolor{} \fi}

%

\brow \c\cell{A}

\c\cell{B} \c\cell{C} \erow

%

\brow \c\cell{D}

\def\cals@borderL{3pt}

\def\cals@borderT{4pt}

The cals package: Multipage tables with decorations

196 TUGboat, Volume 32 (2011), No. 2

\def\cals@borderR{5pt}

\def\cals@borderB{6pt}

\c\cell{E}

\let\cals@borderL=\relax

\let\cals@borderT=\relax

\let\cals@borderR=\relax

\let\cals@borderB=\relax

\c\cell{F} \erow

%

\brow \c\cell{G}

\c\cell{H} \c\cell{I} \erow

\end{calstable}

A B C

D E F

G H I

In this example, the macro \c alternately sets and
disables a color of a cell.

2.7 Spanned cells

To define a spanning area, use the \nullcell com-
mand for each component cell. The argument of this
command specifies the location of the cell: l if on
the left edge, t on the top, r on the right and b

on the bottom. To typeset the spanning area, use
the command \spancontent, which should be given
immediately after right-bottom component cell.

The following table illustrates the words, provid-
ing an example how to typeset three spanned areas
of different shapes.

\let\nc=\nullcell

\let\sc=\spancontent

\nc{ltr} \nc{ltb} \nc{tb} \nc{tbr}

\sc{...}

\nc{lr} \nc{lt} \nc{t} \nc{tr}

\nc{lr} \nc{l} \nc{} \nc{r}

\nc{lbr}

\sc{...}

\nc{lb} \nc{b} \nc{br}

\sc{...}

As an example, here is a “spiral” in a 3× 3 table.

\begin{calstable}

\colwidths{{40pt}{40pt}{40pt}}

\def\cals@framecs@width{0.4pt}

\def\cals@framers@width{0.4pt}

\brow

\nullcell{ltr}

\nullcell{ltb}

\nullcell{trb}\spancontent{b3, c3}

\ht\cals@current@row=40pt

\erow

\brow

\nullcell{lbr}\spancontent{a2, a3}

\cell{b2}

\nullcell{ltr}

\ht\cals@current@row=40pt

\erow

\brow

\nullcell{ltb}

\nullcell{btr}\spancontent{a1, b1}

\nullcell{blr}\spancontent{c1, c2}

\ht\cals@current@row=40pt

\erow

\end{calstable}

b3, c3a2, a3

b2

a1, b1

c1, c2

2.8 User-level tricks

There are a few compatibility issues and out-of-design
uses. So far, they are:

• pdfsync compatibility,
• multicol compatibility,
• inter-row page breaks.

2.8.1 pdfsync support

The package pdfsync seems obsolete, but is still in use.
It registers \every-hooks and inserts synchronization
markers. The cals package does not expect such
interference and fails. The solution is:

• disable pdfsync inside a table,
• temporarily enable it inside a cell.

Sample code:

\makeatletter

\let\oldcalstable=\calstable

\def\calstable{\oldcalstable\pdfsyncstop}

\def\cals@AtBeginCell{\pdfsyncstart}

We use \def instead of \let for \cals@AtBeginCell
because \pdfsyncstart and \pdfsyncend do not ex-
ist in the preamble; they are defined during execution
of \begin{document}.

2.8.2 multicols compatibility

If a cell contains a multicols environment, the content
is not padded. This is a side effect of the technical
implementation:

• padding is implemented using \leftskip,

• multicols issues boxes in vertical mode. In this
case, TEX ignores \leftskip.

Oleg Parashchenko

TUGboat, Volume 32 (2011), No. 2 197

The solution is easy and quite unexpected: we
pretend that the cell is a list item:

\cell{

\makeatletter

\@totalleftmargin=\cals@paddingL\relax

\begin{multicols}{2}

... now ok ...

\end{multicols}

}

2.8.3 Inter-row page breaks

All the typesetting systems I have seen break long
tables between rows. But if rows are very tall, it may
be useful to break even within a row, to make full
use of the page height.

The cals package can be extended to support
inter-row breaks. A proof of concept for a simpli-
fied case (no spanned cells, no vertical alignment) is
published in comp.text.tex [7].

A complete solution is not presently available.
The hardest part is to code a generic \vsplit— di-
viding a box and its internal sub-boxes into two parts,
“before” and “after”. Contributions are welcome.

3 Technical details

� For advanced customization and adding new
functionality, one needs to understand the in-
ternals of the cals package. The rest of the

article requires advanced TEX and LATEX knowledge.

3.1 Padding and alignment of cells

In short, a cell is a vbox.

3.1.1 Horizontal

Horizontal dimensions are applied indirectly when
the cell content switches TEX to the restricted hor-
izontal mode. Before typesetting the content, the
parameters are set:

• \hsize = width of the cell
• \leftskip = left padding
• \rightskip = right padding

If a mode switch does not occur (for example,
the content is wrapped by a box), then TEX does
not use \leftskip and \rightskip, and you get
no left and right padding. This is not a bug, this
is a feature. If the automatic width of a box is
incorrect, cals handles this case and forces the right
value (\wd\boxX=YY).

Horizontal alignment is also implemented us-
ing \leftskip and \rightskip. The command
\alignC adds plus1fill to both skips, \alignR

only to the right one, and \alignL drops the plus/
minus components.

3.1.2 Vertical

Before closing the box, cals adds:

\vfil \vskip\cals@paddingB

This code aligns the content top and sets the
bottom padding.

The start of a cell is more complicated:

\vskip -〈rowspan_compensation〉
\vskip\cals@paddingT

\vskip-\parskip

\prevdepth=\cals@paddingD

In addition to the top padding (\cals@paddingT),
there are a number of adjustments. The first is
conditional and happens only if cals typesets a row-
spanned cell. In this case, the negative skip increases
the visual height of the cell, so visually the cell starts
on the first row of spanning.

On switching from a vertical to a horizontal
mode, TEX adds \parskip glue, but we do not need
this at the beginning of a cell; therefore we annihilate
it. Finally, there is \baselineskip glue, implicitly
set by \prevdepth. The value is calculated in such
a way, that the distance between the top border and
the top of the letters “Al” is exactly \cals@paddingT.

Cell content is packed vertically twice. First, as
a normal vbox. Second, after the final height of its
row is known, the cell is unvboxed and put into a
vbox of the target height.

3.2 Decorations

A table row and its decorations are separated. To
illustrate the explanations, I use the second row from
the following sample table (normal border is 1pt, first
column right border 2pt, second column right border
3pt, right table frame 4pt, thick horizontal border
5pt, columns are 60pt, 70pt, 80pt):

a3 b3 c3

a2 b2 c2

a1 b1 c1

At some point after \erow, when \cals@issue@row

is called, the following boxes and macros are set:

• \cals@current@row

• \cals@current@cs

• \cals@current@rs@above and
\cals@current@rs@below

• \cals@last@rs@below

The row content resides in \cals@current@row:
a2 b2 c2

Here is an annotated dump:

> \box\cals@current@row=

\hbox(15.72218+0.0)x210.0 % Second row

The cals package: Multipage tables with decorations

198 TUGboat, Volume 32 (2011), No. 2

.\vbox(15.72218+0.0)x60.0 % The cell "a2"

..\glue 4.38887 % \cals@paddingT

..\glue 0.0 plus -1.0 % -\parskip

..\glue(\parskip) 0.0 plus 1.0

..\glue(\baselineskip) 0.5

..\hbox(6.44444+0.0)x60.0, glue set 41fil

...\glue(\leftskip) 4.388 % \cals@paddingL

...\hbox(0.0+0.0)x0.0

...\OT1/cmr/m/n/10 a

...\OT1/cmr/m/n/10 2

...\penalty 10000

...\glue(\parfillskip) 0.0 plus 1.0fil

...\glue(\rightskip) 4.38 % \cals@paddingR

..\glue 0.0 plus 1.0fil % \vfil

..\glue 4.38887 % \cals@paddingB

.\vbox(15.72218+0.0)x70.0 % The cell "b2"

.. ...b2 here...

.\vbox(15.72218+0.0)x80.0 % The cell "c2"

.. ...c2 here...

This dump illustrates also the structure of a cell,
with all the glue items, as described in the previous
section.

The width of a border is defined by its location,
unless the user explicitly sets the width. If the user
sets different widths for a common border of adjoined
cells, the greater value wins. (This is related to why
cals does not support border colors or styles: I have
no idea what to do if one cell wants, for example,
green border and another red.)

Background color and vertical borders are in the
box \cals@current@cs:

Horizontal rules are not yet typeset. Instead, they are
described by the macros \cals@current@rs@above
(row separation above the row) and the analogous
\cals@current@rs@below, as follows:

> \cals@current@rs@above=macro:

->{{60pt}{1pt}{2pt}\relax }

{{70pt}{2pt}{3pt}{5pt} }

{{80pt}{3pt}{4pt}\relax }.

> \cals@current@rs@below=macro:

->{{60pt}{1pt}{2pt}\relax }

{{70pt}{2pt}{3pt}\relax }

{{80pt}{3pt}{4pt}\relax }.

The macros consists of N groups of four, where N is
the number of columns. Each record contains:

• the length of the rule fragment (the width of
the column)

• the width of the left border
• the width of the right border
• the width of the rule or \relax

Unless the user manually sets the width using
\cals@borderT or \cals@borderB, the last field con-
tains \relax. It means “as yet unknown”, and the
code will decide on the width later, when the location
of the rule is clear.

The borders should be a bit longer then cell
dimensions, in order to create a closed frame instead
of leaving empty squares in the corners.

wrong: squares
in corners

correct: cals
enlarges
horizontal rules

The procedure of typesetting a rule combines
three components: 1) the default width; 2) the pre-
ceding row bottom rule description; 3) the following
row top rule description. The code tries to produce
as large a rule as possible. Instead of emitting a rule
fragment immediately, it remembers the length and
width. If the next fragment is the same width, the
recorded length is extended. If not, then the pending
rule is typeset, and the new fragment is remembered.

Let’s trace a simplified version of the algorithm
for the separation between the first and the sec-
ond rows in the sample table. The border width is
1pt, the value of \cals@current@rs@above is shown
above, and \cals@last@rs@below is the same as
\cals@current@rs@below.

• a3 border. Length 60pt, width 1pt.
→ Remember: L=60pt, W=1pt.

• a2 border. Left 60pt, length 60pt, width 1pt.
→ Nothing changed.

• b3 border. Length 70pt, width 1pt.
→ Increase: L=130pt, W=1pt.

• b2 border. Left 70pt, length 70pt, width 5pt.
→ Emit rule 130x1pt. Emit left skip 70pt.
Remember: L=70pt, W=5pt.

• c3 border. Length 80pt, width 1pt.
→ Emit rule 70x5pt. Remember: L=80pt, W=1pt.

• c2 border. Left 80pt, length 80pt, width 1pt.
→ Nothing changed.

• End of the row. → Emit rule 80x1pt.

The real procedure is a bit more complicated
because it takes into account the corrections for the
vertical borders. Still, the real result is very similar
to the simplified version:

\glue -0.5 % column 1, left border

\rule(0.5+0.5)x132.0 % columns 1 and 2

\glue -1.5 % column 2, right border

\glue -70.0 % back

\glue -1.0 % column 2, left border

\rule(2.5+2.5)x72.5 % column 2

Oleg Parashchenko

TUGboat, Volume 32 (2011), No. 2 199

\glue -1.5 % column 2, right border

\glue -1.5 % column 3, left border

\rule(0.5+0.5)x83.5 % column 3

\glue -2.0 % column 3, right border

The first rule is for the first and the second
column, the second for a thick border in the second
column, and the third rule for the third column. Note
that the border in the second column consists of two
overlapping rules. Such intersection is not nice, but
it happens only when the width is changing, which
should not happen often. In the usual case, when
the width is constant, the code emits only one rule.

3.3 Spanning

I made several attempts before the current imple-
mentation of spanning was developed. In my opinion,
the interface balances clarity for users and ease and
maintenance of coding.

The command \nullcell performs two main
tasks:

• calculate the dimensions of the spanned area,
\cals@span@width and \cals@span@height,

• handle decorations.

Calculation of the width of a spanned area starts
when the left-bottom \nullcell appears (the argu-
ment contains both l and b). The width is updated
while the bottom \nullcells continue to appear
(the argument contains b without l).

The height calculation is similar: start in the
left-top (both l and t) \nullcell, update in a left
(l without t) one. However, there is a complication
in that several spanning areas can interfere. To al-
low several spans at once, each right (r without t)
\nullcell adds the span height to the end of the
queue \cals@spanq@heights, and each left (l with-
out t) \nullcell takes the saved height from the
beginning of the queue. With several active spans,
the queue works like a cyclic buffer. The values rise
from the end to the beginning, and magically the
first value is always the saved height for the coming
span.

The decorations of a spanned area are composed
from independent parts. More precisely, the com-
mand \spancontent does not produce decorations
at all. Instead, each \nullcell works like a usual
\cell after some tuning. First, it temporarily dis-
ables all the borders. Then it looks at the location
and restores the corresponding areas. For example,
if the \nullcell is on the left edge (the argument
contains l), the settings for the left border are re-
stored. After the decorations are produced, all the
border settings are reverted to their original values.

3.4 Multipage

Compared to the other parts of cals, the multipage
functionality was very easy to code. On the other
hand, it required understanding of how TEX works
underneath, which is not my strength. Therefore, I
expect bugs in multipage functionality, especially in:

• detecting if a table break is required (the macro
\cals@ifbreak),

• executing a break within a table (the macro
\cals@issue@break and the end of the macro
\cals@row@dispatch@nospan)

Initially I tried to implement multipage tables in
an output procedure, which, if a page break occurred
within a table, added a footer before the break and
a header after the break. It more or less worked,
but it could not support decorations: the thickness
of a row separator depends on its context. In the
output procedure, it is very hard (if possible at all)
to remove the old in-body separation and insert a
table frame rule. My conclusion is that the main
code should know if a table break is expected before
typesetting a row, and create the break if required.

The following heuristic seems good: does the
current row plus the footer fit into the rest of the
page? If it does not, a break is required. There are
also a few special cases:

• a break is forced if the user defined the macro
\cals@tbreak@tokens (using \tbreak).

• no break in the header, in the footer, after the
header or after the first row of a table chunk.

After a row is finished and its decorations are pre-
pared, cals runs the macro \cals@row@dispatch. Its
main parameters are:

• the bottom decoration of the previous row (given
in \cals@last@rs@below) and its context (in
\cals@last@context); details in the package
documentation.

• the current row (\cals@current@row), its con-
text (\cals@current@context), and decorations
(\cals@current@cs, \cals@current@rs@above,
\cals@current@rs@below).

Depending on whether there is an active rowspan,
there are two different modes of work. First, when a
cell spans over rows, the package must avoid a table
break between. This is implemented by wrapping
the row as a vbox. The row dispatcher emits the row
not to the page, but appends it to a temporary box.
After the last spanned row is collected, the collection
becomes \cals@current@row and the collected dec-
orations constitute \cals@current@row@cs. Then
the dispatcher switches to the normal mode.

The cals package: Multipage tables with decorations

200 TUGboat, Volume 32 (2011), No. 2

In the normal mode, usually it is enough to
output the decorations and the row. But if a table
break is required, the code saves the current row,
typesets the footer, the break, the header and only
then emits the saved row.

4 TEX tricks and traps

The code in the cals package contains a few tricks,
which can be reused in other tools. There were also
a few unexpected problems, which I’d like to discuss
here.

Maybe it is time to start collecting “TEX design
patterns”, as with other programming languages [9].

4.1 Actions after an implicit parameter

A straightforward definition of a command \cell

could be:

\newcommand\cell[1]{%

...actions before...

#1%

...actions after... }

I disliked this approach because then the macro
must collect a potentially big argument, which might
degrade performance. Instead, an aftergroup-trick
is used to inject post-actions to the token stream.
Pseudo-code:

\def\cals@cell@end{...actions after...}

\def\cell{...actions before...

\bgroup\aftergroup\cals@cell@end

\let\next=% eat ’{’ of the argument

}%{ Implicit argument follows }

This trick is described by Victor Eijkhout in
“TEX by Topic” [3], section “12.3.4 \aftergroup”.

Initially, it was perhaps a premature optimiza-
tion, but later useful side-effects appeared:

• The changes inside \cell are local due to wrap-
ping in a group.

• Verbatim and other special content is supported
inside \cell. This would be impossible when
passing the content as a parameter.

4.2 \newcommand for documentation,

\def for definition

The problem with implicit arguments (as with the
\cell command in the previous section) is that such
macros confuse the readers of the code. It is very easy
to overlook that a macro requires more parameters
then expected.

To help the reader, cals defines a macro twice,
first as a prototype and then as the real thing:

\newcommand\cell[1]{}

\def\cell{...macro code...}

For me, it is an useful eye-catcher.

4.3 Nested conditions

The following code does not work:

\let\next=\iftrue

...

\if...\next...\fi...\fi

The idea is to pre-calculate some condition and
use it later. But instead of what the programmer
wants—the first \if matching the outer \fi and
\next (assigned to \iftrue here) matching the inner
\fi— TEX matches \if with the inner \fi, and the
outer \fi causes an error.

As a workaround, cals uses a variant of \iftrue
and \iffalse that drops a following token:

\def\cals@iftrue#1{\iftrue}

\def\cals@iffalse#1{\iffalse}

The nested condition now looks as:

\let\next=\cals@iftrue

...

\if...\next\iftrue...\fi...\fi

The token \iftrue (or any other if-token) after
\next:

• repairs the if-fi balance,
• is ignored when the code is executed.

4.4 The trap of brace delimiting

When a list of macro parameters ends with “#{”, it
means that the last parameter is delimited by a curly
brace:

\def\mybox#1#{\hbox#1}

\mybox to 40pt{some text}

expands to:

\hbox to 40pt{some text}

In this code fragment, the macro parameter #1
is ‘to 40pt’. The surprise is that we can’t make it
explicit:

\mybox{to 40pt}{some text}

expands to:

\hbox{to 40pt}{some text}

The macro parameter is now empty and the
box content is “to 40pt”. The text “some text” is
typeset outside the box. In retrospect and in this
simplified example, such expansion is obvious. In
the real package, however, I fell into the trap several
times.

4.5 The trap of dropped curly braces

To use a macro as a list data type, it is convenient
to put list items in groups. For example, a list with
items “aaa”, “bbb” and “ccc” can be defined as:

\def\list{{aaa}{bbb}{ccc}}

Oleg Parashchenko

TUGboat, Volume 32 (2011), No. 2 201

A straightforward definition of list de-construction
on the first element and the rest could be:

% wrong

\def\decons@helper#1#2\relax{%

\def\first{#1}%

\def\rest{#2}}

\def\decons#1{%

\expandafter\decons@helper#1\relax}

The code works in most cases:

\decons\list

\show\first

\show\rest

=>

> \first=macro:

->aaa.

> \rest=macro:

->{bbb}{ccc}.

Unfortunately, two-element lists are de-constructed
incorrectly, losing the braces:

\def\listII{{aaa}{bbb}}

\decons\listII

\show\first

\show\rest

=>

> \first=macro:

->aaa.

> \rest=macro:

->bbb.

The wrong value of \rest is ‘bbb’; the correct
result would be ‘{bbb}’. The problem is the second
parameter of the macro \decons@helper. If the
value is ‘{{bbb}{ccc}...{xxx}}’ (several items) or
empty, the parameter is not changed. But if the
value is ‘{bbb}’ (exactly one item), TEX interprets
the curly braces as a parameter delimiter and drops
them. Again, it is not a bug, but an unexpected side
effect of TEX’s rules.

4.6 Unit testing

The complexity of the cals code is above my TEX
skills. Fortunately, automated tests helped to keep
the code under control.

There are a number of tools for testing TEX
code (for example, qstest [5]), but I decided that it
would be faster to write my own framework instead
of mastering an existing one. So far, I think this was
a good decision.

I wrote my tool in Python. It is straightforward.
For each test:

• It takes the code fragment, assembles a complete
document and compiles it.

• It extracts LATEX messages and the output of
\show-commands from the log file and asserts
that the result is equal to the known master.

• If the test comes with PNG images, then the tool
asserts that the generated PDF, after conversion
to PNG, is equal to the master images.

The tests for cals and the tool itself are located
in the directory test of the cals package. To run the
tests, execute:

$ export TEXINPUTS=‘pwd‘/../cals:

$ python support/run_tests.py

To run a subset of the tests, simple filtering is
supported. For example, to run only the tests with
the names containing “cell”, execute:

$ python support/run_tests.py cell

The testing framework is generic and can be
used in other projects as well. If there is positive
feedback and use by other developers, the tool will
be extracted to a separate CTAN package.

⋄ Oleg Parashchenko

bitplant.de GmbH, Fabrikstr. 15

89520 Heidenheim, Germany

olpa (at) uucode dot com

http://uucode.com/

References

[1] OASIS. TM 9502:1995 – CALS table model
DTD. http://www.oasis-open.org/specs/

a502.htm, 2001.

[2] W3C. Extensible stylesheet language
(XSL), version 1.0. W3C recommendation
15 Oct 2001. http://www.w3.org/TR/2001/

REC-xsl-20011015/, 2001.

[3] Victor Eijkhout. TEX by Topic: A TEXnician’s
Reference. Addison-Wesley, 1992.

[4] Simon Fear. Publication quality tables in LATEX.
http://mirror.ctan.org/macros/latex/

contrib/booktabs/booktabs.pdf, 2005.

[5] David Kastrup. qstest, a LATEX package for unit
tests. TUGboat, 29(1):193–198, 2008.

[6] Oleg Parashchenko. CALS tables demo.
http://mirror.ctan.org/macros/latex/

contrib/cals/examples/demo.pdf, 2011.

[7] Oleg Parashchenko. Re: Multi-page table
with inter-row page breaks. comp.text.tex,
http://groups.google.com/group/comp.

text.tex/msg/8141d45708fe85c2, 6 Dec 2010.

[8] UK TUG. TEX frequently asked questions.
http://www.tex.ac.uk/faq, 2011.

[9] Wikipedia. Design pattern (computer science).
http://en.wikipedia.org/wiki/Design_

pattern_(computer_science), 2011.

The cals package: Multipage tables with decorations

202 TUGboat, Volume 32 (2011), No. 2

Glisterings

Peter Wilson

What e’re this youth of fire weares fair,

Rosy fingers, radiant hair,

Glowing cheeks, and glistering wings,

All those fair and flagrant things,

But before all, that fiery Dart

Had fill’d the Hand of this great Heart.

The Flaming Heart, Richard Crashaw

The aim of this column is to provide odd hints or
small pieces of code that might help in solving a
problem or two while hopefully not making things
worse through any errors of mine.

Corrections, suggestions, and contributions will
always be welcome.

The web, then, or the pattern; a web at

once sensuous and logical, an elegant and

pregnant texture: that is style, that is the

foundation of the art of literature.

The Art of Writing,

Robert Louis Stevenson

1 Ornaments

One of the many free fonts available for use with
LATEX is Web-O-Mints, a Type 1 font, from the Gala-
pagos Design Group, with LATEX support provided
by Maurizio Loreti [1]. Both of these are available
from CTAN. The font consists of a set of printers’
ornaments and flowers as displayed in the font table
in Table 1.

Before getting in to how you might use the
font, one simple application is generating a pattern
like this, composed from the Web-O-Mints glyphs
accessed as ‘I’, ‘J’, ‘K’, and ‘L’.

IJLKIJ

You could use this, or something similar, to
separate writings on different topics.

4
To make life simpler I’ve defined a few macros

which I’ll be using a lot in this column. These first
two are from the samples that come with the LATEX
support for Web-O-Mints.

\newcommand*{\wb}[2]{%

\fontsize{#1}{#2}\usefont{U}{webo}{xl}{n}}

\newcommand*{\wbc}[3]{%

\vspace*{#1}\begin{center}

\wb{#2}{#2}#3

\end{center}\vspace*{#1}}

\newlength{\wsp}\setlength{\wsp}{1ex}

The first makes Web-O-Mints the current font with
the given size and \baselineskip. The second sets
up a center environment around the third argument
with Web-O-Mints as the font with the size and
\baselineskip equal. The first argument is space
before and after the environment. For example, for
the previous glyph I used:

\wbc{\wsp}{24pt}{4}

which centered the glyph accessed as ‘4’, size 24pt,
with vertical space of \wsp (which has been set to
1ex) before and after.

For ease of seeing what is happening I am using
a much larger glyph size than one would normally.

I will be assembling some glyphs to make more
elaborate patterns. The next set of macros move or
rotate their argument.

\newcommand*{\upit}[2]{\raisebox{#1}{#2}}

\newcommand*{\rotpi}[1]{\rotatebox{180}{#1}}

\newcommand*{\rotrt}[1]{\rotatebox{90}{#1}}

\newcommand*{\rotlft}[1]{\rotatebox{-90}{#1}}

You can use them on this glyph 3 (accessed as
the character ‘3’) like so

\wbc{\wsp}{24pt}{%

\upit{26pt}{\rotlft{3}}% rotate left & lift

3% normal position

\llap{% overlap

\upit{36pt}{\rotpi{3}}}% rotate & lift

\upit{10pt}{\rotrt{3}}% rotate right & lift

}

to produce this rather charming device:

3

3

3

3

If you haven’t come across \llap or its com-
panion \rlap, these are TEX macros that lets its
argument overlap its surroundings. More precisely,
\llap places its argument at the left of the macro
but without taking up any space; \rlap is similar
but puts its argument at the right, again without
taking up any space. Knuth’s example is typeset-
ting a /= (neq) symbol by using either \rlap{/}= or
/\llap{=} to create the neq symbol. On the other
hand, the \kern command moves the next character
rightwards (positive length) or leftwards (negative
length) the given amount, but the character takes
up its normal space.

I do find it difficult to tell just from looking at
a single glyph what a group of them will look like.
For example:

]
Peter Wilson

TUGboat, Volume 32 (2011), No. 2 203

Table 1: Glyphs in the Web-O-Mints font

 32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 / 47

0 48 1 49 2 50 3 51 4 52 5 53 6 54 7 55

8 56 9 57 58 59 60 61 62 63

64 A 65 B 66 C 67 D 68 E 69 F 70 G 71

H 72 I 73 J 74 K 75 L 76 M 77 N 78 O 79

P 80 Q 81 R 82 S 83 T 84 U 85 V 86 W 87

X 88 Y 89 Z 90 [91 92] 93 94 95

96 a 97 b 98 c 99 d 100 e 101 f 102 g 103

h 104 i 105 j 106 k 107 l 108 m 109 n 110 o 111

p 112 q 113 r 114 s 115 t 116 u 117 v 118 w 119

x 120 y 121 z 122 123 124 125 126 127

doesn’t look like much to me, but when put together
with another member of the family by using
\wbc{\wsp}{24pt}{[][][]}

the appearance is rather different.

[][][]
Below is the set of four glyphs that I will be

using for the first sets of patterns, specified by:
\wbc{\wsp}{24}{opqn}

opqn
Note that these are in their natural relationship with
each other. We can make simple chains like:
\wbc{\wsp}{24pt}{qpqpqp}

qpqpqp
Which, although attractive, isn’t all that exciting.
What I’m going to do is to ‘attach’ the single horns
to the double ones and use these as the basis for a
more complex pattern.

The simpler part is to move (and rotate) two
single horns to join with the right hand double horn.
First move the single horn to join the double with

\wbc{\wsp}{24pt}{q\kern-14pt\upit{-19pt}{n}}

q
n

Then rotate and move a second horn, overlapping
the construction we already have

\wbc{\wsp}{24pt}{q\kern-14pt\upit{-19pt}{n}%

\llap{\upit{35pt}{\rotpi{o}}}}

q
n

o

Doing the other double horn is slightly more
complicated because of the order of the operations:

\wbc{\wsp}{24pt}{\upit{-19pt}{o}%

\llap{\upit{35pt}{\rotpi{n}}}\kern-14pt p}

o

n

p
Defining a macro for each assembly will let us

mix and match.

\newcommand*{\qno}{q\kern-14pt\upit{-19pt}{n}%

\llap{\upit{35pt}{\rotpi{o}}}}

\newcommand*{\onp}{\upit{-19pt}{o}%

\llap{\upit{35pt}{\rotpi{n}}}\kern-14pt p}

Glisterings

204 TUGboat, Volume 32 (2011), No. 2

Now,
\wbc{\wsp}{24pt}{\onp\qno\onp\qno\onp\qno}

produces

o

n

pq
n

o

o

n

pq
n

o

o

n

pq
n

o

and
\wbc{\wsp}{24pt}{\qno\onp\qno\onp}

displays

q
n

o

o

n

pq
n

o

o

n

p
I had to experiment to decide on the various

distances to move things to create the \onp and
\qno assemblies. These distances would have to be
changed if something other than 24pt was used as
the font size. However, it is always possible to use
\scalebox from the graphicx package to appropri-
ately size a pattern. This gives a half-size result
compared with the previous ones.

\wbc{\wsp}{24}{\scalebox{0.5}{\qno\onp}}

q
n

o

o

n

p

Except for the simplest scheme of just putting
the glyphs in a row, experimentation will nearly al-
ways be required to obtain sympathetic relationships
among the elements of the pattern. They don’t have
to be mathematically exact but must look good to
the eye.

Moving on, here is another set of four glyphs,
which would normally be used at the corners of a
page, that can be combined in interesting ways.
\wbc{\wsp}{24pt}{E F G H}

E F G H
One simple way is just using two lines, which reminds
me of a row of gilt mirrors.
\wbc{\wsp}{24pt}{EFEFEF\\GHGHGH}

EFEFEF
GHGHGH

We can add some further decorative elements,
reducing the size at the same time:

\wbc{\wsp}{12pt}{HGHGHGHGHGHG\\[-3pt]

EFEFEFEFEFEF\\GHGHGHGHGHGH\\[-3pt]

EFEFEFEFEFEF}

HGHGHGHGHGHG
EFEFEFEFEFEF
GHGHGHGHGHGH
EFEFEFEFEFEF

and add more and more if desired. On the other
hand, joining the four elements in a different manner
can lead to something even fancier.

In the days of lead type, a sort (a single charac-
ter) was a rectangular bar of lead with the glyph in
relief on the end that was to be inked and printed.
There was no way of stretching or shrinking a piece
of type, and neither was there any way of getting one
piece of type to overlap another, except by printing
twice, once with one sort and then with the second
sort. With digital fonts these restrictions no longer
apply. In the next example, the bounding boxes of
the glyphs overlap, even if the glyphs themselves do
not.

\newcommand*{\kl}{\kern-24pt}

\newcommand*{\ks}{\kern-4pt}

\newcommand*{\mir}{E\kl H\ks G\kl F}

\wbc{\wsp}{24pt}{\scalebox{0.75}%

{\mir\ks\mir\ks\mir\ks\mir}}

EHGFEHGFEHGFEHGF
Again, you can add to this basic scheme, em-

bellishing it as much as you think bearable. For
instance, by inserting another set of glyphs inside
a mirror, although this may get complicated. The
experimentally determined code below appears to
produce a reasonable result.

First, here is a macro for producing a more
vertically oriented version of the four leaves that I
showed earlier.

\newcommand*{\leaves}{\upit{32pt}{\rotlft{3}}%

\kern-6pt3%

\kern-9pt\upit{17pt}{\rotrt{3}}%

\kern-30pt\upit{49pt}{\rotpi{3}}}

\wbc{\wsp}{24pt}{\leaves}

3

3

3

3

fgi

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

lfg

TUGboat, Volume 32 (2011), No. 2 205

And secondly, this is the code for combining the
mirror and leaves so that they will be centered:

\wbc{\wsp}{24pt}{\mbox{}\kern-24ptEF%

\kern-43pt{\upit{-22pt}%

{\scalebox{0.6}{\leaves}}}%

\\[-18pt]\mbox{}\kern0ptGH}

EF3

3
3

3

GH
m/m/m/m/m/m

Moving on to a more organic feel, represented
above by \wbc{\wsp}{16pt}{m/m/m/m/m/m}, many
of the traditional ornaments were based on vines,
although whether this was due to a proclivity towards
wine by the typecutters I couldn’t say.

This is a typical scheme, mixing grapes and
leaves.
\wbc{\wsp}{15pt}{cedafbcedced}

cedafbcedced
And here is another with major emphasis on the
grapes:
\wbc{\wsp}{15pt}{ghghghghghgh}

ghghghghghgh
And a third, back to the grapes plus leaves:
\wbc{\wsp}{15pt}{gfgfgfgfgfgf}

gfgfgfgfgfgf
This one, you may have noticed, forms the top and
bottom of the frame around page 204. The sides are
also formed from similar grapes and leaves.

The method I used for framing was to create
the frame as a zero-sized picture and add that to
the page footer; I could just as well have added it to
the header but the footer was easier for me in this
case, because I wanted to keep the TUGboat header.
You would normally use the facilities provided by the
fancyhdr package [2] or the memoir class [3] for this,
both of which should be available on your system.

Here’s the code for the picture of the frame.

%%% draws a (page) frame

\newcommand*{\goddfoot}{\begin{picture}(0,0)

\wb{10pt}{10pt}

\put(-29,-20){% change these to move the frame

\begin{picture}(0,0)

\multiput(0,0)(25,0){21}{fg} % bottom

\multiput(-5,5)(0,24){31}{i} % left

\multiput(-5,23)(0,24){31}{\rotpi{k}}

\multiput(520,5)(0,24){31}{j} % right

\multiput(520,23)(0,24){31}{\rotpi{l}}

\multiput(0,742)(25,0){21}{fg} % top

\end{picture}}

\end{picture}}

\let\gevenfoot\goddfoot

z z z z z z z z z z z7 7 7 7 7 7 7 7 7 7 7
7 7 7 7 7 7 7 7 7 7 7z z z z z z z z z z z
z z z z z z z z z z z7 7 7 7 7 7 7 7 7 7 7
7 7 7 7 7 7 7 7 7 7 7z z z z z z z z z z z
z z z z z z z z z z z7 7 7 7 7 7 7 7 7 7 7
7 7 7 7 7 7 7 7 7 7 7z z z z z z z z z z z
z z z z z z z z z z z7 7 7 7 7 7 7 7 7 7 7
7 7 7 7 7 7 7 7 7 7 7z z z z z z z z z z z
z z z z z z z z z z z7 7 7 7 7 7 7 7 7 7 7
7 7 7 7 7 7 7 7 7 7 7z z z z z z z z z z z
z z z z z z z z z z z7 7 7 7 7 7 7 7 7 7 7
7 7 7 7 7 7 7 7 7 7 7z z z z z z z z z z z
z z z z z z z z z z z7 7 7 7 7 7 7 7 7 7 7
7 7 7 7 7 7 7 7 7 7 7z z z z z z z z z z z
z z z z z z z z z z z7 7 7 7 7 7 7 7 7 7 7
7 7 7 7 7 7 7 7 7 7 7z z z z z z z z z z z
z z z z z z z z z z z7 7 7 7 7 7 7 7 7 7 7
7 7 7 7 7 7 7 7 7 7 7z z z z z z z z z z z

For the example on the previous page, I created
a new pagestyle using the TUGboat headers and
adding my feet (this is code that is normally hidden
in a class or package).

\makeatletter

%% new ‘glister’ pagestyle

\newcommand*{\ps@glister}{%

\def\@evenfoot{\gevenfoot}

\def\@oddfoot{\goddfoot}}

\makeatother

Zero-sized pictures have other uses as well. I
put one containing a gray checkerboard pattern, com-
posed from the Web-O-Mints ‘z’ and ‘7’ glyphs, at the
start of the previous paragraph to form a textured
background. You may love or hate this particular
result but the technique can be useful.

May you have many happy hours designing your
own ornaments and embellishments, but consider
that maybe simple and few are better than elaborate
and many; it all depends on the feel you are trying
to convey.

References

[1] Maurizio Loreti. webomints, 2002. mirror.

ctan.org/latex/macros/contrib/webomints.

[2] Piet van Oostrum. Page layout in LATEX, 2005.
mirror.ctan.org.latex/macros/contrib/

fancyhdr.

[3] Peter Wilson. The memoir class for configurable
typesetting, 2011. mirror.ctan.org/latex/

macros/contrib/memoir.

⋄ Peter Wilson

20 Newfield Ave.

Kenilworth CV8 2AU, UK

herries dot press (at)

earthlink dot net

Glisterings

206 TUGboat, Volume 32 (2011), No. 2

Merciadri packages: An overview

Luca Merciadri

1 Introduction

I have written four LATEX2ε packages: bigints,
dashundergaps, plantslabels, and turnthepage.
Because

♦ there are so many submitted packages, and

♦ TEX information sources are so heavily used that
articles rapidly go to the archives,

their respective releases could have gone unnoticed
by the majority of the community. I here propose
a brief summary about what they do, and how they
could be useful for your work. This idea came to
my mind when reading Nicola Talbot’s article [7]. I
don’t have the delusion that they will be useful to
everybody all the time, but, except plantslabels,
it’s reasonable to think they might come in handy
at least, i.e. for a TEX author to want to write a
bigger integral than the one which is proposed, to
dot or dash some text, or to indicate that the page
needs to be turned.

I shall now describe them in alphabetical order,
though I wrote fewer packages than Nicola!

The reader might notice that the text here is
essentially extracted from their respective manuals:
[2, 3, 4], where more detailed information and a bib-
liography of each is available. I am open to any
suggestions, or remarks, concerning my packages.

After their respective descriptions, we will take
a look at another tip: how to use a brace so that
some elements of a given matrix are selected. We
will here present the case where the brace is above
the matrix.

2 The bigints package

The bigints package (v1.1) helps you to write big

integrals when needed. When making a report for a
course, during the 2009–2010 academic year, I real-
ized that there was no satisfactory implementation
of ‘big integrals’ in LATEX2ε. (If there are, please
let me know.) My idea, during the report, was to
write a big integral in front of an n × 1 (n rows, 1
column) matrix, to signify the integration of every
element on the n rows. (For the doubtful, I asked
mathematicians, and, yes, this is sometimes written
like this, though it is not very standard.) I also
thought about writing the integral in front of a big
expression, which might be different from a matrix.

2.1 Example

Consider, for example, a rocket which is propelled
in space thanks to motors, giving a thrust by mass

unity (α > 0) which is supposed constant. Using
Mechanics’ laws, the time which is necessary to go
from Earth’s surface (r = R) to an orbit of height
2R (r = 3R) is given by

T =

∫ 3R

R

dr
√

2α(r −R) + 2µ

(
1

r
−

1

R

) , (1)

where µ is a positive constant, associated to the grav-
itational force.

In Equation (1), the integral sign is too small.
Consider now

T =

∫
3R

R

dr
√

2α(r −R) + 2µ

(
1

r
−

1

R

) , or

T =

∫
3R

R

dr
√

2α(r −R) + 2µ

(
1

r
−

1

R

) .

They look reasonably better, simply because the
integral sign’s height is related to the integrand’s
height. (For skeptics: even without displaystyle

in front of the opening parenthesis, the integral sign
of the original expression is still too small.)

Creating integral signs which are adapted to
their argument (the integrand) was the idea for the
package, and this is what gave rise to this package.

2.2 Available commands

The available commands and their output are shown
in Table 1.

Put briefly, I defined \bigint, \bigints, and so
on, with their respective o-counterparts (for line in-
tegrals along a closed curve, for example). The only
rule to keep in mind is that the more you add ‘s’ to
the integral command, the smaller the integral sign
is. To use these functions, you simply need to load
the bigints package.

3 The dashundergaps package

The dashundergaps package (v1.2) helps you to use
a pattern or patterns from this list:

• dashing,

•dotting,

• underlining

for a word which can be either hidden, or not.
This can be useful in these situations:

1. You are writing a document for which you need
to dash or (and) to dot text,

Luca Merciadri

TUGboat, Volume 32 (2011), No. 2 207

Command Std. output Command output

\bigint,
\bigoint

∫

,

∮

∫

,

∮

\bigints,
\bigoints

∫

,

∮

∫

,

∮

\bigintss,
\bigointss

∫

,

∮

∫

,

∮

\bigintsss,
\bigointsss

∫

,

∮
∫

,

∮

\bigintssss,
\bigointssss

∫

,

∮ ∫

,

∮

Table 1: Commands in the bigints package.

2. You want to write a test for which students have
to “fill in the gaps”, and you want to choose
when to print the answers.

3.1 Examples

Here is an example of sentence dashing.

\documentclass[10pt]{article}

\usepackage[dash]{dashundergaps}

\begin{document}

\dashuline{This is a dashed sentence}

\end{document}

gives

This is a dashed sentence

Dotting is done in the same way.
And an example of dotted gaps for a student

version (notice that gaps are always numbered):

\documentclass[10pt]{article}

\usepackage[dot, phantomtext]{dashundergaps}

\begin{document}

In Artificial Intelligence, ‘‘RL’’ means

‘‘Reinforcement \gap{Learning}.’’

\end{document}

results in

In Artificial Intelligence, “RL” means “Reinforce-
ment (1).”

Despite its rather ugly appearance, several peo-
ple asked me how to achieve something like

Head A Head B Head C

.
Col 1 Col 2 Col 3
Col 1 Col 2 Col 3

For this, use:

\begin{tabular}{lll}

\hline

Head A & Head B & Head C\\

\multicolumn{2}{l}{\dotuline{\hfill}}\\

Col 1 & Col 2 & Col 3\\

Col 1 & Col 2 & Col 3\\

\hline

\end{tabular}

where you want it to appear.

3.2 Available commands

O
p
ti
o
n
(s
)

C
o
n
se
q
u
e
n
c
e

\
g
a
p
{
t
e
x
t
}

\
d
a
s
h
u
l
i
n
e
{
t
e
x
t
}

\
d
o
t
u
l
i
n
e
{
t
e
x
t
}

d
a
s
h
(o
n
ly
)

×
te
x
t

×

d
o
t
(o
n
ly
)

×
×

.
.
.

te
x
t

d
a
s
h
,
d
o
t

×
te
x
t

.
.
.

te
x
t

p
h
a
n
t
o
m
t
e
x
t
(o
n
ly
)

(1
)

×
×

p
h
a
n
t
o
m
t
e
x
t
,
d
a
s
h

(1
)

te
x
t

×

p
h
a
n
t
o
m
t
e
x
t
,
d
o
t

.
.
.
(1
)

×
.
.
.

te
x
t

p
h
a
n
t
o
m
t
e
x
t
,
d
a
s
h
,
d
o
t

(1
)

te
x
t

.
.
.

te
x
t

p
h
a
n
t
o
m
t
e
x
t
,
t
e
a
c
h
e
r
n
o
t
e
s

te
x
t

×
×

p
h
a
n
t
o
m
t
e
x
t
,
d
a
s
h
,
t
e
a
c
h
e
r
n
o
t
e
s

te
x
t

te
x
t

×

p
h
a
n
t
o
m
t
e
x
t
,
d
o
t
,
t
e
a
c
h
e
r
n
o
t
e
s

te
x
t

×
.
.
.

te
x
t

p
h
a
n
t
o
m
t
e
x
t
,
d
a
s
h
,
d
o
t
,
t
e
a
c
h
e
r
n
o
t
e
s

te
x
t

te
x
t

.
.
.

te
x
t

Table 2: Possible calls of the dashundergaps package.

Merciadri packages: An overview

208 TUGboat, Volume 32 (2011), No. 2

Without any option, the package will not do
anything useful. Consequently, one of the following
options should be specified:

• dash: will dash text if used with the command

\dashuline{text}

where you want “text” to be dashed (i.e. some-
where in the document environment).

• dot: will dottext if used with the command

\dotuline{text}

where you want “text” to be dotted.
• phantomtext: helps in writing a pattern at the
place of the text. This pattern can be

– dashing, if used with dash option;
– dotting, if used with dot option;
– underlining, if used with (dash and dot)

options or with neither dash nor dot;
– the text itself, if used with the

teachernotes option.

• teachernotes: see the last above.
• displaynbgaps: produces, at the end of your
document (in the center of the page), a sum-
mary of the number of gaps, like this:

GAPS: x.

All the commands (their order is immaterial)
of dashundergaps.sty are given in Table 2 except

the use of displaynbgaps, which can trivially be
used iff phantomtext is used. Here, “×” means “not
applicable”.

3.3 Sectioning and dashundergaps

3.3.1 Numbering

Some users would like to have dashed or dotted sec-
tion numbers. This can be done with, for example:

\usepackage[dash,dot]{dashundergaps}

\usepackage[calcwidth,pagestyles,...]{titlesec}

...

\titleformat{\section}

{\normalfont\Huge\bfseries}

{\dashuline{\thesection}}{1em}{}

\titleformat{\subsection}

{\normalfont\LARGE\bfseries}

{\dotuline{\thesubsection}}{1em}{}

It is possible, and will work. For example, here,
sections and subsections will have their numbering
respectively dashed and dotted.

3.3.2 Titles

However, this approach using titlesec does not
work for the section titles. To do this, the present
solution is to use, in each section command, code
like this:

\section{\protect\dashuline{My section}}

At present, the \protect is required.

4 The plantslabels package

I have a somewhat wide-ranging collection of carniv-
orous plants. Once objects are categorized (be they
plants, or anything else), it is useful to distinguish
them easily. This is easy between plants whose char-
acteristics are radically different, as is normally the
case with distant species (as defined in biology). But
once one has many objects sharing the same char-
acteristics (which, here, occurs more frequently for
plants belonging to the same species), it becomes
more difficult not to mix up two plants. Or some
plants belonging to the same species could have dif-
ferent reactions towards natural elements such as
cold, etc., and it is thus interesting to distinguish
them, which leads to the idea of labelling. This
is what motivated me to write this package, which
aims at making labels for plants, as its name sug-
gests.

4.1 Example

Let’s say that you have two kinds of plants that you
want to label: “Myplant1” and “Myplant2.” One
habitually lives in the desert, and the other lives in
tropical regions. You have, say, 2 specimens of the
first, and 4 of the second. You can invoke, assuming
cactus.eps is your image for the first one, that you
have no image for the second one, and that they
respect the conditions mentioned below:

\plant{1}{1}{2}{Myplant1}{5}{EUR}

{$-10\to +50$}{Peat moss, sand, %

perlite}{cactus.eps}

\plant{2}{2}{4}{Myplant2}{10}{EUR}

{$20\to +40$}{Peat moss, fertilizer}{}

This will create 2+4 = 6 labels (2 of the first, 4 of the
second). The two labels are represented (without
the captions, images and a slightly smaller length
for the label) in Figure 1.

Name Myplant1

Price 5EUR
Temperature −10 → +50
Substratum Peat moss, sand, perlite

(a) Label of Myplant1.

Name Myplant2

Price 10EUR
Temperature 20 → +40
Substratum Peat moss, fertilizer

(b) Label of Myplant2.

Figure 1: The two kinds of labels produced.

Luca Merciadri

TUGboat, Volume 32 (2011), No. 2 209

4.2 Available commands

This package has currently no option, and is rather
limited, as it has only one command: \plant. This
command takes nine arguments, of which only the
first three are mandatory. Here is the syntax:

\plant

{〈cols labels〉}{〈rows labels〉}{〈no labels〉}
{〈generic plant name〉}
{〈generic price〉}
{〈generic currency〉}
{$〈generic temperature〉$}
{〈generic substratum〉}
{〈generic picture〉}

where

1. (mandatory) 〈cols labels〉 is the number of col-
umns of labels,

2. (mandatory) 〈rows labels〉 is the number of rows
of labels,

3. (mandatory) 〈no labels〉 is the number of labels,
under the condition

〈cols labels〉 × 〈rows labels〉 = 〈no labels〉,

4. 〈generic plant name〉 is the plant name to be
written on each label,

5. 〈generic price〉 is the plant’s price to be written
on each label,

6. 〈generic currency〉 is the currency to be written
on each label, after 〈generic price〉,

7. 〈generic temperature〉 is the temperature to be
written on each label (it should be tmin → tmax,
i.e. the minimum and maximum temperatures
for the plant),

8. 〈generic substratum〉 is the plant’s substratum
to be written on each label,

9. 〈generic picture〉 is the plant’s picture to be
drawn on each label.

As all the arguments after 〈no labels〉 are op-
tional, you can skip them. However, you still need
to write empty braces for them. For example,

\plant{1}{1}{1}{Plant}{}{}{}{}{}

will simply draw one label with “Plant” on it.

5 The turnthepage package

On some exams, some teachers like to indicate to
the reader that the ‘page’ can be turned. This avoids
oversights by students, thereby avoiding them break-
ing out in a cold sweat at the end of an exam, re-
alizing there were other questions they needed to
answer. We have implemented a LATEX package [5]
so that each odd page (except the last one, if the
last page is odd) displays a message to turn the page.

The mechanism may also be useful for different kinds
of documents.

This package (v1.3) can thus be used for exams,
or special documents printed ‘twoside.’

5.1 Available commands

To load the package, use

\usepackage[〈option〉]{turnthepage}

where 〈option〉 determines the text that appears at
the bottom of each odd page, in its right corner:

• short: displays ‘/. . . ’;

• english: displays ‘Turn the page.’;

• francais: displays ‘Tournez la page.’;

• nederlands: displays ‘Sla de pagina om.’;

• deutsch: displays ‘Bitte wenden.’.

As the package calls \turnthepage where it needs
to be placed, you can define \turnthepage as you
want. For example, if you want a more polite way
to say it, you can use

\renewcommand{\turnthepage}{%

\itshape Turn the page please.}

after the preamble.
The package is composed of three .sty files:

one for the ε-TEX version (with the zref-abspage

and zref-lastpage packages), one for the non-ε-
TEX version (with the pagesLTS package), and one
main file. The main file (turnthepage.sty) will
automatically load turnpageetex.sty if ε-TEX is
found, and turnpagewoetex.sty if no ε-TEX is de-
tected.

You can force the use of turnpageetex.sty

or turnpagewoetex.sty (provided you have the re-
lated LATEX installation) using

\usepackage[option]{turnpageetex}

or

\usepackage[option]{turnpagewoetex}

where, in both cases, option is one of the aforemen-
tioned options. Notice the missing the after turn

in these two specific files.

5.2 Thanks

I could not have achieved this work without some
help. Special thanks go to

• Marc van Dongen for his help [8],

• Martin Münch for his personal communications
and his version of turnthepage without ε-TEX,

• Philipp Stephani [6].

Merciadri packages: An overview

210 TUGboat, Volume 32 (2011), No. 2

6 Matrices with borders

The code in this section comes from [1]; I thought
it was valuable enough to describe. For pedagogical
reasons, one may want matrices with borders, like
this:

n times
︷ ︸︸ ︷






a b . . . c







d
... A

e

This can be achieved with a variety of approaches.
First, here is what produced the above example:
\usepackage{multirow}

\makeatletter

\def\Biggg#1{{\hbox{$\left#1\vbox to32\p@{}

\right.\n@space$}}}

\newdimen\bracketwidth

\settowidth{\bracketwidth}{\Biggg(}

\makeatother

\[\begin{array}{r@{}r@{\hspace{\arraycolsep}}rcc%

c@{\hspace{\arraycolsep}}c@{}l}

& & & & \multicolumn{3}{c}{\vspace{-.5em}

\overbrace{\hphantom{b \hspace{2\arraycolsep}

\cdots

\hspace{2\arraycolsep} c}}

^{n \mbox{\scriptsize\ times}}}\\

\multirow{5}{\bracketwidth}[3pt]{\Biggg(}

& & a & \multirow{5}{1pt}[3pt]{\vrule height52pt}

& b & \cdots & c &

\multirow{5}{\bracketwidth}[3pt]{\Biggg)}\\

\cline{2-7}

& & d\\

& & \vdots & & & A\\

& & e

\end{array} \]

This is close to unreadable for me. A more readable
solution:

\[\vbox{%

\hskip2.8em$\overbrace{\hphantom{b %

\hspace{2\arraycolsep} \cdots

\hspace{2\arraycolsep} c}}^{n%

\mbox{\scriptsize\ times}}$

\vskip-.25em

$\left(

\begin{array}{r|ccc}

a & b & \cdots & c\\

\hline

d\\

\vdots & & A\\

e

\end{array} \right)$} \]

In another approach, one could define:

\def\moverbrace#1#2{%

\newdimen\moverbracewd

\settowidth\moverbracewd{#1}%

\addtolength\moverbracewd{-2\arraycolsep}

\vbox to 1.6ex{\hsize=\moverbracewd

\centering\vss

$\overbrace{#1}^{#2}$}}

and then use it, for example like this:

\[\left(

\begin{array}{r|c}

a & \moverbrace{b \hspace{2\arraycolsep}

\cdots \hspace{2\arraycolsep} c}

{n \mbox{\scriptsize\ times}}\\

\hline

d\\

\vdots & A\\

e

\end{array}\right) \]

In all the examples, \mbox could evidently be
replaced by a \text equivalent. Please tell me if you
know a simpler way to achieve this.

⋄ Luca Merciadri

University of Liège

Luca.Merciadri (at) student dot ulg dot

ac dot be

http://www.student.montefiore.ulg.ac.be/

~merciadri/

References

[1] Glad Deschrijver. TEX Tricks, 2011. http://

users.ugent.be/~gdschrij/LaTeX/

textricks.html.

[2] Luca Merciadri. The bigints package, 2010.
http://mirror.ctan.org/macros/latex/

contrib/bigints.

[3] Luca Merciadri. The dashundergaps package,
2010. http://mirror.ctan.org/macros/

latex/contrib/dashundergaps.

[4] Luca Merciadri. The plantslabels package,
2010. http://mirror.ctan.org/macros/

latex/contrib/plantslabels.

[5] Luca Merciadri, Marc Van Dongen, and Martin
Münch. The turnthepage package, 2011.
http://mirror.ctan.org/macros/latex/

contrib/turnthepage.

[6] Philipp Stephani and Luca Merciadri. New on
CTAN: turnthepage, comp.text.tex, 2010.

[7] Nicola Talbot. Talbot packages: An overview.
TUGboat, 31:65–67, 2010.

[8] Marc Van Dongen and Luca Merciadri. Turn
the Page, comp.text.tex, 2011.

Luca Merciadri

TUGboat, Volume 32 (2011), No. 2 211

ConTEXt basics for users: Paper setup

Aditya Mahajan

1 Basic setup

1.1 Setting paper size

Plain TEX and LATEX were primarily developed in
the US. So, they default to letter paper, which is
the standard paper size in the US. ConTEXt was de-
veloped in the Netherlands. So, it defaults to A4
paper, which is the standard paper size in Europe
(and almost everywhere else in the world).

Changing the paper size is easy; for letter size:1

\setuppapersize[letter]

Similarly, to get A4 paper, use:

\setuppapersize[A4]

1.2 Predefined paper sizes

Both A4 and letter are predefined paper sizes. Con-
TEXt predefines many other commonly used paper
sizes. These include:

• letter, ledger, tabloid, legal, folio, and
executive sizes from the North American
paper standard;

• sizes A0–A10, B0–B10, and C0–C10 from the A,
B, and C series of the ISO-216 standard;

• sizes RA0–RA4 and SRA0–SRA4 from the RA

and SRA series of the ISO-217 paper standard;
• sizes C6/C5, DL, and E4 from the ISO-269

standard envelope sizes;
• envelope 9–envelope 14 sizes from the

American postal standard;
• sizes G5 and E5 from the Swedish SIS-014711

standard. These are used for Swedish theses;
• size CD for CD covers;
• size S3–S6, S8, SM, and SW for screen sizes.

These sizes are useful for presentations. S3–
S6 and S8 have an aspect ratio of 4 : 3. S3 is
300pt wide, S4 is 400pt wide, and so on. S6 is
almost as wide as a A4 paper. SM and SW are
for medium and wide screens; they have the
same height as S6;

• a few more paper sizes, which I will not men-
tion here. See page-lay.mki(i|v) for details.

1.3 Defining new paper sizes

The predefined paper sizes in ConTEXt cannot fit all
needs. To define a new paper size, use

\definepapersize[exotic]

[width=50mm, height=100mm]

which defines a paper that is 50mm wide and 100mm
high; the name of this paper is exotic (we could have
used any other word). All predefined paper sizes are
defined using \definepapersize. For example, A4

paper is defined as:

\definepapersize [A4] [width=210mm,height=297mm]

Use this new paper size like any of the prede-
fined paper sizes. For example, to set the paper size
to 50mm x 100mm paper, use

\setuppapersize[exotic]

1.4 Orientation

Most of the popular paper sizes default to a portrait
orientation. To get landscape orientation, use

\setuppapersize[letter,landscape]

2 Changing paper setup mid-document

Normally, the paper size is set up once — in the
environment file — and doesn’t need to be changed
later. But, occasionally, changing paper size mid-
document is needed; for example, to insert a table
or a figure in landscape mode. There are two ways to
change the paper size mid-document. To illustrate
those, let us first define two paper sizes for conve-
nience:

\setuppapersize[main] [A4]

\setuppapersize[extra][A4,landscape]

One way to change the document size mid-
document is simply to call \setuppapersize.

\starttext

% ...

% text with main paper size

% ...

\page \setuppapersize[extra]

% ...

% pages in landscape mode

% ...

\page \setuppapersize[main]

% ...

% back to main paper size

% ...

\stoptext

The \page before \setuppapersize is neces-
sary as \setuppapersize changes the size of the
current page.

1 The syntax used here only works with ConTEXt versions
newer than February 2011. Before that, you had to use

\setuppapersize[letter][letter]

to get letter sized paper. You may wonder why we need
to repeat the paper size twice. In most cases, these are the
same. You only need to use different arguments if you want
to print on a bigger paper and trim it later (see the section
on print size for details).

212 TUGboat, Volume 32 (2011), No. 2

Often times, a different paper size is needed only
for one page. Rather than manually switching the
paper size back and forth using \setuppapersize,
a convenient alternative is to use \adaptpapersize,
which automatically reverts back to the existing pa-
per size after one page. For example:

\setuppapersize[main]

\starttext

Page 1. Portrait \page

Page 2. Portrait \page

\adaptpapersize[extra]

Page 3. Landscape \page

Page 4. Portrait

\stoptext

As with \setuppapersize, always use an ex-
plicit \page before \adaptpapersize.

Successfully printing a document with such
mixed paper sizes requires setting appropriate op-
tions in the document viewer and/or printer con-
troller.

3 Setting print size

Occasionally you may want to print on a larger paper
than the actual page size. This could be because you
want to print to the edge of the page — so you print
on large paper and crop later — or because the page
size that you are using is not standard.

For example, suppose you want to print an A5

page on a A4 paper (and crop later). For that, you
need to specify that the paper size is A5 but the print

paper size is A4. This information is specified with
the two-argument version of \setuppapersize:

\setuppapersize[A5][A4]

3.1 Changing page location

By default, this places the A5 page on the top left
corner of the A4 paper. To place the A5 page in the
middle of the A4 paper use:

\setuppapersize[A5][A4]

\setuplayout[location={middle,middle}]

Other possible values for location are:

• {top,left}, {top,middle}, {top,right},
• {middle,right}, {middle,left},
• {bottom,left}, {bottom,middle}, and

{bottom,right}.

Since {middle, middle} is the most commonly used
value, it has a shortcut: location=middle.

If you use {*,left} or {*,right} and print
double-sided, then also add duplex as an option; for
example location={duplex,top,left}. This en-

sures that the page paper is moved appropriately on
even pages.

3.2 Crop marks

To get crop marks (also called cut marks):

\setuplayout[marking=on]

By default, the page numbers are also included
with the crop marks. To get additional information
like job name, current date and time along with the
crop marks, use

\setuplayout[marking=text]

If you want just the crop marks, and no other
text, use

\setuplayout[marking=empty]

3.3 Defining page and print size

combinations

It is convenient to define paper-size/print-paper-size
combination for later reuse. These are also defined
using \definepapersize. For example, suppose you
want to define two paper-size/print-paper-size com-
binations: A4 paper on A4 print paper for normal
work flow, and A4 paper on A3 print paper for the
final proofs. For that, use the following:

\definepapersize[regular][A4][A4]

\definepapersize[proof] [A4][A3]

You can then combine these paper sizes with
modes:2

\setuppapersize[regular]

\doifmode{proof}{\setuppapersize[proof]}

Then, when you compile the document in the
normal manner, you will get A4 paper on A4 print pa-
per; if you compile the document with –mode=proof,
then you will get a A4 paper on A3 print paper.

4 Conclusion

Paper setup is one of the most basic requirements for
creating your own style. In this article, I explained
the basics of paper setup, deliberately leaving out
more advanced setups that are described in the Page

Design chapter3 of the new ConTEXt manual.

⋄ Aditya Mahajan
adityam (at) ieee (dot) org

2 See the previous article on Conditional Processing in this
series, a slightly modified version of which is available on
the ConTEXt wiki: http://contextgarden.net/Modes

3 http://context.aanhet.net/svn/contextman/

context-reference/en/co-pagedesign.pdf

TUGboat, Volume 32 (2011), No. 2 213

Experiences with notes, references,

and bibliographies

David Walden

Notes, references, and bibliographies, and the possi-
ble interactions among them, collectively are a com-
plicated topic (at least in American English writing),
and one that I struggle with on all but the short-
est and simplest writing projects. In this paper I
illustrate and discuss some of my approaches and
struggles. I don’t claim any particular expertise—
just lots of experiences.

In this paper, I will use the word notes to mean
strictly discursive material (that is, auxiliary discus-
sion of the topic that would confuse the thread of the
discussion if included in the main text), and I will
use the word references to mean strictly references
to (or acknowledgments of) sources and additional
documentation on the topic.

Referenced items can appear in footnotes, end-
notes, or bibliographies, typically using reference
markers in the main text that are either some form of
author-year notation or are a unique (to the book or
chapter) numeric or alpha-numeric sequence. Notes
can appear in footnotes, endnotes, or in reference
lists, typically cited from the main text with a se-
quence number.

In the various style manuals I have consulted,
references listed in notes have been allowed a more
relaxed format (for example, as in footnote 3) than
references listed in bibliographies; for example:

Ackoff, Russell. 1981. Creating the Corporate Future.
New York: John Wiley & Sons.

1 Most simply

Most simply, one’s footnotes can be inserted with
\footnote{...footnote text...}, using LATEX’s
default of the footnote getting automatically num-
bered and being placed on the bottom of the page
where the \footnote command appeared.1

The most basic approach to literature citations,
then,2 is probably to put them in regular footnotes
with manual formatting of the book or article infor-
mation, as below.3 (By the way, the style manual
cited in that footnote has 111 pages about how to
deal with references, notes, and bibliographies.) How-
ever, one doesn’t want to repeat the full reference
if one needs to cite it again somewhere in the same
document. This can be handled by putting a label
in the first footnote comment, e.g.,

1 This is an example of a footnote.
2 Avoiding learning anything new about LATEX.
3 The Chicago Manual of Style, thirteenth edition, The

University of Chicago Press, Chicago, IL, 1982.

\footnote{\label{foot:CMS}\textit{The

Chicago Manual of Style}...}

and then using the code

\textsuperscript{\ref{foot:CMS}}

as the footnote marker, as I have done here.3

2 My first book in LATEX

My first significant project with LATEX was in writing
and composing a 760-page book.

2.1 Using BIBTEX

This book has 315 items in the references section
at the end of the book, and it had a notes section
at the end of the Preface, the end of each of its 29
chapters, and at the end of the afterword.

With so many references, it was time to learn
aboutBibTEX (http://www.ctan.org/pkg/bibtex)
which I mostly did using the then current edition of
Kopka and Daly’s Guide to LATEX.

I don’t remember exactly how I did this, as
after I provided a typeset copy of the manuscript
to the publisher, the publisher retypeset it using
QuarkExpress, as explained in my TUGboat paper
about this experience (http://tug.org/TUGboat/
tb24-2/tb77walden.pdf). However, it was some-
thing like the following.

I created a biblio.bib file as follows (except
with 315 items in the file instead of 3):

\begin{thebibliography}{ABCDEFG}

@article{Abell93,

author="Thomas E. Abell and Dawn Dougherty Fitzgerald",

title="{HP}’s Quality Management System:

{CEO} Roundtable Report",

journal="The Center for Quality of Management Journal",

volume={2}, number={3}, pages={3--4},

month={Summer}, year={1993} }

@book{Ackoff81,

author="Russell Ackoff",

title="Creating the Corporate Future",

publisher="John Wiley \& Sons",

address="New York", year=1981 }

@book{Akao90,

author="Yoji Akao",

title="Quality Function Deployment",

address="Cambridge, MA",

publisher="Productivity Press", year=1990 }

\end{thebibliography}

I found it convenient to put the items in the
biblio.bib file in alphabetic order basically by first
author’s last name and year of publication (abbrevi-
ated in the BibTEX key field with a two digit year—
I wasn’t referencing any items where the early 1900s
could be mixed up with the early 2000s).

I cited the references as in this example file:

Experiences with notes, references, and bibliographies

214 TUGboat, Volume 32 (2011), No. 2

\documentclass{book}

\begin{document}

TEST

\cite{Ackoff81} \cite{Abell93} \cite{Akao90}

\renewcommand*{\bibname}{References}

\bibliographystyle{plain}

\bibliography{biblio}

\end{document}

One uses BibTEX with a LATEX document named
X by compiling X.tex, then giving the command
bibtex X, and then compiling X.tex again. This
resulted in the following test output:

TEST [2] [1] [3]

and a references section at the end of the book such
as the following:

References

[1] Thomas E. Abell and Dawn Dougherty Fitzger-
ald. HP’s quality management system: CEO
roundtable report. The Center for Quality of

Management Journal, 2(3):34, Summer 1993.

[2] Russell Ackoff. Creating the Corporate Future.

John Wiley & Sons, New York, 1981.

[3] Yoji Akao. Quality Function Deployment. Pro-
ductivity Press, Cambridge, MA, 1990.

Because the plain BibTEX style orders bibliog-
raphy entries alphabetically by the first author’s last
name, the 315-item bibliography became a useful
resource in its own right.

See also Appendix A.

2.2 End-of-chapter notes

The publishing world for management books doesn’t
like footnotes— they look too scholarly to be popular.
In fact, the non-fiction world in the U.S. increasingly
shies away from using note markers in the main text.
In many books there is a set of notes at the end of
the book with a section for each chapter and the
individual notes labeled with a page number, a brief
quote of text from that page, and then notes about
the quoted words. An example follows:4,5

4 Taken from Ian Ayres, Super Crunchers, Bantam Books,

New York, 2007, p. 224.
5 To try to accomplish this endnote style, I tweaked a few

lines of endnotes.sty to make the endnote command have

two arguments, where the first argument is text that goes

inline in the main text and is also shown in the endnotes,

the second argument is the endnote itself, and the correct

page number gets passed along to the endnote. But mine is

not a robust solution: it was done by trial and error without

so much understanding of endnotes.sty, and without any

generality or cleanup of parts of endnotes.sty that were no

longer needed. It would be nice if someone would implement

a real package to do this.

CHAPTER 2

Page 46: Fisher proposes randomization: Ronald

Fisher, Statistical methods for Research Workers (1925);

Ronald Fisher, The Design of Experiments (1935).

In any case, the editors of my book would not
stand for having notes on pages of the main text. We
compromised on end-of-chapter notes with numeric
note markers in the main text of the chapters, al-
though I had been drafting the book using footnotes.

I handled this by using the endnotes package
(endnotes.sty) to which I made a few tiny changes
in formatting (renaming the resulting changed file
r-endnotes.sty (for revised endnotes). I initiated
use of this capability in the usual way, that is,

\usepackage{r-endnotes}

(I had not yet learned about \RequirePackage.)
I next added the following code to my style

file for this book that was processed as part of the
LATEX preamble, and I put a \dumpendnotes com-
mand at the end of the file for each chapter. The
\theendnotes command in the following definition
is the piece of endnotes.sty that actually includes
the saved-up endnotes at that point in the LATEX
output.

\renewcommand{\footnote}{\endnote}

\newcommand{\dumpendnotes}{%

\medskip

\begingroup

\setlength{\parindent}{0pt}

\setlength{\parskip}{1ex}

\renewcommand{\enotesize}{\normalsize}

\theendnotes

\endgroup

\setcounter{endnote}{0}

}

With endnote sections for each chapter and a
separate bibliography, the notes often also cited items
in the bibliography, e.g., note 2 (for chapter 22) on
page 465 of that book says:

2. The idea of push-and-pull, introduced in the figure,
are derived from the ideas of [189].

where 189 is the number of a bibliography item.

3 Incremental development

Even when I know I am going to be using notes at
the ends of chapters or at the end of the book, I
usually do my original drafting with the notes at the
bottom of pages so that I can see the text referencing
the note and the note at the same time. Thus, in
recent years I often do not use the actual \footnote
and \endnote commands in the main text. Rather,
I create definitions such as

\def\EN#1{\footnote{#1}}

David Walden

TUGboat, Volume 32 (2011), No. 2 215

and use \EN{〈note text〉} in the main text so that I
can make the decision later to keep using footnotes
or switch to having endnotes.

Sometimes I have used both footnotes and end-
notes in a document, for instance, footnotes for notes
and endnotes for references, or the reverse. In that
case, I would define both \EN and \FN to be foot-
notes while drafting, and then switch one type to be
endnotes when nearing completion of the document.
Sometimes I also have not been sure if I was going
to use BibTEX and the \cite command or put the
references in footnotes or endnotes. Thus, I typically
also do not use \cite in the main text but instead
use \CT which later can be defined to do whatever I
decide I want it to do.

Often while developing a book or other complex
document I go back and forth several times switching
the definitions of \FN, \EN, and \CT. Sometimes the
final decision comes based on the publisher’s book
or journal style despite my preference.

4 My second book

I self-published the second book I composed using
LATEX (Breakthrough Management, co-authored with
Shoji Shiba). Because the book was self-published, I
got to control all the design decisions, for better or
for worse.

4.1 Different approach to a bibliography

By the time I started this book, I had fallen in love
with the convention for BibTEX keys, e.g., Ackoff81,
that I had used in the previous book. I have never
liked the conventional author-year approach to citing
references, i.e., [Ackoff, 1981], despite its widespread
use and the fact that many scholarly journals require
it and the Chicago Manual of Style strongly recom-
mends it. Numbers alone, e.g., [189], don’t give any
information to the reader. It is nice to know without
actually going to the bibliography which author (at
least first author) is being cited and in what year;
sometimes that alone is enough for the reader to
recall the document being cited.

Thus, I adopted my own convention for label-
ing bibliography items and manually formatted the
bibliography entries. This bibliography was much
smaller, the editor I hired had her own ideas about
proper formatting for bibliography entries, and it
was easier not to use BibTEX. The beginning of
the bibliography file had the following definition to
format the bibliography entries and entries such as
the example for Ackoff81 shown below.

\def\ref#1#2{\vskip 4pt

\vbox{\noindent\small

\hangindent = 1pc \textbf{#1.}

\hspace{.05in}#2}}

% using the MLA standard

\ref{Ackoff81}{Ackoff, Russell L.

\textit{Creating the Corporate

Future: Plan or Be Planned For}.

New York: Wiley, 1981.}

which resulted in bibliography entries such as the
following:

Ackoff81. Ackoff, Russell L. Creating the Corporate Fu-

ture: Plan or Be Planned For. New York: Wiley, 1981.

There was a problem with using this notation.
The book was typeset using the Minion set of fonts
which includes old style numbers which made a zero
in the year part of the notation the same size as a
small letter o.

4.2 End-of-book notes

By the time I started this book, I also had become
convinced that notes should either be at the bottom
of pages where they are easy to see, or they should all
be at the end of the book where they are relatively
easy to find. The reader should not have to hunt for
the notes at the end of every chapter.

In this approach, the command at the end of
each chapter only reset the note counter to 0 and
didn’t actually dump any notes. Thus, all the notes
from all the chapters are saved up with note numbers
repeating from the beginning of each chapter.

Once again I modified endnotes.sty. In addi-
tion to some small formatting changes to the end-
notes themselves, I tweaked the \theendnotesmacro
in endnotes.sty (and gave the style my own pri-
vate name). With my change, when endnotes were
dumped the only time at the end of the book, a chap-
ter counter was started at 0 and then incremented
by 1 each time a new note 1 went by as part of
the endnote dump. The change also prints the text
“Chapter” and the appropriate chapter number be-
tween the last note of one chapter and the first note
of the new chapter.

5 My third book

I also self-published the third book I composed, Vi-
sionary Leaders in Manufacturing, again co-authored
with Shoji Shiba, this time using the book option
of the memoir class. In this case I decided to use
the style I must use when writing and editing for
the IEEE Annals of the History of Computing. This
journal’s style has all references and notes in one nu-
meric sequence at the end of the article (or book, in
this case) in a section called “Notes and references”.

I could have just used one long sequence of
numbered endnotes. However, then I would have to

Experiences with notes, references, and bibliographies

216 TUGboat, Volume 32 (2011), No. 2

do something special6 not to have duplicate entries
in the notes-and-references list when a particular
book or article was cited more than once.

Consequently, I decided to use BibTEX and
\bibliographystyle{unsrt} (a numeric list in or-
der of use) for both the the notes and references, as
in the following examples from my biblio.bib file:

@book{Shiba2003,

author="Shoji Shiba and David Walden",

title="Breakthrough Management: Principles,

Skills and Patterns for

Transformational Leadership",

year=2006,

publisher="Confederation of Indian Industry",

address="New Delhi" }

@misc{ch1a,

note="Although I have not used quote marks

here, these paragraphs are copied or

derived from the CII website\cite{CIIurl}

and the preface of several VLFM documents;

and I have kept their spelling in these

near quotes." }

@misc{CIIurl,

note="\url{www.cii.in}" }

This resulted in the following sorts of entries in
the combined notes-and-references list, which I just
labeled “References”.

References

1. Shoji Shiba and David Walden. Breakthrough

Management: Principles, Skills and Patterns for

Transformational Leadership. Confederation of
Indian Industry, New Delhi, 2006.

2. www.cii.in

3. Although I have not used quote marks here, these
paragraphs are copied or derived from the CII
website2 and the preface of several VLFM docu-
ments; and I have kept their spelling in these near
quotes.

6 Final note

Sometimes I wish that I could just pick one useful
style for notes and references and use it over and
over. However, different situations keep coming up,
and sometimes I am too lazy to use something pow-
erful like BibTEX even when it is appropriate to
the situation. Fortunately, the set of experiences
and approaches I have described here seems to be
a good foundation for cobbling together additional
approaches as I decide they are needed for particular

6 E.g., create a label in the endnote for the first instance

of the citation and then manually insert that note number

as a superscript at the point of the second instance of the

citation.

situations. (In general I avoid seeking out and learn-
ing new packages as long as I can tweak something I
already know to do what I need.)

Still, there are other packages and options to use.
For example, in the latest document I wrote before
this one, I used \usepackage[para]{footmisc} to
put multiple footnotes on the same line at the bottom
of the page. Also, I have recently heard about the
biblatex package for LATEX and the biber program
which I understand are somehow alternatives to using
BibTEX; maybe I will try something new for my next
big project.

Acknowledgments

I already mentioned Kopka and Daly’s Guide to

LATEX as my basic source of BibTEX information.
However, probably my main source of information
when struggling to accomplish some new approach is
the comp.text.tex discussion group; many people
answered my questions or had answered prior ques-
tions in which I found answers (Boris Veytsman may
have been the person who suggested the technique I
mentioned in Section 5). I learned the technique in
Appendix A from a file Frank Mittelbach sent to me.

Thank you to Karl Berry and Barbara Beeton
for their editorial work on this note.

Appendix A: BIBTEX without a separate file

If you have only a few references in a document and
don’t want to bother creating a separate .bib file,
you can use the following technique.

Begin the file (before \documentclass) with a
filecontents environment; for example:

\begin{filecontents}{\jobname.bib}

@article{Abell93,

author="Thomas E. Abell and Dawn Dougherty Fitzgerald",

title="{HP}’s Quality Management System:

{CEO} Roundtable Report",

journal="The Center for Quality of Management Journal",

volume={2}, number={3},

month={Summer}, year={1993}, pages={3--4} }

...

\end{filecontents}

Then put a command such as

\usepackage[numbers]{natbib}

in the preamble. Finally, at the end of the file put
commands such as:

\bibliography{\jobname}

\bibliographystyle{plainnat}

Then you can cite the bibliographic entries in the
normal way, e.g., \cite{Abell93}.

⋄ David Walden
http://www.walden-family.com

David Walden

TUGboat, Volume 32 (2011), No. 2 217

Sixty years of book design at St. Gallen,

Switzerland

Paul Shaw

Editor’s note: The worlds of TEXnicians and
book designers sometimes overlap. TEX and
friends are a beautiful set of programs, but
they are means to an end: the creation of
beautiful texts, both in print and on screen.
Thus a magazine about visual culture and de-
sign, Print (http://www.printmag.com) may
be of interest to TUG members. As an in-
troduction to this magazine we reproduce
here, with permission, an article from its
online newsletter Imprint (http://imprint.
printmag.com). The online version contains
many additional links.

Fifty-five years ago Swiss design was at a crossroads.
In “Über Typographie” (Schweizer Graphische Mit-

teilungen, April 1946) Max Bill urged Swiss designers
to follow “ ‘asymmetric’ or organically formed typog-
raphy”, to reject “the conventional text-image of ax-
ial symmetry” and the retreat into historicism that it
represented. Jan Tschichold’s rebuttal, “Glaube und
Wirklichkeit” (SGM, June 1946), repeated his asser-
tion that “The New Typography has not yet been
superseded, but it has proved itself to be suitable
only for advertising and jobbing. For the book, and
particularly for literature, it is completely unsuit-
able.” He defended the need to design some books
“in the manner of traditional typography” while al-
lowing that others might be more suitable done in
Bill’s “functional” typography. The Swiss design
that won worldwide recognition in the decades fol-
lowing the Second World War followed the path laid
down by Bill rather than that of Tschichold. “Swiss”
design became the source of “the International Ty-
pographic Style” associated with sans serif type—
usually Helvetica, a face that ironically most Swiss
designers rejected—and grids. (Both essays have
been translated into English and published, accom-
panied by “Über moderne Typographie”, an essay by
Paul Renner attempting to mediate the conflict, and
contextual essays by Christopher Burke and Robin
Kinross in Typography Papers 4 (2000), pp. 57–90.
Sadly, the issue is out of print.)

Tschichold’s plea for “the right to work in the
way that I find best”, whether “newly revived tra-
ditional typography” or “functional typography”,
although ignored by the graphic design community,
took root among book designers, especially those in
St. Gallen, a town fifty miles east of Zurich. It is an
appropriate place since St. Gallen is renowned for

Sophie Taeuber-Arp by Georg Schmidt (Basel:
Holbein-Verlag, 1948). Binding, title page spread and
two double page spreads. Design by Max Bill.

Irrweg und Umkehr by Constantin Silens (Zurich:
Birkhäuser Verlag, 1945). Jacket. Design by Jan
Tschichold.

Sixty years of book design at St. Gallen, Switzerland

218 TUGboat, Volume 32 (2011), No. 2

Typo-Graphik: Studien und Versuche by Imre Reiner
(St. Gallen: Zollikofer AG, 1943). Spread designed by
Imre Reiner.

Typo-Graphik: Studien und Versuche by Imre Reiner
(St. Gallen: Zollikofer AG, 1943). Spread designed by
Imre Reiner.

the Abbey Library of the Benedictine monastery of
St. Gall (established 747) which houses one of the
most important collections of early Medieval manu-
scripts in the world. It is also the home of Zollikofer,
a printer founded in 1789 that became a publisher
as well, first of newspapers in 1803, then of the trade
journal Schweizer Graphische Mitteilungen in 1884,
and of books in 1943. (Zollikofer Druck AG is now
part of Ringier AG, an international media company.)

The first book from Zollikofer Verlag was Typo-
Graphik: studien und versuche by Imre Reiner (1900–
1987), a Hungarian-born type designer, book designer
and illustrator. Appropriately, it is the first book on
display in the exhibition 60 Years of Book Design at

St. Gallen, Switzerland at the AIGA National Design
Center in New York City. Reiner studied at the
Kunstgewerbeschule (Am Weissenhof) in Stuttgart
under F.H.E. Schneidler, a charismatic teacher who
followed a middle path between the modernism of the
Bauhaus and die neue typographie and the traditional

book design of contemporaries such as E.R. Weiss
and F.H. Ehmcke. This was similar to the attitude
that Rudolf Hostettler (1919–1981), the progenitor
of the “St. Gallen” style, adopted in the wake of the
Bill/Tschichold debate.

Hostettler, the designer and editor of SGM at
the time of the debate, began his career in 1943 at
Zollikofer as a layout artist for the journal as well as
for the newspaper St. Galler Tagblatt. In 1951, when
SGMmerged with Typographische Monatsblätter (TM)
and Revue Suisse de l’Imprimerie (RSI), he became
the chief editor, a position he held until his death.
From 1952 on TM became one of the primary out-
lets for the new Swiss style of design, the magazine
that showcased the work of Robert Büchler, Emil
Ruder, Karl Gerstner and others. At the same time
Hostettler, with Hermann Strehler, established an
imprint for SGM which published books about the
graphic arts in a new traditional style. Three of
the books were written by Hostettler himself: The
Printer’s Terms (1949), Type: A Selection of Types

(1949) and Klassierung der Schriften (1964). Ho-
stettler was thus a man in the middle in the Swiss
typographic wars, someone who was able to remain
on good terms with protagonists on both sides.

The AIGA exhibition includes all of these books
by Hostettler along with Strehler’s Die Buchdruck-

erkunst im alten St. Gallen (1967) which he designed.
With the exception of squarish Type, these books
typify the St. Gallen style. Jost Hochuli, at the
event organized by AIGA NY on June 16 to cele-
brate the exhibition, objected to the idea that there
is a “St. Gallen style” yet there is no doubt that
the books on display (as well as others by Hochuli
himself) share some common design attributes and
a similar design sensibility. Following Tschichold,
the St. Gallen attitude is that books are for reading
above all else. Thus, content comes before design.
Depending upon the content, the design may be
symmetrical (traditional) or it may be asymmetrical
or it may be a combination of both. The typeface
may be seriffed or sans serif or the two may be used
together. Above all, as Hochuli has reiterated on sev-
eral occasions, the designer must not follow dogma.
This open approach is the legacy of Hostettler that
Hochuli has passed down in his work, his teaching
and his writings. The books in the AIGA exhibition
tend to mix symmetry with asymmetry and often to
combine serif and sans serif types.

The emphasis on books for reading influences
their physical appearance. Here again, Tschichold is
a guiding spirit. He emphasized the handiness of a
book, decrying formats that were too wide, too large
or square:

Paul Shaw

TUGboat, Volume 32 (2011), No. 2 219

Die Buchdruckerkunst im alten St. Gallen by Hermann
Strehler (St. Gallen: Zollikofer, St. Galler Tagblatt,
1967. Title page designed by Rudolf Hostettler.

Die Buchdruckerkunst im alten St. Gallen by Hermann
Strehler (St. Gallen: Zollikofer, St. Galler Tagblatt,
1967. Title page designed by Rudolf Hostettler.

There are three arguments that speak against
books whose format approaches the equal-
sided rectangle. The first is simply handiness.
It is difficult for an unsupported hand to mas-
ter a square book—even more difficult than
to handle the ugly A5 format. The second
argument concerns storage. If these books are
wider than 24 cm (9 1/2 in.) they must be put
down flat. Yet books should be capable of
being stood upright on a shelf so that they
can be found quickly and used. For the final
argument, I have to make a little detour. It is
the hinges on either side of the spine that hold
the inner book, the book block, in position.
If the inner book is heavy—regrettably often
the case— then the face of the book will drop,
touch the shelf and begin to collect dust, a

Schriftenverzeichnis (St. Gallen: Zollikofer, St. Galler
Tagblatt, 1989). Spread designed by Max Koller.

thing the edges of the cover are supposed to
prevent. The longer the spine of the book rel-
ative to its width, the better the inner book
will remain in position.

From “On Books that Are Too Wide, Too
Large, or Square” (1975), reprinted in The Form
of the Book: Essays on the Morality of Good
Design (Vancouver and Pt. Roberts, Washington:
Hartley & Marks, 1991), p. 167

In the same essay Tschichold also argued for
books that were not heavy, singling out art paper
(the older term for coated paper) as something to be
avoided whenever possible. In the AIGA exhibition
there is one book in landscape format, one in a near-
square format and only two that are true squares.
These books look out of place amidst the others,
many of which are strikingly narrow. For instance,
Klassierung der Schriften is 115×180mm, Die Buch-

druckerkunst in alten St. Gallen is 160 × 250mm,
Schriftenverzeichnis (1989) is 162×297mm, Schreib-
werkstatt St. Gallen (1986/1987) is 134×225mm and
the Thomas Mann books (2002) are 125× 205mm.
(For American readers, the standard 8 1/2× 11 book
is equal to 216× 279mm.) These books are not only
small but they are light. With one possible exception
none are printed on coated paper. (The exhibition
includes copies of many of the books on display under
glass that visitors can handle.)

The two square books are from Tschudy-Verlag,
founded by Henry Tschudy (1882–1961) as a spin off
of his printing company H. Tschudy & Co. (Punkt,
Cicero und Kaviar (1982), a book celebrating Tschu-
dy’s life was written and designed by Hochuli on

Sixty years of book design at St. Gallen, Switzerland

220 TUGboat, Volume 32 (2011), No. 2

33 konstellationen by eugen gomringer (St. Gallen:
Tschudy-Verlag, 1960). Title page spread. Design by
Max Bill. Set in Neue Haas Grotesk.

33 konstellationen by eugen gomringer (St. Gallen:
Tschudy-Verlag, 1960). Double page spread. Design by
Max Bill. Set in Neue Haas Grotesk.

the occasion of the centennial of his birth.) They
are part of a 44-book series edited by Hans Rudolf
Hilty between 1959 and 1964 called Reihe Quadrat-
Bücher. No. 11 in the series is 33 konstellationen

(1960) by Eugen Gomringer, the Concrete poet, de-
signed and illustrated by Max Bill. It is set in Neue
Haas Grotesk (which later that year was renamed
Helvetica by D. Stempel AG). No. 15/16 is Die dritte

Generation: 42 Junge Schweizer kunstler. . . (1960)
by Hilty was designed by Hochuli’s teacher Willy
Baus. (For Hochuli’s tribute to him see Typotron 6.
It is set in Akzidenz Grotesk and uses a self-evident
grid. Unfortunately, not enough pages are on display
to fully appreciate the grid.

These books are from St. Gall but they are far
from the St. Gall “style”. Equally far though are

Die dritte Generation: 42 junge Schweizer Künstler
(St. Gallen: Tschudy-Verlag, 1960). Title page spread.
Design by Willi Baus.

Ein ABC um alte Segelschiffe by Albert Saner
(St. Gallen: Tschudy-Verlag, 1958). Spread with
woodcuts by Albert Saner. Design by Willi Baus.

two older books by Baus for Tschudy-Verlag: Von

der Kunst und vom Künstler by Josef Weinheber
(1954) and Ein ABC um alte Segelschiffe by Albert
Saner (1958). Both are set in typefaces by Baus’ men-
tor Rudolf Koch, Marathon for the former and the
blackletter Jessenschrift for the latter. (Marathon,
one of Koch’s least known faces, was singled out
for opprobrium by Tschichold in “Glaube und Wirk-
lichkeit.”) They are beautiful books—the balance
of the text block in Jessenschrift with the woodcut
illustrations of ships by Saner in Ein ABC is out-
standing—despite looking like strays from an Arts &
Crafts exhibition.

The St. Gallen style of Hostettler, Hochuli and
their students tends to be less self-conscious as well
as undogmatic. Typefaces are chosen for their read-
ability, rather than their trendiness. Most are seriffed
faces in a classical manner, but not wholly of the past.
Along with Bembo, Stempel Garamond and Sabon,
there is Trump Medieval, Scala, Trinite, Collis and
Rialto. (The latter three are fonts rarely seen in the
United States.) The preferred sans serif is Univers,

Paul Shaw

TUGboat, Volume 32 (2011), No. 2 221

but there is also Franklin Gothic, Futura and Scala
Sans—and two instances of Helvetica, a face that
Hochuli has studiously avoided in his book designs.
Text blocks tend to have indented paragraphs—as
Tschichold argued for— rather than the skipped lines
typical of Bill and his followers. Grids are present
but rarely overtly so. Despite the small size of most
of these books, they have generous margins. The side
margins, used often for side notes, keep one’s thumbs
from covering the main text. Two attributes seem
to be specifically typical of Hochuli and his disciples,
though the first may be traceable to Hostettler: a
preference for anchoring the running heads with a
thin rule, and the common use of solidly colored
endpapers.

Although Tschichold is the godfather and Ho-
stettler is the father of the St. Gallen style, it is Jost
Hochuli (b. 1933) who is the pivotal figure in the exhi-
bition. It is Hochuli who organized the show, handled
the installation and designed the accompanying cat-
alogue. After studying at the Kunstgewerbeschule
St. Gallen where Willi Baus (1909–1985) was one
of his teachers, he worked for Zollikofer under Ho-
stettler. He then spent the year 1959 studying with
Adrian Frutiger at the Ecole Estienne in Paris. In
1979 he co-founded the cooperative publisher VGS

Verlagsgemeinschaft St. Gallen for whom he has been
the chief book designer until recent years. For Typo-
tron AG, a typesetter and printer in St. Gallen, he
designed (and sometimes wrote) a series of small
booklets from 1983 to 1998 as promotional efforts.
Since 2000 he has designed a similar series of booklets
for Edition “Ostschweiz”.

Hochuli paid homage to Hostettler, his friend as
well as mentor, in the first Typotron book, Epitaph
für Rudolf Hostettler (1983), a book not on display
in the AIGA exhibition. Instead, Zeichen by Adrian
Frutiger (Typotron 7, 1989), Hochuli’s other mentor,
is on display. Hochuli’s other works in the show are
Herbstlaub by Rudolf Widmer (Edition Ostschweiz 4,
2003) and two titles from a 58-book series of the
works of Thomas Mann (Berlin: S. Fischer Verlag,
2002).

Hochuli has had a slow but steadily widening
impact on modern book design and typography in
the past thirty years. First, through his work, espe-
cially that for VGS and Typotron; then through his
teaching at the Schüle für Gestaltung in St. Gallen;
and more widely through his publications on typog-
raphy and book design and the traveling exhibitions
such as this one that he has orchestrated. In the late
1980s Agfa Compugraphic (now Monotype Imaging)
published Detail in Typography (1987), Designing

Books (1990) and Alphabugs (1990), each in several

Zeichen by Adrian Frutiger (St. Gallen: Typotron,
1989). Cover, designed by Jost Hochuli.

Zeichen by Adrian Frutiger (St. Gallen: Typotron,
1989). Title page. Designed by Jost Hochuli.

Sixty years of book design at St. Gallen, Switzerland

222 TUGboat, Volume 32 (2011), No. 2

Zeichen by Adrian Frutiger (St. Gallen: Typotron,
1989). Spread showing the book’s grid structure.
Designed by Jost Hochuli.

languages. Designing Books became the central part
of Bücher machen (St. Gallen: VGS, 1996)— trans-
lated into English as Designing Books: Practice and

Theory (London: Hyphen Press, 1996; reprinted 2007
but now out of print)—and Detail in Typography

was reissued in English in an updated version in
2009 by Hyphen Press. An overview of Hochuli’s
career can be found in Jost Hochuli: Printed Matter,

Mainly Books (Sulgen, Switzerland: Niggli, 2002).
Through these books, especially the English language
edition of Designing Books, he has become probably
the most influential theorist of book design since Jan
Tschichold.

The AIGA exhibition includes several of his stu-
dents, most notably Roland Steiger (b. 1970) of TGG

Hafen Seen Steiger— the other partners are Dominik
Hafen (b. 1967) and Bernhard Senn (b. 1965)—and
Gaston Isoz (b. 1969). Steiger is responsible for
Spitzen umschreiben Gesichter (1997), Cultura San-

gallensis by Peter Ochsenbein (2000) and Leopold

Iklé by Anne Wanner-JeanRichard (2002), the lat-
ter two another pair of narrow books. Spitzen um-

schreiben Gesichte is also narrow but it opens verti-
cally, something which Tshichold would surely have
criticized, despite the fact that this structure guar-
antees a strong spine. Cultura Sangallensis is un-
usual in this show for having traditional footnotes.
Isoz, who works in Berlin, is represented by Arbeiter-

lyrik 1842–1932 (2003) and Geschichte der Partei

des gemaßigten Fortschrifts im Rahmen des Geset-

zes (2005). Both of these deviate from the pure
St. Gallen style in the use of an exposed binding
without a headband. In the latter the boards are
flush with the pages, making opening the book and

Come si fa un libro by Jost Hochuli (Wilmington,
Massachusetts: Agfa Compugraphic, 1989). Spread
showing the importance of designing books that can be
held comfortably by readers. Design by Jost Hochuli.

riffling its pages difficult. In its style of illustration
it also shows more of the influence of Oldrich Hlavsa
(1909–1965), author and designer of the three-volume
Typographia (1976, 1981 and 1986).

Another of the teachers at the Schüle für Gestal-
tung in St. Gallen was Max Koller (b. 1933). Koller
worked for Zollikofer and later for Gerstner + Kut-
ter and its successor GGK. He is responsible for
Schriftverzeichnis (1989), the Druckerei Zollikofer
type specimen with the lovely patterned letters in
the show. Another example of his work for Zollikofer
can be found at http://wiedler.ch/felix/books/
story/146.

There are two other books in the AIGA exhi-
bition that are worth mentioning: Künstlerheft by
Ian Anüll (St. Gallen: Vexer Verlag, 1987) and Rund

ums Blaue Haus edited by Ernst Ziegler (St. Gallen:
Ophir-Verlag, 1993). Both fit into the St. Gallen
style even though they are not designed by individu-
als with direct connections to Hostettler, Koller or
Hochuli. The first is designed by sculptor and painter
Josef Felix Müller (b. 1955) for his own Vexer Verlag,
a publishing house specializing in books by artists.
Künstlerheft is one of the most covetable books in
the entire exhibition with its translucent pages that
change the images as the pages turn. Rund ums

Blaue Haus is notable for the way designer Antje
Krausch of Atelier Tachezy, Kleger & Partner has
used an abstract motif of blue lines derived from the
timbers of the titular blue house.

60 Years of Book Design at St. Gallen, Switzer-

land is a quiet show, one that requires time and
patience to reveal its treasures. Hochuli’s exhibition

Paul Shaw

TUGboat, Volume 32 (2011), No. 2 223

Cultura Sangallensis by Peter Ochsenbein (St. Gallen:
Verlag am Klosterhof, 2000). Title page, designed by
Roland Steiger of TGG Hafen Senn Steiger.

Cultura Sangallensis by Peter Ochsenbein (St. Gallen:
Verlag am Klosterhof, 2000). Spread designed by
Roland Steiger of TGG Hafen Senn Steiger.

Cultura Sangallensis by Peter Ochsenbein (St. Gallen:
Verlag am Klosterhof, 2000). Spread designed by
Roland Steiger of TGG Hafen Senn Steiger.

Künstlerheft by Ian Anüll (St. Gallen: Vexer Verlag,
1987). Spread. Designed by Josef Felix Müller.

design, a model of simplicity and restraint, encour-
ages close reading of the books on display. The
cases, arranged in a zig-zag fashion, are lined in gray
to make the paper of each book stand out. There
are multiple copies of each book so that the viewer
can see them from a variety of perspectives—cover,
title page, sample spread for instance—as should
be done for an interactive, three-dimensional object.
The downside is that this means only a few titles
are in each case, making for a small show. But the
intent of Hochuli and the organizers is not quantity
but quality and that is something that they have
achieved.

The catalogue mentioned above is available for
sale at AIGA, but unfortunately it is in German only.
For book designers and die-hard book lovers it is still
worth purchasing since it is itself an example of the
St. Gallen style of bookmaking—small and light—
and reasonably priced at $20. The one quibble I have
with both it and the exhibition labels—written by
Hochuli himself and usually sharply observed— is
that the typefaces used in each book are not routinely
noted. For the record, Collis by Christoph Noordzij
(TEFF, 1993) is used in the catalogue.

Sixty years of book design at St. Gallen, Switzerland

224 TUGboat, Volume 32 (2011), No. 2

Buchgestaltung in St. Gallen by Roland Früh
(St. Gallen: VGS Verlagsgemeinschaft St. Gallen,
2008). Jacket. Design by Jost Hochuli.

⋄ Paul Shaw
Reprinted with permission from Print,

July 7, 2011
c© F+W Media Inc. 2010
http://imprint.printmag.com/

inspiration/sixty-years-of-book

-design-at-st-gallen-switzerland

TUG

Institutional

Members

American Mathematical Society,

Providence, Rhode Island

Aware Software, Inc., Midland Park, New Jersey

Banca d’Italia,

Roma, Italy

Center for Computing Sciences, Bowie, Maryland

Certicom Corp., Mississauga, Ontario, Canada

CSTUG, Praha, Czech Republic

diacriTech, Chennai, India

Florida State University, School of Computational

Science and Information Technology,

Tallahassee, Florida

IBM Corporation, T J Watson Research Center,

Yorktown, New York

Institute for Defense Analyses, Center for

Communications Research, Princeton, New Jersey

LAMFA CNRS UMR 6140, Amiens, France

MacKichan Software, Inc.,

Washington/New Mexico, USA

Marquette University, Department of

Mathematics, Statistics and Computer Science,

Milwaukee, Wisconsin

Masaryk University, Faculty of Informatics,

Brno, Czech Republic

MOSEK ApS, Copenhagen, Denmark

New York University, Academic Computing Facility,

New York, New York

Springer-Verlag Heidelberg, Heidelberg, Germany

Stanford University, Computer Science Department,

Stanford, California

Stockholm University, Department of Mathematics,

Stockholm, Sweden

University College, Cork, Computer Centre,

Cork, Ireland

Université Laval, Ste-Foy, Québec, Canada

University of Ontario, Institute of Technology,

Oshawa, Ontario, Canada

University of Oslo, Institute of Informatics,

Blindern, Oslo, Norway

Paul Shaw

TUGboat, Volume 32 (2011), No. 2 225

Book review: A Specimen Portfolio of

Wood Type in the Cary Collection

William Adams

A Specimen Portfolio of Wood Type in the Cary

Collection. RIT Cary Graphic Arts Press,
Rochester. 2011. 305 pp. Spiral-bound, US$19.95.
ISBN 978-1-933360-44-7.
Foreword by R. Roger Remington, Curator’s Note by
David Pankow, and Introduction by David P. Wall,
whose master’s thesis forms the basis of the work.

This is a fascinating book providing an interest-
ing cross-section of wood type fonts. It is at once
a valuable record of what was saved as well as a
testament to how tenuous the survival of many of
these types was and a memoriam of how much was
lost— showcasing 412 out of some 20,000 wood type
fonts which are believed to have existed.

Although the book references many other pub-
lications and has an excellent bibliography, it is
a stand-alone work, suitable for even a beginning
graphic designer, typographer or student. Rather
than rely on an external classification system, the

types are cataloged in accordance with a scheme mod-
eled on an ISO standard (9541-1, Annex A, Electronic
Font Interchange) which is presented in its entirety
at the beginning of the book. These classification
pages represent a useful text in and of themselves,
providing at once a broad overview and specific notes
on typeface forms.

Types are shown on spreads, one or more fonts
per spread, with the verso being used for an ex-
pansive actual-size exemplar (save for a few fonts
which are too large even for a full-page showing)
and identification and sizing notes, while the recto
shows a complete sample of the fonts in the collec-
tion— in many instances, a complete alphabet, the
classification, identification and notes on the man-
ufacturer and date. It is the incomplete showings
which are most interesting, however, offering fasci-
nating glimpses into how the typefaces were actually
used, or how it is that they might have been saved
from destruction (AUCTION on pg. 19, a dollar sign
and set of numerals on pgs. 75, 79 and 101, six letters
which might spell out “TOUCAN” on pg. 129).

Younger designers and students will be surprised
at the variety of the typefaces, their not being limited
to just the stereotypical condensed slab serifs of Hol-
lywood Western “Wanted” posters and encompassing
many designs not represented in Adobe’s Wood Type

Font Collections. Old hands will be pleased to see
what has been preserved and may be moved to search
through some old drawers or storage chests and find
some pieces to donate and share. Although Rochester
Institute of Technology plans to eventually provide
online access to digital images, the immediacy and
ease of reference of this excellently organized text
makes purchasing the very affordable print version
an easy decision.

⋄ William Adams

will dot adams (at) frycomm dot com

http://mysite.verizon.net/

william_franklin_adams

226 TUGboat, Volume 32 (2011), No. 2

Book review: The Art of the Book in the

Twentieth Century

Boris Veytsman

Jerry Kelly, The Art of the Book in the

Twentieth Century. RIT Cary Graphic Arts Press,
Rochester. 2011. 200 pp. Hardcover, US$39.95.
ISBN 78-1-933360-46-1.

This book does not mention TEX on any of its two
hundred pages. However, I think publication of the
review in the pages of TUGboat is justified. The fa-
mous exhortation [2, p. 303] “Go forth now and create
masterpieces of the publishing art” is as much a part
of The TEXbook as the explanation of \noexpand or
\futurelet. Thus discussions about the art of the
book are relevant for TUG publications, and we will
continue reviewing books about publishing, typog-
raphy and typesetting. This collection of essays by
Jerry Kelly is a good example of them. Of course,
the fact that the last chapter in the book is writ-
ten about the Wizard of Fonts, permanent honorary
board member of TUG, Hermann Zapf, only adds to
the allure of this book for TEX users.

The last century saw many quick changes in the
technology of book making. At its beginning, most
typographers used letterpress. Hot metal machines,
phototypesetting, offset printing and other inventions
came and went, to be supplanted today by digital
typography. Book making was deeply influenced by
these changes. The tumultuous history of society and
art in 20th century was another source of influence
for the old art of typography. Thus writing about
book making in this period is a very difficult—but
a very interesting—task.

Jerry Kelly approaches his subject with a bio-
graphical method. His book is a collection of short
essays about the leading typographers of the last
century: Daniel Updike, Bruce Rogers, Joseph Blu-
menthal, Stanley Morison, Francis Meynell, Giovanni
Mardersteig, Jan van Krimpen, Jan Tschichold, Max
Caflisch, Gotthard de Beauclair and Hermann Zapf.
Each essay has a length (and is written in a style)
comparable to an entry in a typography encyclopedia
and is accompanied by a selection of reproductions
of the typographer’s masterpieces. Of course, the
chosen format does not allow the author to do a deep
analysis of the life and art of his subjects, but the
book features a good bibliography section where a
reader can find materials for further reading. Even
these short bios, however, can lead to interesting
thoughts about the way the works of the masters
reflected their lives and the society around them.

For example, Kelly says that the Great Depres-
sion disrupted the fine printing business model, and
the typographers tried to cope with this. This is
an interesting story— for example, how much was
the success of the famous Nonesuch Press caused by
their large inventory of titles and the novel ways to
lower the cost?—which probably deserves a separate
book.

Further, Kelly mentions the arrest and imprison-
ment of Tschichold by the Nazis and posits that this
arrest might be one of the causes of the famous “con-
version” of Tschichold to the more classic typography.
Again, it is only a part of the story. Initially these
“revolutionary” artists of 1920s sometimes identified
with the nascent totalitarian ideologies of Commu-
nism and Nazism. Bauhaus and Tschichold’s die

neue Typographie in Western Europe corresponded
to VKHUTEMAS Art School and the works of Lis-
sitzky and other Constructivists in Russian book
design (see [1] for a discussion). However, when
these regimes came to the power, both they and
the artists became disappointed in each other. The
latter discovered that the former were not especially
eager to overthrow the “old art” and preferred the
pseudo-classicist imitation of the styles of previous
epochs.

As seen from these two examples, Jerry Kelly
just mentions such topics, and leaves a more detailed
discussion for other books. However, the fact that
his essays might spark thoughts about the evolution
of book arts speaks about the quality of his book.

Of course, tastes differ, and some readers may
suggest other lists of influential typographers. Kelly
himself concedes that “The selection—both of the
designers and their works— is somewhat arbitrary.”
However, the selection of subjects and the style of

Boris Veytsman

TUGboat, Volume 32 (2011), No. 2 227

the book are the sole prerogative of the author, and
Kelly certainly deserves the right to develop his own
vision of the history of typography of 20th century.

While the essays themselves are rather short
(but interesting), the illustrations are superb. The
author complains that

Unfortunately reproductions, no matter how
carefully produced, can only partially convey
the effect of a finely produced book: we can-
not reproduce the paper it was printed on, nor
create a facsimile of the particular impression
of type on that paper, to say nothing of bind-
ing designs and materials, or even elements as
basic as the size, heft, and the overall “feel” of
a particular volume (all characteristics which
are carefully considered in fine printing).

Nevertheless his illustrations are a great boon for
many of us who cannot visit all the various museums
and libraries where the gems of the typographic art
are kept—or peruse them at will. The book contains
104 full page plates and 12 smaller illustrations in
the Introduction, plus portraits of all the subjects
of his essays. One can spend hours just looking at
these illustrations. They are carefully chosen and
reproduced with great care. While the reader cannot
see the gold leaf roundels in Bruce Rogers’ Odyssey

(plate 19), or appreciate the full size of Tschichold’s
poster (plate 71), still the book manages to give the
feeling of these masterpieces.

The author approvingly quotes Morison’s dic-
tum “The history of printing is in large measure the
history of the title-page.” Accordingly, most of his
plates are title pages of the books by great designers,
but Kelly also gives nice examples of body pages and
spreads. Many TEX users are interested in the design
of mathematical books; plate 20 reproducing a page
of Euclid’s Elements printed by Random House in
1944 might provide some food for thought.

Of course a book about typographic art should
in itself be an example of typographic art. This book
is tastefully designed and produced. It is typeset in
Aldus and carefully bound. It is a pleasure to open
and read.

My only peeve is the way paragraphs are sep-
arated: there is neither indentation nor separating

vertical space, and the only indication of the para-
graph start is the shorter last line of the preceding
paragraph (to achieve this effect in TEX one sets
\parskip=0pt and \parindent=0pt). Jan Tschi-
chold with his usual forcefulness called this style “an
ill-conceived mannerism” and “dubious practice” [3,
p. 106]. To tell the truth, though, even he conceded
that it might be acceptable if the compositor takes
care to make the last lines of the paragraphs short
enough to signal the end to the reader—which is
the case for this book.

This book is a wealth of useful reading for a
student of typographic art or anybody interested
in the history of publishing. It is a beautiful book
which will be a good item for a book collector. For
a lavishly illustrated and lovingly published book it
is relatively inexpensive and definitely worth buying.
(The publisher is offering a discount to TUG members.
Discount information is given in the TUG members’
area: https://www.tug.org/members.)

TUG members might also be interested in other
books from the same publisher— including several
by Hermann Zapf. They can be browsed at http:
//carypress.rit.edu.

References

[1] Alan Bartram. Bauhaus, Modernism and

the Illustrated Book. Yale University Press,
New Haven, CT, 2004.

[2] Donald Ervin Knuth. The TEXbook, volume A
of Computers & Typesetting. Addison-Wesley
Publishing Company, Reading, MA, 1994.
Illustrations by Duane Bibby.

[3] Jan Tschichold. The Form of the Book.

Essays on the Morality of Good Design. Hartley
& Marks, Point Roberts, WA, 1991. Robert
Bringhurst, editor.

⋄ Boris Veytsman

Computational Materials Science

Center, MS 6A2

George Mason University

Fairfax, VA 22030

USA

borisv (at) lk dot net

http://borisv.lk.net

Book review: The Art of the Book in the Twentieth Century

228 TUGboat, Volume 32 (2011), No. 2

Book review: LATEX Beginner’s Guide

Boris Veytsman

Stefan Kottwitz, LATEX Beginner’s Guide. Packt
Publishing Birmingham-Mumbai, 2011. 314 pp.
Paperback, US$44.99.

To tell the truth, I was rather skeptical when I agreed
to review this book. There are already good guides
for LATEX beginners, including the book by the author
of the language [4], the excellent introduction [3], the
popular free course [5], the mathematics-oriented
books [1, 2] and many, many others. How can yet
another introductory LATEX book be different?

I was completely wrong. The new book by Ste-
fan Kottwitz is very much unlike other introductory
LATEX courses. The author, evidently, wanted to
make a LATEX book for the new generation—the gen-
eration of Twitter and mobile devices. The book’s
advantages and disadvantages stem from this.

First, the contents. Besides the topics one would
expect from any introductory LATEX book—LATEX
commands, document structure, logical markup etc.—
the guide by Kottwitz includes also items tradition-
ally omitted from beginners’ books. For example,
it explains how to install a TEX system. Usually
this has been considered a feat reserved for com-
puter gurus (the manual [4] contains references to
a Local Guide presumably written by one of these
lofty sages). The TEX Live system makes installation
much simpler, and this book helps a novice to under-
stand the necessary steps. LATEX Beginner’s Guide

discusses dozens of packages and spends considerable
time in explaining their usage in customization of the
documents—another topic traditionally relegated to
more advanced users. Many of the items discussed
in the book are “modern” in the sense that they

became possible or popular in the last decade: get-
ting the full advantage of pdfetex features with the
microtype package, employing many fonts besides
the traditional ones, using Unicode and Latin Mod-
ern fonts for European languages, adjusting page
dimensions, creating hyperlinks, and a number of
other interesting and relevant topics, which are not
well covered in other introductory texts. Stefan Kot-
twitz has been a moderator for several online support
forums. This gave him a good understanding of what
is important for the modern users. The selection of
topics is perhaps the strongest side of the LATEX

Beginner’s Guide.
Second, the way this book explains these topics

is notably different from the style of many other
LATEX books. It is a part of the series of Beginner’s
Guides from Packt Publishers. The series is based on
the hands-on approach. Its slogan is Learn by doing—

start working right away; the books shun “boring
bits” of theory for practical recipes and examples.
Accordingly, this book has a huge number of well
annotated code snippets and exercises. An impatient
reader who wants to get something here and now

will be thrilled by this book.
On the other hand, sometimes this refusal to

deal with the theory makes the explanations rather
superficial, for example, the treatment of the familiar
problem of \footnote inside a \section argument
on page 100. Although to be fair, the explanations
of this problem in other introductory texts are also
more or less handwaving.

The style of the book is rather “chunky”. A
topic takes a half page or a page, then comes another
topic, then another one. In this way the author
covers a large volume of material, but it gives a
“Twitter-like” look and feel to the book.

Another decision of the author, to use “cool”
slang, seems to be rather controversial. The exam-
ples in the book are subtitled Time for action, the
suggestions for independent work are put under the
heading Have a go hero, and all the quizzes are, of
course, Pop quizzes. Evidently the reader should
imagine himself or herself a mighty hero, involved in
a lot of action, from time to time interrupted by a
short quiz.

The typography of the book is also quite dif-
ferent from the typography of most other books
about TEX. Some people (especially outside of the
USA) consider the default styles of LATEX to be “too
loud”. They should open Kottwitz’s book with a
certain caution: it may give them a heart attack.
The book designer used for emphasis and headers
the following: (a) margin changes with and without
icons and square brackets on the margins; (b) fake

Boris Veytsman

TUGboat, Volume 32 (2011), No. 2 229

crop marks; (c) boxes with shadows; (d) really huge
fonts; (e) heavy bold fonts; (f) reverse video (white
on black); (g) combinations of the above (like huge
heavy bold fonts in reverse video). Even folios (page
numbers) of this book are boldfaced and in bold
square brackets. The typography of this book does
not hide like classical typography does: it jumps at
you with all the subtlety of a ransom note.

Still, I admit it would be very difficult to find
a more subdued typography style corresponding to
the “chunky” character of the book. The text itself
has these abrupt changes of topics, like PowerPoint
(or should I say beamer?) slides. It might be argued
that prominent typesetting devices are necessary to
present this text. Also, the use of these devices is
quite consistent throughout the book. Moreover, the
designer made a good judgement that traditional
justified text with a serifed font would not work with
this style of headings and emphasis. Thus the choice
of ragged right paragraphs with a sans serif body
font seems to be a good call. Still, it is somewhat
strange when the author talks about justification
and uniform grayness of the pages, when his own
book presents anything but.

While the typography of the book may have
a certain merit, the illustrations are just plainly
bad. The book has many examples of typesetting
presented as magnified fragments of TEX output.
They all look like low resolution screen captures
obtained by pressing the PrintScreen button. These
fragments are unbearably ugly and do not even begin
to show the beauty of TEX documents. There are
many ways to get high resolution TEX output at
large magnification. The author and editor should
have used one of them.

Still, despite its flaws, this is an interesting book.
It covers many useful topics not covered elsewhere,

it is well written and is understandable for a novice.
This book can be a basis of a crash course in LATEX
or as a self-study tool—as long as the student does
not use it as an example of the typographic art.

Final note: the publisher is offering a discount
to TUG members who want to buy the book (in
print or electronic form). The discount code is given
in the TUG members’ area: https://www.tug.org/
members.

References

[1] George Grätzer. Math into LATEX. Birkhäuser,
Boston, third edition, 2000.

[2] George Grätzer. More Math into LATEX.
Springer, New York, fourth edition, 2007.

[3] Helmut Kopka and Patrick W. Daly. Guide

to LATEX: Tools and Techniques for Computer

Typesetting. Addison-Wesley, Boston, fourth
edition, 2003.

[4] Leslie Lamport. LATEX: A Document

Preparation System. Addison-Wesley Publishing
Company, Reading, Mass., second edition, 1994.
Illustrations by Duane Bibby.

[5] Tobias Oetiker, Hubert Partl, Irene Hyna,
and Elisabeth Schlegl. The Not So Short

Introduction to LATEX2ε, Or LATEX2ε in 174

Minutes, April 2011. http://mirrors.ctan.

org/info/lshort.

⋄ Boris Veytsman

Computational Materials Science

Center, MS 6A2

George Mason University

Fairfax, VA 22030

USA

borisv (at) lk dot net

http://borisv.lk.net

Book review: LATEX Beginner’s Guide

230 TUGboat, Volume 32 (2011), No. 2

An appreciation: The Art of Computer

Programming, Volume 4A

David Walden

Donald E. Knuth, The Art of Computer

Programming, Volume 4A: Combinatorial

Algorithms, Part 1. Addison-Wesley, Boston.
Jan. 2011. 912 pp. Hardcover, US$74.99.
ISBN 0-201-03804-8.

A book of algorithms relating to computer pro-
gramming and their analysis (and about problem
solving more generally) would not normally be re-
viewed in this journal about typesetting and fonts.
However, TEX, TUG, and TUGboat would not exist
without the problem Knuth faced in 1976 with the
the typesetting of the second edition of Volume 2 of
The Art of Computer Programming (TAOCP); and
thus TAOCP is a key part of the history of the TEX
world. Many readers of this journal already know
this story (told in chapter 1 of Knuth’s book Digital

Typography).1 Addison-Wesley had gotten rid its
Monotype technology in 1963 and could not repro-
duce with the photo-optical machines of the time
the high quality typesetting of the original printings
Volumes 1–3 (and new printings of Volumes 1 and 3
done with Monotype machines still found in Europe).
Consequently, in 1977 Knuth began developing a
new typesetting system to restore the high quality
typesetting of books, in particular TAOCP. Even-
tually TEX was available and became popular with
various groups of users; and the TEX Users Group
and TUGboat came into being.

I bought Volumes 1, 2, and 3 of this series immedi-
ately after publication of each book in 1968, 1969,
and 1973 and used them frequently in my profession
as a computer programmer. I also bought new edi-
tions of these books as they came out over the years,
keeping my complete set of TAOCP up to date. Thus,
to maintain my complete set of TAOCP, I bought
Volume 4A immediately upon its publication and
have been dipping into it to get an overall sense of
it. (As I suspect is the case with many other readers
of this series, I have never read a volume completely
through, but rather skimmed each book enough to
know what was in it and then studied particular
sections more deeply as needed for the project on
which I was working, or when I just wanted to have
some fun reading about algorithms.)

Over the years since the original editions of vol-
umes 1–3 were published, Knuth’s original plan for
a 7-volume, 1–chapter series has gradually evolved
as some the topics of his originally planned chap-

1
CSLI Publications, Stanford, CA, 1999

ters have been covered in depth by other books
and as the topics covered by some of the chapters
expanded dramatically (perhaps partially as a re-
sult of Knuth’s example of rigorous, comprehen-
sive books describing computer algorithms). To-
day Knuth hopes to produce five volumes, of which
the current volume 4 will have at least three parts
(books): http://www-cs-faculty.stanford.edu/

~uno/taocp.html

Part 1 (that is, book 1) of Volume 4 (the overall
volume is on combinatorial algorithms) covers an
Introduction, Zeros and Ones (with four subsections)
and Generating All Possibilities (with one subsec-
tion containing seven subsubsections). Curiously,
the second and third subsections on Generating All
Possibilities are not due until Volume 4B. Perhaps
at 912 pages (and after publication of the groups
of pages from the book over the past half dozen or
more years as a succession of five fascicles), Knuth or
the publisher decided that Volume 4A was already
long enough.

As with the previous volumes of TAOCP, this
book is substantially about the analysis of the algo-
rithms presented and not just a cookbook of algo-
rithms. A reader can either just find what Knuth
says is the best method and use it, or can learn why
it is a good method, why other methods are not so
good, and how to do the math to analyze the perfor-
mance of one’s own situations where the algorithms
might be used. The book also includes Knuth’s usual
sets of exercises and hundreds of pages of answers to
exercises.

Of the parts of Volume 4A I have touched on
so far, I greatly enjoyed the discussion of Latin and
Greek squares (the clearest I have ever read), and I
know I am going to enjoy reading more of the discus-
sion on bitwise tricks and techniques, a topic that
has always fascinated me. I also have looked at some
of the resources on Knuth’s web site augmenting dis-
cussions in the book (and the reader’s own use of the
methods Knuth describes and analyzes). I also enjoy
skimming pages of Knuth’s TAOCP, skipping the real
math and reading bits of math-and-algorithm history.
Section 7.2.1.7, History and further references, looks
like it will be particularly fun reading. I never try
to work any TAOCP exercises but rather will dip
straight into the comprehensive answer sections to
find additional information I need that is not covered
in the main text.

Not being a mathematician myself, I sought out
a comment on the book from mathematician (and
puzzle master) Bill Gosper2 (who has four entries in

2 http://en.wikipedia.org/wiki/Bill_Gosper

David Walden

TUGboat, Volume 32 (2011), No. 2 231

Comment from Bill Gosper

I am delighted to report that Knuth is still his usual precise,
profound, and playful self.

The book is surprisingly therapeutic— it will help you
lose any guilt you may feel over designing and working
puzzles.

On page 172 Knuth says: “For example, after Martin Gard-
ner introduced John Conway’s game of Life to the world in
1970, more computer time was probably devoted to study-
ing its implications than to any other computational task
during the next several years—although the people paying
the computer bills were rarely told!”

However, the above follows his inflammatory remark on
page 2: “On the other hand, the exact value of L[angford
arrangement]100 will probably never be known, even as
computers become faster and faster.”

Has Knuth any idea how many computational resources
will now be expended trying to prove him wrong?

On page 2: “In Section 7.2.2.1 we shall study an algorithm
called ‘dancing links,’ which is a convenient way to generate
all solutions to such problems.”

And on page 464: A technique called “dancing links,”
which we will discuss extensively in Section 7.2.2.1, is used
here to remove and restore items from and to doubly linked
lists.

At last, my chance to hear it from the Master! Eagerly
flipping forward, . . . , 7.2.1.6, 7.2.1.7, Answers to Exercises.
ARGHH! To Be Continued!

And to think I had been salivating over page viii: “(See
the discussion of NP-completeness in Section 7.9.)” !

The Table of Contents looks positively meager. How could
this require 883 pages? Clue: The Index takes 50 pages.
Open to one page at random. Can you plow through it in
an hour? A day? This is no cookbook. Don’t open it unless
you plan to learn something. 34.4 percent of the book is
Answers to Exercises.

PS, Don’t miss Knuth’s brilliant new twist on “This page
intentionally left blank.”

the Volume 4A index). Bill’s reply (email of June 3,
2011) is in the sidebar.

Volume 4A looks like the previous volumes (in their
latest editions)—the same design and great care
with details (the Knuthian way). In my memory,
some details have evolved since the first edition of
Volume 1. For instance, with each new volume and
each new edition (maybe even with new printings), in-
cluding the middle names of cited people and correct
presentation of their names in their own language
have become ever more complete.

Knuth’s editor at A-W, Peter Gordon, has stated
that the A-W production staff sees the end product

of Knuth’s work; Knuth supplies PostScript files
to A-W, which the A-W printer converts to PDFs.
The colophon of Volume 4A says, “This book was
produced on an HP Compaq 2510p using Computer
Modern typefaces, using TEX and METAFONT soft-
ware as described in the author’s books Computers

& Typesetting (Reading, Mass.: Addison-Wesley,
1986), Volumes A–E. The illustrations were pro-
duced with John Hobby’s METAPOST system.” A
close look by Karl Berry at a PDF page from the
book suggested that Knuth is using tex|dvips and
his original bitmapped CM fonts, not the Type 1
fonts that are the default in current TEX distribu-
tions. (While providing the rest of us with a system
that has been extended in many ways, Knuth appar-
ently sticks with the original system he created to
produce a beautiful edition of TAOCP, using his tool
to control every pixel on the page.)

In the world of computer historians (i.e., often peo-
ple who have not been computer professionals them-
selves), there was some interesting commentary im-
mediately after Volume 4A of TAOCP was published.
In essence the question (maybe tongue in cheek) was
what took Knuth so long, given how profoundly vol-
umes 1–3 impacted the field of computing—why did
he delay this most important work to do other things
judged less important by computer historians.

In my view, the historians may over-estimate
the impact of TAOCP on the field of computer pro-
gramming. Most programmers don’t use the books,
and many people don’t think highly of the books as
potential textbooks for typical courses for computer
programmers. (Volumes 1–3 clearly did have deep
impact in their early comprehensive and rigorous
coverage of a range of parts of what was becoming
the discipline of computer science.)

The historians may also under-estimate the im-
portance of Knuth’s other work. In my view, Knuth
in his field is like Picasso in his. He has had multiple
simultaneous and serial careers, any of which would
be more than the lifetime achievement of most people.
Writing TAOCP is one of Knuth’s most important
achievements, but I don’t think it is singularly im-
portant.

As I see it, the first three volumes of TAOCP rev-
olutionized how to analyze algorithms for the purpose
of accomplishing some task in a computer program.
From these books, I learned new algorithms to use in
my programming, and I learned about how to think
better about methods I and my fellow programmers
were already using (sorting, hashing, . . .). (By the
way, I agree with Knuth’s often criticized decision to
write the books using assembly language for his hy-

An appreciation: The Art of Computer Programming, Volume 4A

232 TUGboat, Volume 32 (2011), No. 2

pothetical original and more modern machines rather
than in a high-level language.)

Volume 4A is not such a revolution because
Knuth no longer can give comprehensive coverage
(and because he already showed us the path to rig-
orous analysis of algorithms in Volumes 1–3). As
Knuth has explained, after volumes 1–3 of TAOCP,
the field exploded, and he no longer could do what
he set out to do. Nonetheless, Volume 4A is a further
example of his stunning ability to understand vast
amounts of material, choose interesting parts, and
present them in a fascinating way.

As noted, Knuth also felt the need to work
on digital typesetting so a revision of Volume 2 of
TAOCP would not look bad to him. In so doing,
he revolutionized digital typesetting and font design.
This incidentally gave many mathematicians, physi-
cists, economists, etc., a new way to do their writing
and began what is probably the longest running open
source software success story. Over the years the
breadth of use of TEX et al. has continued to grow
(critical editions of literature, non-Latin alphabet
writing, etc.), even as commercial typesetting sys-
tems with their GUI interfaces have become the norm
in the population at large (with these commercial
systems gradually adopting most of the algorithms
TEX had long ago). Some might argue that TEX and
Knuth’s investigations into digital typesetting and
font design have had more impact on the world than
Knuth’s self-proclaimed masterwork, TAOCP.

It also may be that, after the first three volumes
of TAOCP, Knuth had to regroup to ready himself
for the next step in the series.

• He wrote two books organizing and extending
the math approach to analysis of algorithm: one
with Daniel Green [Mathematics for the Anal-

ysis of Algorithms, third edition, Birkhäuser,
1990], and one with Ronald Graham and Oren
Patashnik [Concrete Mathematics, second edi-
tion, Addison-Wesley, 1994].

• He created a new, modern hypothetical machine
to use for his examples and wrote the book about
the machine [MMIXware: A RISC Computer for

the Third Millennium, Springer-Verlag, 1999].

• He created the Stanford GraphBase system to
help with combinatorics problems and wrote the
book [The Stanford GraphBase: A Platform for

Combinatorial Computing, ACM Press, 1994].

• Also in this period, he brought out the eight
or so volumes of his collected papers, some of
which could be a good text for a seminar in some
of the topics in TAOCP as originally conceived

which he is now never going to get to. He
brought out the most recent of these volumes in
late 2010.

• Of course, he also developed the concept of lit-
erate programming and the software to compile
and document large systems such as TEX [The
CWEB System of Structured Documentation,
with Silvio Levy, Addison-Wesley, 1993].

(Knuth also did some research not related to com-
puter science: for instance, a carefully created book
relating to Bible study (see http://www.tug.org/

TUGboat/tb12-2/tb32reviews.pdf); but who is to
say that that Bible study was not also a useful
preparatory step toward Volume 4 of TAOCP.)

Apparently finally Knuth was ready again to
tackle Volume 4 which, after resigning as a Stanford
professor to have more time, he has been doing for a
number of years now (e.g., pushing out the fascicles).
Despite all Knuth’s contributions in a variety of
areas, he still felt the need to finish what he calls
“the interesting parts” of his original plan for TAOCP.
The preface to Volume 4A now suggests (to me) that
he may never get beyond vol 4B, 4C, . . . (I don’t
know if he intended to say this—he does say he will
surely never get to 4Z.)

My admiration for Knuth is unbounded. Volume 4A
is another stunning example of Knuth’s breadth,
thoroughness, and desire to produce a beautiful book.

As a purely personal matter, I adopted the use
of TEX-based systems when I made the decision in
the 1990s to stop using word processing systems
with graphical user interfaces. I chose TEX as my
replacement word processing system because of my
admiration for Knuth and the desire to use something
he had created. I haven’t been disappointed.

More generally, I stand by my comparison with
Picasso. Knuth is as much an artist as he is a tech-
nician. He goes where his muse takes him and he
does so with unmatched (for the computer field) skill,
care, depth, breadth, and artistry. We in the TEX
community remain major benefactors of Knuth’s skill
and artistry.

For someone like me who still feels a strong
connection to the world of computer programming,
there is another thing to marvel at regarding Knuth.
He is perhaps unique as a person of his stature as a
theoretician for how many lines of code he apparently
still writes every day. For Knuth programming is an
art he practices every day.

⋄ David Walden

http://www.walden-family.com/texland

David Walden

TUGboat, Volume 32 (2011), No. 2 233

TheTreasure Chest

This is a list of selected new packages posted to CTAN

(http://ctan.org) from April–July 2011, with de-
scriptions based on the announcements and edited
for brevity.

Entries are listed alphabetically within CTAN

directories. A few entries which the editors subjec-
tively believed to be of especially wide interest or
otherwise notable are starred; of course, this is not
intended to slight the other contributions.

We hope this column and its companions will
help to make CTAN a more accessible resource to the
TEX community. Comments are welcome, as always.

⋄ Karl Berry
http://tug.org/ctan.html

biblio

vak in biblio/bibtex/contrib

Bibliography support for Russian standards.

fonts

boondox in fonts

Math alphabets derived from the STIX fonts.

cantarell in fonts

A contemporary humanist sans serif.

dutchcal in fonts

Reworking of the calligraphic math font ESSTIX13,
adding bold.

esstix in fonts

Precursor to STIX with some novel features.

fdsymbol in fonts

Math symbol font designed as a companion to Fedra.

* mathalfa in fonts

Support for loading many math script, blackboard
bold, etc., alphabets.

graphics

grafcet in graphics/pgf/contrib

Sequential functional chart in PGF.

pst-layout in graphics/pstricks/contrib

Typesetting quasi-tabular material such as menu
pages, music programs, business cards, etc.

pst-rubans2 in graphics/pstricks/contrib

Drawing three-dimensional tapes.

info

latex4wp-it in info

Italian translation of latex4wp.

lshort-czech in info

New Czech translation of lshort.

* macros2e in info

Unofficial list of internal macros to LATEX2ε which
can be useful to package authors.

language

serbian-apostrophe in serbian

Typeset Serbian words with an apostrophe.

macros/generic

upca in macros/generic

Printing UPC-A barcodes.

macros/latex/contrib

cascadilla in macros/latex/contrib

Typesetting conforming to the style sheet of the
Cascadilla Proceedings Project.

chemmacros in macros/latex/contrib

Convenient typesetting of chemistry documents.

chemnum in macros/latex/contrib

Numbering of chemical compounds.

chet in macros/latex/contrib

Make TEXing faster, inspired by harvmac.

cmpj in macros/latex/contrib

Support for the Condensed Matter Physics journal.

collectbox in macros/latex/contrib

Robustly process an argument as a horizontal box.

decorule in macros/latex/contrib

Decorative swelled rule using a standard font symbol.

ifnextok in macros/latex/contrib

Customizing \@ifnextchar’s space skipping; handling
\\ followed by printed brackets.

jvlisting in macros/latex/contrib

Allow indentation and customization of verbatim
environments.

* l3experimental in macros/latex/contrib

Code intended mainly for testing by interested users.
Over time, this material may move to one of the
following two divisions.

* l3kernel in macros/latex/contrib

Code which will be present in a LATEX3 kernel in its
current form; replaces expl3.

* l3packages in macros/latex/contrib

Code which is broadly ‘stable’, and which adds new
functionality to LATEX2ε. This material may be
present in a LATEX3 kernel, but the interfaces may
change.

macros/latex/contrib/* l3packages

234 TUGboat, Volume 32 (2011), No. 2

ltxkeys in macros/latex/contrib

Defining and managing keyword-value interfaces.

moreenum in macros/latex/contrib

Greek, hex, and other enumeration styles.

morewrites in macros/latex/contrib

Hooks on \immediate, \openout, \write, \closeout
to avoid limiting the number of write streams.

nuc in macros/latex/contrib

Automatic notation for nuclear isotopes.

othelloboard in macros/latex/contrib

Creating annotated Othello board diagrams.

regstats in macros/latex/contrib

Usage of TEX registers (count, dimen, etc.).

sapthesis in macros/latex/contrib

Style for theses at Sapienza—University of Rome.

schwalbe-chess in macros/latex/contrib

Typesetting the German chess problem magazine
Die Schwalbe.

serbian-lig in macros/latex/contrib

Explicit list of Serbian words with ligatures disabled.

sitem in macros/latex/contrib

Save optional arguments to \item in a box.

srbook-mem in macros/latex/contrib

Serbian section numbering for memoir.

temlines in macros/latex/contrib

Emulate the old \emlines from TEXcad and emTEX.

thumbs in macros/latex/contrib

Creating customizable thumb indexes.

uafthesis in macros/latex/contrib

The Official Unofficial document class for theses at
the University of Alaska Fairbanks.

unamthesis in macros/latex/contrib

Style for Universidad Nacional Autónoma de México
theses, both graduate and undergraduate.

xhfill in macros/latex/contrib

Modifying width and color of \hrulefill.

macros/latex/contrib/babel-contrib

serbianc in m/l/c/babel-contrib

Serbian Cyrillic support for Babel.

serbian-date in m/l/c/babel-contrib

Replace \date for Serbian (Latin).

macros/latex/contrib/beamer-contrib

beamersubframe in m/l/c/beamer-contrib

Embed frames with details without reordering source.

macros/latex/contrib/biblatex-contrib

biblatex-juradiss in m/l/c/biblatex-contrib

biblatex support for German law theses.

uni-wtal-ger in m/l/c/biblatex-contrib

biblatex support for literary studies at Bergische
Universität Wuppertal.

macros/luatex

* interpreter in macros/luatex/generic

Preprocess input files without an external program.

luabibentry in macros/luatex/latex

Repeating bibliographic entries in the document,
like bibentry for LATEX.

lualatex-math in macros/luatex/latex

Fixes for math-related LuaLATEX issues.

macros/plain

getoptk in macros/plain/contrib

Defining new macros with the keyword-based \hrule

interface style.

macros/xetex

fontbook in macros/xetex/latex

Generate a font book.

kannada in macros/xetex/latex/polyglossia-contrib

Kannada support for Polyglossia.

support

ant-worker-tasks in support

Apache Ant tasks for document creation, PDF

manipulation, etc.

systems

lualatex-platform in systems/luatex/contrib

Extension module for platform-specific code.

mactex in systems/mac

MacTEX 2011.

protext in systems/win32

ProTEXt 3.0 for 2011.

texlive in systems

TEX Live 2011.

macros/latex/contrib/ltxkeys

TUGboat, Volume 32 (2011), No. 2 235

Les Cahiers GUTenberg

Contents of issue 54–55 (2010)

Les Cahiers GUTenberg is the journal of GUT,
the French-language TEX user group
(http://www.gutenberg.eu.org).

Paul Isambert, LuaTEX: vue d’ensemble
[LuaTEX: An overview]; pp. 3–12

Manuel Pégourié-Gonnard, Un guide pour
LuaLATEX [A guide to LuaLATEX]; pp. 13–35

This document is a map, or tourist guide, for
the new world of LuaLATEX. The intended audience
ranges from complete newcomers (with a working
knowledge of conventional LATEX) to package devel-
opers. This guide is intended to be comprehensive
in the following sense: it contains pointers to all rel-
evant sources, gathers information that is otherwise
scattered, and adds introductory material.

Maxime Chupin, LuaLATEX pour les non-sorciers,
deux exemples [LuaLATEX for non-wizards, two
examples]; pp. 37–56

This article present a way to use LuaTEX with-
out being an expert in TEX or Lua. The examples
illustrate the treatment of external files by Lua, and
the use of Lua in order to perform some computations
hardly implementable in TEX. These examples are
the generation of LATEX tabular code from an exter-
nal data file and the implementation of the method
of least squares and its graphical presentation.

Manuel Pégourié-Gonnard, Attributs et
couleurs [Attributes and colors]; pp. 57–85

This article presents a new tool provided by
LuaTEX to extend TEX: attributes, and how they
can be used to implement colors. First, we study
the general concept of attributes and the TEX and
Lua interfaces. Then, we recall the main points
of the classical color implementation in LATEX and
its well-known limitations. Finally, a solution to
these problems, using attributes, is presented, and
demonstrates a few general principles in the use of
attributes, which are obviously not limited to colors.

Paul Isambert, Ponctuation française avec
LuaTEX [French punctuation with LuaTEX];
pp. 87–100

If TEX had been created by a French man,
maybe it would have a primitive dedicated to insert-
ing spaces before some punctuation signs (question
mark, exclamation mark, colon, semi-colon) as is
usual in the French typographical tradition—but
this wasn’t the case. LuaTEX is not written by a
French team either, but it enables handling charac-
ter lists while texts are being typeset. The goal of

this work is to illustrate its power by presenting Lua
algorithms meant to insert the proper space before
those symbols that require it.

Taco Hoekwater, LuaTEX 0.65 et les
mathématiques [LuaTEX 0.65 and mathematics];
pp. 101–127

The math machinery in LuaTEX has been com-
pletely overhauled since version 0.40. The handling
of mathematics in LuaTEX has been extended quite a
bit compared to how TEX82 (and therefore pdfTEX)
handles math. First, LuaTEX adds primitives and
extends some others so that Unicode input can be
used easily. Second, all of TEX82’s internal special
values (for example for operator spacing) have been
made accessible and changeable via control sequences.
Third, there are extensions that make it easier to use
OpenType math fonts. And finally, there are some
extensions that have been proposed in the past that
are now added to the engine.

This article is an update of the original arti-
cle that was published in MAPS 38, documenting
the changes in LuaTEX between version 0.40 and
version 0.65.

Thierry Bouche, Colophon; pp. 128–130

Die TEXnische Komödie 2/2011

Die TEXnische Komödie is the journal of DANTE

e.V., the German-language TEX user group (http:
//www.dante.de). [Editorial items are omitted.]

Norman Wattenberg, DANTE 2011 in Bremen;
pp. 25–27

After last year’s autumn meeting in Trier this
year’s spring meeting took place in Bremen. The
LATEX community gathered in the old Hanseatic city
to discuss the latest developments in the world of
LATEX and to exchange ideas.

Christine Römer, Gewichten Wichtiges und
Unwichtiges mit LATEX markieren [Documenting
packages in German]; pp. 28–35

This article explains why it is reasonable to
write packages in German or to translate package
documentation into German. Furthermore the ar-
ticle describes how to prepare and typeset package
documentation.

Markus Kohm, Alexander Willand, Alles in
einem—Texte und Tabellen mit LuaLATEX [All in
one —Texts and tables with LuaLATEX]; pp. 36–47

Using an invoice this article shows how to enter
values in a table using Lua, calculate various values

236 TUGboat, Volume 32 (2011), No. 2

(e.g. VAT) and to typeset the results in a LATEX
table. The advantage of this solution is an increased
transparency of the calculation and the absence of
error-prone imports from spreadsheet software.

Wilfried Ehrenfeld, Die Dokumentenklasse
iwhdp [The iwhdp document class]; pp. 48–54

This article describes the iwhdp document class
of the Halle Institute for Economic Research which
is used for German and English discussion papers.
Little more than a year has passed since the DTK

article introducing the first version of this class. The
ideas mentioned there have been implemented and
many more. Finally the document class has matured
so that it could be published on CTAN.

Bogusław Jackowski and Piotr Strzelczyk,
How to make more than one OTF math font?;
pp. 55–56

Since 2007, when Microsoft released their math-
equipped Word and the relevant font Cambria Math,
the world has seen only two more math fonts which
can be used with MS Word/X ETEX/LuaTEX: Asana
by Apostolos Syropoulos and Khaled Hosny’s XITS.
Another one is upcoming: Latin Modern Math. Our
real aim is, however, not to provide just one new
math font, but to create several of them, almost at
once. We will present the pre-release of the Latin
Modern Math font and, at the same time, explain
how we intend to use our and others’ experience
to facilitate the creation (painful in any case) of
math OTFs. Moreover, we will discuss the relation-
ship between the Latin Modern and TEX Gyre math
projects.

[Received from Herbert Voß.]

Zpravodaj 20(4), 2010

Editor’s note: Zpravodaj is the journal of CSTUG,
the TEX user group oriented mainly but not entirely
to the Czech and Slovak languages (http://www.
cstug.cz).

Jaroḿır Kuben, Úvodńık [Opening letter from
the CSTUG president], p. 265.

Robert Mař́ık, Roman Plch, Petra

Šarmanová, Tvorba interaktivńıch test̊u pomoćı
systému AcroTEX [Publishing interactive tests
using AcroTEX], pp. 266–291.

In this paper we describe the preparation of
interactive tests in PDF with AcroTEX eDucation
Bundle, http://acrotex.net/.

Pavel Stř́ıž, Představeńı formátu X ELATEX
[Introduction to X ELATEX], pp. 292–296.

The article warmly welcomes us to the world of
X ETEX (http://www.tug.org/xetex/), especially
to the X ELATEX format commonly used these days
along with LuaLATEX. X ETEX supports processing
UTF-8 coded documents and direct TTF and OTF

font loading and use. The author presents several
basic examples accompanied by output previews.

Peter Wilson, Mohlo by to fungovat. I –
Porovnáváńı řetězc̊u [This is a translation of the
column Glisterings which appeared in TUGboat,

22:4, 2001. Translation to Czech by Jan Šustek.],
pp. 297–301.

Jiř́ı Rybička, OSSConf 2010 v Žilině [Impressions
from the OSSConf 2010 conference], p. 302.

Vlastimil Ott, Shrnut́ı konference Otvorený
softvér vo vzdelávańı, výskume a v IT riešeniach
2010 [Impressions from the OSSConf 2010
conference in Žilina, Slovakia], pp. 303–307.

Jaroslav Hajtmar, Postřehy z TEXové
dvojkonference [Impressions from TEX conferences
(4th International ConTEXt meeting and 3rd
TEXperience conference) in Brejlov, The Czech
Republic], pp. 308–314.

Pavĺına Habrovanská, Zpráva z konference
TEXperience 2010 [Impressions from TEXperience
2010], pp. 315–323.

Pozvánky na akce [Conference invitations], p. 324.

Pozvánka na OSSConf 2011 [Invitation to the
OSSConf 2011 conference], p. 325.

Pozvánka na TEXperience 2011 [Invitation to the
TEXperience 2011 conference], pp. 326–328.

Zpráva o činnosti CSTUGu za rok 2010 [Activities
of CSTUG in 2010], pp. 329–330.

Zápis z Valné hromady CSTUGu – Brno 11. 12.
2010 [Report from CSTUG annual meeting in
Brno], p. 331.

Plán práce CSTUGu na rok 2011 (a dál) [CSTUG
plans for 2011 and on], pp. 331–332.

[Received from Pavel Stř́ıž.]

The information here comes from the consultants
themselves. We do not include information we know
to be false, but we cannot check out any of the
information; we are transmitting it to you as it was
given to us and do not promise it is correct. Also, this
is not an official endorsement of the people listed here.
We provide this list to enable you to contact service
providers and decide for yourself whether to hire one.

TUG also provides an online list of consultants at
http://tug.org/consultants.html. If you’d like to
be listed, please see that web page.

Aicart Martinez, Mercè

Tarragona 102 4o 2a

08015 Barcelona, Spain
+34 932267827
Email: m.aicart (at) ono.com

Web: http://www.edilatex.com

We provide, at reasonable low cost, LATEX or TEX page
layout and typesetting services to authors or publishers
world-wide. We have been in business since the
beginning of 1990. For more information visit our web
site.

Dangerous Curve

PO Box 532281
Los Angeles, CA 90053
+1 213-617-8483
Email: typesetting (at) dangerouscurve.org

Web: http://dangerouscurve.org/tex.html

We are your macro specialists for TEX or LATEX fine
typography specs beyond those of the average LATEX
macro package. If you use X ETEX, we are your
microtypography specialists. We take special care to
typeset mathematics well.

Not that picky? We also handle most of your typical
TEX and LATEX typesetting needs.

We have been typesetting in the commercial and
academic worlds since 1979.

Our team includes Masters-level computer scientists,
journeyman typographers, graphic designers,
letterform/font designers, artists, and a co-author of a
TEX book.

Hendrickson, Amy

Brookline, MA, USA
Email: amyh (at) texnology.com

Web: http://www.texnology.com

LATEX macro writing our speciality for more than
25 years: macro packages for major publishing
companies, author support; journal macros for
American Geophysical Union, Proceedings of the
National Academy of Sciences, and many more.

TUGboat, Volume 32 (2011), No. 2 237

TEXConsultants

Hendrickson, Amy (cont’d)

Scientific journal design/production/hosting,
e-publishing in PDF or HTML.

LATEX training, at MIT, Harvard, many more
venues. Customized on site training available.

Please visit our site for samples, and get in touch.
We are particularly glad to take on adventurous
new uses for LATEX, for instance, web based report
generation including graphics, for bioinformatics or
other applications.

Latchman, David

4113 Planz Road Apt. C
Bakersfield, CA 93309-5935
+1 518-951-8786
Email: david.latchman (at) gmail.com

Web: http://www.elance.com/s/dlatchman

Proficient and experienced LATEX typesetter for books,
monographs, journals and papers allowing your
documents and books to look their possible best
especially with regards to technical documents.
Graphics/data rendered either using TikZ or Gnuplot.
Portfolio available on request.

Peter, Steve

295 N Bridge St.
Somerville, NJ 08876
+1 732 306-6309
Email: speter (at) mac.com

Specializing in foreign language, multilingual,
linguistic, and technical typesetting using most
flavors of TEX, I have typeset books for Pragmatic
Programmers, Oxford University Press, Routledge, and
Kluwer, among others, and have helped numerous
authors turn rough manuscripts, some with dozens of
languages, into beautiful camera-ready copy. In
addition, I’ve helped publishers write, maintain, and
streamline TEX-based publishing systems. I have an
MA in Linguistics from Harvard University and live in
the New York metro area.

Shanmugam, R.

No. 38/1 (New No. 65), Veerapandian Nagar, Ist St.
Choolaimedu, Chennai-600094, Tamilnadu, India
+91 9841061058
Email: rshanmugam92 (at) yahoo.com

As a Consultant, I provide consultation, training, and
full service support to individuals, authors, typesetters,
publishers, organizations, institutions, etc. I support
leading BPO/KPO/ITES/Publishing companies in
implementing latest technologies with high level
automation in the field of Typesetting/Prepress,
ePublishing, XML2PAGE, WEBTechnology,
DataConversion, Digitization, Cross-media publishing,
etc., with highly competitive prices. I provide
consultation in building business models &

Shanmugan, R. (cont’d)

technology to develop your customer base and
community, streamlining processes in getting ROI on
our workflow, New business opportunities through
improved workflow, Developing eMarketing/E-Business
Strategy, etc. I have been in the field BPO/KPO/ITES,
Typesetting, and ePublishing for 16 years, handled
various projects. I am a software consultant with
Master’s Degree. I have sound knowledge in TEX,
LATEX2ε, XMLTEX, Quark, InDesign, XML, MathML,
DTD, XSLT, XSL-FO, Schema, ebooks, OeB, etc.

Sievers, Martin

Im Treff 8, 54296 Trier, Germany
+49 651 4936567-0
Email: info (at) schoenerpublizieren.com

Web: http://www.schoenerpublizieren.com

As a mathematician with ten years of typesetting
experience I offer TEX and LATEX services and
consulting for the whole academic sector (individuals,
universities, publishers) and everybody looking for a
high-quality output of his documents.

From setting up entire book projects to last-minute
help, from creating individual templates, packages and
citation styles (BibTEX, biblatex) to typesetting your
math, tables or graphics— just contact me with
information on your project.

238 TUGboat, Volume 32 (2011), No. 2

Veytsman, Boris

46871 Antioch Pl.
Sterling, VA 20164
+1 703 915-2406
Email: borisv (at) lk.net

Web: http://www.borisv.lk.net

TEX and LATEX consulting, training and seminars.
Integration with databases, automated document
preparation, custom LATEX packages, conversions and
much more. I have about sixteen years of experience in
TEX and twenty-nine years of experience in teaching
& training. I have authored several packages on
CTAN, published papers in TEX related journals, and
conducted several workshops on TEX and related subjects.

Young, Lee A.

127 Kingfisher Lane
Mills River, NC 28759
+1 828 435-0525
Email: leeayoung (at) live.com

Web: http://www.latexcopyeditor.net

http://www.editingscience.net

Copyediting your .tex manuscript for readability and
mathematical style by a Harvard Ph.D. Experience:
edited hundreds of ESL journal articles, economics and
physics textbooks, scholarly monographs, LATEX
manuscripts for the Physical Review; career as
professional, published physicist.

Letters

Status of the American core CTAN node

Jim Hefferon

Users can download materials from many CTAN mir-
rors1 but installation or updating of those materials
happens at only a few sites. Recently I withdrew
from running one of these, leaving core sites in Ger-
many and Great Britain.

In my AZ project I developed a set of keyword
and hierarchical characterizations of the packages
that CTAN holds.2 I now run a personal site that
offers a web view of CTAN enhanced—I hope—
by these extra characterizations (and by a full-text
search of the package descriptions). Because I am
no longer doing uploads I have suppressed the func-
tionality that allows authors to edit the package

1 See http://ctan.org/mirrors.
2 “CTAN packages get keywords”, TUGboat 31:2, 2010.

description and characterizations as part of their up-
load process. I have kept links for people to suggest
better characterizations.

My host’s canonical address is http://alan.

smcvt.edu; the bandwidth is generously sustained
by Saint Michael’s College in Colchester, Vermont. If
you like the site and want to bookmark it, I suggest
the address http://tug.ctan.org, which as of this
writing points to my site.

Note that you can use these characterizations
without making a special trip to my site since TEX
Live’s tlmgr will search them.3

During my more than decade-long time with
CTAN I met and worked with many wonderful and
helpful people. My thanks to them all!

⋄ Jim Hefferon

Saint Michael’s College

Colchester, Vermont USA

ftpmaint (at) alan dot smcvt dot edu

3 A description is at http://tug.org/texlive/doc/tlmgr.

html#taxonomies.

2011

Aug 7 – 11 SIGGRAPH 2011, Vancouver, Canada.
www.siggraph.org/s2011

Aug 26 LATEX for Beginners course, UK TUG,
University of East Anglia, London,
England. uk.tug.org

Sep 11 – 14 ISType: Istanbul Typography Seminars,
Istanbul, Turkey. istype.com

Sep 14 – 18 Association Typographique Internationale
(ATypI) annual conference, Theme: the
letterform “eth”,
Reykjavik, Icelend. www.atypi.org

Sep 18 – 23 XML Summer School, St Edmund
Hall, Oxford University, Oxford, UK.
www.xmlsummerschool.com

Sep 19 – 22 ACM Symposium on Document
Engineering, Mountain View, California.
www.documentengineering.org

Sep 19 – 24 The fifth ConTEXt user meeting,
Bassenge-Boirs, Belgium.
meeting.contextgarden.net/2011

Sep 28 –
Oct 2

TEXperience 2011 (4th TEXperience
Conference, organized by CSTUG and the
Faculty of Management and Economics,
Tomas Bata University in Zĺın),
Železnà Ruda, The Czech Republic.
striz9.fame.utb.cz/texperience.

Sep 30 –
Oct 2

DANTE Herbsttagung and 45th meeting,
Garmisch-Partenkirchen, Germany.
www.dante.de/events/mv45.html

Oct 8 NTG 48th meeting, Groningen, Netherlands.
www.ntg.nl/bijeen/bijeen48.html

Oct 14 – 15 American Printing History Association’s

36th annual conference, “Printing at
the Edge”, University of California,
San Diego, California,
www.printinghistory.org/about/

calendar.php

TUGboat, Volume 32 (2011), No. 2 239

Calendar

Oct 14 – 16 The Ninth International Conference
on the Book, University of Toronto,
Ontario, Canada.
booksandpublishing.com/conference-2011

TUG2011

Trivandrum, India.

Oct 19 – 21 The 32nd annual meeting
of the TEX Users Group.
TEX in the eBook era. tug.org/tug2011

Oct 20 – 22 TYPOLondon 2011, “Places”, University
of London, UK. www.typolondon.com

Nov 10 – 11 Tenth annual St Bride Library
Conference, “Critical Tensions”,
London, England. stbride.org/events

2012

Jan 27 “The Design of Understanding”,
St. Bride Library, London, England.
stbride.org/events

Jun 26 – 29 SHARP 2012, “The Battle for Books”,
Society for the History of Authorship,
Reading & Publishing. Dublin, Ireland.
www.sharpweb.org

Jul 16 – 22 Digital Humanities 2012, Alliance of
Digital Humanities Organizations,
University of Hamburg, Germany.
www.digitalhumanities.org/conference

Aug 5 – 9 SIGGRAPH 2012, Los Angeles, California.

Oct 8 – 12 EuroTEX2012 and the sixth ConTEXt
user meeting, Breskens, The Netherlands.
meeting.contextgarden.net/2012

Status as of 25 July 2011

For additional information on TUG-sponsored events listed here, contact the TUG office
(+1 503 223-9994, fax: +1 206 203-3960, e-mail: office@tug.org). For events sponsored
by other organizations, please use the contact address provided.

A combined calendar for all user groups is online at texcalendar.dante.de.
Other calendars of typographic interest are linked from tug.org/calendar.html.

TUG 2011: TEX in the eBook era

Presentations covering the TEX world

The 32nd Annual Meeting of the TEX Users Group

http://tug.org/tug2011 tug2011@tug.org

October 19–21, 2011

River Valley Technologies

Trivandrum, Kerala

India

September 1, 2011—preprints deadline

October 19–21, 2011—conference and workshop

October 31, 2011—deadline for final papers

Sponsored by the TEX Users Group, DANTE e.V.,

and River Valley Technologies.

TUGBOAT Volume 32 (2011), No. 2

Introductory

225 William Adams / Book review: A Specimen Portfolio of Wood Type in the Cary Collection
• review of collection of wood type specimens (RIT Press)

131 Barbara Beeton / Editorial comments
• typography and TUGboat news

131 Karl Berry / From the President
• software; conferences; interviews

238 Jim Hefferon / Status of the American core CTAN node
• web view of CTAN enhanced with extra characterizations

145 Krzysztof Pszczoła / Teaching LATEX to the students of mathematics
• experiences with and approaches to teaching LATEX

132 TEX Collection editors / TEX Collection 2011 DVD

• very high-level overview of changes in the 2011 software releases
226 Boris Veytsman / Book review: The Art of the Book in the Twentieth Century

• review of this new book by Jerry Kelly (RIT Press)
228 Boris Veytsman / Book review: LATEX Beginner’s Guide

• review of this new book by Stefan Kottwitz (Packt Publishers)
230 David Walden / An appreciation: The Art of Computer Programming, Volume 4A

• discussion of Knuth’s magnum opus (Addison-Wesley)

Intermediate

233 Karl Berry / The treasure chest
• new CTAN packages, April–July 2011

158 William Cheswick / iTEX—Document formatting in an ereader world
• producing bundles for practical iPad reading

152 Hans Hagen / E-books: Old wine in new bottles
• reflections on using and producing ebooks, especially with ConTEXt

133 Stefan Löffler / TEXworks—As you like it
• new scripting and other features in TEXworks 0.4

211 Aditya Mahajan / ConTEXt basics for users: Paper setup
• predefined and custom page and print sizes in ConTEXt

206 Luca Merciadri / Merciadri packages: An overview
• bigints; dashundergaps; plantslabels; matrices with borders

164 Michael Sharpe / Math alphabets and the mathalfa package
• survey of and package for available math script, double-struck, and fraktur fonts

217 Paul Shaw / Sixty years of book design at St. Gallen, Switzerland
• discussion of this design exhibition, with many examples

169 Ulrik Vieth and Mojca Miklavec / Another incarnation of Lucida: Towards Lucida OpenType
• review of font technologies and a new implementation of Lucida

213 David Walden / Experiences with notes, references, and bibliographies
• a variety of practical approaches to bibliographies, with many examples

202 Peter Wilson / Glisterings
• ornaments with the Web-O-Mints font

Intermediate Plus

185 Michael Le Barbier Grünewald / Macro interfaces and the getoptk package
• survey of macro interfaces; implementing a new keyword interface for plain TEX

146 Paul Isambert / Drawing tables: Graphic fun with LuaTEX
• using Lua for drawing, with PDF output

193 Oleg Parashchenko / The cals package: Multipage tables with decorations
• an advanced table package

139 Herbert Voß / Reading and executing source code
• typesetting and executing LATEX and other source

Advanced

136 Taco Hoekwater / MetaPost 1.750: Numerical engines
• supporting back-end numerical libraries, MPFR and decNumber

177 Luigi Scarso / MFLua
• integrating Lua into METAFONT for post-processing glyphs

Contents of other TEX journals

235 Les Cahiers GUTenberg : Issue 54–55 (2010); Die TEXnische Komödie: Issue 2/2011;
Zpravodaj: Issue 20(4) (2010)

Reports and notices

224 Institutional members
237 TEX consulting and production services
239 Calendar
240 TUG 2011 announcement

