
TUGboat, Volume 33 (2012), No. 3 313

Glisterings
Peter Wilson

Catching fire, taking hold
All that glisters leaves you cold
No-one is near, no-one will hear
Your changeling song take shape
In Shadowtime.

Shadowtime, Siouxsie and the Banshees

The aim of this column is to provide odd hints or
small pieces of code that might help in solving a
problem or two while hopefully not making things
worse through any errors of mine.

Twixt the optimist and pessimist
The difference is droll:
The optimist sees the doughnut
But the pessimist sees the hole.

Optimist and Pessimist,
McLandburgh Wilson

1 Cutout windows
While winnowing my shelves and piles of books,
journals, magazines, paper, etc., in anticipation of a
move from the US to the UK I came across a TUG-
boat article by Alan Hoenig [2] in which he provides
TEX code for creating an open window in the middle
of a paragraph. An example of a paragraph with a
cutout is in Figure 1. This was produced by:
\input{cutsty.tex}
\window{2}{0.4\textwidth}{0.25\textwidth}{5}

This paragraph is set within the ...
...in a minipage in a \TUB\ \texttt{figure*}).
\endwindow

I tried out the code as given but found that it
needed a tweak here and there to improve the spac-
ing. Here is my version of Alan’s code for rectangu-
lar cutouts, which can be used in both TEXed and
LATEXed documents.1 Most of my changes to the
code are changes of name and argument specifica-
tion to make it acceptable to both TEX and LATEX.
% cutsty.tex Based on Alan Hoenig,
% ‘TeX Does Windows --- The Conclusion’,
% TUGboat 8:2, pp.211-215, 1987

First some counts, lengths, and boxes are needed (I
have used cut as the start of each of these names to
try and avoid clashes with other code):
\newcount\cutlines \newcount\cuttoplines
\newdimen\cutlftside \newdimen\cutrtside
\newtoks\cuta
\newcount\cutn

1 Alan also gave code for creating arbitrary shaped holes.

\newbox\cutrawtext \newbox\cutholder
\newbox\cutwindow \newbox\cutfinaltext
\newbox\cutaslice \newbox\cutbslice
\newdimen\cuttopheight
\newdimen\cutilgvs % glue or shift

The main user commands are \window and the ac-
companying \endwindow. The first of these takes
four arguments as:
\window{〈top-lines〉}{〈left〉}{〈right〉}{〈cut-lines〉}
where 〈top-lines〉 is the number of lines before the
window cutout, 〈left〉 is the width of the text at the
left of the window and 〈right〉 the width of the text
at the right, and 〈cut-lines〉 is the number of lines
used for the window (i.e., the height of the window).
The macro gets a \parshape for the forthcoming
text, gets and applies any vertical shift, opens a box
for the text and then applies the \parshape.
\def\window#1#2#3#4{%

\cuttoplines=#1\relax
\cutlines=#4\relax
\cutlftside=#2\relax
\cutrtside=#3\relax
\cuta={}%
% calculate the \parshape spec
\parshapespec
% reset the these arguments
\cuttoplines=#1\relax
\cutlines=#4\relax
% calculate and apply any vertical shift
\cutshift \vskip-\cutilgvs
% start a box for collecting the text
\setbox\cutrawtext=\vbox\bgroup
\parshape=\cutn \the\cuta}

The text, in the form of a single paragraph with
a constant \baselineskip is put between the two
\...window commands; in the case of LATEX you
can, but don’t need to, use a window environment
instead.

The general scheme is to use a specially shaped
paragraph which effectively splits the text into three
sets of lines; those before the cutout; those that will
form the cutout; and the rest. The lines forming
the cutout are short while the others are full length.
An example is shown in Figure 2. The final output
is assembled from the top set of lines, the cutout
lines combined in pairs, and the remainder. The
final form of a paragraph with a cutout is shown in
Figure 3.
\def\endwindow{%

\egroup % end \box\cutrawtex
\parshape=0 % reset parshape
\computeilg % find ILG using current font
\setbox\cutfinaltext=

\vsplit\cutrawtext
to\cuttoplines\baselineskip

Glisterings

314 TUGboat, Volume 33 (2012), No. 3

This paragraph is set within the window environment. There are limitations on the
window arguments and text. There must be at least one line of text above the window
and if the number of lines spec- ified for the opening
exceeds the available lines then the text after the window
environment will be moved down by an amount corre-
sponding to the excess. A window will not extend into a
second paragraph. The environ- ment is effectively a
box and will not break across a page boundary. There should be enough space at
the left and right of the window for a few words on each side (don’t try to make either
of these zero in an attempt to have a window opening to the margin). There is usually
not enough width to put a significant window into a column on a two-column page
(this has been set in a minipage in a TUGboat figure*).

Figure 1: A generated window

If you have to have a cutout in a narrow col-
umn keep the words short. Use one or two or
maybe one or more
extra letters so that
they may fit into the
available area with-
out too much odd
spacing. If the words
are hyphenatable this will help a lot as then a long
one may be cut into two short bits.

Figure 2: Split window lines

\cuttopheight=\cutlines\baselineskip
\cuttopheight=2\cuttopheight
\setbox\cutholder=

\vsplit\cutrawtext
to\cuttopheight

% \cutholder contains the narrowed text
% for window sides. Slice up \cutholder
% into \cutwindow
\decompose{\cutholder}{\cutwindow}
\setbox\cutfinaltext=\vbox{%

\unvbox\cutfinaltext\vskip\cutilgvs
\unvbox\cutwindow%
\vskip-\cutilgvs\unvbox\cutrawtext}%

\box\cutfinaltext}

A \parshape is used to specify quite general
paragraph shapes [3, Ch. 14] or [1, Ch. 18]. Its 2n+1
parameters specify the indentation and length of the
first n lines in the following paragraph which must
start immediately (no empty line after the parame-
ters). The first parameter is n followed by n pairs
of indentation and line length values. In general:
\parshape n i1 l1 i2 l2 . . . in ln

If there are more than n lines then the specification
for the last line (in ln) is used for the rest of the
lines in the paragraph.

\parshapespec calculates the \parshape pa-
rameters to generate a paragraph with 〈top-lines〉

If you have to have a cutout in a narrow col-
umn keep the words short. Use one or two or
maybe one or more extra letters so that
they may fit into the available area with-
out too much odd spacing. If the words
are hyphenatable this will help a lot as then a long
one may be cut into two short bits.

Figure 3: Assembled window lines

full lines followed by 〈cut-lines〉 of length 〈left〉 al-
ternating with 〈cut-lines〉 of length 〈right〉.
\def\parshapespec{%

\cutn=\cutlines \multiply \cutn by 2
\advance\cutn by \cuttoplines
\advance\cutn by 1\relax

\loop
\cuta=\expandafter{\the\cuta 0pt \hsize}
\advance\cuttoplines -1\relax
\ifnum\cuttoplines>0\repeat

\loop
\cuta=\expandafter{\the\cuta

0pt \cutlftside 0pt \cutrtside}%
\advance\cutlines -1\relax

\ifnum\cutlines>0\repeat
\cuta=\expandafter{\the\cuta 0pt \hsize}}

An example paragraph at this stage of the pro-
cess is in Figure 2.

The \decompose{〈narrow〉}{〈split〉} command
takes a box 〈narrow〉 and for each pair of lines puts
the first at the left and the second at the right of
the box {〈split〉}. That is, it converts pairs of lines
into single lines with text at the left and the right
with a space between.
\def\decompose#1#2{%

% loop over the windowed lines
\loop\advance\cutlines -1
% get a pair of lines

\setbox\cutaslice=\vsplit#1 to\baselineskip
\setbox\cutbslice=\vsplit#1 to\baselineskip
% split into the two sides

Peter Wilson

TUGboat, Volume 33 (2012), No. 3 315

\prune{\cutaslice}{\cutlftside}
\prune{\cutbslice}{\cutrtside}%
% assemble into one line
\setbox#2=\vbox{\unvbox#2\hbox
to\hsize{\box\cutaslice\hfil\box\cutbslice}}%
\ifnum\cutlines>0\repeat}

For the example in Figure 2 the \decompose
macro converts the 6 narrow lines into the 3 cutout
lines shown in Figure 3.

\prune{〈vbox〉}{〈width〉} is used to prune the
glue that TEX puts at the end of a short \parshape
line. It takes a \vbox containing a single \hbox,
\unvboxes it, cancels the \lastskip and puts it in
a box of 〈width〉 wide; a \strut is needed to keep
the spacing consistent.
\def\prune#1#2{%

\unvbox#1
\setbox#1=\lastbox % \box#1 is now an \hbox
\setbox#1=\hbox to#2{\strut\unhbox#1\unskip}}

\cutshift calculates the amount that the win-
dowed paragraph must be raised, which is half a
\baselineskip for each windowed line. (This is my
addition).
\def\cutshift{%

\cutilgvs=\cutlines\baselineskip
\cutilgvs=0.5\cutilgvs}

\computeilg computes the interline glue in the
windowed paragraph. This is the last macro so finish
the file with an \endinput.
\def\computeilg{%

\cutilgvs=\baselineskip
\setbox0=\hbox{(}

\advance\cutilgvs-\ht0
\advance\cutilgvs-\dp0}

\endinput

Artwork or text may be placed in the cutout.
How to do that is a very different problem and
one that I am not ? intending to address
here, but zero-sized pictures and headers
or footers come to mind [4]. Perhaps
solutions will have been published by the time this
article appears.

Since the preceding was first written, the cutwin
package [5] has appeared which lets you create vari-
ously shaped cutouts and place things in the result-
ing window.

References
[1] Victor Eijkhout. TEX by Topic, A TEXnician’s

Reference. Addison-Wesley, 1991. ISBN
0-201-56882-9. Available at http://www.
eijkhout.net/tbt/.

[2] Alan Hoenig. TEX does windows—the
conclusion. TUGboat, 8(2):211–215, 1987.

[3] Donald E. Knuth. The TEXbook.
Addison-Wesley, 1984. ISBN 0-201-13448-9.

[4] Peter Wilson. Glisterings: Ornaments.
TUGboat, 32(2):202–205, 2011.

[5] Peter Wilson and Alan Hoenig. Making
cutouts in paragraphs, 2010. Available on
CTAN in macros/latex/contrib/cutwin.

� Peter Wilson
20 Sovereign Close
Kenilworth, CV8 1SQ
UK
herries dot press (at)

earthlink dot net

Glisterings

