
TUGboat, Volume 33 (2012), No. 1 13

Biber—the next generation
backend processor for BibLATEX

Philip L. Kime

Abstract

For many, particularly those writing in the humani-
ties, Philipp Lehman’s BibLATEX package has been
a much welcomed innovation in LATEX bibliography
preparation. The ability to avoid the BibTEX stack
language and to be able to write sophisticated bibli-
ography styles using a very rich set of LATEX macros
is a considerable advantage. Up until 2009 however,
BibLATEX still relied on BibTEX to sort the bibliog-
raphy, construct labels and to create the .bbl. The
requirement for a dedicated backend processor to
do such tasks was not going to go away as doing
complex, fast sorting in TEX is not a particularly
amusing task. It was clear that in the future, the
BibLATEX backend processor needed to be able to
handle full Unicode and many feature requests were
being raised for things which the backend had to
do and which were either impossible or nightmarish
to do with BibTEX. Biber was created to address
these issues and this article is about how it works
and the many rather nice things it can do. Biber is
the recommended backend processor for BibLATEX,
replacing BibTEX. There will come a time (proba-
bly around BibLATEX 2) when BibTEX is no longer
supported for use with BibLATEX, so read on . . .

1 History

François Charette originally started to write Biber
in 2008 and after I realised that an APA style I was
writing for BibLATEX required some fundamental
changes to the backend processor and that BibTEX
wasn’t going to be it (for why, see below), I had a
look at the early Biber. I played with it for a while,
found a small bug and submitted it. Things esca-
lated and development entered a very rapid period
where François and I knocked Biber into a releasable
shape quite quickly. After a year or so, the vicis-
situdes of life pulled François away and I was left
to my own devices with Biber gaining users rapidly,
particularly in Germany, probably due to Philipp
Lehman’s involvement with the development as we
soon realised we had to coordinate BibLATEX and
Biber releases. This continues and BibLATEX and
Biber are now so closely linked, it is fair to say that
they are essentially one product. As we approach
the BibLATEX 2.0 release, the plan is to drop BibTEX
support altogether as there are so many features now
which are marked “Biber only” in the BibLATEX man-
ual. It’s those features which I will describe below.

François says that the name comes from the
national animal of the last country he lived in, trans-
lated into the language of the country he currently
lives in. It also sounds a bit bibliographical.

2 What Biber does

Biber is used just as you would BibTEX. It’s designed
to be a drop-in replacement for BibLATEX users. It
uses a BibTEX compatible C library called “btparse”
and so existing .bib files should work as-is. When
BibLATEX is told that it’s using Biber instead of
BibTEX as the backend processor, it outputs a special
.bcf file. This is nothing more than a fancy .aux file
in XML which describes all of the necessary options,
citation keys and data sources which Biber uses to
construct the .bbl. XML was a natural choice as
the options can get quite complex (particularly for
sorting). Biber reads the .bcf file, looks for the
required data sources, reads them and looks for the
citation keys also mentioned in the .bcf. Then it
constructs a .bbl and writes it. Sounds simple? It’s
not. Biber is about 20,000 lines of mostly object-
oriented Perl and some of the things it does are quite
tricky.

3 Distributing Biber

Biber is written in Perl. This is an ideal language for
such a task, as Perl 5.14 (which is what Biber uses
now) has full Unicode 6.0 support and some really su-
perb modules for collating UTF-8 which have CLDR1

support, allowing sorting to be tailored automatically
to the idiosyncrasies of particular languages. The
Text::BibTeX module makes parsing BibTEX files
easy but I had to change the underlying btparse C
library a little bit to make it deal with UTF-8 when
forming initials out of names and to address a few
other things which are the inevitable consequences
of a library written probably fifteen years ago; other
than that, the library has proven to be a solid foun-
dational element of Biber. I have to thank Alberto
Manuel Brandõ Simões, the current Text::BibTeX

maintainer for being so flexible and releasing new
versions so quickly after my hacks.

Distributing Perl programs with such module
dependencies is not easy and was a major stumbling
block to early adoption of Biber. Then I came across
the marvellous PAR::Packer module which allows
one to package an entire Perl tree with all dependen-
cies into one executable which is indistinguishable
from a “real” executable. One virtualised build farm
later and Biber had an automated build procedure
for most major platforms and was swiftly put into
TEX Live. Now all users have to do is to update their

1 Common Locale Data Repository

Biber — the next generation backend processor for BibLATEX



14 TUGboat, Volume 33 (2012), No. 1

TL installation and type “biber”. SourceForge2 is
home to regular updates of the development binaries
and github3 is home to the Perl source which can be
used instead of the binary versions if you don’t mind
installing some Perl modules (in fact, I only ever use
the Perl source version myself).

4 Unicode and sorting

One of the main issues with the original BibTEX
is that it is ASCII only. There is an 8-bit version
bibtex8 but that’s not really enough these days.
There is also a newish Unicode version bibtexu but
that doesn’t help BibLATEX’s myriad of other needs
for its backend and it doesn’t help with CLDR and
the hard problem of complex sorting.

Biber is Unicode 6.0 compliant throughout, even
the file names it reads and the citation keys them-
selves. This means that your data sources can be
pure UTF-8 which is particularly nice if you are using
a UTF-8 engine like X ETEX or LuaTEX. In fact, Biber
will look at the locale settings passed by BibLATEX
(or those found in the environment or passed on the
command line) and automatically (re)encode things
to output a .bbl in whatever encoding you want. It
will even automatically convert UTF-8 to and from
LATEX character macros/symbols in case you are us-
ing a not-quite-Unicode engine like pdfTEX.

Sorting is one of the most important things that
Biber does. Sorting the bibliography is done by de-
fault using the UCA (Unicode Collation Algorithm)
via the excellent Unicode::Collate module. This
is CLDR aware and so it will take notice of the locale
from various sources and tailor the sort accordingly.
Swedes hate it when ä sorts before å and CLDR sup-
port avoids upsetting Swedes. Sorting a bibliography
means dealing with sorting requirements such as:

“Sort first by name (or editor if there is no
name or translator if there is no editor) and
then descending by year and month (or by
original year and month of publication if there
is no year) and then by just the last two digits
of the volume and then by title (but case
insensitive for title). Oh, and if there is a
special shorthand for the entry, sort by that
instead and ignore everything else.”

Biber does this in complete generality using a multi-
field sorting algorithm allowing case sensitivity, direc-
tion and substrings to be specified on a per-field ba-
sis. BibLATEX defines many common sorting schemes
(such as name/year/title, etc.) but you are free to
define your own using a nice LATEX macro interface.

2 https://sourceforge.net/projects/biblatex-biber
3 https://github.com/plk/biber

This interface makes BibLATEX write a section in the
XML .bcf which Biber reads to construct the sort-
ing scheme it uses to sort the entries before writing
the .bbl. I am not aware of any bibliography sys-
tem that has better sorting but that may be wishful
thinking born of spending so much time getting it to
work . . .

5 Data sources and output

It may have struck readers as strange that I refer to
their .bib files as “data sources”. This is because
Biber can read more than just BibTEX format files.
It has a modular data source reading/writing archi-
tecture and so new drivers can be written relatively
easily to implement the ability to read new data
sources and write new output formats. Data sources
are read and internal entry objects constructed so
that the data is processed in a source-neutral format
internally. Currently, Biber can also read files in RIS

format, Zotero XML/RDF format and Endnote XML

format but support for these formats is experimental,
partly due to weaknesses in the formats themselves,
it has to be said. There is support for remote data
sources for all formats by specifying a URL that re-
turns a file in the format. This is quite useful with
services such as CiteuLike which has a .bib gateway.

Biber normally outputs a .bbl file but it can
also output a GraphViz .dot file which allows you
to visualise your data. This is mainly useful for
checking complex cross-reference inheritance and
other entry-linking semantics. Biber can also output
BibLATEXML which is an experimental XML data
format specially tuned for BibLATEX (of course it can
read this too).

A very nice feature of Biber is the “sourcemap”
option. It is often the case that users would like to
massage their data sources but they have no control
over the actual source. Biber allows you to specify
data mapping rules which are applied to the data as
it is read, effectively altering the data stream which
it sees, but without changing the source itself. For
example, you can:

• Drop all ABSTRACT fields as the entries are
read so that their strange formatting doesn’t
break LATEX.

• Add or modify a KEYWORD field in all BOOK

or INBOOK entries which come from a data
source called “references.bib” whose TITLE

field matches “Collected Works” so that you can
split your bibliography using BibLATEX filters.

• Use full Perl regular expressions to match/re-
place in any field in the entry to regularise messy
variants of a name so that the same-author dis-
ambiguation features of BibLATEX work nicely.

Philip L. Kime

https://sourceforge.net/projects/biblatex-biber
https://github.com/plk/biber


TUGboat, Volume 33 (2012), No. 1 15

The “sourcemap” option is quite general and provides
a linear mapping interface where you can specify a
chain of rules to apply to each entry as it is read
from the data source. The Biber PDF manual has
many examples.

6 Uniqueness

A major feature is the automated disambiguation
system. Depending on the options which you set
in BibLATEX, Biber will automatically disambiguate
names by using either initials or, if necessary, full
names. Even better, it can, if you like, disambiguate
lists of names which have been truncated using “et
al.” by expanding them past the “et al.” to the point
of minimal unambiguity. (This is a requirement for
APA style and the very feature I needed when I
started looking at Biber. It took two years to get
this implemented.) This is fairly deep magic as it
interacts with name disambiguation in an unbounded
loop sort of way.

The disambiguation system can be asked to do
more subtle types of work too, such as disambiguat-
ing citations just enough to make them unambiguous
pointers into the bibliography but not enough to
make every single individual author unambiguous,
etc. These are quite fine points and make sense when
you read the section of the BibLATEX manual which
covers this, with examples. Again, I don’t know of
any other bibliography system that has automated
this.

7 Other features

The following features are all due to feature re-
quests by BibLATEX users and some were quite com-
plex to implement. Some of them are waiting until
BibLATEX 2.x for a macro interface to expose them
to users as this is when it is planned to retire BibTEX
support from BibLATEX.

• Many BibLATEX options can be set on a per-
entrytype basis so you can, for example, choose
to truncate names lists of five or more authors
with “et al.” for BOOK entries and choose a
different limit for ARTICLE entries.

• Biber only needs one run to do everything, in-
cluding processing multiple sections.

• You can create an entry “set” (a group of en-
tries which are referenced/cited together) dy-
namically, just using BibLATEX macros. With
BibTEX, this requires changes to the data source.

• “Syntactic” inheritance via a new XDATA entry-
type and field. This can be thought of as a field-
based generalisation of the BibTEX @STRING

functionality (which is also supported). XDATA

entries can cascade so you can inherit specific
fields defining a particular publisher or journal,
for example.

• “Semantic” inheritance via a generalisation of
the BibTEX cross-reference mechanism using the
CROSSREF field. This is highly customisable by
the user — it is possible to choose which fields
to inherit for which entrytypes and to inherit
fields under different names etc. Nested cross-
references are also supported.

• Support for related entries, to enable generic
treatment of things like “translated as”, “reprint-
ed as”, “reprint of” etc. (BibLATEX 2.x)

• Customisable bibliography labels for styles which
use labels (BibLATEX 2.x)

• Multiple bibliography lists in the same section
with different sorting and filtering.
(BibLATEX 2.x)

• No more restriction to a static data model of
specific fields and entrytypes. (BibLATEX 2.x)

• Structural validation of the data against the
data model with a customisable validation model
(BibLATEX 2.x)

Feature requests and bug reports are always welcome
via the SourceForge tracker.

� Philip L. Kime
Zürich, Switzerland
Philip (at) kime dot org dot uk

http://biblatex-biber.sourceforge.net

Biber — the next generation backend processor for BibLATEX


	History
	What Biber does
	Distributing Biber
	Unicode and sorting
	Data sources and output
	Uniqueness
	Other features

