
54 TUGboat, Volume 33 (2012), No. 1

Generating barcodes with LuaTEX

Patrick Gundlach

Abstract

TEX is great at typesetting, Lua is great with cal-
culations. When we combine those two, we can
do complex typesetting tasks easily. In this article,
I present a way to create GTIN-13 barcodes (also
known as EAN 13) with LuaTEX. The aim of this
article is to present how to call Lua from TEX, some
basic Lua programming and two ways in which Lua
and TEX can interact.

1 Introduction

There are several ways to generate barcodes from
TEX: one is the PSTricks barcode package; a few
packages rely on special fonts; and one I found gen-
erates barcodes with vertical rules, but the source is
not suitable for beginners and therefore rather hard
to extend. The Lua solution I present is supposed to
be easier to understand for non-TEX programmers,
but this is subjective, of course. For the purpose
of this demonstration, only EAN 13 barcodes are
handled, optionally calculating the checksum (the
last digit) if the requested barcode has only twelve
digits. This is an example output of our program:

4 242002 518169

The LATEX interface should be as simple as this:

\documentclass{article}

\usepackage{ltxbarcode}

\begin{document}

\barcode{424200251816}

% or -- with checksum:

\barcode{4242002518169}

\end{document}

The “glue” style file ltxbarcode.sty is short
as well. You can place it in the same directory as
the main LATEX file above:

\ProvidesPackage{ltxbarcode}

\directlua{require("ltxbarcode")}

\newcommand\barcode[1]{%

\directlua{

ltxbarcode.generate_barcode("#1")

}}

The package loads the file ltxbarcode.lua, which
is given and explained in full detail below. require

appends the extension .lua by itself. Then it de-
fines the command \barcode, whose sole task is to
jump into Lua mode (\directlua) and call the Lua
function generate_barcode(), passing along the ar-
gument given to the LATEX command. The prefixed
namespace ltxbarcode is automatically created with
require() at the beginning.

There is a small pitfall here. You would normally
write this code as:

\newcommand\barcode[1]{%

\directlua{

ltxbarcode.generate_barcode(

"\luatexluaescapestring{#1}"

)}}

to protect the Lua string from the first macro argu-
ment (#1) containing characters that might possibly
break the Lua parser. If the macro argument con-
tains, for example, a double quote character, Lua
will see it as the end of the quoted string and choke
on the rest of the argument. Since we are only pass-
ing ordinary digits, the string is safe in our code
above. (Protection is a good idea, though.) The long
name from above (\luatexluaescapestring) is the
command \luaescapestring found in the reference
manual prefixed with luatex to avoid name clashes.
The only command from LuaTEX not prefixed is
\directlua. This is only valid for TEXLive’s current
LuaLATEX format. The plain LuaTEX format in TEX
Live has all commands unprefixed. I fervently hope
that other distributions behave exactly the same.

Before we have a close look at our Lua module
(the file we load in our LATEX package), let’s take an
excursion on how to communicate between the Lua
mode and LuaTEX.

2 From Lua to TEX

Passing arguments from TEX to Lua is easy, as seen
above; e.g., the call to generate_barcode(). But
the other way is a bit more interesting, as one has
to keep in mind when the code gets executed. The
Lua code in \directlua gets executed the moment
LuaTEX finds the closing brace of that command. It
will then be replaced by the special buffers that this
command fills. Example:

\directlua{

tex.sprint("\\hbox{%")

tex.sprint("hello world%")

tex.sprint("}")

}

and the TEX code

\hbox{%

hello world%

}

Patrick Gundlach

TUGboat, Volume 33 (2012), No. 1 55

are more or less equivalent. Thus, strings can be split
into smaller chunks and automatically concatenated
(with line endings as separators) automatically at the
end of the \directlua call. What is not possible,
though, is the following:

\directlua{

tex.sprint("\\setbox0\\hbox{hello world!}")

% does NOT work because box 0 is not set yet:

tex.sprint(

string.format(

"The width of box 0 is now \%d",

tex.box[0].width))

}

Inside \directlua it is not possible to mix TEX
and Lua calculations like this, because the TEX value
is not known until the end of the \directlua call.
So you cannot operate on the box dimensions before
TEX typesets that box. Keep this in mind as we
compare the two approaches I will show now.

3 Solution one: tex.sprint()

The first approach is to calculate the barcode it-
self (this is a simple routine) and construct a set
of \hbox, \vrule and \kern commands with the
Lua function tex.sprint(). Before we dive into the
main function, we start with the head of the Lua file
(named ltxbarcode.lua). Most Lua modules start
with a call to module(). We make all but the main
functions local, meaning that they are only visible
inside the module.

module(...,package.seeall)

local add_checksum_if_necessary, mkpattern,

split_number, calculate_unit, pattern_to_wd_dp

Now comes the heart of the module. We use
the method described above to generate a sequence
of TEX commands that get executed right after the
\directlua call. The idea is to draw the barcode
with vrules and kerns and add the digits below in a
separate box.

function generate_barcode(str)

−− If we only pass 12 digits, the 13th will be added.

str = add_checksum_if_necessary(str)

−− The smallest bar/gap is 1/7th the width of a digit.

−− It is font dependent.

local u = calculate_unit()

−− We start with the hbox for the bars:
tex.sprint(

[[\newbox\barcodebox\setbox\barcodebox\hbox{%]]

)

−− The pattern is a string of digits that represent

−− the width of a bar or a gap. 0 is a special marker
−− for a longer bar of width 1. The widths are

−− multiplied by 1/7th of the width of a digit , because

−− the sum of the widths for a single digit add up to 7.

−− A sample pattern starts with:

−− 80103211112312132113231132111010132...

−− See function mkpattern() for a detailed explanation.
local pattern = mkpattern(str)

−− For each element in the pattern we generate a gap or

−− a bar of the width denoted by that element. A depth

−− >0 is used for the bars in the middle and both sides.
−− This is technically not necessary, but added to have

−− visually pleasing barcodes.

local wd,dp −− width and depth of a bar
for i=1,string.len(pattern) do

wd,dp = pattern_to_wd_dp(pattern,i)

−− The even elements are the vertical bars (vrules),
−− the odd ones are the gaps (kerns).

if i % 2 == 0 then

tex.sprint(string.format(

[[\vrule width %dsp height 2cm depth %s]],

wd * u,dp))

else

tex.sprint(string.format(

[[\kern %dsp]],wd * u))

end

end

−− We now have the hbox with the bars and
−− add the hbox with the digits.

tex.sprint([[}\vbox{\hsize\wd\barcodebox \box\

barcodebox\kern -1.7mm\hbox{%]])

−− The digits below the barcode are split into three

−− groups: one in front of the first bar, the first
−− half of the other digits are left of the center

−− bar, and the remaining digits are to the right
−− of the center bar.

local first,second,third = split_number(str)

tex.sprint(string.format(

[[%s\kern %dsp %s\kern %dsp%s}}]],

first, 5 * u, second, 4 * u, third))

end

The main function uses several helper functions.
One of them calculates the width of the smallest
bar and the smallest gap, which is exactly 1/7th
the width of a digit. We make use of LuaTEX’s font
library where we can get access to the current font.
The glyph number 48 is the digit zero; theoretically,
this is encoding-dependent, but in practice it works
in all cases.

function calculate_unit()

−− The relative widths of a digit represented by the
−− barcode add up to 7.

local currentfont = font.fonts[font.current()]

local digit_zero = currentfont.characters[48]

return digit_zero.width / 7

end

The next function determines the width and the
depth of a vertical rule. The height is fixed (we could
have made that customizable, but the reader should
be left with some task to do).

function pattern_to_wd_dp(pattern,pos)

local wd,dp

Generating barcodes with LuaTEX

56 TUGboat, Volume 33 (2012), No. 1

wd = tonumber(string.sub(pattern,pos,pos))

if wd == 0 then

dp = "2mm"

wd = 1

else

dp = "0mm"

end

return wd,dp

end

The calculation of the checksum is straightfor-
ward. We sum up all the digits, every other digit
is multiplied by 3 (counted from the last digit back-
wards) and the checksum is the amount you need to
add to get to the next multiple of 10. The sum is
only calculated if not given by the user. (A future
version could check a user-supplied value.)

function add_checksum_if_necessary(str)

if string.len(str) == 13 then

return str

end

local sum = 0

local len = string.len(str)

for i=len,1,-1 do

if (len - i) % 2 == 0 then

sum = sum + tonumber(string.sub(str,i,i)) * 3

else

sum = sum + tonumber(string.sub(str,i,i))

end

end

local checksum = (10 - sum % 10) % 10

return str .. tostring(checksum)

end

The following pattern generation is the heart of
the algorithm. The barcode is divided into smaller
parts where two bars and two gaps represent a sin-
gle digit. The widths of these vary between “one”
and “four”, multiplied by any sensible width. The
widths for a single digit add up to 7 of these units
and are expressed by a simple pattern such as 2221
for the digit 1. The first digit in a barcode is not
represented by a bar–gap pair, but rather encoded
in the representation of the next six digits. If, for ex-
ample, the first digit is a 1, the third, fifth and sixth
“digits” have to be reversed. See the array mirror_t

in the code below. In the example above the reversed
pattern is 1222. We add some space to the left of
the barcode for the first digit and also mark the left
and right edge with the special mandatory pattern
111. Actually it is 010 which we recognize later to
increase the length of these bars.

function mkpattern(str)

−− These are the digits represented by the bars.
−− 3211 for example means a gap of three units,

−− a bar two units wide, another gap of width one

−− and a bar of width one.

local digits_t = {"3211","2221","2122","1411",

"1132","1231","1114","1312","1213","3112"

}

−− The first digit is encoded by the appearance of the
−− next six digits . A value of 1 means that the

−− generated gaps/bars are to be inverted.

local mirror_t = {"------","--1-11","--11-1",

"--111-","-1--11","-11--1","-111--",

"-1-1-1","-1-11-","-11-1-"}

−− Convert the digit string into an array.

local number = {}

for i=1,string.len(str) do

number[i] = tonumber(string.sub(str,i,i))

end

−− The first digit in a barcode determines how the

−− next six digit patterns are displayed .
local prefix = table.remove(number,1)

local mirror_str = mirror_t[prefix + 1]

−− The variable pattern will hold the constructed

−− pattern. We start with a gap that is wide enough

−− for the first digit in the barcode and the special
−− code 111, here written as 010 as a signal to

−− create longer rules later .

local pattern = "8010"

local digits_str

for i=1,#number do

digits_str = digits_t[number[i] + 1]

if string.sub(mirror_str,i,i) == "1" then

digits_str = string.reverse(digits_str)

end

pattern = pattern .. digits_str

−− The middle two bars.

if i==6 then pattern = pattern .. "10101" end

end

−− Append the right 111 pattern as above.

return pattern .. "010"

end

The last function splits the barcode into three
parts so we can display the digits below the barcode
with some gaps in between.

function split_number(str)

return string.match(

str,"(%d)(%d%d%d%d%d%d)(%d%d%d%d%d%d)"

)

end

The net result of this code is a TEX string like
this:

\newbox\barcodebox\setbox\barcodebox\hbox{%

\kern 374492sp

\vrule width 46811sp height 2cm depth 2mm

\kern 46811sp

...

\vrule width 46811sp height 2cm depth 2mm

}\vbox{\hsize\wd\barcodebox\box\barcodebox\kern -1.7

mm\hbox{%

8\kern 234057sp 008940\kern 187246sp027004}}

Patrick Gundlach

TUGboat, Volume 33 (2012), No. 1 57

This is what TEX sees after the closing brace
of \directlua. While this solution works fine in
our small example, it can get a bit tedious, because
of the string passing and the necessity to escape all
occurrences of the well-known funny TEX chars such
as % and others. Luckily with LuaTEX, our new
swiss army knife in the TEX world, we have another
approach to that problem.

4 Solution two: direct typesetting
with low-level nodes

The other approach to that problem looks like using a
sledge-hammer to crack a nut. But once one becomes
used to it and some helper functions defined, this
solution is well-suited for many tasks when we are
using Lua for program logic. The idea is to create
the fundamental data structures TEX uses internally
for representing the typeset material: a node. A node
can represent a glyph, a rule, a glue, a whatsit and
all other items we know from The TEXbook. The
typeset digit ‘0’ for example could be represented by
a table with these entries:

entry value

id 37
char 48
font 15
lang 0

There are other optional entries in that table,
but only the prev and the next entries are necessary
for building a more complex data structure. The
table above can be constructed from Lua like this:

n = node.new("glyph") −− internal id: 37

n.char = 48

n.font = 15

n.lang = 0

To construct a horizontal box with the digit
created above a call to node.hpack() is sufficient:

hbox = node.hpack(n)

Which is the same as \hbox{0} except that the
box is only kept in TEX’s memory and not put into
the PDF. It gets more complex when you want more
than one item to be placed in a box. You then need
to create the nodes and chain them together into
a list. Every node has prev and next table entries
which are to be set to the predecessor and successor
nodes. So in the case of the two digits 0 and 1 placed
in a horizontal box, it would look like:

digit_0 = node.new("glyph")

digit_1 = node.new("glyph")

−− not shown: fill the tables as above
digit_0.next = digit_1

digit_1.prev = digit_0

hbox = node.hpack(digit_0)

The result is a data structure that can be visu-
alized by the following graphic:

char: 48
lang: 0
font: 15

node: glyph
 prev next

char: 49
lang: 0
font: 15

node: glyph
 prev next

list:

node: hlist
 prev next

The list entry of the hlist (hbox) points to the
node list starting with the digit 0. The idea for
our second approach is to create a node list that
represents the vertical bars and gaps (rule and kern
nodes) and digits. We create a few more helper
functions as well as the new main function:

local add_to_nodelist, mkrule, mkkern, mkglyph

function generate_barcode_lua(str)

str = add_checksum_if_necessary(str)

local u = calculate_unit()

local nodelist

−− The even elements are the rules,
−− the odd ones are the gaps.

local pattern = mkpattern(str)

local wd,dp

for i=1,string.len(pattern) do

wd,dp = pattern_to_wd_dp(pattern,i)

if i % 2 == 0 then

nodelist = add_to_nodelist(

nodelist,mkrule(

wd * u,tex.sp("2cm"),tex.sp(dp)))

else

nodelist = add_to_nodelist(

nodelist,mkkern(wd * u))

end

end

−− barcode top will become the vbox as in the

−− first solution .
local barcode_top = node.hpack(nodelist)

barcode_top = add_to_nodelist(

barcode_top,mkkern(tex.sp("-1.7mm")))

−− The following list holds the displayed digits.

nodelist = nil

for i,v in ipairs({split_number(str)}) do

for j=1,string.len(v) do

nodelist = add_to_nodelist(

nodelist,mkglyph(string.sub(v,j,j)))

end

if i == 1 then

nodelist = add_to_nodelist(

nodelist,mkkern(5 * u))

elseif i == 2 then

nodelist = add_to_nodelist(

nodelist,mkkern(4 * u))

Generating barcodes with LuaTEX

58 TUGboat, Volume 33 (2012), No. 1

end

end

local barcode_bottom = node.hpack(nodelist)

−− barcode top now has three elements: the hbox

−− from the rules and kerns, the kern of −1.7mm
−− and the hbox with the digits below the bars.

barcode_top = add_to_nodelist(

barcode_top,barcode_bottom)

local bc = node.vpack(barcode_top)

−− node.write() puts a vbox into the output.
node.write(bc)

end

The overall structure is exactly the same as in
the previous section. The main difference is the
use of the helper functions mkrule(), mkkern() and
mkglyph() to create rules, kerns and glyphs and
the call to add_to_nodelist(). The constructed
node list is written to the PDF with the Lua call
node.write().

function add_to_nodelist(head,entry)

if head then

−− Add the entry to the end of the nodelist

−− and adjust prev/next pointers.

local tail = node.tail(head)

tail.next = entry

entry.prev = tail

else

−− No nodelist yet, so just return the new entry.

head = entry

end

return head

end

If the node list exists, the new entry is appended
to the last node of that list. We could get to the
end of the list by following successive pointers until
we reach the one with the “empty” pointer nil, but
we use the LuaTEX function node.tail() instead.
Then we adjust the next and prev pointers of the
tail and the new entry and return the head of the
node list.

function mkrule(wd,ht,dp)

local r = node.new("rule")

r.width = wd

r.height = ht

r.depth = dp

return r

end

function mkkern(wd)

local k = node.new("kern")

k.kern = wd

return k

end

function mkglyph(char)

local g = node.new("glyph")

g.char = string.byte(char)

g.font = font.current()

g.lang = tex.language

return g

end

These three functions don’t need much expla-
nation. They generate the nodes of the requested
types. It might surprise at first glance that the
glyph node needs a language and a font entry, be-
cause in ordinary TEX we usually don’t care about
this. But remember that the nodes are the low-level
data structures created when all of TEX’s input is
already processed, except for the hyphenation and
justification of the paragraph.

As a final note on the source, the Lua file de-
scribed here can be downloaded from https://gist.

github.com/1513746.

5 Conclusion

There are two ways to pass typesetting informa-
tion from Lua to TEX: first, with a collection of
tex.sprint() calls, and second, with a set of nodes.

Once you are in the Lua world, it feels wrong to
pass information to TEX with tex.sprint() calls.
You still have to deal with category codes, with
grouping and with all the headaches that character
escaping brings.

In the procedural world of Lua, the right way to
do typesetting is to construct the input with low-level
data structures and helper functions and let TEX’s
algorithms do the rest. Once you start thinking
in terms of nodes and node lists, you can focus on
arranging items on the page and not let TEX’s input
language get in your way.

These days, TEX’s input language seems anachro-
nistic to many people, while procedural languages
like Lua are familiar. TEX’s algorithms are still un-
surpassed, so when you combine Lua’s power with
TEX’s typesetting capabilities, a whole new genera-
tion of applications become possible.

References

[1] Patrick Gundlach. TEX without TEX.
http://wiki.luatex.org/index.php/TeX_

without_TeX, 2011.

[2] Taco Hoekwater. LuaTEX reference manual.
http://mirror.ctan.org/systems/luatex/

base/manual, 2011.

[3] Herbert Voß. The current state of the PSTricks
project. TUGboat, 31(1), 2010.

� Patrick Gundlach
Eisenacher Straße 101
10781 Berlin
Germany
patrick (at) gundla dot ch

Patrick Gundlach

https://gist.github.com/1513746
https://gist.github.com/1513746
http://wiki.luatex.org/index.php/TeX_without_TeX
http://wiki.luatex.org/index.php/TeX_without_TeX
http://mirror.ctan.org/systems/luatex/base/manual
http://mirror.ctan.org/systems/luatex/base/manual

	Introduction
	From Lua to TeX
	Solution one: tex.sprint()
	Solution two: direct typesetting with low-level nodes
	Conclusion

