
TUGboat, Volume 32 (2011), No. 2 133

TEXworks—As you like it

Stefan Löffler

Abstract

TEXworks is an ongoing project to create a simple
yet flexible editor that “lowers the entry barrier to
the TEX world”. This article introduces the new
TEXworks 0.4 series and discusses several key ad-
vancements, in particular the new scripting support.

1 Introduction

The TEX world is complex. “Beautifully complex”,
the expert will say. “Dreadfully complex”, would be
a newcomer’s more likely choice of words. This is
where TEXworks comes in. Its motto: “to lower the
entry barrier to the TEX world”.

The TEXworks project was launched in 2007, out
of discussions between Jonathan Kew, Karl Berry,
Dick Koch, and others at several TUG meetings.
The plan was to create a new editor, modeled along
the lines of the award-winning TEXShop application
for Mac OS X, but as an open-source, cross-platform
program. TUG sponsored some of the initial devel-
opment.

After two years of development, the first stable
release of TEXworks, 0.2.0, was published in 2009.
From that point on, odd minor version numbers (0.1,
0.3, . . . ) indicated unstable development code, while
even numbers (0.2, 0.4, . . . ) indicated stable releases
for general use.

The hope from there was to speed up develop-
ment and produce stable releases more often. Due
to other responsibilities, Jonathan had less and less
time for coding, however, and the next stable release
had to be postponed. In 2010, Jonathan handed over
a large part of the development responsibilities to
me, a fairly regular contributor of patches for quite
a while. After wrapping up the dangling threads,
the first of the stable 0.4 releases was published in
the first half of 2011. Apart from many bug fixes
and enhancements, one theme dominated this series:
scripting.

2 Scripting TEXworks
All the world’s a stage
And all the men and women merely players;
They have their exits and their entrances,
And one man in his time plays many parts.

—William Shakespeare, As You Like It

For this project, this can be interpreted as: TEXworks
is only the core program, the basis upon which every
user can personalize the TEX editor to their liking
and tailor it to meet individual needs.

With the growing popularity of TEXworks and
the wide nature of the TEX user base, more and

more requests for specific features started coming
in. Either for a generally useful addition, to meet
an expert’s specific needs, to use TEXworks in some
completely unforeseen way, or sometimes for things
relevant only to very few, limited, special situations.

In short, with the growing user base, so came an
increasing number of divergent ideas for the project’s
growth, and it was clear that not everybody’s wishes
could be accommodated. We realized that if we
adopted ideas that were too specialized, or intro-
duced too great a complexity into the user interface,
we would fail in the primary purpose of providing a
straightforward editor — one which would not scare
off new users. Thus, we faced a dilemma concern-
ing extending the usefulness and versatility of the
project, while somehow keeping the standard inter-
face “clean”.

The only flexible solution seemed to be to allow
the actual users to change TEXworks to their own
liking and needs. Since not everyone is proficient
in C++ programming, and a large amount of forked
code would be impossible to maintain, letting users
script new features that were not part of the core
application was identified as the best answer, and a
lot of effort has gone into that. Scripts can be added
any time as they do not need to be compiled. They
are simple text files outside the main code, can be
deployed as needed, and work on all platforms.

Early attempts at a scripting engine were rudi-
mentary at best. As a proof of concept, it was pos-
sible to insert and modify some text from a script,
but the C++ internals were very clumsy and hard to
maintain.

The real breakthrough came through the discov-
ery that Qt — the Nokia programming framework
on which TEXworks is based — allows dynamic ac-
cess to almost all parts of the core program. There
were some coding tricks involved, but exploiting this
existing mechanism saved us the work of creating
wrappers for each function and variable that script
writers may access.

The Qt framework even allows script writers to
create forms and dialog windows to interact with the
user directly. Nokia provides a free tool, Qt Creator,
an IDE with widgets and components, to create these
additional user interfaces.

The second major advance was the restructur-
ing of the scripting code to accommodate plugins
for additional scripting languages. Presently, apart
from the built-in, JavaScript-like QtScript, Lua and
Python are available via plugins (on operating sys-
tems that support this mechanism). This approach
also enables programmers to easily add additional
scripting languages to TEXworks.

TEXworks — As you like it



134 TUGboat, Volume 32 (2011), No. 2

3 How scripts work

The easiest way to use scripts to adapt TEXworks
to your liking is to get a ready-made script and
simply drop it into the TEXworks ‘scripts’ folder.
This can easily be found using the “Show Scripts
Folder” menu item. After dropping your script files
in, click “Reload Script List” and you’re ready to go.

TEXworks scripts come in two varieties: “stand-
alone” scripts and “hook” scripts. “Standalone”
scripts appear as menu items in the “Scripts” menu
(or one of its submenus). Running such a script is
done by clicking on the menu item, or by using a
shortcut key (sequence), if one is assigned.

“Hook” scripts, on the other hand, are not di-
rectly invoked by the user. Instead, TEXworks runs
them automatically in certain situations. For exam-
ple, a hook script could run automatically after a
typeset process completes, parse the log output, and
present errors or warnings in a user-friendly way.

Scripts can also access files on your hard disk
and even execute system commands. To help spare
you any severe security problems should an untrusted
script be inadvertently run, these features are dis-
abled by default. This can prevent some (advanced)
scripts from working properly, however. To enable
these advanced features, a one-time authorization
must be made in the TEXworks preferences dialog.

Other, existing script libraries can be modified
and used (e.g., phpjs [4]). Among many other things,
script system commands can be (and have been)
fashioned to: retrieve information from databases
or bibliography citations, interact with utilities like
ImageMagick, and provide additional visual help
for LATEX and others. Combined with script-writer-
designed dialogs and forms, the possibilities are very
wide, and no C++ knowledge is required!

If you’re interested in writing scripts of your
own to make your or your colleague’s life that little
bit easier — whether to insert the same text over and
over again by a simple key sequence, or write com-
plex scripts for providing input-driven templates —
there are a number of resources out there to learn
scripting. Of course, knowing your way around one of
the supported languages (JavaScript, Lua, Python)
in general helps. Other than that, have a look at the
TEXworks manual [5] for a general, more in-depth dis-
cussion of how to use scripts, and Paul A. Norman’s
excellent overview of how to manipulate TEXworks
from within a script [6].

4 Other news about TEXworks

The 0.4 stable series has brought in many other im-
provements as well. Those who have used previous
releases may notice that quite a lot of effort has been

put into further enhancing usability. For one, the
presentation of spell checking languages has been im-
proved significantly. Now, human readable names are
shown instead of ISO language codes, and languages
no longer show up multiple times. In addition, a
“follow focus” option has been implemented that can
keep the cursor position in the editor and the preview
windows synchronized. Syntax highlighting has also
been enhanced — it is now possible to set some font
modifiers (bold, italic, etc.) and background colors.

TEXworks’s core has also seen some improve-
ments. Most notably, a new command line parser
and an automatic updating mechanism for TEXworks
resource files have been added. The command line
parser enables better integration with other tools
that call TEXworks (e.g., other editors, previewers,
or the operating system).

The automatic updating mechanism will allow
future versions of TEXworks to upgrade resources
like auto-completion files, or syntax highlighting def-
initions (provided the user does not intervene, of
course). Previously, it was necessary to find and
delete files manually to cause their update.

This summary of some of the features that stand
out to me is expanded in a more complete overview
on TEXworks’s home page [2]. The screenshot in
figure 1 shows TEXworks in typical usage.

5 Outlook

Far from this being the end of the development of
TEXworks itself, or of its scripting support, a number
of ideas are being canvassed, such as script bundles
that can perform a multitude of (typically related)
tasks, or scripts that can run in the background —
e.g., to perform or monitor a lengthy task — while the
rest of TEXworks can be used normally. In addition,
there are plans to allow scripts to modify the user
interface — e.g., by supplying toolbar icons or context
menu entries — instead of just showing up in a long
list of items in the scripts menu.

Beyond the 0.4 series scripting development,
other great ideas have been piling up as well: preview
window improvements, tabbed editing, code folding,
and project management support, to name only a
few. Development for the near future will happen
in the 0.5 series (which will become the 0.6 stable
release eventually), and will likely focus on areas that
have been put on hold in the attempt to get the best
out of scripting for TEXworks 0.4.

Hopefully, this has got you interested in the
TEXworks project (or, if you have already been us-
ing it, has been a helpful update). If you want to
try TEXworks out for yourself or upgrade from an
earlier version, head over to the home page [2] and

Stefan Löffler



TUGboat, Volume 32 (2011), No. 2 135

Figure 1: TEXworks source and preview windows on Ubuntu, with area magnified.

grab a copy for your operating system — it’s usually
quite simple. And if you want to learn more about
TEXworks, or perhaps would like to help in its im-
provement — by giving feedback, translating, writing
manuals, contributing code, or any other way — be
sure to check out the pointers given in the References
section below.

6 Acknowledgements

I want to say a big “thank you” to Paul Norman,
who helped in the preparation of this article; to
Joseph Wright for providing the screenshot; and
to the immensely supportive TEXworks community
without which this project wouldn’t be where it is
today. And of course to Jonathan Kew for initiating
the program, maintaining it, and mentoring me.

� Stefan Löffler
Döblinger Hauptstraße 13
1190 Wien
Austria
st.loeffler (at) gmail.com

References

[1] TEXworks development home page.
http://code.google.com/p/texworks/.

[2] TEXworks home page.
http://www.tug.org/texworks/.

[3] TEXworks mailing list.
http://lists.tug.org/texworks.

[4] Use PHP functions in JavaScript.
http://phpjs.org/.

[5] Alain Delmotte and Stefan Löffler. A short
manual for TEXworks. Bundled with TEXworks.

[6] Paul A. Norman. TEXworks scripting.
http://twscript.paulanorman.com/docs/

index.html.

TEXworks — As you like it

http://code.google.com/p/texworks/
http://www.tug.org/texworks/
http://lists.tug.org/texworks
http://phpjs.org/
http://twscript.paulanorman.com/docs/index.html
http://twscript.paulanorman.com/docs/index.html

	Introduction
	Scripting TeXworks
	How scripts work
	Other news about TeXworks
	Outlook
	Acknowledgements

