
Production notes

Karl Berry

The most TEXnically unusual part of this article, and of
the entire issue, was handling the rare characters shown
in the footnote on the first page and the rundown of
circle-slash characters on the next two pages. Although
they could have been inserted as small images, the au-
thor (Chuck Bigelow) sent me fonts including them, so I
wanted to try typesetting them directly. He wanted to
typeset them all in a consistent font, rather than mixing
glyphs from Computer Modern and other sources.

The first version Chuck sent me was in .otf format,
with the characters we wanted (zero-slash, prohibition,
etc.) replacing lowercase letters. So it sufficed to start up
FontForge (by George Williams, fontforge.sf.net) and
use its ‘Generate Fonts’ feature to create a .pfb+.afm,
which takes the first 256 characters. Easy. (I wanted to
use Type 1 since this was happening quite far along in
the article’s processing, and I had been using pdfLATEX
thus far; switching to X ELATEX or LuaLATEX would have
meant losing functionality from microtype and thus los-
ing considerable time fixing line breaks.)

Then Chuck sent me a revised font with additional
characters. This time it was a .ttf, and the characters
were in the correct Unicode positions (which are far
beyond the first 256 characters, of course), so I couldn’t
just use the simple FontForge generation. (I could have
asked Chuck to rearrange the characters, but I decided
to take it as a challenge; after all, it’s an article of our
faith that TEX should be able to use any font.)

Instead, I followed the article by Hàn Thé̂ Thành
about using TrueType fonts directly in pdfTEX (30:1, tug.
org/TUGboat/tb30-1/tb94thanh.pdf). First I created
a custom encoding file, altzero.enc, starting like this:

/enclucidaaltzero [

/emptyset % U+2205

/uni20E0 % prohibition

/emptyset.var % glyph index #2225

... ]

These character names are specified in the font. I discov-
ered them by looking at the font in FontForge and using

‘View→Goto’ to navigate to the characters; thankfully,
searching for uni... works even when the character does
not have a name of that form. Chuck told me the name
of the variant emptyset glyph (zero-slash in this case),
which does not have a Unicode assignment.

Still following Thành’s article, I then made the .tfm:

ttf2afm -e altzero.enc -o altzero.afm ZeroFont.ttf

afm2tfm altzero.afm

In the LATEX document, the font was used like this:

\pdfmapline{+altzero ZeroFont <altzero.enc

<ZeroFont.ttf}

\font\altzero = altzero

{\altzero\char0}% of our encoding: emptyset

All was fine, until Chuck sent me one more revision
of the font. This time it was again .otf, but now using
the Unicode positions. pdfTEX cannot read .otf, and
converting .otf to .ttf seemed fraught with potential
problems to me. So I used a third tool: otftotfm (by
Eddie Kohler, lcdf.org). Once I read the documentation
enough times, I happily discovered that I could re-use
the same encoding file. The invocation this time:

otftotfm -e altzero.enc --no-encoding \

ZeroFontOT.otf altzero

(The --no-encoding option just tells otftotfm not to
generate its own new encoding file; the final altzero ar-
gument is the base name of the .tfm and .pfb generated
by otftotfm.)

Usage in the LATEX source is similar to the above,
but now we have a .pfb:

\pdfmapline{+altzero ZeroFontOT <altzero.enc

<ZeroFontOT.pfb}

The tools themselves output the map lines needed, ac-
cording to the names embedded in the font files, etc.

Moving on from the technicalities, it was a great
pleasure to work with Chuck on his articles in this is-
sue. He has had a great (and positive!) influence on me,
with recommendations for schools to attend, professors
to work with, and personally encouraging my lifelong
interest in typography and typesetting. As it turned out,
we effectively finished work on the article on Chuck’s
birthday. Happy birthday Chuck!


