
272 TUGboat, Volume 33 (2012), No. 3

The xtemplate package: An example

Clemens Niederberger

Abstract

One of the most important points in the development
of LATEX3 is — roughly speaking — the separation of
implementation, layout design and user interface.
The package xtemplate connects the first two — it
is part of the Designer Interface Foundation Layer.
This article tries to demonstrate the idea behind
the package and its usage with a (not necessarily
practical) example.

1 Introduction

Not too long ago I had a first look at the xtemplate
package which is part of the l3packages bundle.1 Af-
ter I understood the idea behind it I was immediately
excited. So: what idea am I talking about?

The underlying structure for LATEX3 has been
discussed, for instance, by Frank Mittelbach at the
TUG 2011 conference [1]. Of course I’m not going to
repeat that.2 An important part — if not the main
idea — is the strict separation of different so-called
layers. I’m confident you’ve already heard about the
Core Programming Layer — expl3.

The xtemplate is part of a different layer, the
Designer Interface Foundation Layer. So principally
it is directed at package and class authors but I
believe it will also play a big role in a LATEX3 kernel,
at least conceptually. The idea behind it isn’t new,
as one can read in “New Interfaces for LATEX Class
Design” (1999) [2].

Roughly speaking, the idea is this: a class has to
provide a suitable design for different objects, such
as section headings or lists. Preferably this would be
done via a simple interface that would allow authors
to adjust certain parameters to their own wishes
or requirements. In other words (from xtemplate’s
documentation [4]):

1. semantic elements such as the ideas of sections
and lists;

2. a set of design solutions for representing these
elements visually;

3. specific variations for these designs that repre-
sent the elements in the document.

One should be able to determine the number and pos-
sibly the kind of arguments from both the definition
and the interface.

xtemplate now allows one to declare objects,
and so-called templates for these objects. For every

1 From directory macros/latex/contrib/l3packages
2 I wouldn’t be qualified anyway.

object instances can be defined (figure 1). The user
interface is then defined with the help of xparse [3].3

I for my part learn best through examples and
I’m guessing I am not alone with that. So, I am
going to demonstrate the concept and the different
commands using an example that is not necessarily
a practical application of xtemplate. Inspired by
a question on tex.stackexchange.com [5], I will
declare an object names and two templates fullname
and initial. Declaring the instances will then show
how flexible and easily extendable the concept is.

In the end, the code

\name{Jack Skellington} \par

\name[init-it-rev]{Jack Skellington}

will give:

Jack Skellington
Skellington, J.

A small warning: if you’re not familiar with
expl3— the “programming language” of LATEX3 —
details of the code might seem cryptic. But I will
keep the example short so you should be able to
follow the important parts.

2 The important commands

Basically there are four commands that are impor-
tant for the definition of the structures:

1. \DeclareObjectType

{〈object〉}
{〈number of args〉}

2. \DeclareTemplateInterface

{〈object〉}
{〈template〉}
{〈number of args〉}
{〈interface〉}

3. \DeclareTemplateCode

{〈object〉}
{〈template〉}
{〈number of args〉}
{〈parameter〉}
{〈code〉}

4. \DeclareInstance

{〈object〉}
{〈instance〉}
{〈template〉}
{〈parameter〉}

The first command, \DeclareObjectType, declares
the object and specifies how many arguments it gets.

Then the object can be specified with the sec-
ond command, \DeclareTemplateInterface. More
precisely an interface is declared, i.e., the number

3 Also part of the l3packages bundle.

Clemens Niederberger



TUGboat, Volume 33 (2012), No. 3 273

object

template 1

instance a instance b

template 2

instance c instance d

Figure 1: Schematic figure of the relationships between object, templates and instances.

and type of parameters are declared with which the
template can be customized later.

The third command, \DeclareTemplateCode,
is where the actual definitions are made. The param-
eters defined in the interface get variables assigned,
and code is defined that determines the behaviour
of the template.

The fourth command, \DeclareInstance, at
last defines an instance that instantiates a template
with concrete values for the parameters. Each of
these instances can then be used in the user command
with \UseInstance.

3 An example

Now let’s consider an actual example.

3.1 The object

The first thing to do is to think about the basic
interface. The user command of our object names

is going to be \name, with one argument taking the
lastname and firstname separated with a space. At
a level deeper, though, we want to handle lastname
and firstname as two separate arguments. Thus the
object is going to get two arguments:

\usepackage{xtemplate,xparse}

% we use expl3, so activate the expl3 namespace

\ExplSyntaxOn

% #1: lastname, #2: firstname

\DeclareObjectType { names } { 2 }

The next thing to do is to specify the templates.

3.2 The templates

Templates are declared for an existing object. First
the interface has to be specified. The number of
arguments of the template and a possible list of
parameters has to be declared. Every parameter is
given a certain type and can get a default value.

% the interface for the template ‘fullname’:

\DeclareTemplateInterface{names}{fullname}{2}

{

reversed : boolean = false ,

use-last-name : boolean = true ,

use-first-name : boolean = true ,

last-name-format : tokenlist ,

first-name-format : tokenlist ,

}

% the interface for the template ‘initial’:

\DeclareTemplateInterface{names}{initial}{2}

{

reversed : boolean = false ,

use-last-name : boolean = true ,

use-first-name : boolean = true ,

last-name-format : tokenlist ,

first-name-format : tokenlist ,

last-name-initial : boolean = false ,

first-name-initial : boolean = true ,

}

The parameters that are defined here can easily be
extended and are determined by the type of object
and of course the desired degree of complexity. Here
we have just a few to demonstrate the concept.

After the interfaces for the templates have been
declared the actual code can be defined. Let’s start
with fullname. We’re going to need suitable vari-
ables or functions for the parameters. In the 〈code〉
part \AssignTemplateKeys will define them with
actual values and activate them.

Our code now only tests the values of the bool-
ean variables and writes the names in the given order.
The solution is not the most elegant one but will do
for this demonstration:

% variables first:

\bool_new:N \l_names_reversed_bool

\bool_new:N \l_names_use_last_bool

\bool_new:N \l_names_use_first_bool

\tl_new:N \l_names_last_format_tl

\tl_new:N \l_names_first_format_tl

% now the template code:

% #1: lastname, #2: firstname

\DeclareTemplateCode {names} {fullname} {2}

{

reversed = \l_names_reversed_bool ,

use-last-name = \l_names_use_last_bool ,

use-first-name = \l_names_use_first_bool ,

last-name-format = \l_names_last_format_tl ,

The xtemplate package: An example



274 TUGboat, Volume 33 (2012), No. 3

first-name-format = \l_names_first_format_tl,

}

{

\AssignTemplateKeys

\bool_if:NTF \l_names_reversed_bool

{

\bool_if:NT \l_names_use_last_bool

{{\tl_use:N \l_names_last_format_tl #2}}

\bool_if:nT

{

\l_names_use_first_bool &&

\l_names_use_last_bool

}

{,~}

\bool_if:NT \l_names_use_first_bool

{{\tl_use:N \l_names_first_format_tl #1}}

}

{

\bool_if:NT \l_names_use_first_bool

{{\tl_use:N \l_names_first_format_tl #1}}

\bool_if:nT

{

\l_names_use_first_bool &&

\l_names_use_last_bool

}

{\tl_use:N \c_space_tl}

\bool_if:NT \l_names_use_last_bool

{{\tl_use:N \l_names_last_format_tl #2}}

}

}

We can reuse most of the variables for the tem-
plate initial but we’re going to need a helper func-
tion that gets all but the initial of a name. The code
is going to become a little bigger. Of course it could
be written in a more elegant way but again, this will
suffice for our demonstration purposes.

% two additional variables:

\bool_new:N \l_names_last_initial_bool

\bool_new:N \l_names_first_initial_bool

% helper function:

\cs_new:Npn \names_get_initial:w #1#2\q_stop

{#1.}

% the template code:

% #1: lastname, #2: firstname

\DeclareTemplateCode {names}{initial}{2}

{

reversed = \l_names_reversed_bool ,

use-last-name = \l_names_use_last_bool ,

use-first-name = \l_names_use_first_bool ,

last-name-format = \l_names_last_format_tl ,

first-name-format = \l_names_first_format_tl ,

last-name-initial = \l_names_last_initial_bool ,

first-name-initial = \l_names_first_initial_bool,

}

{

\AssignTemplateKeys

\bool_if:NTF \l_names_reversed_bool

{

\bool_if:NT \l_names_use_last_bool

{

\group_begin:

\tl_use:N \l_names_last_format_tl

\bool_if:NTF

\l_names_last_initial_bool

{\names_get_initial:w #2\q_stop}

{#2}

\group_end:

}

\bool_if:nT

{

\l_names_use_first_bool &&

\l_names_use_last_bool

}

{,~}

\bool_if:NT \l_names_use_first_bool

{

\group_begin:

\tl_use:N \l_names_first_format_tl

\bool_if:NTF

\l_names_first_initial_bool

{\names_get_initial:w #1\q_stop}

{#1}

\group_end:

}

}

{

\bool_if:NT \l_names_use_first_bool

{

\group_begin:

\tl_use:N \l_names_first_format_tl

\bool_if:NTF

\l_names_first_initial_bool

{\names_get_initial:w #1\q_stop}

{#1}

\group_end:

}

\bool_if:nT

{

\l_names_use_first_bool &&

\l_names_use_last_bool

}

{\tl_use:N \c_space_tl}

\bool_if:NT \l_names_use_last_bool

{

\group_begin:

\tl_use:N \l_names_last_format_tl

\bool_if:NTF

\l_names_last_initial_bool

{\names_get_initial:w #2 \q_stop}

{#2}

\group_end:

}

}

}

We’re nearly there. For every template we need to
declare at least one instance. And of course we need
to define the user command.

3.3 The instances

Declaring the instances is not complicated at all.
You choose the template and assign values to the
parameters. Here we will make three instances for
each template:

Clemens Niederberger



TUGboat, Volume 33 (2012), No. 3 275

% a few instances, starting with ‘fullname’:

\DeclareInstance {names}{standard}{fullname}{}

\DeclareInstance {names}{it-rev}{fullname}

{

first-name-format = \itshape ,

reversed = true

}

\DeclareInstance {names}{first-only}{fullname}

{use-last-name = false}

% and now ‘initial’:

\DeclareInstance {names}{init-first}{initial}{}

\DeclareInstance {names}{init-it-rev}{initial}

{

first-name-format = \itshape ,

reversed = true

}

\DeclareInstance {names} init-all}{initial}

{last-name-initial = true}

Defining more instances wouldn’t be any problem.
With every additional instance the user command
we’re going to define next would get another option.

3.4 The user command

For the definition of this command we’re going to
use the package xparse. This makes it easy to define
the wanted argument input: lastname and firstname
separated with a blank space.

The command is going to get an optional ar-
gument with which the instance to be used can be
specified. It should test if the chosen instance exists
and if not, use the standard instance. Of course it
could also raise a warning or an error.

% yet more variables:

\tl_new:N \l_names_instance_tl

\tl_set:Nn \l_names_instance_tl { standard }

% the internal command:

\cs_new:Npn \names_typeset_name:nnn #1#2#3

{

\IfInstanceExistTF {names} {#1}

{ \UseInstance {names} {#1} }

{ \UseInstance {names} {standard} }

{#2} {#3}

}

\cs_generate_variant:Nn

\names_typeset_name:nnn {V}

% the user command:

\DeclareDocumentCommand \name

{o>{\SplitArgument{1}{~}}m}

{

\group_begin:

\IfNoValueF {#1}

{\tl_set:Nn \l_names_instance_tl {#1}}

\names_typeset_name:Vnn

\l_names_instance_tl #2

\group_end:

}

\ExplSyntaxOff

Now we’re ready to comprehend the examples
from the beginning (and a few others):

\name{Jack Skellington} \par

\name[it-rev]{Jack Skellington} \par

\name[first-only]{Jack Skellington} \par

\name[init-first]{Jack Skellington} \par

\name[init-it-rev]{Jack Skellington} \par

\name[init-all]{Jack Skellington}

And the output:

Jack Skellington
Skellington, Jack
Jack
J. Skellington
Skellington, J.
J. S.

4 Before the end

I hope this little excursion can provide a first insight
into the functionality of xtemplate. My own knowl-
edge is not much deeper. In my opinion the idea
behind xtemplate has a great future and I am excited
to see how it will be used in LATEX3.

References

[1] Frank Mittelbach. LATEX3 architecture
and current work in progress, 2011.
http://river-valley.tv/latex3-architecture-

and-current-work-in-progress.

[2] Frank Mittelbach, David Carlisle, and Chris
Rowley. New interfaces for LATEX class design.
1999. http://www.latex-project.org/

papers/tug99.pdf.

[3] The LATEX3 Project. The xparse package.
Available from CTAN, macros/latex/contrib/
l3packages/xparse.dtx.

[4] The LATEX3 Project. The xtemplate package.
Available from CTAN, macros/latex/contrib/
l3packages/xtemplate.dtx.

[5] Emit Taste. Macro for formatting
names (initials or full name). http:

//tex.stackexchange.com/q/57636/5049,
2012.

� Clemens Niederberger
Am Burgrain 3
71083 Herrenberg
Germany
contact (at) mychemistry dot eu

http://www.mychemistry.eu/

The xtemplate package: An example


