
190 TUGboat, Volume 34 (2013), No. 2

LiPPGen: A presentation generator for
literate-programming-based teaching

Hans-Georg Eßer

Abstract

Literate programming techniques can be used as a
teaching method — not only in book form, but also
for lectures in the classroom. I present a tool which
helps instructors transform their literate programs
into lecture presentations: LiPPGen, the Literate-
Programming-based Presentation Generator, takes a
standard literate program (with LATEX as the docu-
mentation language) as input and lets the instructor
comfortably generate presentation slides for each
code chunk. It then assembles the provided slide
texts and the code chunks and turns them into a
browser-based presentation.

LiPPGen offers unique features in comparison to
standard presentation programs (such as PowerPoint)
in that code chunks may be larger than the space on
a slide permits: if so, the code can be scrolled during
the presentation. The code is also presented with
syntax highlighting using simple regular-expression-
based rules. Currently, C and Python are supported.

This article describes both the features and us-
age of LiPPGen and provides an example, showing
a small literate program (the implementation of a
component of an educational operating systems) and
its transformation into lecture slides.

LiPPGen is available under an open source li-
cense so that others who use literate programming
in an instructional environment can also use the
software and modify it to their needs.

1 Introduction

Literate programming [5] is a programming technique
invented by D. E. Knuth which lets developers create
source code and documentation in one “literate pro-
gram” from which both well-readable documentation
and compilable source files can be extracted. It can
be used to create textbooks on any computer science
topic that involves presenting and explaining larger
program code blocks. This approach has been used
by a few authors, including Knuth himself, when he
published the TEX source code [6], but also more
recently, for example by Pharr and Humphreys who
explain the art of 3D rendering in their book [10]. Ad-
ditional literate-programming-based textbooks are
mentioned in the “Books: Applies Literate Program-
ming” section of the literateprogramming.com link
list [7].

One of the advantages of literate programming
over other development styles is that the order of pre-

sentation does not depend on syntactical constraints.
For a developer this means that the original creative
process can be recorded in the literate program, al-
lowing both top-down and bottom-up approaches.
Instructors can base the presentation on didactic con-
siderations, for example, they can first give function
definitions and structure declarations in an incom-
plete form (when the audience does not have the
required knowledge to understand the full versions)
and later extend them when the missing information
has been taught.

Since a book is not helpful in a classroom setting,
the question arises of how an instructor might create
lecture slides from a literate program. While it is
possible to copy and paste fragments from the literate
program into a presentation and manually add text,
such a procedure is tedious and will not always lead
to good results. Also, whenever the author modifies
the original literate program, he or she must also
manually update the slides. Until now, there has
been no software to aid the instructor in creating a
literate-programming-based presentation.

2 LiPPGen features

LiPPGen [2] lets you select a part (or several parts)
of a literate document by marking blocks with begin

and end comments. When running the tool on such
a file, it creates an HTML file and opens it in the
browser (Figure 1). The page shows code chunks
and documentation blocks separately (with most
LATEX code either stripped or converted to equiva-
lent HTML), and for each code chunk you can enter
some descriptive text in an HTML editor field sit-
ting next to the code chunk. (The program displays
the documentation parts as well so that you can
easily decide what information to pick for the slide

Figure 1: LiPPGen lets you convert literate programs
into presentations, with large parts of the process
being fully automatic.

Hans-Georg Eßer

TUGboat, Volume 34 (2013), No. 2 191

content.) The editor allows for simple markup, such
as enumerations, bullet lists, bold, and italics.

When you’ve entered all the information, you
can send the data back to the program (it supplies a
simple HTTP server for just this purpose), and then
LiPPGen creates an HTML presentation file with the
code chunks and your added input. Finally it opens
the new presentation in the browser.

Additional features are:

• You can repeat the editing process several times;
data entered in a preceding program run remains
available.
• The presentation shows chunk names in a way

that is similar to the formatting in a traditional
literate program (e. g., 〈name〉), both for the
definition (as in 〈name〉≡. . . and 〈name〉+≡. . .)
as well as for occurrences in other code chunks.
• LiPPGen recognizes repeated (i. e., continuing)

definitions of code chunks. The first one is al-
ways shown as 〈name〉≡, whereas the following
ones use 〈name〉+≡. Also, the chunk names
are used as slide titles, and if a chunk occurs on
several slides, LiPPGen increments a counter.
• Simple syntax highlighting (via regular expres-

sions) is available for C and Python source code,
so there’s a bit of pretty printing. You can easily
extend this to other languages.
• As part of the syntax highlighting LiPPGen

also breaks code lines which are too long. The
continuation is shown via an arrow character at
the end (similar to the display in the XEmacs
editor) and there are dots at the beginning of the
following line. That way it is clear where a line
begins and ends, without a need to introduce
line numbers.
• When you give the presentation, you can scroll

code chunks up and down using the cursor keys
(for code chunks which are longer than the slide
permits). Each code chunk “remembers” the
current scrolling position, so when you later
return to a slide, the display of the code chunk
is as it was when you last left the slide.

3 Implementation

When attempting to convert a document which is
basically in LATEX syntax — though in its extended
Literate Programming form — the natural choice for
slide creation would be to stick with LATEX and use
one of the available LATEX document classes for pre-
sentations, such as beamer [13]. However, the end
result of any approach using LATEX will be a PDF

document, and such documents are static.
In contrast, HTML allows elements on a page to

be scrollable, and this feature comes in handy when

we want to show code which exceeds the available
space on a slide.

3.1 Recycling: Use what’s there

Classically, open source developers are too lazy to
reinvent the wheel, and so at the beginning I checked
for available tools which might be able to reduce my
own development efforts. I found two very helpful
programs:

• The “Simple Standards-based Slide Show Sys-
tem” (S5) contains CSS files which let users
create complete presentations in single HTML

files [8]. Adding a slide is as simple as writing

<div class="slide">

<h1>Slide Title</h1>

...

</div>

in the source file, and bullet items need no more
than standard HTML lists (...
).

A LiPPGen presentation looks a lot like a
standard S5 presentation, except for the added
literate programming bits.
• The “NicEdit Inline Content Editor” [4] is a

JavaScript program that provides an HTML edi-
tor which can be embedded in HTML pages. It
is customizable, and for LiPPGen I’ve disabled
most of the available buttons, since they are not
needed.

3.2 The power of Python

Python comes with several useful libraries and allows
the on-the-fly implementation of a simple web server.
(This is true for many other script languages, but I
know Python best — the simple reason for choosing
it.) We need one for accepting the user’s input on
the web form, and Python’s socket module let me
integrate the web server into the program.

The complete lippgen script is only about 700
lines long, and these few lines of code handle pars-
ing the literate program document, generating the
HTML form, accepting the user input, and assem-
bling the final HTML files with syntax highlighting,
line breaking and other stuff.

3.3 Some JavaScript as well

In order to allow scrolling of the code chunks, I had
to slightly modify the JavaScript code that is part
of the S5 system. In brief, I’ve given HTML names
to all code chunks and changed the key-press event
code so that [Cursor up] and [Cursor down] scroll
the currently displayed code chunk up and down.

I also modified S5’s default/pretty.css file so
that the standard font for listings (tt) is M+ 1m [9]

LiPPGen: A presentation generator for literate-programming-based teaching

192 TUGboat, Volume 34 (2013), No. 2

since this font runs narrower than the standard
Courier type fonts.

4 LiPPGen tutorial

To try out LiPPGen yourself, download the software
and install it; then pick a sample literate program
and use lippgen. We’ll describe the process here.

4.1 Installing LiPPGen

Do the following to install the program:

1. Unpack the archive and copy the lippgen and
lippgen-sanitize files to some directory in
your path (e. g., /usr/bin/ or ~/bin). Create
/usr/share/lippgen/ and recursively copy the
lippgen.d/ directory into that new directory.
If you cannot write in /usr/share you can pick
some other location but will then have to modify
the assignment

LIPPGEN_D = \

"/usr/share/lippgen/lippgen.d"

in the lippgen script.

2. Check if the pre-configured port number 12349
of lippgen is free on your machine — if not,
change it to something else in the line

PORT = 12349

Modify the command which opens a URL in
a web browser; it is currently set to

BROWSER_COMMAND = \

"open %s -a \"Google Chrome\""

which works on a Mac with Google Chrome
installed. For Firefox on a Linux machine the
proper command would be

BROWSER_COMMAND = "firefox -new-tab %s"

4.2 Using LiPPGen

Assume you have a literate program in a file named
example.nw (which is the standard file extension if
you use noweb). Any other extension except .html

is fine as well.

1. Mark the relevant part(s) of the literate pro-
gramming source file by inserting two lines

%%% BEGIN LITERATE TEACHING %%%

and

%%% END LITERATE TEACHING %%%

(without any leading spaces) around each part
that is to be included in the slides. (You can
omit the last end marker; in that case LiPP-
Gen will go on processing until the end of the
document.)

2. Run ./lippgen on the file, e. g. by issuing the
command ./lippgen example.nw; this produ-
ces a file example.form.html and opens it in
the preconfigured browser.

The default language for syntax highlighting
is C. If you want Python instead, use Python

as a second argument to lippgen. If you use a
different language, modify the program.

3. In the browser, fill in the text input boxes next
to the code chunks. You can leave input boxes
empty if you want to create slides that only
have code on them. Click Send at the end of
the page.

4. Submitting will transfer the input boxes’ con-
tents to the program’s built-in server, where
the processing continues. Your entries in the
fields will also be saved in example.lip so that
it will be reused if you run lippgen on the same
file again (the input boxes will already be filled
with the entries from the last time). This step
creates the final presentation file example.html

and opens it in the browser.

5. Check the resulting slides and make changes if
necessary (going back to step 3).

6. Give the lecture.

4.3 Generating extra pages

It’s also possible to create extra presentation pages
without code, but LiPPGen has no way of knowing
that in advance. After you’ve initially created the
HTML slides, you can edit the HTML file and insert

<div class="slide">

<h1>Slide Title</h1>

...

...

...

</div>

blocks between other div elements of class slide.
This will disrupt the enumeration of slides (and as
a consequence scrolling will not work in slides after
the first manually included one). Thus, for post-
processing of a manually modified HTML file, there’s
an extra tool called lippgen-sanitize that will
renumber the slides.

However, modifying the HTML file this way still
makes it harder to keep the original literate program
and the presentation in sync; when your regenerate
the slides with lippgen, you lose the slides which you
have added manually. Future versions of LiPPGen
may improve this procedure.

Hans-Georg Eßer

TUGboat, Volume 34 (2013), No. 2 193

4.4 Adding keywords

Currently syntax highlighting knows only a few key-
words which typically occur in C or Python pro-
grams. They are registered in the C_KEYWORDS and
P_KEYWORDS variables, e. g.

C_KEYWORDS = ["uint ", "int ", "char ",

"#define", "typedef", "struct", "return",

"#include", "if ", "else "]

If you want to add your own keywords to the list
(so that LiPPGen will highlight them), just append
them to the appropriate variable.

A future version of LiPPGen might use the
highlight program [12], or similar, to provide better
highlighting.

4.5 Publishing a LiPPGen presentation

If you want to publish a LiPPGen presentation on
a website, you will need to copy the HTML file and
the automatically generated lippgen.d subdirectory
to the web server. All files in that subdirectory are
referenced via relative "lippgen.d/..." URLs, so
the file should display properly without further ado.

5 An example

I’ve developed LiPPGen as part of my Ph.D. research
which mainly consists of implementing Ulix [3], a
new Unix-like operating system using literate pro-
gramming. To test whether the literate program-
ming approach is helpful in an operating systems
class, I’m going to convert parts of the literate pro-
gram into slides and use them during lectures; that
first real-world test is scheduled for the winter term
2013/14 when I’ll be giving a course called “Imple-
menting Operating Systems with Literate Program-
ming” at Nuremberg University of Applied Sciences
(TH Nürnberg). When the course starts, slides will
be available from the course website [1].

Figure 2 shows an excerpt from the signal han-
dling chapter of the unpublished Ulix code which
implements the kill system call. That part of the
book contains four code chunks, and LiPPGen will
convert them into four slides which may then be
described.

When calling lippgen, a browser window dis-
plays the generated HTML form, as shown in Figure 3.
You can then enter the slide contents and also pro-
vide metadata for the title slide (title, author, and
organization). After clicking the Send button, the
browser opens the final presentation file, shown in
Figure 4.

6 License

The licensing for LiPPGen may look a little irritating,
but since I’ve used other components, I need to

follow their licenses. Thus, the modified S5 code
is in the public domain, the NicEdit component is
available under the MIT license, and the Python
script lippgen is GPLv2-licensed.

To summarize this, you’re basically free to do
whatever you like with the package. If you modify
and re-publish LiPPGen, you just have to be aware
of the third party code’s licenses.

7 Future work

I’ve also looked into the alternative presentation
tool Prezi [11] which allows zooming into and out
of presentation parts. There, the presentation is
basically a big mind map.

Since using code chunks is somewhat similar to
the Prezi approach, it would be interesting to have a
tool which allows quick replacement of a chunk name
with the chunk content (when clicking it).

I’m also planning to experiment with the above-
mentioned highlight program [12] since it makes
no sense to invest time into developing a separate
highlighting engine when similar code is available.

References

[1] Hans-Georg Eßer. Implementing Operating
Systems With Literate Programming.
Lecture slides, Nuremberg University of
Applied Sciences, Winter term 2013/14.
http://ohm.hgesser.de/be-ws2013/.

[2] Hans-Georg Eßer. LiPPGen.
http://hgesser.de/software/lippgen/.

[3] Felix Freiling and Hans-Georg Eßer. ULIX.
http://www.ulixos.org/.

[4] Brian Kirchoff. NicEdit Inline Content Editor,
2008. http://nicedit.com/.

[5] Donald E. Knuth. Literate Programming.
The Computer Journal, 27(2):97–111, 1984.

[6] Donald E. Knuth. TEX: The Program.
Addison Wesley Publishing Company, 1986.

[7] Literate programming link list. http://www.

literateprogramming.com/links.html.

[8] Eric A. Meyer. S5: A Simple Standards-Based
Slide Show System. http://meyerweb.com/

eric/tools/s5/.

[9] Coji Morishita. M+ 1M font.
http://mplus-fonts.sourceforge.jp/

mplus-outline-fonts/design/index-en.

html.

[10] Matt Pharr and Greg Humphreys. Physically
Based Rendering, Second Edition: From
Theory To Implementation. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA,
2010.

LiPPGen: A presentation generator for literate-programming-based teaching

http://ohm.hgesser.de/be-ws2013/
http://hgesser.de/software/lippgen/
http://www.ulixos.org/
http://nicedit.com/
http://www.literateprogramming.com/links.html
http://www.literateprogramming.com/links.html
http://meyerweb.com/eric/tools/s5/
http://meyerweb.com/eric/tools/s5/
http://mplus-fonts.sourceforge.jp/mplus-outline-fonts/design/index-en.html
http://mplus-fonts.sourceforge.jp/mplus-outline-fonts/design/index-en.html
http://mplus-fonts.sourceforge.jp/mplus-outline-fonts/design/index-en.html

194 TUGboat, Volume 34 (2013), No. 2

[11] Prezi website. http://prezi.com/.

[12] Andre Simon. Highlight Manual. http://

www.andre-simon.de/doku/highlight/en/

highlight.html.

[13] Till Tantau et al. Beamer document class for
LATEX. http://ctan.org/pkg/beamer.

� Hans-Georg Eßer
Univ. Erlangen-Nürnberg
Lehrstuhl 1 für Informatik
Martensstraße 3
D-91058 Erlangen, Germany
h.g.esser (at) cs dot fau dot de

http://hgesser.de/

21.3. Implementation of Signals in Ulix-i386

323a �kernel declarations 59b�+≡ (61a) � 322c 327a �

void kill (int pid, int signo);

Uses kill.

Note that we do no checking in this function, kill can be called by the kernel itself (which
may send any signal to any process), but it cannot be called directly by a process. Sending
by a process requires using a system call, and the system call handler will check whether the
process is allowed to send the signal to the target process before calling kill.

It is also classical for a process to send a signal to itself; that is what the raise function
does. We will not implement it specifically inside the kernel, but in the user mode library:
raise(sig) is the same as kill(getpid(),sig).

Here’s the code for the system call handler:

323b �initialize syscalls 94c�+≡ (64a) � 313b

insert_syscall (__NR_kill, syscall_kill);

Uses insert syscall and syscall kill.

323c �syscall functions 93c�+≡ (86d) � 100f

void syscall_kill (struct regs *r) {

// ebx: pid of child to send a s signal

// ecx: signal number

int ok, retval;

int target_pid = r->ebx;

int signo = r->ecx;

�check if current process may send a signal 323d�

if (ok) {

kill (target_pid, signo);

retval = 0;

} else

retval = -1;

r->eax = retval;

�run scheduler if this was a raise operation 324�
return;

};

Uses kill and syscall kill.

We only allow sending a signal if either the sender’s owner has user ID 0 or if sender and
recipient have the same owner:

323d �check if current process may send a signal 323d�≡ (323c)

// TO DO!

//

//

ok = true;

Uses true.

If sender and receiver are the same process, we have a raise operation, and in that case
we will jump into the scheduler: we do not want the current process to continue execution

323

Figure 2: This excerpt from the literate program “Ulix” contains four code chunks.

Hans-Georg Eßer

http://prezi.com/
http://www.andre-simon.de/doku/highlight/en/highlight.html
http://www.andre-simon.de/doku/highlight/en/highlight.html
http://www.andre-simon.de/doku/highlight/en/highlight.html
http://ctan.org/pkg/beamer

TUGboat, Volume 34 (2013), No. 2 195

Figure 3: The HTML form lets you enter content for the slides.

Figure 4: The HTML presentation file created by LiPPGen. The listing on the right hand side is scrollable.

LiPPGen: A presentation generator for literate-programming-based teaching

	Introduction
	LiPPGen features
	Implementation
	Recycling: Use what's there
	The power of Python
	Some JavaScript as well

	LiPPGen tutorial
	Installing LiPPGen
	Using LiPPGen
	Generating extra pages
	Adding keywords
	Publishing a LiPPGen presentation

	An example
	License
	Future work

