
TUGboat, Volume 32 (2011), No. 2 177

MFLua

Luigi Scarso

Abstract

We present a new implementation of METAFONT

which embeds a Lua interpreter. It is fully com-
patible with canonical METAFONT but it has some
internal “sensors”— read-only callbacks— to collect
data for use in possible post-processing. An example
of post-processing that extracts the outlines of some
glyphs is discussed.

1 Introduction

MFLua is an extension of METAFONT that embeds
a Lua [3] interpreter. It doesn’t introduce any new
primitives, so a METAFONT file can be used with
MFLua without any modification to produce exactly
the same result. The Lua interpreter inside MFLua
doesn’t change the internal state of METAFONT in
any way and it’s not reachable from inside META-
FONT. This is a strict requirement: MFLua must be
fully compatible at least with the current release of
METAFONT (which is currently 2.718281).

The Lua interpreter is used to register the data
coming from new “Lua sensors” which are, practi-
cally speaking, read-only callbacks, i.e. functions in-
serted into the Pascal WEB code that call external Lua
scripts, which eventually do nothing. Some sensors
store the same information available with the various
tracing instructions, but others are placed where
there are no tracing instructions; also, not all proce-
dures with tracing instructions have a sensor. The
goal is to collect as much data as possible about the
outlines of a METAFONT picture— typically a glyph.

Important note: Although MFLua is able to
process a full set of characters, it’s still alpha-quality
code: just a bit more than proof-of-concept.

2 The Lua sensors

It’s well-known that LuaTEX embeds a Lua inter-
preter, and it’s relatively simple to read its source
code to find where and how the interpreter is ini-
tialised; this is, moreover, a particular case of a call of
a C function from a Pascal WEB function, which is pos-
sible thanks to the automatic translation from Pascal
WEB to C (the Web2C translator) and it’s widely used
in pdfTEX and in METAFONT too (LuaTEX is now
implemented in CWEB).

2.1 Initialization

The first step is to initialise the Lua interpreter.
This is done by inserting in mf.web the procedure

This article is reprinted from the EuroTEX 2011 proceedings.

mflua_begin_program (without parameters) just af-
ter the begin of the main program; Web2C translates
it to mfluabeginprogram (without “_”) and then the
compiler looks for the symbol among the available
sources. By convention all sensors start with mflua

prefix and they are declared in the header mflua.h
and implemented in the file mflua.c; both the files
are inside the mfluadir folder which also contains
the source of a canonical Lua distribution. Hence, in
mflua.h we have:

extern int mfluabeginprogram();

and mflua.c contains its implementation:

lua_State *Luas[];

int mfluabeginprogram()

{

lua_State *L = luaL_newstate();

luaL_openlibs(L);

Luas[0] = L;

/* execute Lua external "begin_program.lua" */

const char* file = "begin_program.lua";

int res = luaL_loadfile(L, file);

if (res==0) {

res = lua_pcall(L, 0, 0, 0);

}

priv_lua_reporterrors(L, res);

return 0;

}

As we can see, the C function creates a new Lua state
L, saves it in a global variable, loads the standard
libraries (i.e. math, string, etc.) and evaluates the
external file begin_program.lua. This is a common
pattern: the mflua* sensor calls an external script
and evaluates it or its function; the return value is
never used because it can potentially modify the state
of the METAFONT process. In this way we can man-
age the sensor data without recompiling the program.

The script begin_program.lua is quite simple,
just the “greetings” message:

print("mflua_begin_program says ’Hello world!’")

but other scripts are more complex; for example, the
sensor mfluaPRE_fill_envelope_rhs(rhs) has one
input rhs (of type halfword) and its implementation
calls the script do_add_to.lua that contains the
function PRE_fill_envelope_rhs(rhs):

int mfluaPREfillenveloperhs P1C (halfword, rhs)

{ lua_State *L = Luas[0];

const char* file = "do_add_to.lua";

int res = luaL_loadfile(L, file);

if (res==0){

res = lua_pcall(L, 0, 0, 0);

if (res==0){

/* function to be called */

lua_getglobal(L,"PRE_fill_envelope_rhs");

/* push 1st argument */

lua_pushnumber(L, rhs);

MFLua

begin_program.lua

178 TUGboat, Volume 32 (2011), No. 2

/*do the call (1 arguments, 1 result)*/

res = lua_pcall(L, 1, 1, 0) ;

if (res==0){ /* retrieve result */

int z = 0;

if (!lua_isnumber(L, -1)){

fprintf(stderr,

"\n! Error:function ‘PRE_fill_envelope_rhs’

must return a number\n",lua_tostring(L, -1));

lua_pop(L, 1);/*pop returned value*/

return z;

}else{

z = lua_tonumber(L, -1);

lua_pop(L, 1);/*pop returned value*/

return z;

}

}

}

}

priv_lua_reporterrors(L, res);

return 0; }

Here is the related Lua function PRE_fill_envelope

_rhs(rhs). It’s not important to understand the
details now—suffice it to say that it stores the knots
of an envelope:

function PRE_fill_envelope_rhs(rhs)

print("PRE_fill_envelope_rhs")

local knots, knots_list

local index, char

local chartable = mflua.chartable

knots = _print_spec(rhs)

index = (0+print_int(LUAGLOBALGET_char_code()))

+(0+print_int(LUAGLOBALGET_char_ext()))*256

char = chartable[index] or {}

knots_list = char[’knots’] or {}

knots_list[#knots_list+1] = knots

char[’knots’] = knots_list

chartable[index] = char

return 0; end

As a general rule, every sensor has exactly one
Lua function; the script is loaded and the function is
evaluated each time the sensor is activated (therefore
the script doesn’t maintain state between two calls).
Furthermore, a sensor that has at least one input
must be registered in texmf.defines, so we have
for example
@define procedure mfluaPREfillenveloperhs();

but not
@define procedure mfluabeginprogram(); .

2.2 Exporting WEB procedures via Web2C

The files mflua.h and mflua.c fully define the imple-
mentation of the sensors and also functions needed
to read some of METAFONT’s global data. For ex-
ample, character numbers are stored in the global
METAFONT variables char_code and char_ext, and
Web2C translates them in C as components of the

global array internal with index char_code and
char_ext, so that it’s easy to read them in mflua.c:

static int

priv_mfweb_LUAGLOBALGET_char_code(lua_State *L)

{ integer char_code=18;

integer p=

roundunscaled(internal[char_code])%256;

lua_pushnumber(L,p);

return 1;

}

static int

priv_mfweb_LUAGLOBALGET_char_ext(lua_State *L)

{ integer char_ext=19;

integer p=

roundunscaled(internal [char_ext]);

lua_pushnumber(L,p);

return 1; }

Next, we register both functions in the file mfluaini.
lua as, respectively, LUAGLOBALGET_char_code and
LUAGLOBALGET_char_ext for the Lua interpreter, so
every Lua function can use them:

int mfluainitialize()

{ lua_State *L = Luas[0];

/* register lua functions */

...

lua_pushcfunction(L,

priv_mfweb_LUAGLOBALGET_char_code);

lua_setglobal(L, "LUAGLOBALGET_char_code");

lua_pushcfunction(L,

priv_mfweb_LUAGLOBALGET_char_ext);

lua_setglobal(L, "LUAGLOBALGET_char_ext");

...

return 0; }

In this way we can make available any Pascal
WEB macro, procedure, function, variable, etc.; for
example, the info field of a memory word

/* @d info(#) == mem[#].hh.lh */

/* {the |info| field of a memory word} */

static int priv_mfweb_info(lua_State *L)

{ halfword p,q;

p = (halfword) lua_tonumber(L,1);

q = mem [p].hhfield.v.LH ;

lua_pushnumber(L,q);

return 1; }

which becomes available for Lua as info:

int mfluainitialize()

{ lua_State *L = Luas[0];

/* register lua functions */

...

lua_pushcfunction(L, priv_mfweb_info);

lua_setglobal(L, "info");

...

return 0; }

Of course it’s best to use a minimum set of sensors.

Luigi Scarso

mfluaini.lua
mfluaini.lua
info

TUGboat, Volume 32 (2011), No. 2 179

2.3 Direct translation of a WEB procedure

Pascal WEB and Lua are not so different and we can
easily translate from one to another. For example,
the WEB procedure print_scaled

@<Basic printing...@>=

procedure print_scaled(@!s:scaled);

{prints scaled real, rounded to five digits}

var @!delta:scaled;

{amount of allowable inaccuracy}

begin if s<0 then

begin print_char("-"); negate(s);

{print the sign, if negative}

end;

print_int(s div unity);

{print the integer part}

s:=10*(s mod unity)+5;

if s<>5 then

begin delta:=10; print_char(".");

repeat if delta>unity then

s:=s+@’100000-(delta div 2);

{round the final digit}

print_char("0"+(s div unity));

s:=10*(s mod unity);

delta:=delta*10;

until s<=delta;

end;

end;

can be translated to Lua as

function print_scaled(s)

local delta

local res = ’’; local done

if s== nil then

print("\nWarning from print_scale

in mfluaini: s is nil");

return res; end

if s<0 then

res = ’-’; s = -s

end

res = res .. print_int(math.floor(s/unity))

-- {print the integer part}

s=10*(math.mod(s,unity))+5

if s ~= 5 then

delta=10; res = res .. ’.’

done = false

while not done do

if delta>unity then

s=s+half_unit-(math.floor(delta/2))

-- {round the final digit}

end

res = res .. math.floor(s/unity);

s=10*math.mod(s,unity);

delta=delta*10;

if s<=delta then done = true end

end;

end

return res

end

3 Collecting data

To properly draw the outline of a glyph we need the
following information:

1. the edge structures, i.e. the pixels of the picture;

2. the paths from the filling of a contour;

3. the paths from the drawing of an envelope with
a pen;

4. the pen used in drawing an envelope.

In fig. 1 we can see these components for the lower
case ‘e’ of Concrete Roman at 5 point.

Figure 1: The components of a glyph.

edges

envelopes
contour

pen

To store the edge structures we put one sensor
into the procedure ship_out(c:eight_bits) that
outputs a character into gf_file:

procedure ship_out(@!c:eight_bits);

...

mflua_printedges(" (just shipped out)",

true,x_off,y_off);

if internal[tracing_output]>0 then

print_edges(" (just shipped out)",

true,x_off,y_off);

end;

The Lua implementation is the function print_edges
(s,nuline,x_off,y_off) in print_edges.lua and
it is the direct translation of the WEB print_edges:

function print_edges(s,nuline,x_off,y_off)

print("\n... Hello from print_edges! ...")

local p,q,r -- for list traversal

local n=0 -- row number

local cur_edges = LUAGLOBALGET_cur_edges()

local y = {}; local xr = {}; local xq = {}

local f, start_row,

end_row ,start_row_1, end_row_1

local edge

MFLua

180 TUGboat, Volume 32 (2011), No. 2

local w,w_integer,row_weight,xoff

local chartable = mflua.chartable

local index; local char

p = knil(cur_edges)

n = n_max(cur_edges)-zero_field

while p ~= cur_edges do

xq = {}; xr = {}

q=unsorted(p); r=sorted(p)

if(q>void)or(r~=sentinel) then

while (q>void) do

w, w_integer,xoff = print_weight(q,x_off)

xq[#xq+1] = {xoff,w_integer}

end

while r ~= sentinel do

w,w_integer,xoff = print_weight(r,x_off)

xr[#xr+1]= {xoff,w_integer}

end

y[#y+1] = {print_int(n+y_off),xq,xr}

end

p=knil(p); n=decr(n);

end

-- local management of y, xq, xr

--f = mflua.print_specification.outfile1

index=(0+print_int(LUAGLOBALGET_char_code()))

+(0+print_int(LUAGLOBALGET_char_ext()))*256

char = chartable[index] or {}

print("#xq=".. #xq)

for i,v in ipairs(y) do

xq,xr = v[2],v[3]

-- for j=1, #xq, 2 do end ??

row_weight=0

for j=1, #xr, 1 do

local xb = xr[j][1]; local xwb = xr[j][2]

row_weight=row_weight+xwb

xr[j][3]=row_weight

end

end

char[’edges’] = char[’edges’] or {}

char[’edges’][#char[’edges’]+1]=

{y,x_off,y_off}

...

return 0

end

As we already said, a Lua script is stateless
during its lifetime, but this doesn’t mean that we
can’t store global variables: it suffices to set up
the global data by means of a sensor that is placed
in the main program just before the sensors that
need the global data. By convention, the global
data are placed in the file mfluaini.lua: they have
the namespace mflua (as in mflua.chartable which
collects the pixels) or the prefix LUAGLOBAL (as in
LUAGLOBALGET_char_code() that we have seen pre-
viously). Also mfluaini.lua hosts some functions
like print_int(n) (print an integer in decimal form,
directly translated from WEB to Lua) and aliases
like knil=info.

The sensors for the contours and the envelope
are more complicated. It’s not easy to find the opti-
mal point where to insert a sensor, and it’s compul-
sory to have the book The METAFONTbook [2] at
hand (and of course also [1]). In this case the starting
point is the procedure do_add_to where METAFONT

decides, based on the current pen, to fill a contour
(fill_spec) or an envelope (fill_envelope); we
can hence insert a couple of sensors before and after
these two points:

procedure do_add_to:

if max_offset(cur_pen)=0 then

begin mfluaPRE_fill_spec_rhs(rhs);

fill_spec(rhs);

mfluaPOST_fill_spec_rhs(rhs);

end

else

begin mfluaPRE_fill_envelope_rhs(rhs);

fill_envelope(rhs);

mfluaPOST_fill_envelope_rhs(rhs);

end;

if lhs<>null then

begin rev_turns:=true;

lhs:=make_spec(lhs,max_offset(cur_pen),

internal[tracing_specs]);

rev_turns:=false;

if max_offset(cur_pen)=0 then

begin mfluaPRE_fill_spec_lhs(lhs);

fill_spec(lhs);

mfluaPOST_fill_spec_lhs(lhs);

end

else

begin mfluaPRE_fill_envelope_lhs(lhs);

fill_envelope(lhs);

mfluaPOST_fill_envelope_lhs(lhs);

end;

end;

...

end;

Both fill_spec and fill_envelope have in turn
another couple of sensors:

procedure fill_spec(h:pointer);

...

mflua_PRE_move_to_edges(p);

move_to_edges(m0,n0,m1,n1);

mflua_POST_move_to_edges(p);

...

end

procedure fill_envelope(spec_head:pointer);

...

mfluaPRE_offset_prep(p,h);

{this may clobber node |q|, if it

becomes ‘‘dead’’}

offset_prep(p,h);

mfluaPOST_offset_prep(p,h);

...

end

Luigi Scarso

TUGboat, Volume 32 (2011), No. 2 181

We will not show the Lua code here; we have
followed the same strategy of the edge structures and
stored the data in the global table mflua.chartable.
The data are Bézier curves {p, c1, c2, q, offset}
which corresponds to the METAFONT path p ..

controls c1 and c2 .. q shifted by offset.
For each character char = mflua.chartable[j]

we have available char[’edges’], char[’contour’]
and char[’envelope’] (the latter with its pen) for
the post-processing.

4 The outlines of the glyphs

Up to this point, things have been relatively easy be-
cause, after all, we have been following the completely
commented Pascal WEB code. The post-processing
phase is easy to explain but more heuristic.

Briefly, for each curve we check (using the table
char[’edges’]) if it is on the frontier of the picture
and cut the pieces that are inside or outside. The
problems stem from the fact that, by cutting a path,
we are left with pending (pendent, drooping) paths
that possibly should be removed; also we must have a
robust algorithm to compute the intersection between
two Bézier curves.

If we put the sensor mflua_end_program just
before the end of the program, we can process the
data collected so far. The script end_program.lua
executes the function end_program() that aims to
extract the contour and append it as a MetaPost
path to the file envelope.tex. We can describe the
strategy as a sequence of three phases: preparation,
compute the intersections, remove unwanted paths.

4.1 Preparation

If we remove the pixels in fig. 1 we can see the
contours, the envelopes and the pens (see fig. 2).
Currently for a pen we will consider the polygonal
closed path that joins the points.

The goal of this phase is to decide when a point
of a path is inside the picture and then split the
path to remove its subpaths that are inside the
picture. The main tool is the de Casteljau algo-
rithm (see, for example [4]): given a Bézier curve
C =

{

(p, c1, c2,q), t ∈ [0, 1]
}

, place b0 = p,b1 =
c1,b2 = c2,b3 = q, the de Casteljau algorithm is
expressed by the recursive formula

{

b0
i = bi

b
j

i = (1− t)bj−i

i + tb
j−1
i+1 ,

for j = 1, 2, 3 and i = 0, . . . , 3− j. For a fixed t = t1
we have

Figure 2: The components of a glyph, without pixels.

Figure 3: Points (very tiny) on the frontier and pixels.

pixels

points

b0
0 b0

1 b0
2 b0

3

b1
0 b1

1 b1
2

b2
0 b2

1

b3
0

where b3
0 is the point on C at the time t1,

Cleft =
{

(b0
0,b

1
0,b

2
0,b

3
0), t ∈ [0, t1]

}

,

and

Cright =
{

(b3
0,b

2
1,b

1
2,b

0
3), t ∈ [t1, 1]

}

.

The Lua function bez(p,c1,c2,q,t) in end_

program.lua is the immediate translation of the
de Casteljau algorithm and returns b30[1],b30[2],
b00,b10,b20,b30,b21,b12,b03 where x = b30[1]
and y = b30[2] are the coordinates of the point at
time t.

The critical issue is to decide when a point is
black and it’s not on the frontier; as we can see in
fig. 3, some points on the frontier are white and some
points are black, so for each one we need to compute
its weight and the weight of its closest neighbors and,
if all of them are black, then the point is black and

MFLua

182 TUGboat, Volume 32 (2011), No. 2

Figure 4: The components of a glyph, after the first
phase.

inside the picture (otherwise it is on the frontier or
outside).

Another problem is that we want a given path
to have “good” intersections with other paths: if we
are too strict we can erroneously mark a point as not
internal—and hence we can lose an intersection—
and if we are too tolerant we can have useless inter-
sections (i.e. intersections that are internal) and the
next phase is unnecessarily loaded.

These are the steps followed in this phase:

1. associate with each path a set of time intervals
that describes when the subpath is not internal;

2. adjust each interval to ensure proper intersec-
tions;

3. split each path in Cleft and Cright that is not
completely internal.

In fig. 4 we can see the result: there are some small
isolated paths that are internal, but we can easily
remove them in the subsequent phases. Also note
the effect of the non-linearity of a Bézier curve: we
adjust the intervals with the same algorithm for both
straight lines and semicircular lines—but the result
cannot be the same.

4.2 Compute the intersections

Given that METAFONT can calculate the intersec-
tions between two paths, it’s natural to use its al-
gorithm, but its translation in Lua or via Web2C is
not cheap. It’s better to write, for each pathi and
pathj , a simple METAFONT program like this one
for i = 2 and j = 1:

batchmode;

message "BEGIN i=2,j=1";

path p[];

p1:=(133.22758,62) ..

controls (133.22758,62.6250003125)

and (133.22758,63.250000800781)

.. (133.22758,63.875001431885);

p2:=(28.40971260273,62) ..

controls (63.349007932129,62)

and (98.28829,62)

.. (133.22758,62);

numeric t,u; (t,u) = p1 intersectiontimes p2;

show t,u;

message "" ;

After running MFLua on this, the log

This is METAFONT, Version 2.718281 [...]

**intersec.mf

(intersec.mf

BEGIN i=2,j=1

>> 0

>> 1

can be easily parsed with Lua.
The number of intersections can be quite large

even if pathi∩pathj = pathj∩pathi and, if we have

n paths, we compute only
n(n− 1)

2
intersections.

For example, the lower case letter ‘s’ of the Concrete
Roman at 5 point has 207 paths, and on an Intel
Core Duo CPU T7250 2GHz with 2GByte, computing
all the 21321 intersections took around 2 seconds—
which was low enough to avoid re-implementing
an intersection algorithm. There is an important
point to understand here: we run MFLua inside an-
other instance of MFLua by means of the Lua func-
tion os.execute(command), hence we must carefully
manage shared resources (i.e. intermediate files for
output such as envelope.tex) by means of synchro-
nization on the filesystem.

4.3 Remove unwanted paths

The last phase is the more heuristic one. The strategy
is to gradually clean up the outlines by identifying a
rule for the paths to be removed and implementing
it with a Lua function. The common data structures
are the set of paths valid_curves, the set of inter-
sections for each path matrix_inters and the set
of pen paths valid_curves_p_set. Every time a
curve is deleted these sets must be updated.

Here is a small example of the rules:

-- remove isolated paths

valid_curves, matrix_inters =

_remove_isolate_path(valid_curves,matrix_inters)

-- remove duplicate paths

valid_curves, matrix_inters =

_remove_duplicate_path_I(valid_curves,

matrix_inters)

Luigi Scarso

TUGboat, Volume 32 (2011), No. 2 183

Figure 5: The components of a glyph, after the last
phase.

-- try to remove pen paths outside

-- the edge structure

valid_curves,matrix_inters =

_open_pen_loop_0(valid_curves,

matrix_inters,

valid_curves_p_set,char)

-- try to remove duplicate pen paths

valid_curves,matrix_inters =

_remove_duplicate_pen_path(valid_curves,

matrix_inters,

valid_curves_p_set)

Some rules are very specific, such as the following
one, which takes care of a missing intersection for
the letter ‘y’ (probably due to an erroneous set of
time intervals):

-- a fix for an error found on ccr5 y

valid_curves,matrix_inters =

_fix_intersection_bug(valid_curves,

matrix_inters)

and hence they are potentially useless for other
glyphs. There are about twenty rules; after their
incorporation the results are the outlines of fig. 5.

Figures 6, 7, 8 and 9 on the following page are
a little gallery of results with these sets of rules.

5 Conclusions

MFLua shows that it’s possible to get the original out-
lines of a METAFONT glyph without advanced mathe-
matical techniques and tracing algorithms. However,
in attempting an automatic conversion of a META-
FONT source into an OpenType font there are so
many details to fix that it’s not opportune to fo-
cus on this for a next release. Here are some more
immediate goals:

1. The sensors must go in a change file mflua.ch
and not in mf.web.

2. MFLua should be buildable for Windows.

3. The function end_program()must be simplified;
we need to test other METAFONT sources.

4. Some features remain to be implemented; for
example, a better approximation for an elliptical
pen (see fig. 8) and errors to fix as in fig. 9.

5. Perhaps the Lua scripts should use kpathsea.

The Lua code needs to be made more consistent for
both variable names and the use of tables as arrays
or hashes (some bugs resulting from the misunder-
standing of indexes as integers rather than strings).

The source code will be available for the next
(XIXth) BachoTEX meeting in Bachotek, Poland.

References

[1] Donald E. Knuth, Computers & Typesetting,
Volume C: The METAFONTbook. Reading,
Massachusetts: Addison-Wesley, 1986.
xii+361pp. ISBN 0-201-13445-4

[2] Donald E. Knuth, Computers & Typesetting,
Volume D: METAFONT: The Program.
Reading, Massachusetts: Addison-Wesley, 1986.
xviii+566pp. ISBN 0-201-13438-1

[3] R. Ierusalimschy, Programming in Lua,
2nd ed. Lua.org, March 2006. Paperback,
328pp. ISBN 13 9788590379829 http:

//www.inf.puc-rio.br/~roberto/pil2.

[4] D. Marsh, Applied Geometry for Computer

Graphics and CAD, 2nd ed. Springer
Undergraduate Mathematics Series, 2005.
xvi+352pp. ISBN 978-1-85233-801-5

⋄ Luigi Scarso
luigi dot scarso (at) gmail dot com

MFLua

http://www.inf.puc-rio.br/~roberto/pil2
http://www.inf.puc-rio.br/~roberto/pil2

184 TUGboat, Volume 32 (2011), No. 2

Figure 6: The ‘g’ of Concrete Roman at 5 point.

Figure 7: The ‘i’ of Concrete Roman at 5 point.

Figure 8: The ‘s’ of Concrete Roman at 5 point.
Note the approximations of the polygonal pen of upper
and lower barb.

Figure 9: The ‘Double leftward arrow’ of Computer
Modern Math Symbols 10 point. An error of the time
intervals breaks the contours.

Luigi Scarso

	Introduction
	The Lua sensors
	Initialization
	Exporting WEB procedures via Web2C
	Direct translation of a WEB procedure

	Collecting data
	The outlines of the glyphs
	Preparation
	Compute the intersections
	Remove unwanted paths

	Conclusions

