
196 TUGboat, Volume 34 (2013), No. 2

Entry-level MetaPost 2: Move it!

Mari Voipio

This installment introduces some of the basic com-
mands for moving a line or an object — i.e. a path—
to a different position: shifting, rotating, reflecting,
repeating. In programs with a graphical user inter-
face, these operations are typically done by clicking
and dragging or clicking and selecting a command
on a toolbar.

MetaPost has a slightly different approach to e.g.
rotation and this can be confusing at first, although it
is completely logical on its own terms. It adds to the
confusion that some commonly used commands like
flip and duplicate do not exist in MetaPost (nor Meta-
Post manuals), although the operations are doable
once you know what to look for.

For basic information on running MetaPost, ei-
ther standalone or within a ConTEXt document, see
http://tug.org/metapost/runningmp.html.

1 Store it first

Before we start to manipulate a path, we typically
store it for further access by defining a path variable.
In many MetaPost tutorials you see paths named p,
q and r, but I prefer slightly longer and more descrip-
tive names, even though that means more typing.
Below we first define and then draw a diamond that
is used for many examples in this tutorial.

beginfig (1) ;

numeric u ; u := 1cm ; % define the unit

% define path variable "dmnd" (diamond shape,

% intentionally asymmetrical)

path dmnd ;

dmnd := (1u,0u) -- (0u,2u) -- (1u,4u) -- (2u,2u)

-- cycle ;

% drawing diamond (outline)

draw dmnd ;

endfig ;

end .

Here is the output:

Troubleshooting: If your file compiles but the graphic
is empty, you probably forgot to draw at least one
path, i.e. the output “paper” is still empty. No draw/
fill/filldraw command at all leads to an empty file.

When multiple path variables are defined, they
can all go at the top of the file to make sure that we
define each variable before trying to use it. However,
we can use the variables in any order after that and
as many times as is needed. Personally I like to
list my variables in alphabetic order so I can find
one quickly if I need to check or change the path
definition.

2 Shift (copy, duplicate)

To shift means to move, and that is exactly what the
command does. It works in a fairly intuitive way:

draw dmnd shifted (3u,0u) withcolor red;

That line can be read as “take a diamond, draw
it to (3u,0u) using a red pen”. Visually:

If we draw the original diamond as well as the
shifted one, we now have two diamonds, i.e. we have
copied an object. We can change the attributes of
the second (shifted) diamond, e.g. to make a coloured
diamond by using the fill command. For example:

Here’s the MetaPost code. The beginning is
what we saw in the first section.

beginfig (1) ;

numeric u ; u := 1cm ; % define the unit

% define path variable "dmnd" (diamond shape)

path dmnd;

Mari Voipio



TUGboat, Volume 34 (2013), No. 2 197

dmnd := (1u,0u) -- (0u,2u) -- (1u,4u)--(2u,2u)

-- cycle;

% draw dashed diamond at original location

draw dmnd dashed evenly ;

% draw second diamond to the right, in red

draw dmnd shifted (3u,0u) withcolor red ;

% draw third diamond, filled with blue,

% to the right and up from original

fill dmnd shifted (6u,1u) withcolor blue ;

endfig ;

end .

The shift command only applies to the ele-
ment preceding it; we need to use parentheses if we
intend otherwise. Thus draw (0u,2u) -- (2u,5u)

shifted (4u,1u) and draw ((0u,2u) -- (2u,5u))

shifted (4u,1u) produce very different results:

draw (0u,2u) -- (2u,5u)

shifted ...

draw ((0u,2u) -- (2u,5u))

shifted ...

The black is the original (0u,2u)--(2u,5u)

line, while the red is the result of the whole expres-
sion, including the shift. Here is the code (combined
for exposition):

...

% set the penwidth (see previous article)

drawoptions (withpen pencircle scaled 1/10u) ;

% draw original line in black

draw (0u,2u) -- (2u,5u) ;

% draw red line with shift of endpoint only:

% (first example)

draw (0u,2u) -- (2u,5u) shifted (4u,1u)

withcolor red ;

% ... or ...

% draw red line with whole line being shifted:

% (second example)

draw ((0u,2u) -- (2u,5u)) shifted (4u,1u)

withcolor red ;

...

3 Rotate

Rotation is another basic graphical transformation.
In MetaPost, the basic operation is done with the
keyword rotated. We also always need to specify
the angle of rotation. However, if one is used to
a graphical program (say, Inkscape), the results of
rotated can be a bit of a surprise at first. Let’s look
at an example.

% define a path variable "tetris"

path tetris ;

tetris := (3u,2u) -- (4u,2u) -- (4u,5u)--(2u,5u)

-- (2u,4u) -- (3u,4u) -- cycle ;

% draw solid blue tetris block

fill tetris withcolor blue ;

% draw rotated tetris block in red

fill tetris rotated 90 withcolor red ;

And the output (scaled down, here and in the follow-
ing, from 1cm for TUGboat’s narrow columns):

Say what?
The logic becomes more apparent if we add a

small dot at origin (0,0):

% mark origin with a black dot

fill fullcircle scaled 1/10u ;

yielding:

The lesson: The rotated command rotates the
path’s bounding box around the origin (0,0),
and rotation direction is counterclockwise.

If we want to rotate the path around any other
point, we have to use the command rotatedaround,
for which we need to specify both the location of the
rotation point and the angle of rotation. Example:

% draw a diamond rotated around its top point,

% at (1u,4u)

fill dmnd rotatedaround ((1u,4u),90)

withcolor blue;

Entry-level MetaPost 2: Move it!



198 TUGboat, Volume 34 (2013), No. 2

To rotate around the “midpoint” of the object
(that is, the center of bounding box, the default
rotation point in many programs), we don’t need
to painfully compute the coordinates for the center.
MetaPost has a handy keyword center for that:

% draw diamond outline

draw dmnd ;

% draw red diamond rotated around its center

fill dmnd rotatedaround (center dmnd,45)

withcolor red;

% draw tetris outline

draw tetris;

% draw tetris block rotated around its center

fill tetris rotatedaround (center tetris, 90)

withcolor blue ;

% these commands would make the centers visible:

%fill fullcircle scaled 1/10u shifted

% (center dmnd) ;

%fill fullcircle scaled 1/10u shifted

% (center tetris) ;

4 Reflect (flip, mirror)

Another command that may seem to be missing in
MetaPost is horizontal or vertical mirroring (also
known as flipping). The functionality does exist, in-
voked with the keyword reflectedabout, although
a bit of practice is needed to get used to it — but on
the other hand we can specify any straight line to be
the reflection axis, it doesn’t have to be horizontal
or vertical. Consequently, to use reflectedabout,
we must specify two points for the reflection axis. If
you find this hard, think of a mirror and where you’d
place its edge to get the reflection needed.

Here I’m playing around with a Greek key pat-
tern and its reflection (yes, they do overlap in the
middle) around a vertical line.

And the code to produce it:

beginfig (2) ;

% design source:

% http://gwydir.demon.co.uk/jo/greekkey/turns.htm

numeric u ; u := 3.8mm ; % define the unit

% creating sharp squared joins

linecap := squared ;

linejoin := mitered ;

% set the penwidth

drawoptions (withpen pencircle scaled 1/2u) ;

% define the path for the greek key

path gkey;

gkey := (origin) -- (0u,5u) -- (5u,5u) -- (5u,1u)

-- (2u,1u) -- (2u,3u) -- (3u,3u) -- (3u,2u)

-- (4u,2u) -- (4u,4u) -- (1u,4u) -- (1u,0u)

-- (5.5u,0u);

% draw it

draw gkey ;

% flip it and draw it in red

draw gkey reflectedabout ((5.5u,0u),(5.5u,5u))

withcolor red ;

endfig ;

end .

By adding another, horizontally flipped, key and
then a key with rotation we can create a square Greek
key pattern variation:

draw gkey reflectedabout ((origin),(5.5u,0u))

withcolor blue ;

draw gkey rotatedaround (lrcorner gkey,180)

withcolor green ;

The pattern is more apparent entirely in black:

Mari Voipio



TUGboat, Volume 34 (2013), No. 2 199

If you want to flip an object along a side of
the bounding box, the MetaFun package provides a
set of handy shortcuts: the corners of the bounding
box are called llcorner, lrcorner, ulcorner and
urcorner. Thus, to flip an object along the right
edge of the bounding box, the lower right and upper
right corner are called for:

% drawing flipped tetris block

fill tetris reflectedabout (lrcorner tetris,

urcorner tetris)

withcolor green ;

Yielding:

5 . . . and repeat

If you need to repeat the same pattern at regular
intervals, a combination of shift and loop is possible.
Besides the angular variety above, I’ve also designed
a rounded version of the Greek key that could e.g.
make a nice header for a book. To alter the size of the
“frieze” I can either change the number of repetitions
or the final size, depending on what shape is desired.

% define one spiral

path spiral;

spiral := (0,7/4) .. (2,4) .. (5,2) .. (3,0)

.. (2,2) .. (4,2) .. (3,1) ;

% repeat to get 10 spirals in a row

for i = 0 step 5 until 45 :

draw spiral shifted (i,0) ;

endfor ;

% add a bit of white around the pattern

setbounds currentpicture

to boundingbox currentpicture

enlarged 1/4 ;

% resize the whole thing

currentpicture := currentpicture xsized 7cm ;

And the output:

6 MetaFun

The xsized command used in the last line, like the
corner shortcuts mentioned above, is part of the
MetaFun package, not MetaPost proper. MetaFun is
loaded in ConTEXt by default, but needs to be explic-
itly loaded when using standalone plain MetaPost
documents, like this:

mpost --mem=metafun yourfile.mp

See http://wiki.contextgarden.net/MetaFun for
more.

� Mari Voipio
mari dot voipio (at) lucet dot fi

http://www.lucet.fi

Entry-level MetaPost 2: Move it!


