
TUGboat, Volume 32 (2011), No. 2 139

Reading and executing source code

Herbert Voß

Abstract

A frequent question that arises in the various forums
is whether specific regions of source code can be
displayed both verbatim and with the output of
its execution. The packages fancyvrb and listings

support writing to external files and partial reading
of source code of arbitrary type. Further packages,
such as showexpl, allow executing parts of a LATEX
source. This article shows how to apply this to
arbitrary types of code.

1 Introduction

When creating a manuscript for an article or book,
the text is, depending on the subject, augmented
by examples that often refer to the output created
by a particular programme. It can be beneficial to
control the source code for these programmes from
within the document to make sure that any changes
are reflected in both the source code and the output
in the final document. This can avoid mistakes,
especially in longer documents.

2 Simple LATEX sequences

2.1 Areas of source code

For LATEX examples, only the source code between
\begin{document} and \end{document} is relevant.
The packages fancyvrb and listings both support
specifying an area by line numbers. Such numbers
need to be changed, however, when lines are added to
or removed from the source code. It therefore makes
more sense to specify a string of characters for start
and end of the area. The package listings provides
the option linerange; the specification of the interval
is in principle the same as specifying line numbers.
Only special characters have to be escaped by pre-
fixing them with a backslash: \\begin\{document\}.
The option includerangemarker=false omits the out-
put of the string marking the area; otherwise, the
\begin{document} and \end{document} would appear
in the output.

\lstinputlisting[

linerange=\\begin\{document\}-\\end\{document\},

includerangemarker=false]{demo.tex}

The command above yields the following source
code of a LATEX document, which will be used as an
example throughout this article.

\begin{tabular}{@{}

m{0.5\linewidth}@{}

>{\lstinputlisting[

includerangemarker=false,

rangeprefix=\%,

linerange=START-STOP]{\jobname.tmp}}

m{0.5\linewidth} @{}}

\begin{Example}

\pspicture(3,2)

%START

\psframe*[linecolor=blue!30](3,2)

%STOP

\endpspicture

\end{Example}

& \tabularnewline

\begin{Example}

\pspicture(3,2)

%START

\psframe*[linecolor=red!30](3,2)

\endpspicture

%STOP

\end{Example}

& \tabularnewline

\end{tabular}

The same can be achieved with the package
fancyvrb. The area can be specified through the
options firstline and lastline. The following ex-
ample outputs its own text body.

\documentclass{article}

\usepackage{fancyvrb}

\begin{document}

\VerbatimInput[frame=single,

fontsize=\footnotesize,

firstline=\string\begin{document},

lastline=\string\end{document},

]{\jobname.tex}

\end{document}

The firstline and lastline options define macros
\FancyVerbStartString and \FancyVerbStopString.
In special cases, these can be manipulated directly.
The macro definition must contain leading white-
space if it is present in the source code. The macros
do not exist and therefore need to be defined through
\newcommand or \edef if TEX-specific special charac-
ters are used, as in this case. The following example
outputs the preamble of our sample document. The
source document contains two spaces in front of
\begin{document}, which have to be taken care of
through \space.

\edef\FancyVerbStartString{%

\string\documentclass{article}}

\edef\FancyVerbStopString{%

\space\space\string\begin{document}}% 2 spaces

\VerbatimInput[frame=single,fontsize=\footnotesize]

{demo.tex}

\makeatletter

\let\pc\@percentchar

\makeatother

\usepackage{pstricks,fancyvrb,array,listings}

\lstset{basicstyle=\ttfamily\small}

\def\endExample{\end{VerbatimOut}

Reading and executing source code

140 TUGboat, Volume 32 (2011), No. 2

\def\START{}\def\STOP{}\input{\jobname.tmp}}

\newcommand\Example{%

\VerbatimEnvironment

\begin{VerbatimOut}{\jobname.tmp}}

2.2 Source code and output

Another frequent use case is the display of source
code and the result of its compilation with LATEX, as
in the following example.

foo{
bar

foo\newline\mbox{%

\put(7,2){%

\circle*{\strip@pt\normalbaselineskip}}}%

\newline

bar

The entire source code is not always of interest,
as in the example above, which actually contains two
additional lines.

\makeatletter

%START

foo\newline\mbox{%

\put(7,2){%

\circle*{\strip@pt\normalbaselineskip}}}%

\newline

bar

%STOP

\makeatother

To restrict the output to the result of compiling the
actual lines, the so-called markers %START and %STOP

were added to define the relevant area. They do
not affect the result of the compilation as they are
prefixed with the LATEX comment character %. Of
course the comment character should be changed
according to the language being used.

Here, to typeset the source code and the output
side by side a table was used. The right-hand column
is explicitly left blank. The respective command
was added to the column definition and only the
column separator & must be specified, even if no
other material appears in the table.

\begin{tabular}{@{}

m{0.2\linewidth}@{}

>{\lstinputlisting[includerangemarker=false,

rangeprefix=\%,

linerange=START-STOP]{\jobname.tmp}}

m{0.8\linewidth} @{}}

\begin{Example}

\makeatletter

%START

foo \put(12,0){\circle*{\strip@pt\normalbaselineskip}}

\hspace{2\normalbaselineskip}bar

%STOP

\makeatother

\end{Example}

& \tabularnewline

\end{tabular}

The environment Example uses fancyvrb to write
everything to a temporary file which is read immedi-
ately afterwards through \input and thus executed.

\newcommand\Example{%

\VerbatimEnvironment

\begin{VerbatimOut}{\jobname.tmp}}

\def\endExample{%

\end{VerbatimOut}

\input{\jobname.tmp}}

Instead of a table, a minipage could have been
used to achieve the arrangement as well. In neither
case, however, can page breaks occur within exam-
ples. If the output should appear below the source,
a different definition must be used. In the follow-
ing example, a table with normal table header and
partial source code is output.

A table without using tabularx which is as wide
as the line. This is created with this source below,
which contains several line breaks.

Table 1: Example for calculated table width
foo bar baz
and now
a some-
what
longer
text to
show line
breaks

and now a
somewhat
longer text
to show line

breaks

and now a somewhat
longer text to show

line breaks

\begin{tabular}{@{}

>{\RaggedRight}p{1.5cm}|

>{\Centering}p{2cm} |

>{\RaggedLeft}p{\linewidth-3.5cm-4\tabcolsep-0.8pt}

@{}}\hline

foo & bar & baz\\\hline

and now a somewhat longer text to show line breaks &

and now a somewhat longer text to show line breaks &

and now a somewhat longer text to show line breaks\\

\hline

\end{tabular}

The source code can now be arbitrarily long
as page breaks are possible. The package fancyvrb

does not support UTF-8 characters; they remain ac-
tive and would be output in their expanded form.
The inputenx package provides a workaround, but
by default non-ASCII characters have to be specified
in their TEX-notation, for example \"u. The cor-
responding example environment ExampleB for the
above example looks like the following:

\newcommand\ExampleB{%

\VerbatimEnvironment

\begin{VerbatimOut}{\jobname.tmp}}

\def\endExampleB{%

Herbert Voß

TUGboat, Volume 32 (2011), No. 2 141

\end{VerbatimOut}

{\centering \input{\jobname.tmp}}

\lstinputlisting[

includerangemarker=false,

rangeprefix=\%,

linerange=START-STOP]{\jobname.tmp}}

\begin{ExampleB}

\begin{table}[!htb]

\hrulefill\par

A table without using \texttt{tabularx} which is as wide

as the line. This is shown by this text, which contains

several line breaks.

\caption{Example for calculated table width}

%START

\begin{tabular}{@{}

>{\RaggedRight}p{1.5cm}|

>{\Centering}p{2cm} |

>{\RaggedLeft}p{\linewidth-3.5cm-4\tabcolsep-.8pt}

@{}}\hline

foo & bar & baz\\\hline

and now a somewhat longer text to show line breaks &

and now a somewhat longer text to show line breaks &

and now a somewhat longer text to show line breaks\\

\hline

\end{tabular}

%STOP

\end{table}

\end{ExampleB}

The reverse order of the output can be achieved
by swapping the \input and \lstinputlisting. For
outputting source code, the corresponding command
\VerbatimInput from the package fancyvrb can also
be used. Not using it here was an arbitrary decision.

2.3 Entire documents

To show the source code and result of entire LATEX
document or non-LATEX code, a different approach
must be taken—a simple \input does not work any
more. A general solution would be to include the
result of the execution of the source code as a figure
through \includegraphics. If the same font is used
as in the document, there will be no difference com-
pared to using \input, even for pure text. To identify
the externally created figures, a custom counter is
defined: \newcounter{FigureCounter}. The files are
created as \jobname-\theFigureCounter.tex and can
easily be assigned to source code.

A Makefile can be used to simplify the en-
tire procedure of creating the figures independently.
After a first pdfLATEX run, which can use the op-
tion -draftmode for improved speed, all files with
names \jobname-* can be run with the respective
programme through the Makefile. In the example
below, PSTricks code is processed with X ELATEX to
be able to get PDF output. To remove any white
margin from the figure, it is processed with pdfcrop

after the X ELATEX run. The extension of the written
files can be used to identify the programme to process

them with, for example, .cpp for a C++ example. Af-
ter all the external files have been created, pdfLATEX
is run again to read the created PDF figures.

The PDF files do not exist at the time of the first
pdfLATEX run. To avoid error messages because of
this, their presence is checked through \IfFileExists.
We now have the following:

\newcounter{FigureCounter}

\newcommand\ExampleC{%

\refstepcounter{FigureCounter}%

\VerbatimEnvironment

\begin{VerbatimOut}{\jobname-\theFigureCounter.tex}}

\def\endExampleC{%

\end{VerbatimOut}

\IfFileExists{%

\jobname-\theFigureCounter.pdf}% PDF exists?

{\includegraphics{\jobname-\theFigureCounter.pdf}}%

{\fbox{PDF missing!}}% no, output message

\lstinputlisting[

linerange=\\begin\{document\}-\\end\{document\},

includerangemarker=false]%

{\jobname-\theFigureCounter.tex}}

This is only suitable for LATEX or X ELATEX doc-
uments. The preamble and postamble typical for
LATEX are defined as the macros \FVB@VerbatimOut

and \FVE@VerbatimOut from the package fancyvrb to
avoid the user having to specify them every time.

\renewcommand\FVB@VerbatimOut[1]{%

\@bsphack%

\begingroup

\FV@UseKeyValues%

\FV@DefineWhiteSpace%

\def\FV@Space{\space}%

\FV@DefineTabOut%

\def\FV@ProcessLine##1{%

\toks@{##1}\immediate\write\FV@OutFile{\the\toks@}}%

\immediate\openout\FV@OutFile #1\relax%

\WritePSTricksPreamble%<<=== write preamble

\let\FV@FontScanPrep\relax

\let\@noligs\relax%

\FV@Scan}

\renewcommand\FVE@VerbatimOut{%<<=== write postamble

\WriteLine{\string\end{document}}% <<

\immediate\closeout\FV@OutFile\endgroup\@esphack}

The macro \WriteLine allows us to use a spe-
cific preamble every time; in the following example,
for PSTricks code. For a C++ example, a different
preamble would be defined.

\newcommand\WriteLine[1]{%

\begingroup%

\let\protect\@unexpandable@protect%

\edef\reserved@a{\immediate\write\FV@OutFile{#1}}%

\reserved@a%

\endgroup}

\newcommand\WritePSTricksPreamble{%

\WriteLine{\string\documentclass{article}}%

\WriteLine{\string\usepackage{pstricks-add}}%

\WriteLine{\string\pagestyle{empty}}%

\WriteLine{\string\begin{document}}%

}

Reading and executing source code

142 TUGboat, Volume 32 (2011), No. 2

These definitions provide the preliminaries for
using the new environment ExampleC. The example
shown here is a so-called surface plot.

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

r r r r r r r r r rr r r r r r r r r rr r r r r r r r r rr r r r r r r r r rr r r r r r r r r rr r r r r r r r r rr r r r r r r r r rr r r r r r r r r rr r r r r r r r r rr r r r r r r r r r

\psscalebox{0.5}{%

\begin{pspicture}(-0.5,-0.75)(11,11)

\psaxes[ticksize=-5pt 0]{->}(11,11)

\psMatrixPlot[colorType=5,dotsize=1.1cm,

xStep=1,yStep=1,

dotstyle=square*]{10}{10}{matrix1.data}

\end{pspicture}}

To make the preamble more flexible and be able
to output parts of it as code, two additional macros
can be used to specify the invisible and the visible
part of the preamble. Here, the invisible part is out-
put into the external file first, but this is arbitrary.
The macro \FVB@VerbatimOut, which was modified
above already, is changed again to omit a preamble
for a special case (\WritePSTricksPreamble), instead
now including a template preamble (\WritePreamble).
The template preamble does not load additional pack-
ages; they have to be loaded by the user. This allows
for more flexibility. The package listings allows not
only specifying a region, but also a sorted, comma-
separated list in curly braces.

\lstinputlisting[

linerange={\%PSTART-\%PSTOP,%

\\begin\{document\}-\\end\{document\}},

includerangemarker=false]{%

\jobname-\theFigureCounter.tex}%

In this case, everything in the source docu-
ment between %START and %STOP and also between
\begin{document} and \end{document} is output. To
distinguish between preamble and text body, they
are output with different background colours and a
small additional space between them. The part to
insert the code is now

\IfFileExists{\jobname-\theFigureCounter.pdf}%

{\begin{center}\expandafter\includegraphics%

\expandafter[\GraphicxOptions]%

{\jobname-\theFigureCounter.pdf}

\end{center}}%

{\fbox{PDF missing!}}%

\def\GraphicxOptions{}%

\lstinputlisting[backgroundcolor=\color{black!10},

linerange=\%PSTART-\%PSTOP,

includerangemarker=false,]%

{\jobname-\theFigureCounter.tex}

\lstinputlisting[backgroundcolor={},

linerange=\\begin\{document\}-\\end\{document\},

includerangemarker=false]%

{\jobname-\theFigureCounter.tex}%

\gdef\Invisible@Part{}%

\gdef\Visible@Part{}%

The macro \GraphicxOptions saves the optional
parameter of the ExampleD environment, which may
contain key/value pairs for \includegraphics. The
invisible part of the preamble is passed as an ar-
gument to the macro \PreambleInvisible and the
visible part to \PreambleVisible. The external LATEX
document now has the following preamble.

\newcommand\WritePreamble{%

\WriteLine{\string\documentclass{article}}%

\WriteLine{\string\pagestyle{empty}}%

\WriteLine{\Invisible@Part}

\WriteLine{\@percentchar PSTART}

\WriteLine{\Visible@Part}%

\WriteLine{\@percentchar PSTOP}

\WriteLine{\string\begin{document}}%

}

A page break is now possible after the figure and
within the code output, as shown by the following
example.
The binding energy in the liquid drop model is composed of the following parts.

• the surface part,

• the volume part,

E = av A + − a f A2/3 + − ac
Z(Z−1)

A1/3 + − as
(A−2Z)2

A + Ep (1)

• the Coulomb part,

• the asymmetry part,

• and a pairing part.

\usepackage{tgpagella}

\usepackage{pst-node}

\psset{nodesep=3pt}

The binding energy in the liquid drop model is composed

of the following parts.

\begin{itemize}

\item the \rnode{b}{surface part},

\item the \rnode{a}{volume part},\\[1cm]

\def\xstrut{\vphantom{\frac{(A)^1}{(B)^1}}}

\begin{equation}

E =

\rnode[t]{ae}{\psframebox*[fillcolor=black!8,

Herbert Voß

TUGboat, Volume 32 (2011), No. 2 143

linestyle=none]{\xstrut a_vA}} +

\rnode[t]{be}{\psframebox*[fillcolor=black!16,

linestyle=none]{\xstrut -a_fA^{2/3}}} +

\rnode[t]{ce}{\psframebox*[fillcolor=black!24,

linestyle=none]{\xstrut -a_c\frac{Z(Z-1)}{A^{1/3}}}} +

\rnode[t]{de}{\psframebox*[fillcolor=black!32,

linestyle=none]{\xstrut -a_s\frac{(A-2Z)^2}{A}}} +

\rnode[t]{ee}{\psframebox*[fillcolor=black!40,

linestyle=none]{\xstrut E_p}}

\end{equation}\\[0.25cm]

\item the \rnode{c}{Coulomb part},

\item the \rnode{d}{asymmetry part},

\item and a \rnode{e}{pairing part}.

\end{itemize}

\nccurve[angleA=-90,angleB=90]{->}{a}{ae}

\nccurve[angleB=45]{->}{b}{be}

\nccurve[angleB=-90]{->}{c}{ce}

\nccurve[angleB=-90]{->}{d}{de}

\nccurve[angleB=-90]{->}{e}{ee}

The macro \Preamble, which saves the invisible
and the visible part of the preamble, is somewhat
more complex because the special characters like
\, $, &, # ^, _, % and ~ and line endings must be
handled separately. If an arbitrary optional argument
is specified, it is assumed that it is the invisible part
of the preamble.

\def\MakeVerbatimNewLine{^^J}

\begingroup

\catcode‘\^^M=\active %

\gdef\obeylines@Preamble{\catcode‘\^^M\active

\let^^M\MakeVerbatimNewLine}%

\endgroup

\newcommand\Preamble{%

\par

\begingroup

\makeatother

\let\do\@makeother

\do\ \do\\\do\$\do\&\do\#\do\^\do_\do\~\do\%

\obeylines@Preamble

\@ifnextchar[\PreambleInvisible@{\PreambleVisible@[]}}

\long\def\PreambleInvisible@[#1]#2{%

\long\xdef\@gtempa{#2}%

\endgroup\let\Invisible@Part\@gtempa}

\long\def\PreambleVisible@[#1]#2{\long\xdef\@gtempa{#2}%

\endgroup\let\Visible@Part\@gtempa}

This can be used to control the output of the
preamble in the example code. Only the parts which
are of interest to the reader can be output while
other things can be defined as well and written into
the exported TEX file, but do not appear as source
code in the final document. For the example above:

\Preamble[Invisible]{\usepackage[T1]{fontenc}

\usepackage{mathpazo}

\usepackage{pstricks}

}

\Preamble{\usepackage{tgpagella}

\usepackage{pst-node}}

3 Arbitrary source code type

It has already been mentioned that in principle any
language can be used in the exported file. The
Makefile can do the appropriate processing based on
the extension of the file. Only the example environ-
ment must know the type of file to be exported. Our
final example shows an external Perl programme,
which is written from this document and executed.
The output of the programme is saved with the same
base name and the extension .out. Finally, the out-
put is inserted back into this document as pure text.

A standardised Perl code could have the follow-
ing header (preamble).

\newcommand\SchreibePerlPraeambel{%

\WriteLine{\numbersign !/usr/bin/perl}%

\WriteLine{\numbersign }%

\WriteLine{\numbersign Herbert Voss 20110201}%

\WriteLine{use strict;}%

\WriteLine{\Invisible@Part}

\WriteLine{\numbersign PSTART}

\WriteLine{\Visible@Part}%

\WriteLine{\numbersign PSTOP}

\WriteLine{\numbersign }%

\WriteLine{\numbersign bodystart!!}%

}

The definition of the example environment is
in principle the same as the LATEX version shown
above. Instead of including a generated PDF file, the
text output created by the external Perl programme
is input with \lstinputlisting. The optional ar-
gument of the environment ExampleE can be used
to specify the formatting; it is passed through to
\lstinputlisting.

\newcommand\ExampleE[1][]{%

\def\lstOptions{#1}%

\refstepcounter{FigureCounter}%

\VerbatimEnvironment

\begin{VerbatimOut}{\jobname-\theFigureCounter.pl}}

\def\endExampleE{%

\end{VerbatimOut}

\IfFileExists{\jobname-\theFigureCounter.out}%

{\expandafter\lstinputlisting\expandafter[\lstOptions]%

{\jobname-\theFigureCounter.out}}%

{\fbox{Output missing!}}%

\medskip

\def\lstOptions{}%

\lstinputlisting[backgroundcolor=\color{black!10},

linerange=\#PSTART-\#PSTOP,

includerangemarker=false,]%

{\jobname-\theFigureCounter.pl}

\lstinputlisting[

backgroundcolor={},

linerange=\#bodystart!!-\#bodyend!!,

includerangemarker=false]%

{\jobname-\theFigureCounter.pl}%

\gdef\Invisible@Part{}%

\gdef\Visible@Part{}%

}

Reading and executing source code

144 TUGboat, Volume 32 (2011), No. 2

The following example determines so-called Kap-
rekar constants (see http://en.wikipedia.org/wiki/
Kaprekar_constant). These are natural numbers
with the following properties: If the digits are sorted
ascending and descending, the result is a largest and
a smallest number whose difference is the same as
the original number. The algorithm here uses a brute
force approach to keep the code simple; all numbers
are generated and tested.
Determining Kaprekar constants

1 digits:

2 digits:

3 digits: 495,

4 digits: 6174,

5 digits:

Determining Kaprekar constants

my $number = 1;

my $start = 1;

my $end = 10;

print("Determining Kaprekar constants\n");

while ($number < 6) {

print "$number digits: ";

foreach ($start...$end) { # for each line $_

my @chars = split(//,$_);

my $Min = join("",sort(@chars));

my $Max = reverse($Min);

my $Dif=$Max-$Min;

if($_ eq $Dif) { print $_,","; }

}

$number = $number+1;

$start = $start*10;

$end = $end*10;

print "\n"; }

The output of the entire Perl programme is the
same as for a LATEX example as well.

\Preamble[Invisible]{# Example for a Kaprekar constant}

\Preamble{### Determining Kaprekar constants ###

my $number = 1;

my $start = 1;

my $end = 10;}

\begin{ExampleE}[basicstyle=\ttfamily\footnotesize,

frame=LR]

print("Determining Kaprekar constants\n");

while ($number < 6) {

print "$number digits: ";

foreach ($start...$end) { # for each line $_

my @chars = split(//,$_);

my $Min = join("",sort(@chars));

my $Max = reverse($Min);

my $Dif=$Max-$Min;

if($_ eq $Dif) { print $_,","; }

}

$number = $number+1;

$start = $start*10;

$end = $end*10;

print "\n"; }

\end{ExampleE}

4 Creating this document

This document creates several external example files
which are then run by X ELATEX and Perl. The created
PDFs from X ELATEX are cropped to eliminate the
whitespace and then inserted as PDF graphics, while
the output from the Perl program is inserted as a
text file. All this is done for Linux with the following
simple shell script:
#!/bin/sh

pdflatex voss2011 # main doc

xelatex voss2011-1.tex # 1st created external file

pdfcrop voss2011-1 # cut whitespace

mv voss2011-1-crop.pdf voss2011-1.pdf # rename

xelatex voss2011-2.tex # 2nd created external file

pdfcrop voss2011-2 # cut whitespace

mv voss2011-2-crop.pdf voss2011-2.pdf # rename

perl voss2011-3.pl > voss2011-3.out # 3rd external file

pdflatex voss2011 # main doc

5 Summary

This article has shown how to create external source
files of arbitrary types and execute them through a
Makefile after a first LATEX run. The file extension
of the created file should designate the type of pro-
gramme used for its execution. The output of the
programmes can be included in subsequent LATEX
runs as figures or text. The author retains the full
control over example programmes. If there is a large
number of examples, the created file can be written
into a temporary directory and compared with an ex-
isting file through the Unix diff command to avoid
executing the programme again if the source code
has not changed.

There are more optional parameters possible
for inserting the output into the document to, for
example, specify left/right alignment. Figures could
be processed with pdfcrop to remove white margins.

References

[1] Carsten Heinz: The listings package,
Version 1.4, Feb. 2007; mirror.ctan.org/
macros/latex/contrib/listings/

[2] Rolf Niepraschk: The showexpl package,
Version 0.3h, Feb. 2007; mirror.ctan.org/
macros/latex/contrib/showexpl/

[3] Timothy Van Zandt: The fancyvrb package—
Fancy verbatims in LATEX, Version 2.8, May
2010; mirror.ctan.org/macros/latex/contrib/
fancyvrb/

� Herbert Voß
Wasgenstraße 21
14129 Berlin, Germany
herbert (at) dante dot de

http://tug.org/PSTricks

Herbert Voß

