
TUGboat, Volume 33 (2012), No. 1 39

Glisterings
Peter Wilson

Sound like bels, and shine like lanternes.
Thunder in words and glister in works.

School of Abuse, Stephen Gosson

The aim of this column is to provide odd hints or
small pieces of code that might help in solving a
problem or two while hopefully not making things
worse through any errors of mine.

Something old, something new,
Something borrowed, something blue.

Traditional: Advice to the Bride

This issue’s column reiterates two items from
the electronic TEXMAG journal, years ago.

I didn’t go to the moon, I went much
further — for time is the longest distance
between two places.

The Glass Menagerie,
Tennessee Williams

1 Timelines
This is a slightly edited version of an article that
Don Hosek wrote for TEXMAG, titled Timelines with
plain TEX and LATEX [1].

&@!)
In one issue of TUGboat (Vol. 8, No. 2), there was
a query for a macro to draw timelines in TEX. At
the time, I had just finished writing DVIview and
was waiting for bugs to surface and my paycheck to
arrive with little else to do, so I decided to tackle
the problem.

To make the problem more interesting, I decided
to make the macro work in both LATEX and plain
TEX. A sample input file should look something like:
%%% LaTeX sample
\documentclass{article}
\usepackage{timeline}
\def\TeXMaG{\TeX

M\kern-.1667em\lower.5ex\hbox{A}%
\kern-.2267emG}

\begin{document}
This is a timeline of the history of
the first year of \TeXMaG.
\begin{timeline}{2in}(0,180)
\optrule
\item[12]{Jan. 24}{No. 1}
\item[33]{Mar. 6}{No. 2}
\item[43]{Mar. 25}{No. 3}
\item[81]{May. 13}{No. 4}
\item[102]{Jun. 25}{No. 5}

\item[132]{Aug. 24}{No. 6}
\item[160]{Oct. 10}{No. 7}
\item[179]{Dec. 31}{To be}
\end{timeline}%% Must be a comment here!!!
If text immediately follows the end of the
timeline then a comment is required
otherwise there is an extraneous space at the
start of the text. A blank line following the
end acts normally, whether or not there has
been a comment.
\end{document}

And something similar in plain TEX. In the
example above, I used sort keys to control the spacing
between entries. I also could have had a timeline
whose entries looked like this:
\begin{timeline}{1.5in}(1750,1900)
\optrule
\item{1773}{The Tea Party}
\item{1812}{War of 1812}
\item{1849}{Gold rush of ’49}
\item[1862]{1862--5}{Civil War}
\item{1876}{Little Big Horn} % added by PW
\end{timeline}

where the dates themselves control the placement.
Note that the entry for the Civil War uses a sort key
to allow the year to be 1862–5. This was a pretty
big problem. The comments in the code below give
a fair idea of how to use the macro; the remainder of
this section will deal with how the macros themselves
work.

First of all, it helps to have some idea of how
\begin{...} and \end{...} work in LATEX. To
view it in a simplified form, when the command
\begin{FOO} is invoked, LATEX issues the commands
\begingroup followed by \FOO; similarly, \end{FOO}
issues the commands \endFOO followed by \endgroup.
Therefore, to allow an environment to function in
plain TEX, all we need to do is include an extra
grouping with \FOO...\endFOO and provide copies
of any LATEX internal macros used by the environ-
ment. Both of these tasks are fairly simple, and in
the timeline macros, the only LATEX internal macro
called is \@ifnextchar (this is a very handy macro
for many reasons, and gives some insight into the
mysteries of LATEX).

\@ifnextchar is called with the general form:
\@ifnextchar X{YES}{NO}
The timeline macros use this for \item to check to see
if the optional argument (enclosed in []s) is present.
If the next character after \@ifnextchar matches X
(X cannot be a space) then YES is executed, otherwise
NO is executed. In the specific case here, this is done
with the call:
\@ifnextchar[\@item\@itemnosrtkey

Glisterings

40 TUGboat, Volume 33 (2012), No. 1

This calls \@item if the optional argument is present,
and \@itemnosrtkey if it isn’t. In addition, the
character that is tested remains in the input stream,
so \@item has a parameter list that looks like
\@item[#1]#2#3
rather than
\@item#1]#2#3.

The definition of \item for the timeline macros
is kept local so it won’t interfere with other uses of
that control sequence name by either plain or LATEX.
The main work of this is done by \@item, which
takes three arguments: the first argument is used to
determine the vertical placement of the timeline item,
the second argument is the nominal date and the
third a description. \@itemnosrtkey calls \@item
using the nominal date as the first argument as well.

The placement of the item on the timeline is de-
termined by taking the date number (first parameter)
and converting to a number between 0 and the length
of the timeline as specified with the arguments to the
\timeline (\begin{timeline}) macro. This num-
ber is then multiplied by 1/65536 times the length of
the timeline as specified by the user. The factor of
1/65536 prevents an arithmetic overflow from occur-
ing at the cost of reducing accuracy (measurements
are only kept accurate to one point). Finally, this
number is divided by the length of the range of date
number values and then multiplied by 65536 which
gives a dimension specifying how far down from the
top of the timeline the entry should be placed.

The actual placement is accomplished with the
\dlap macro from the toolbox of TEXMAG Vol. 1
No. 3 [by Barbara Beeton]. By placing the neces-
sary text after a vertical \kern, inside a vertical
lap, we are able to print information anywhere on
the timeline without changing our vertical position.
This does have the disadvantage of using a lot of
box memory and may run into problems with very
complicated timelines, but it seemed like a good idea
at the time.

The final interesting facet of the macros is the
(simple) way that two entries that are close together
are resolved. After an entry is printed, the vertical
dimension specifying its placement is stored in the
dimen register \itwashere. When the next entry
is to be printed, the current vertical placement is
compared to \itwashere; if the difference is less
than 12pt, and the entry would normally be placed
on the left, then the entry is printed on the right.
Otherwise it is printed on the left. This algorithim
works well for two closely placed entries but fails for
three closely placed entries (the two on the left will
likely overlap).

This is a timeline of the history of the first year of
TEXMAG.

Jan. 24 No. 1 •
Mar. 6 No. 2 • • Mar. 25 No. 3

May. 13 No. 4 •
Jun. 25 No. 5 •

Aug. 24 No. 6 •

Oct. 10 No. 7 •
Dec. 31 To be •

If text immediately follows the end of the timeline
then a comment is required otherwise there is an
extraneous space at the start of the text. A blank
line following the end acts normally, whether or not
there has been a comment.

Figure 1: First timeline

The macros presented work for simple timelines,
but probably will be deficient for more complex time-
lines. Hopefully, this explanation of the macros will
help in customizing them for your own purpose, or
in writing a timeline macro of your own.
%%% File: timeline.sty
%%% Works with either LaTeX or plain TeX
%%%
%%% In LaTeX:
%%% \begin{timeline}{length}(start,stop)
%%% . . .
%%% \end{timeline}
%%%
%%% in plain TeX
%%% \timeline{length}(start,stop)
%%% . . .
%%% \endtimeline
%%% in between the two, we may have:
%%% \item{date}{description}
%%% \item[sortkey]{date}{description}
%%% \optrule
%%%
%%% the options to timeline are:
%%% length --- The amount of vertical space
%%% that the timeline should use.
%%% (start,stop) --- indicate the range of
%%% the timeline. All dates or sortkeys
%%% should lie in the range [start,stop]
%%%
%%% \item without the sort key expects date to
%%% be a number (such as a year).
%%% \item with the sort key expects the sort
%%% key to be a number; date can be
%%% anything. This can be used for log
%%% scale timelines or dates that
%%% include months or days.

Peter Wilson

TUGboat, Volume 33 (2012), No. 1 41

%%% putting \optrule inside of the timeline
%%% environment will cause a vertical
%%% rule to be drawn down the center
%%% of the timeline.

\catcode‘\@=11 % Pretend @ is a letter
\newcount\startat \newcount\tllength
\newdimen\putithere \newdimen\itwasthere
\newcount\scr@tchi \newdimen\scr@tchii

% A vertically centered lap
\long\def\ylap#1{\vbox to \z@{\vss#1\vss}}

% Vertical ‘laps’; cf. \llap and \rlap
\long\def\ulap#1{\vbox to \z@{\vss#1}}
\long\def\dlap#1{\vbox to \z@{#1\vss}}

\def\timeline#1(#2,#3){%
\ifvmode\else\par\fi$$\vbox to#1\bgroup

% The \vbox command is
% surrounded by $$..$$ to make it
% fit in well with paragraphs.

\offinterlineskip
\startat=#2\tllength=#3

\advance\tllength by-\startat
% \tllength should be the total length of
% the timeline.

\def\item{\@ifnextchar[\@item\@itemnosrtkey}
\def\@item[##1]##2##3{\scr@tchi=##1

\advance\scr@tchi by-\startat
\putithere=#1
\divide\putithere by 65536 % avoid overflow

% only remain accurate to 1pt in the
% next set of calculations

\multiply\putithere by \scr@tchi
\divide\putithere by\tllength
\multiply\putithere by 65536

% Now \putithere has how far
% down we should go for this item.

\scr@tchii=\putithere
\advance\scr@tchii by -\itwasthere
\ifdim\scr@tchii<12pt

\ifx\lrswitch L
\@putright{\putithere}{##2}{##3}

\else
\@putleft{\putithere}{##2}{##3}

\fi
\else

\@putleft{\putithere}{##2}{##3}
\fi
\itwasthere=\putithere}

\def\@itemnosrtkey##1##2{%
\@item[##1]{##1}{##2}}

\def\@putright##1##2##3{\dlap
{\kern##1\centerline

{\rlap
{\ \bullet\hskip1.5em{\bf ##2}
\ ##3}}}

\let\lrswitch=R}

\def\@putleft##1##2##3{\dlap
{\kern##1\centerline

{\llap
{{\bf ##2} \ ##3\hskip1.5em\bullet

\ }}}
\let\lrswitch=L}

\def\optrule{\dlap
{\centerline

% This calculation is kept local
{\dimen0=#1 \advance\dimen0 by 6pt

\vrule depth \dimen0 height-6pt}}}}

% Put the extra \vskip in a \vbox to hide
% it from the math gods.
\def\endtimeline{%

\vfill\egroup\vbox{\vskip\baselineskip}$$}
\ifx\@latexerr\undefined

\def\@ifnextchar#1#2#3{%
\let\@tempe #1
\def\@tempa{#2}\def\@tempb{#3}
\futurelet\@tempc\@ifnch}

\def\@ifnch{%
\ifx \@tempc \@sptoken

\let\@tempd\@xifnch
\else

\ifx \@tempc \@tempe
\let\@tempd\@tempa

\else
\let\@tempd\@tempb

\fi
\fi \@tempd}

% NOTE: the following hacking must precede
% the definition of \: as math medium
% space.
% make \@sptoken a space token

\def\:{\let\@sptoken= } \:
\def\:{\@xifnch}
\expandafter\def\: {\futurelet\@tempc\@ifnch}

\catcode‘\@=12 % Stop pretending @ is a letter
\fi
\endinput

($#*
Using the above code, the result of the initial

example is in Figure 1 and the second is in Figure 2.

1773 The Tea Party •

1812 War of 1812 •

1849 Gold rush •
• 1862–5 Civil War

1876 Little Big Horn •

Figure 2: Second timeline

Glisterings

42 TUGboat, Volume 33 (2012), No. 1

Gaul as a whole is divided into three parts.

De Bello Gallico, Julius Caesar

2 Parsing a filename
This is another (slightly edited) article from a later
issue of TEXMAG [2].

&@!)
Sometimes it is nice to be able to use the information
in a filename.tex as information in a particular
document. For example, suppose I wanted to typeset
TEXMAG on real paper, and be able to have the
volume and issue numbers read from the title of
the file that TEX was processing, and subsequently
assigned to tokens for use in the document, perhaps
in a header. Say my file was named TEXMAG-5-1.TEX.
The following would isolate the 5 and the 1 for use
within the TEX document:
% This particular idea was developed by our
% chief consultant Dr. John McClain

\newtoks \volumenumber
\newtoks \issuenumber

\def\parse#1-#2-#3-{\global\volumenumber={#2}
\global\issuenumber={#3}}

\expandafter\parse\jobname-

%%% for a TeX headline
\headline={Volume \the\volumenumber,

Number \the\issuenumber
\hfil page \folio}
% end of macro

Notice the \jobname contains the name of the
file (without any extension, see The TEXbook, p. 213).
The \expandafter allows you to piece apart this
token into its volume and number. We also had
to chose a special delimiter which would conform to
filename standards and be a legal parameter delimiter
in TEX. A space would not have worked as a legal
file name. A hyphen was our best choice. When you
test this, remember that the filename must conform
to the parameter specs of \parse (in this case, two
hyphens, i.e., XXXX-N-N.TEX).

($#*
The essence of the code in the TEXMAG article

is the \parse macro. The \jobname of the document
you are now reading is ‘tb103glister’, which does
not match the requirements of \parse. The following
code demonstrates that macros based on \parse can
work with names other than \jobname, provided that
they expand into the expected format.

For instance:
\newcommand*{\jname}{glisten-n16-v3.tex}
\newtoks \pwfirstsub
\newtoks \pwsecondsub
\def\parse#1-#2-#3.#4-{%

\global\pwfirstsub={#2}
\global\pwsecondsub={#3}}

\newcommand*{\parsit}[1]{\expandafter\parse#1-}

\verb?\parsit{\jname}? \parsit{\jname}
File \jname\ with: \\

Number \the\pwfirstsub,
and Version \the\pwsecondsub.

And the result of the above code is:

\parsit{\jname} File glisten-n16-v3.tex with:
Number n16, and Version v3.

The basic idea of \parse can be applied to
any multipart string that has well-defined delimiters
between the parts.

References
[1] Don Hosek. Timelines with plain TEX and

LATEX. TEXMAG, 1(7), October 1987. http:
//mirror.ctan.org/digests/tex-mag/v1.n7.

[2] John McClain. The toolbox. TEXMAG. http:
//mirror.ctan.org/digests/tex-mag/v5.n1.

� Peter Wilson
12 Sovereign Close
Kenilworth, CV8 1SQ
UK
herries dot press (at)

earthlink dot net

Peter Wilson

