
TUGboat, Volume 32 (2011), No. 3 339

Glisterings

Peter Wilson

. . . Cloath’d all in glistering coats, which
made a shew . . .

Poems and Fancies, Margaret Cavendish

The aim of this column is to provide odd hints or
small pieces of code that might help in solving a
problem or two while hopefully not making things
worse through any errors of mine.

Corrections, suggestions, and contributions will
always be welcome.

Sir, I have found you an argument,
but I am not obliged to find you an
understanding.

Samuel Johnson

1 Verbatim arguments

I have been reminded recently that one problem with
verbatim material is that it cannot be used in an ar-
gument to a regular command (or environment). For
example to typeset something in a framed minipage

the obvious way is to use the minipage as the argu-
ment to the \fbox macro:

\fbox{\begin{minipage}{0.97\columnwidth}

Contents of framed minipage

\end{minipage}}

This works well until the contents includes some
verbatim material and then you get nasty messages,
even though it appears to be wrapped inside the
minipage.

However, we can put material into a box, de-
clared by \newsavebox, and output the typeset con-
tents later on via \usebox. This is how the framed
text below was processed.

This is the definition of the framedminipage envi-
ronment which lets you put verbatim text into a
frame. All this is set within a framedminipage to
show that it does work.

\newsavebox{\minibox}

\newenvironment{framedminipage}[2][c]{%

\begin{lrbox}{\minibox}

\begin{minipage}[#1]{#2}}%

{\end{minipage}\end{lrbox}

\fbox{\usebox{\minibox}}}

I used 0.97\columnwidth as the width of the en-
vironment like this:
\begin{framedminipage}%

{0.97\columnwidth}

...

An lrbox is an environment form of a \savebox

(or \sbox) and we can use it to solve the framed
minipage problem. The code displayed above, af-
ter getting a new save box (\minibox) defines a
framedminipage environment which is used just like
a regular minipage, including the optional position-
ing argument. It starts by opening an lrbox envi-
ronment, then a minipage environment. At the end
it closes the minipage and lrbox environments and
then typesets an \fbox whose argument is the saved
box the contents of which have already been typeset,
verbatims and all.

In The TEXbook, page 363, there is code for a
\footnote macro that can take verbatim material
in its argument. Knuth says that it is subtle and
requires trickery, and I don’t understand it, but here
is the essence, in the form of a one argument macro
I’ve called \verbtext. I’m not sure, though, about
the location of the \color@... macros as there was
nothing comparable in Knuth’s original code

\makeatletter

\long\def\verbtext{\vtintro\futurelet\next\vte@t}

\def\vte@t{\ifcat\bgroup\noexpand\next

\let\next\vt@@t

\else \let\next\vt@t\fi \next}

\def\vt@@t{\bgroup\aftergroup\vtend\let\next}

\def\vt@t#1{%

\color@begingroup

#1\vtmid

\color@endgroup}

\let\vtintro\relax

\let\vtmid\relax

\let\vtend\relax

\makeatother

The macros \vtintro and \vtend are called before
and after the argument is read and you can try and
define them to do something you think is useful.
Defining \vtmid may, on occasion, be helpful.

So, here is an example of the \verbtext com-
mand, which can take verbatim text as part of its
argument.

\verbtext{‘The argument to \verb?\verbtext?

can include \verb?\verb? text.’}

‘The argument to \verbtext can include \verb text.’
The following code is a simple example of using

\vtintro and \vtend to specify a small caps font.

\makeatletter

\newcommand*{\fred}[1][\@empty]{Frederick%

\ifx\@empty #1\else\ #1\fi}

\makeatother

\def\vtintro{\begingroup\scshape}

\def\vtend{\endgroup}

\verbtext{The macro \verb?\fred[III]?

produces \fred[III], while

\verb?\fred? results in \fred.}

Glisterings

340 TUGboat, Volume 32 (2011), No. 3

The macro \fred[III] produces Freder-
ick III, while \fred results in Frederick.

Actually this could have been done as easily as:

{\scshape\verbtext{...}}

without bothering to redefine \vtintro and \vtend,
but perhaps you may come across occasions when
they can help in solving a particular problem.

Wickedness is always easier than virtue; for
it takes a short cut to everything.

Samuel Johnson

2 Cut off in its prime

Changing the subject, there was a question posed
on comp.text.tex asking if there was any way of
cutting a long text short, such as after two or three
lines.

Donald Arseneau’s truncate package [1] is avail-
able for truncating text to a specified width. By
default . . . (\ldots) is typeset at the end of the
truncated text to indicate that something is missing.
For instance

\truncate{0.9\columnwidth}{The

\texttt{truncate} package provides a macro

for cutting off text so that it does not

exceed a given length.}

will result in:
The truncate package provides a macro for . . .

However, in response to the query Donald came
up with a vertical equivalent to \truncate which he
called \vtruncate [2], as follows:

\newsavebox\descbox

\newsavebox\partialbox

\newcommand{\vtruncate}[2]{%

\setbox\descbox\vbox{{#2\par}}%

\setbox\partialbox\vsplit\descbox to #1\relax

\vtop{\unvbox\partialbox}%

% or use

% \par\unvbox\partialbox

}

The first argument is the vertical space and the
second is the text.

Will Robertson also responded, but with an envi-
ronment, cutlines, that would truncate its contents
if it exceeded a certain height [3]. His definition was:

\makeatletter

\newbox\cut@desc

\newenvironment{cutlines}[1][2]{%

\@tempcnta=#1\relax

\setbox\cut@desc\vbox\bgroup

\parskip=0pt}{%

\egroup

\vsplit\cut@desc to \@tempcnta\baselineskip}

\makeatother

The argument is the number of lines (default 2).
I tried both of these, and found potential prob-

lems with each:

1. The text argument to \vtruncate could not
include any verbatim material (but this might
not be of any concern).

2. If the number of lines specified for the cutlines
environment was more than the lines in the
original text, then the text was padded out with
blank lines to make up the specified number.

3. In both cases the final truncated text was not
always the specified height, but it was always to
within plus or minus a line. However cutlines
seemed to be more precise than \vtruncate.

4. The truncated text ends up in a box that cannot
be split across a page boundary.

After some fiddling around1 I came up with code
for a truncate environment that was a mixture of
Donald’s and Will’s code that seemed to avoid the
first two of the four problems, and possibly the third
as well. The fourth potential problem is inherent in
all the proposals.

\newsavebox\descbox

\newsavebox\partialbox

\newlength{\vcutl}% for the limit height

\newlength{\Vcutl}% height of full text

\newenvironment{vcutlines}[1][2\baselineskip]{%

\setlength{\vcutl}{#1}%

\setbox\descbox\vbox\bgroup

\parskip=0pt\relax

}{%

\egroup

\Vcutl=\ht\descbox

\advance\Vcutl \dp\descbox

\setbox\partialbox\vsplit\descbox to

\vcutl\relax

\vtop{\unvbox\partialbox}

\ifdim \vcutl<\Vcutl \vtruncont \fi}

\newcommand*{\vtruncont}{\noindent\strut\ldots}

In the following examples, the test text is:

{\itshape

Donald Arseneau created the \verb?\vtruncate?

command and Will Robertson the

\verb?cutlines? environment to truncate text

if it requires more than a specified height.

This is an example, though, of the new

\verb?vcutlines? environment --- a merge

of Donald’s and Will’s work.}

which does include a little verbatim material.
Let’s give vcutlines a whirl with a limit of 20

lines (i.e., [20\baselineskip]).

1 Quite a lot in fact.

Peter Wilson

TUGboat, Volume 32 (2011), No. 3 341

Donald Arseneau created the \vtruncate com-
mand and Will Robertson the cutlines environ-
ment to truncate text if it requires more than a spec-
ified height. This is an example, though, of the new
vcutlines environment — a merge of Donald’s and
Will’s work.

And now the same text but with a limit of 3
lines (i.e., [3\baselineskip]).

Donald Arseneau created the \vtruncate com-
mand and Will Robertson the cutlines environ-
ment to truncate text if it requires more than a spec-
. . .

If the text is truncated, as in this example, then
the environment finishes by calling the \vtruncont

macro which by default outputs a final line consist-
ing simply of . . . (i.e., \ldots) to indicate that the
original text continued. A comparison of the height
of the original text with the specified height is used
to decide if there was truncation.

You can change \vtruncont to typeset a differ-
ent marker, or simply

\renewcommand*{\vtruncont}{}

to not do anything.

Here’s a repeat of the last example:
Donald Arseneau created the \vtruncate com-

mand and Will Robertson the cutlines environ-
ment to truncate text if it requires more than a spec-
ified height. This is an example, though, of the new

However eliminating the marker this way seems
to lead to a slight problem with the spacing after the
end of the environment. Defining instead

\renewcommand*{\vtruncont}{\noindent}

Donald Arseneau created the \vtruncate com-
mand and Will Robertson the cutlines environ-
ment to truncate text if it requires more than a spec-
ified height. This is an example, though, of the new

Gives better spacing after the environment, as
shown between this and the example immediately
above.

References

[1] Donald Arseneau. truncate.sty truncate text
to a specified width, 2001. mirror.ctan.org/

macros/latex/contrib/truncate.

[2] Donald Arseneau. Re: How to limit/cut
off text after a number of lines? Post to
comp.text.tex newsgroup, 16 July 2008.

[3] Will Robertson. Re: How to limit/cut
off text after a number of lines? Post to
comp.text.tex newsgroup, 16 July 2008.

� Peter Wilson
12 Sovereign Close
Kenilworth CV8 1SQ, UK
herries dot press (at)

earthlink dot net

Glisterings

